llvm-6502/lib/CodeGen/RegAllocFast.cpp
Daniel Dunbar 0efd768aea Make Clang happy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103528 91177308-0d34-0410-b5e6-96231b3b80d8
2010-05-11 23:53:13 +00:00

748 lines
25 KiB
C++

//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
static RegisterRegAlloc
fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
namespace {
class RAFast : public MachineFunctionPass {
public:
static char ID;
RAFast() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
private:
const TargetMachine *TM;
MachineFunction *MF;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
// StackSlotForVirtReg - Maps virtual regs to the frame index where these
// values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
// Everything we know about a live virtual register.
struct LiveReg {
MachineInstr *LastUse; // Last instr to use reg.
unsigned PhysReg; // Currently held here.
unsigned short LastOpNum; // OpNum on LastUse.
bool Dirty; // Register needs spill.
LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0),
Dirty(false) {
assert(p && "Don't create LiveRegs without a PhysReg");
}
};
typedef DenseMap<unsigned, LiveReg> LiveRegMap;
// LiveVirtRegs - This map contains entries for each virtual register
// that is currently available in a physical register.
LiveRegMap LiveVirtRegs;
// RegState - Track the state of a physical register.
enum RegState {
// A disabled register is not available for allocation, but an alias may
// be in use. A register can only be moved out of the disabled state if
// all aliases are disabled.
regDisabled,
// A free register is not currently in use and can be allocated
// immediately without checking aliases.
regFree,
// A reserved register has been assigned expolicitly (e.g., setting up a
// call parameter), and it remains reserved until it is used.
regReserved
// A register state may also be a virtual register number, indication that
// the physical register is currently allocated to a virtual register. In
// that case, LiveVirtRegs contains the inverse mapping.
};
// PhysRegState - One of the RegState enums, or a virtreg.
std::vector<unsigned> PhysRegState;
// UsedInInstr - BitVector of physregs that are used in the current
// instruction, and so cannot be allocated.
BitVector UsedInInstr;
// ReservedRegs - vector of reserved physical registers.
BitVector ReservedRegs;
public:
virtual const char *getPassName() const {
return "Fast Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
bool runOnMachineFunction(MachineFunction &Fn);
void AllocateBasicBlock(MachineBasicBlock &MBB);
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
void killVirtReg(unsigned VirtReg);
void killVirtReg(LiveRegMap::iterator i);
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
unsigned VirtReg, bool isKill);
void killPhysReg(unsigned PhysReg);
void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned PhysReg, bool isKill);
LiveRegMap::iterator assignVirtToPhysReg(unsigned VirtReg,
unsigned PhysReg);
LiveRegMap::iterator allocVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned VirtReg);
unsigned defineVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum, unsigned VirtReg);
unsigned reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum, unsigned VirtReg);
void reservePhysReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned PhysReg);
void spillAll(MachineBasicBlock &MBB, MachineInstr *MI);
void setPhysReg(MachineOperand &MO, unsigned PhysReg);
};
char RAFast::ID = 0;
}
/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
if (SS != -1)
return SS; // Already has space allocated?
// Allocate a new stack object for this spill location...
int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
RC->getAlignment());
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(LiveRegMap::iterator i) {
assert(i != LiveVirtRegs.end() && "Killing unmapped virtual register");
unsigned VirtReg = i->first;
const LiveReg &LR = i->second;
assert(PhysRegState[LR.PhysReg] == VirtReg && "Broken RegState mapping");
PhysRegState[LR.PhysReg] = regFree;
if (LR.LastUse) {
MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
if (MO.isUse()) MO.setIsKill();
else MO.setIsDead();
DEBUG(dbgs() << " - last seen here: " << *LR.LastUse);
}
LiveVirtRegs.erase(i);
}
/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(unsigned VirtReg) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"killVirtReg needs a virtual register");
DEBUG(dbgs() << " Killing %reg" << VirtReg << "\n");
LiveRegMap::iterator i = LiveVirtRegs.find(VirtReg);
if (i != LiveVirtRegs.end())
killVirtReg(i);
}
/// spillVirtReg - This method spills the value specified by VirtReg into the
/// corresponding stack slot if needed. If isKill is set, the register is also
/// killed.
void RAFast::spillVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned VirtReg, bool isKill) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Spilling a physical register is illegal!");
LiveRegMap::iterator i = LiveVirtRegs.find(VirtReg);
assert(i != LiveVirtRegs.end() && "Spilling unmapped virtual register");
LiveReg &LR = i->second;
assert(PhysRegState[LR.PhysReg] == VirtReg && "Broken RegState mapping");
// If this physreg is used by the instruction, we want to kill it on the
// instruction, not on the spill.
