mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232998 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1155 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1155 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopInterchange.cpp - Loop interchange pass------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This Pass handles loop interchange transform.
 | 
						|
// This pass interchanges loops to provide a more cache-friendly memory access
 | 
						|
// patterns.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/DependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-interchange"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
typedef SmallVector<Loop *, 8> LoopVector;
 | 
						|
 | 
						|
// TODO: Check if we can use a sparse matrix here.
 | 
						|
typedef std::vector<std::vector<char>> CharMatrix;
 | 
						|
 | 
						|
// Maximum number of dependencies that can be handled in the dependency matrix.
 | 
						|
static const unsigned MaxMemInstrCount = 100;
 | 
						|
 | 
						|
// Maximum loop depth supported.
 | 
						|
static const unsigned MaxLoopNestDepth = 10;
 | 
						|
 | 
						|
struct LoopInterchange;
 | 
						|
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
void printDepMatrix(CharMatrix &DepMatrix) {
 | 
						|
  for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) {
 | 
						|
    std::vector<char> Vec = *I;
 | 
						|
    for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II)
 | 
						|
      DEBUG(dbgs() << *II << " ");
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, Loop *L,
 | 
						|
                              DependenceAnalysis *DA) {
 | 
						|
  typedef SmallVector<Value *, 16> ValueVector;
 | 
						|
  ValueVector MemInstr;
 | 
						|
 | 
						|
  if (Level > MaxLoopNestDepth) {
 | 
						|
    DEBUG(dbgs() << "Cannot handle loops of depth greater than "
 | 
						|
                 << MaxLoopNestDepth << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // For each block.
 | 
						|
  for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
 | 
						|
       BB != BE; ++BB) {
 | 
						|
    // Scan the BB and collect legal loads and stores.
 | 
						|
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E;
 | 
						|
         ++I) {
 | 
						|
      Instruction *Ins = dyn_cast<Instruction>(I);
 | 
						|
      if (!Ins)
 | 
						|
        return false;
 | 
						|
      LoadInst *Ld = dyn_cast<LoadInst>(I);
 | 
						|
      StoreInst *St = dyn_cast<StoreInst>(I);
 | 
						|
      if (!St && !Ld)
 | 
						|
        continue;
 | 
						|
      if (Ld && !Ld->isSimple())
 | 
						|
        return false;
 | 
						|
      if (St && !St->isSimple())
 | 
						|
        return false;
 | 
						|
      MemInstr.push_back(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Found " << MemInstr.size()
 | 
						|
               << " Loads and Stores to analyze\n");
 | 
						|
 | 
						|
  ValueVector::iterator I, IE, J, JE;
 | 
						|
 | 
						|
  for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
 | 
						|
    for (J = I, JE = MemInstr.end(); J != JE; ++J) {
 | 
						|
      std::vector<char> Dep;
 | 
						|
      Instruction *Src = dyn_cast<Instruction>(*I);
 | 
						|
      Instruction *Des = dyn_cast<Instruction>(*J);
 | 
						|
      if (Src == Des)
 | 
						|
        continue;
 | 
						|
      if (isa<LoadInst>(Src) && isa<LoadInst>(Des))
 | 
						|
        continue;
 | 
						|
      if (auto D = DA->depends(Src, Des, true)) {
 | 
						|
        DEBUG(dbgs() << "Found Dependency between Src=" << Src << " Des=" << Des
 | 
						|
                     << "\n");
 | 
						|
        if (D->isFlow()) {
 | 
						|
          // TODO: Handle Flow dependence.Check if it is sufficient to populate
 | 
						|
          // the Dependence Matrix with the direction reversed.