bool spillKill = isKill && LR.LastUse != MI;
if (LR.Dirty) {
LR.Dirty = false;
DEBUG(dbgs() << " Spilling register " << TRI->getName(LR.PhysReg)
<< " containing %reg" << VirtReg);
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
DEBUG(dbgs() << " to stack slot #" << FrameIndex << "\n");
TII->storeRegToStackSlot(MBB, MI, LR.PhysReg, spillKill,
FrameIndex, RC, TRI);
++NumStores; // Update statistics
if (spillKill)
LR.LastUse = 0; // Don't kill register again
else if (!isKill) {
MachineInstr *Spill = llvm::prior(MI);
LR.LastUse = Spill;
LR.LastOpNum = Spill->findRegisterUseOperandIdx(LR.PhysReg);
}
}
if (isKill)
killVirtReg(i);
}
/// spillAll - Spill all dirty virtregs without killing them.
void RAFast::spillAll(MachineBasicBlock &MBB, MachineInstr *MI) {
SmallVector<unsigned, 16> Dirty;
for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
e = LiveVirtRegs.end(); i != e; ++i)
if (i->second.Dirty)
Dirty.push_back(i->first);
for (unsigned i = 0, e = Dirty.size(); i != e; ++i)
spillVirtReg(MBB, MI, Dirty[i], false);
}
/// killPhysReg - Kill any virtual register aliased by PhysReg.
void RAFast::killPhysReg(unsigned PhysReg) {
// Fast path for the normal case.
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
case regFree:
return;
case regReserved:
PhysRegState[PhysReg] = regFree;
return;
default:
killVirtReg(VirtReg);
return;
}
// This is a disabled register, we have to check aliases.
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
case regFree:
break;
case regReserved:
PhysRegState[Alias] = regFree;
break;
default:
killVirtReg(VirtReg);
break;
}
}
}
/// spillPhysReg - Spill any dirty virtual registers that aliases PhysReg. If
/// isKill is set, they are also killed.
void RAFast::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned PhysReg, bool isKill) {
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
case regFree:
return;
case regReserved:
if (isKill)
PhysRegState[PhysReg] = regFree;
return;
default:
spillVirtReg(MBB, MI, VirtReg, isKill);
return;
}
// This is a disabled register, we have to check aliases.
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
case regFree:
break;
case regReserved:
if (isKill)
PhysRegState[Alias] = regFree;
break;
default:
spillVirtReg(MBB, MI, VirtReg, isKill);
break;
}
}
}
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
RAFast::LiveRegMap::iterator
RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
DEBUG(dbgs() << " Assigning %reg" << VirtReg << " to "
<< TRI->getName(PhysReg) << "\n");
PhysRegState[PhysReg] = VirtReg;
return LiveVirtRegs.insert(std::make_pair(VirtReg, PhysReg)).first;
}
/// allocVirtReg - Allocate a physical register for VirtReg.
RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineBasicBlock &MBB,
MachineInstr *MI,
unsigned VirtReg) {
const unsigned spillCost = 100;
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Can only allocate virtual registers");
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
TargetRegisterClass::iterator AOB = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator AOE = RC->allocation_order_end(*MF);
// First try to find a completely free register.
unsigned BestCost = 0, BestReg = 0;
bool hasDisabled = false;
for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) {
unsigned PhysReg = *I;
switch(PhysRegState[PhysReg]) {
case regDisabled:
hasDisabled = true;
case regReserved:
continue;
case regFree:
if (!UsedInInstr.test(PhysReg))
return assignVirtToPhysReg(VirtReg, PhysReg);
continue;
default:
// Grab the first spillable register we meet.
if (!BestReg && !UsedInInstr.test(PhysReg))
BestReg = PhysReg, BestCost = spillCost;
continue;
}
}
DEBUG(dbgs() << " Allocating %reg" << VirtReg << " from " << RC->getName()
<< " candidate=" << TRI->getName(BestReg) << "\n");
// Try to extend the working set for RC if there were any disabled registers.
if (hasDisabled && (!BestReg || BestCost >= spillCost)) {
for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) {
unsigned PhysReg = *I;
if (PhysRegState[PhysReg] != regDisabled || UsedInInstr.test(PhysReg))
continue;
// Calculate the cost of bringing PhysReg into the working set.
unsigned Cost=0;
bool Impossible = false;
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
if (UsedInInstr.test(Alias)) {
Impossible = true;
break;
}
switch (PhysRegState[Alias]) {
case regDisabled:
break;
case regReserved:
Impossible = true;
break;
case regFree:
Cost++;
break;
default:
Cost += spillCost;
break;
}
}
if (Impossible) continue;
DEBUG(dbgs() << " - candidate " << TRI->getName(PhysReg)
<< " cost=" << Cost << "\n");
if (!BestReg || Cost < BestCost) {
BestReg = PhysReg;
BestCost = Cost;
if (Cost < spillCost) break;
}
}
}
if (BestReg) {
// BestCost is 0 when all aliases are already disabled.
if (BestCost) {
if (PhysRegState[BestReg] != regDisabled)
spillVirtReg(MBB, MI, PhysRegState[BestReg], true);
else {
// Make sure all aliases are disabled.
for (const unsigned *AS = TRI->getAliasSet(BestReg);
unsigned Alias = *AS; ++AS) {
switch (PhysRegState[Alias]) {
case regDisabled:
continue;
case regFree:
PhysRegState[Alias] = regDisabled;
break;
default:
spillVirtReg(MBB, MI, PhysRegState[Alias], true);
PhysRegState[Alias] = regDisabled;
break;
}
}
}
}
return assignVirtToPhysReg(VirtReg, BestReg);
}
// Nothing we can do.
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Ran out of registers during register allocation!";
if (MI->isInlineAsm()) {
Msg << "\nPlease check your inline asm statement for "
<< "invalid constraints:\n";
MI->print(Msg, TM);
}
report_fatal_error(Msg.str());
return LiveVirtRegs.end();
}
/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
unsigned RAFast::defineVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum, unsigned VirtReg) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Not a virtual register");
LiveRegMap::iterator i = LiveVirtRegs.find(VirtReg);
if (i == LiveVirtRegs.end())
i = allocVirtReg(MBB, MI, VirtReg);
LiveReg &LR = i->second;
LR.LastUse = MI;
LR.LastOpNum = OpNum;
LR.Dirty = true;
UsedInInstr.set(LR.PhysReg);
return LR.PhysReg;
}
/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
unsigned RAFast::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum, unsigned VirtReg) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Not a virtual register");
LiveRegMap::iterator i = LiveVirtRegs.find(VirtReg);
if (i == LiveVirtRegs.end()) {
i = allocVirtReg(MBB, MI, VirtReg);
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
DEBUG(dbgs() << " Reloading %reg" << VirtReg << " into "
<< TRI->getName(i->second.PhysReg) << "\n");
TII->loadRegFromStackSlot(MBB, MI, i->second.PhysReg, FrameIndex, RC, TRI);
++NumLoads;
}
LiveReg &LR = i->second;
LR.LastUse = MI;
LR.LastOpNum = OpNum;
UsedInInstr.set(LR.PhysReg);
return LR.PhysReg;
}
/// reservePhysReg - Mark PhysReg as reserved. This is very similar to
/// defineVirtReg except the physreg is reverved instead of allocated.
void RAFast::reservePhysReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned PhysReg) {
UsedInInstr.set(PhysReg);
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
case regFree:
PhysRegState[PhysReg] = regReserved;
return;
case regReserved:
return;
default:
spillVirtReg(MBB, MI, VirtReg, true);
PhysRegState[PhysReg] = regReserved;
return;
}
// This is a disabled register, disable all aliases.
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
UsedInInstr.set(Alias);
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
case regFree:
break;
case regReserved:
// is a super register already reserved?
if (TRI->isSuperRegister(PhysReg, Alias))
return;
break;
default:
spillVirtReg(MBB, MI, VirtReg, true);
break;
}
PhysRegState[Alias] = regDisabled;
}
PhysRegState[PhysReg] = regReserved;
}
// setPhysReg - Change MO the refer the PhysReg, considering subregs.
void RAFast::setPhysReg(MachineOperand &MO, unsigned PhysReg) {
if (unsigned Idx = MO.getSubReg()) {
MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, Idx) : 0);
MO.setSubReg(0);
} else
MO.setReg(PhysReg);
}
void RAFast::AllocateBasicBlock(MachineBasicBlock &MBB) {
DEBUG(dbgs() << "\nBB#" << MBB.getNumber() << ", "<< MBB.getName() << "\n");
PhysRegState.assign(TRI->getNumRegs(), regDisabled);
assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?");
MachineBasicBlock::iterator MII = MBB.begin();
// Add live-in registers as live.
for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
E = MBB.livein_end(); I != E; ++I)
reservePhysReg(MBB, MII, *I);
SmallVector<unsigned, 8> VirtKills, PhysKills, PhysDefs;
// Otherwise, sequentially allocate each instruction in the MBB.
while (MII != MBB.end()) {
MachineInstr *MI = MII++;
const TargetInstrDesc &TID = MI->getDesc();
DEBUG({
dbgs() << "\nStarting RegAlloc of: " << *MI << "Working set:";
for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
if (PhysRegState[Reg] == regDisabled) continue;
dbgs() << " " << TRI->getName(Reg);
switch(PhysRegState[Reg]) {
case regFree:
break;
case regReserved:
dbgs() << "(resv)";
break;
default:
dbgs() << "=%reg" << PhysRegState[Reg];
if (LiveVirtRegs[PhysRegState[Reg]].Dirty)
dbgs() << "*";
assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg &&
"Bad inverse map");
break;
}
}
dbgs() << '\n';
// Check that LiveVirtRegs is the inverse.