 | 
						|
          DEBUG(dbgs() << "Flow dependence not handled");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
        if (D->isAnti()) {
 | 
						|
          DEBUG(dbgs() << "Found Anti dependence \n");
 | 
						|
          unsigned Levels = D->getLevels();
 | 
						|
          char Direction;
 | 
						|
          for (unsigned II = 1; II <= Levels; ++II) {
 | 
						|
            const SCEV *Distance = D->getDistance(II);
 | 
						|
            const SCEVConstant *SCEVConst =
 | 
						|
                dyn_cast_or_null<SCEVConstant>(Distance);
 | 
						|
            if (SCEVConst) {
 | 
						|
              const ConstantInt *CI = SCEVConst->getValue();
 | 
						|
              if (CI->isNegative())
 | 
						|
                Direction = '<';
 | 
						|
              else if (CI->isZero())
 | 
						|
                Direction = '=';
 | 
						|
              else
 | 
						|
                Direction = '>';
 | 
						|
              Dep.push_back(Direction);
 | 
						|
            } else if (D->isScalar(II)) {
 | 
						|
              Direction = 'S';
 | 
						|
              Dep.push_back(Direction);
 | 
						|
            } else {
 | 
						|
              unsigned Dir = D->getDirection(II);
 | 
						|
              if (Dir == Dependence::DVEntry::LT ||
 | 
						|
                  Dir == Dependence::DVEntry::LE)
 | 
						|
                Direction = '<';
 | 
						|
              else if (Dir == Dependence::DVEntry::GT ||
 | 
						|
                       Dir == Dependence::DVEntry::GE)
 | 
						|
                Direction = '>';
 | 
						|
              else if (Dir == Dependence::DVEntry::EQ)
 | 
						|
                Direction = '=';
 | 
						|
              else
 | 
						|
                Direction = '*';
 | 
						|
              Dep.push_back(Direction);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          while (Dep.size() != Level) {
 | 
						|
            Dep.push_back('I');
 | 
						|
          }
 | 
						|
 | 
						|
          DepMatrix.push_back(Dep);
 | 
						|
          if (DepMatrix.size() > MaxMemInstrCount) {
 | 
						|
            DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
 | 
						|
                         << " dependencies inside loop\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't have a DepMatrix to check legality return false
 | 
						|
  if (DepMatrix.size() == 0)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// A loop is moved from index 'from' to an index 'to'. Update the Dependence
 | 
						|
// matrix by exchanging the two columns.
 | 
						|
void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx,
 | 
						|
                            unsigned ToIndx) {
 | 
						|
  unsigned numRows = DepMatrix.size();
 | 
						|
  for (unsigned i = 0; i < numRows; ++i) {
 | 
						|
    char TmpVal = DepMatrix[i][ToIndx];
 | 
						|
    DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
 | 
						|
    DepMatrix[i][FromIndx] = TmpVal;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
 | 
						|
// '>'
 | 
						|
bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                            unsigned Column) {
 | 
						|
  for (unsigned i = 0; i <= Column; ++i) {
 | 
						|
    if (DepMatrix[Row][i] == '<')
 | 
						|
      return false;
 | 
						|
    if (DepMatrix[Row][i] == '>')
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  // All dependencies were '=','S' or 'I'
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks if no dependence exist in the dependency matrix in Row before Column.
 | 
						|
bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                          unsigned Column) {
 | 
						|
  for (unsigned i = 0; i < Column; ++i) {
 | 
						|
    if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' ||
 | 
						|
        DepMatrix[Row][i] != 'I')
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                         unsigned OuterLoopId, char InnerDep, char OuterDep) {
 | 
						|
 | 
						|
  if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (InnerDep == OuterDep)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // It is legal to interchange if and only if after interchange no row has a
 | 
						|
  // '>' direction as the leftmost non-'='.
 | 
						|
 | 
						|
  if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (InnerDep == '<')
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (InnerDep == '>') {
 | 
						|
    // If OuterLoopId represents outermost loop then interchanging will make the
 | 
						|
    // 1st dependency as '>'
 | 
						|
    if (OuterLoopId == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If all dependencies before OuterloopId are '=','S'or 'I'. Then
 | 
						|
    // interchanging will result in this row having an outermost non '='
 | 
						|
    // dependency of '>'
 | 
						|
    if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks if it is legal to interchange 2 loops.
 | 
						|
// [Theorm] A permutation of the loops in a perfect nest is legal if and only if
 | 
						|
// the direction matrix, after the same permutation is applied to its columns,
 | 
						|
// has no ">" direction as the leftmost non-"=" direction in any row.
 | 
						|
bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, unsigned InnerLoopId,
 | 
						|
                               unsigned OuterLoopId) {
 | 
						|
 | 
						|
  unsigned NumRows = DepMatrix.size();
 | 
						|
  // For each row check if it is valid to interchange.
 | 
						|
  for (unsigned Row = 0; Row < NumRows; ++Row) {
 | 
						|
    char InnerDep = DepMatrix[Row][InnerLoopId];
 | 
						|
    char OuterDep = DepMatrix[Row][OuterLoopId];
 | 
						|
    if (InnerDep == '*' || OuterDep == '*')
 | 
						|
      return false;
 | 
						|
    else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep,
 | 
						|
                                  OuterDep))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Calling populateWorklist called\n");
 | 
						|
  LoopVector LoopList;
 | 
						|
  Loop *CurrentLoop = &L;
 | 
						|
  std::vector<Loop *> vec = CurrentLoop->getSubLoopsVector();
 | 
						|
  while (vec.size() != 0) {
 | 
						|
    // The current loop has multiple subloops in it hence it is not tightly
 | 
						|
    // nested.
 | 
						|
    // Discard all loops above it added into Worklist.
 | 
						|
    if (vec.size() != 1) {
 | 
						|
      LoopList.clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    LoopList.push_back(CurrentLoop);
 | 
						|
    CurrentLoop = *(vec.begin());
 | 
						|
    vec = CurrentLoop->getSubLoopsVector();
 | 
						|
  }
 | 
						|
  LoopList.push_back(CurrentLoop);
 | 
						|
  V.push_back(LoopList);
 | 
						|
}
 | 
						|
 | 
						|
static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
 | 
						|
  PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
 | 
						|
  if (InnerIndexVar)
 | 
						|
    return InnerIndexVar;
 | 
						|
  if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
 | 
						|
    return nullptr;
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PhiVar = cast<PHINode>(I);
 | 
						|
    Type *PhiTy = PhiVar->getType();
 | 
						|
    if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
 | 
						|
        !PhiTy->isPointerTy())
 | 
						|
      return nullptr;
 | 
						|
    const SCEVAddRecExpr *AddRec =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
 | 
						|
    if (!AddRec || !AddRec->isAffine())
 | 
						|
      continue;
 | 
						|
    const SCEV *Step = AddRec->getStepRecurrence(*SE);
 | 
						|
    const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | 
						|
    if (!C)
 | 
						|
      continue;
 | 
						|
    // Found the induction variable.
 | 
						|
    // FIXME: Handle loops with more than one induction variable. Note that,
 | 
						|
    // currently, legality makes sure we have only one induction variable.
 | 
						|
    return PhiVar;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// LoopInterchangeLegality checks if it is legal to interchange the loop.
 | 
						|
class LoopInterchangeLegality {
 | 
						|
public:
 | 
						|
  LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | 
						|
                          LoopInterchange *Pass)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), CurrentPass(Pass) {}
 | 
						|
 | 
						|
  /// Check if the loops can be interchanged.
 | 
						|
  bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
 | 
						|
                           CharMatrix &DepMatrix);
 | 
						|
  /// Check if the loop structure is understood. We do not handle triangular
 | 
						|
  /// loops for now.
 | 
						|
  bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
 | 
						|
 | 
						|
  bool currentLimitations();
 | 
						|
 | 
						|
private:
 | 
						|
  bool tightlyNested(Loop *Outer, Loop *Inner);
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  /// Scev analysis.
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  LoopInterchange *CurrentPass;
 | 
						|
};
 | 
						|
 | 
						|
/// LoopInterchangeProfitability checks if it is profitable to interchange the
 | 
						|
/// loop.
 | 
						|
class LoopInterchangeProfitability {
 | 
						|
public:
 | 
						|
  LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {}
 | 
						|
 | 
						|
  /// Check if the loop interchange is profitable
 | 
						|
  bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
 | 
						|
                    CharMatrix &DepMatrix);
 | 
						|
 | 
						|
private:
 | 
						|
  int getInstrOrderCost();
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  /// Scev analysis.
 | 
						|
  ScalarEvolution *SE;
 | 
						|
};
 | 
						|
 | 
						|
/// LoopInterchangeTransform interchanges the loop
 | 
						|
class LoopInterchangeTransform {
 | 
						|
public:
 | 
						|
  LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | 
						|
                           LoopInfo *LI, DominatorTree *DT,
 | 
						|
                           LoopInterchange *Pass, BasicBlock *LoopNestExit)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
 | 
						|
        LoopExit(LoopNestExit) {}
 | 
						|
 | 
						|
  /// Interchange OuterLoop and InnerLoop.
 | 
						|
  bool transform();
 | 
						|
  void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
 | 
						|
  void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
 | 
						|
 | 
						|
private:
 | 
						|
  void splitInnerLoopLatch(Instruction *);
 | 
						|
  void splitOuterLoopLatch();
 | 
						|
  void splitInnerLoopHeader();
 | 
						|
  bool adjustLoopLinks();
 | 
						|
  void adjustLoopPreheaders();
 | 
						|
  void adjustOuterLoopPreheader();
 | 
						|
  void adjustInnerLoopPreheader();
 | 
						|
  bool adjustLoopBranches();
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  /// Scev analysis.