for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
e = LiveVirtRegs.end(); i != e; ++i) {
assert(TargetRegisterInfo::isVirtualRegister(i->first) &&
"Bad map key");
assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) &&
"Bad map value");
assert(PhysRegState[i->second.PhysReg] == i->first &&
"Bad inverse map");
}
});
// Debug values are not allowed to change codegen in any way.
if (MI->isDebugValue()) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
LiveRegMap::iterator it = LiveVirtRegs.find(Reg);
if (it != LiveVirtRegs.end())
setPhysReg(MO, it->second.PhysReg);
else
MO.setReg(0); // We can't allocate a physreg for a DebugValue, sorry!
}
// Next instruction.
continue;
}
// Track registers used by instruction.
UsedInInstr.reset();
PhysDefs.clear();
// First scan.
// Mark physreg uses and early clobbers as used.
// Collect PhysKills.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
// FIXME: For now, don't trust kill flags
if (MO.isUse()) MO.setIsKill(false);
unsigned Reg = MO.getReg();
if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg) ||
ReservedRegs.test(Reg)) continue;
if (MO.isUse()) {
PhysKills.push_back(Reg); // Any clean physreg use is a kill.
UsedInInstr.set(Reg);
} else if (MO.isEarlyClobber()) {
spillPhysReg(MBB, MI, Reg, true);
UsedInInstr.set(Reg);
PhysDefs.push_back(Reg);
}
}
// Second scan.
// Allocate virtreg uses and early clobbers.
// Collect VirtKills
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
if (MO.isUse()) {
setPhysReg(MO, reloadVirtReg(MBB, MI, i, Reg));
if (MO.isKill())
VirtKills.push_back(Reg);
} else if (MO.isEarlyClobber()) {
unsigned PhysReg = defineVirtReg(MBB, MI, i, Reg);
setPhysReg(MO, PhysReg);
PhysDefs.push_back(PhysReg);
}
}
// Process virtreg kills
for (unsigned i = 0, e = VirtKills.size(); i != e; ++i)
killVirtReg(VirtKills[i]);
VirtKills.clear();
// Process physreg kills
for (unsigned i = 0, e = PhysKills.size(); i != e; ++i)
killPhysReg(PhysKills[i]);
PhysKills.clear();
MF->getRegInfo().addPhysRegsUsed(UsedInInstr);
// Track registers defined by instruction - early clobbers at this point.
UsedInInstr.reset();
for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
unsigned PhysReg = PhysDefs[i];
UsedInInstr.set(PhysReg);
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS)
UsedInInstr.set(Alias);
}
// Third scan.
// Allocate defs and collect dead defs.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef() || !MO.getReg()) continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (ReservedRegs.test(Reg)) continue;
if (MO.isImplicit())
spillPhysReg(MBB, MI, Reg, true);
else
reservePhysReg(MBB, MI, Reg);
if (MO.isDead())
PhysKills.push_back(Reg);
continue;
}
if (MO.isDead())
VirtKills.push_back(Reg);
setPhysReg(MO, defineVirtReg(MBB, MI, i, Reg));
}
// Spill all dirty virtregs before a call, in case of an exception.
if (TID.isCall()) {
DEBUG(dbgs() << " Spilling remaining registers before call.\n");
spillAll(MBB, MI);
}
// Process virtreg deads.
for (unsigned i = 0, e = VirtKills.size(); i != e; ++i)
killVirtReg(VirtKills[i]);
VirtKills.clear();
// Process physreg deads.
for (unsigned i = 0, e = PhysKills.size(); i != e; ++i)
killPhysReg(PhysKills[i]);
PhysKills.clear();
MF->getRegInfo().addPhysRegsUsed(UsedInInstr);
}
// Spill all physical registers holding virtual registers now.
DEBUG(dbgs() << "Killing live registers at end of block.\n");
MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
while (!LiveVirtRegs.empty())
spillVirtReg(MBB, MI, LiveVirtRegs.begin()->first, true);
DEBUG(MBB.dump());
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(dbgs() << "Machine Function\n");
DEBUG(Fn.dump());
MF = &Fn;
TM = &Fn.getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
UsedInInstr.resize(TRI->getNumRegs());
ReservedRegs = TRI->getReservedRegs(*MF);
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
StackSlotForVirtReg.grow(LastVirtReg);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
// Make sure the set of used physregs is closed under subreg operations.
MF->getRegInfo().closePhysRegsUsed(*TRI);
StackSlotForVirtReg.clear();
return true;
}
FunctionPass *llvm::createFastRegisterAllocator() {
return new RAFast();
}