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  BasicBlock *LoopExit;
 | 
						|
};
 | 
						|
 | 
						|
// Main LoopInterchange Pass
 | 
						|
struct LoopInterchange : public FunctionPass {
 | 
						|
  static char ID;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  LoopInfo *LI;
 | 
						|
  DependenceAnalysis *DA;
 | 
						|
  DominatorTree *DT;
 | 
						|
  LoopInterchange()
 | 
						|
      : FunctionPass(ID), SE(nullptr), LI(nullptr), DA(nullptr), DT(nullptr) {
 | 
						|
    initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<ScalarEvolution>();
 | 
						|
    AU.addRequired<AliasAnalysis>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
    AU.addRequired<DependenceAnalysis>();
 | 
						|
    AU.addRequiredID(LoopSimplifyID);
 | 
						|
    AU.addRequiredID(LCSSAID);
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    SE = &getAnalysis<ScalarEvolution>();
 | 
						|
    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    DA = &getAnalysis<DependenceAnalysis>();
 | 
						|
    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
    DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
    // Build up a worklist of loop pairs to analyze.
 | 
						|
    SmallVector<LoopVector, 8> Worklist;
 | 
						|
 | 
						|
    for (Loop *L : *LI)
 | 
						|
      populateWorklist(*L, Worklist);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
 | 
						|
    bool Changed = true;
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      LoopVector LoopList = Worklist.pop_back_val();
 | 
						|
      Changed = processLoopList(LoopList);
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isComputableLoopNest(LoopVector LoopList) {
 | 
						|
    for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) {
 | 
						|
      Loop *L = *I;
 | 
						|
      const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
 | 
						|
      if (ExitCountOuter == SE->getCouldNotCompute()) {
 | 
						|
        DEBUG(dbgs() << "Couldn't compute Backedge count\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (L->getNumBackEdges() != 1) {
 | 
						|
        DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (!L->getExitingBlock()) {
 | 
						|
        DEBUG(dbgs() << "Loop Doesn't have unique exit block\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned selectLoopForInterchange(LoopVector LoopList) {
 | 
						|
    // TODO: Add a better heuristic to select the loop to be interchanged based
 | 
						|
    // on the dependece matrix. Currently we select the innermost loop.
 | 
						|
    return LoopList.size() - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  bool processLoopList(LoopVector LoopList) {
 | 
						|
    bool Changed = false;
 | 
						|
    bool containsLCSSAPHI = false;
 | 
						|
    CharMatrix DependencyMatrix;
 | 
						|
    if (LoopList.size() < 2) {
 | 
						|
      DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (!isComputableLoopNest(LoopList)) {
 | 
						|
      DEBUG(dbgs() << "Not vaild loop candidate for interchange\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Loop *OuterMostLoop = *(LoopList.begin());
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size()
 | 
						|
                 << "\n");
 | 
						|
 | 
						|
    if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(),
 | 
						|
                                  OuterMostLoop, DA)) {
 | 
						|
      DEBUG(dbgs() << "Populating Dependency matrix failed\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
    DEBUG(dbgs() << "Dependence before inter change \n");
 | 
						|
    printDepMatrix(DependencyMatrix);
 | 
						|
#endif
 | 
						|
 | 
						|
    BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
 | 
						|
    BranchInst *OuterMostLoopLatchBI =
 | 
						|
        dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
 | 
						|
    if (!OuterMostLoopLatchBI)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Since we currently do not handle LCSSA PHI's any failure in loop
 | 
						|
    // condition will now branch to LoopNestExit.
 | 
						|
    // TODO: This should be removed once we handle LCSSA PHI nodes.
 | 
						|
 | 
						|
    // Get the Outermost loop exit.
 | 
						|
    BasicBlock *LoopNestExit;
 | 
						|
    if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
 | 
						|
      LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
 | 
						|
    else
 | 
						|
      LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
 | 
						|
 | 
						|
    for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) {
 | 
						|
      Loop *L = *I;
 | 
						|
      BasicBlock *Latch = L->getLoopLatch();
 | 
						|
      BasicBlock *Header = L->getHeader();
 | 
						|
      if (Latch && Latch != Header && isa<PHINode>(Latch->begin())) {
 | 
						|
        containsLCSSAPHI = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: Handle lcssa PHI's. Currently LCSSA PHI's are not handled. Handle
 | 
						|
    // the same by splitting the loop latch and adjusting loop links
 | 
						|
    // accordingly.
 | 
						|
    if (containsLCSSAPHI)
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned SelecLoopId = selectLoopForInterchange(LoopList);
 | 
						|
    // Move the selected loop outwards to the best posible position.
 | 
						|
    for (unsigned i = SelecLoopId; i > 0; i--) {
 | 
						|
      bool Interchanged =
 | 
						|
          processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
 | 
						|
      if (!Interchanged)
 | 
						|
        return Changed;
 | 
						|
      // Loops interchanged reflect the same in LoopList
 | 
						|
      std::swap(LoopList[i - 1], LoopList[i]);
 | 
						|
 | 
						|
      // Update the DependencyMatrix
 | 
						|
      interChangeDepedencies(DependencyMatrix, i, i - 1);
 | 
						|
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
      DEBUG(dbgs() << "Dependence after inter change \n");
 | 
						|
      printDepMatrix(DependencyMatrix);
 | 
						|
#endif
 | 
						|
      Changed |= Interchanged;
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
 | 
						|
                   unsigned OuterLoopId, BasicBlock *LoopNestExit,
 | 
						|
                   std::vector<std::vector<char>> &DependencyMatrix) {
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Processing Innder Loop Id = " << InnerLoopId
 | 
						|
                 << " and OuterLoopId = " << OuterLoopId << "\n");
 | 
						|
    Loop *InnerLoop = LoopList[InnerLoopId];
 | 
						|
    Loop *OuterLoop = LoopList[OuterLoopId];
 | 
						|
 | 
						|
    LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, this);
 | 
						|
    if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
 | 
						|
      DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "Loops are legal to interchange\n");
 | 
						|
    LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE);
 | 
						|
    if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
 | 
						|
      DEBUG(dbgs() << "Interchanging Loops not profitable\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, this,
 | 
						|
                                 LoopNestExit);
 | 
						|
    LIT.transform();
 | 
						|
    DEBUG(dbgs() << "Loops interchanged\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end of namespace
 | 
						|
 | 
						|
static bool containsUnsafeInstructions(BasicBlock *BB) {
 | 
						|
  for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n");
 | 
						|
 | 
						|
  // A perfectly nested loop will not have any branch in between the outer and
 | 
						|
  // inner block i.e. outer header will branch to either inner preheader and
 | 
						|
  // outerloop latch.
 | 
						|
  BranchInst *outerLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
 | 
						|
  if (!outerLoopHeaderBI)
 | 
						|
    return false;
 | 
						|
  unsigned num = outerLoopHeaderBI->getNumSuccessors();
 | 
						|
  for (unsigned i = 0; i < num; i++) {
 | 
						|
    if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader &&
 | 
						|
        outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n");
 | 
						|
  // We do not have any basic block in between now make sure the outer header
 | 
						|
  // and outer loop latch doesnt contain any unsafe instructions.
 | 
						|
  if (containsUnsafeInstructions(OuterLoopHeader) ||
 | 
						|
      containsUnsafeInstructions(OuterLoopLatch))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Loops are perfectly nested \n");
 | 
						|
  // We have a perfect loop nest.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getPHICount(BasicBlock *BB) {
 | 
						|
  unsigned PhiCount = 0;
 | 
						|
  for (auto I = BB->begin(); isa<PHINode>(I); ++I)
 | 
						|
    PhiCount++;
 | 
						|
  return PhiCount;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::isLoopStructureUnderstood(
 | 
						|
    PHINode *InnerInduction) {
 | 
						|
 | 
						|
  unsigned Num = InnerInduction->getNumOperands();
 | 
						|
  BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
 | 
						|
  for (unsigned i = 0; i < Num; ++i) {
 | 
						|
    Value *Val = InnerInduction->getOperand(i);
 | 
						|
    if (isa<Constant>(Val))
 | 
						|
      continue;
 | 
						|
    Instruction *I = dyn_cast<Instruction>(Val);
 | 
						|
    if (!I)
 | 
						|
      return false;
 | 
						|
    // TODO: Handle triangular loops.
 | 
						|
    // e.g. for(int i=0;i<N;i++)
 | 
						|
    //        for(int j=i;j<N;j++)
 | 
						|
    unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
 | 
						|
    if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
 | 
						|
            InnerLoopPreheader &&
 | 
						|
        !OuterLoop->isLoopInvariant(I)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// This function indicates the current limitations in the transform as a result
 | 
						|
// of which we do not proceed.
 | 
						|
bool LoopInterchangeLegality::currentLimitations() {
 | 
						|
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
 | 
						|
  PHINode *InnerInductionVar;
 | 
						|
  PHINode *OuterInductionVar;
 | 
						|
 | 
						|
  // We currently handle only 1 induction variable inside the loop. We also do
 | 
						|
  // not handle reductions as of now.
 | 
						|
  if (getPHICount(InnerLoopHeader) > 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (getPHICount(OuterLoopHeader) > 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  InnerInductionVar = getInductionVariable(InnerLoop, SE);
 | 
						|
  OuterInductionVar = getInductionVariable(OuterLoop, SE);
 | 
						|
 | 
						|
  if (!OuterInductionVar || !InnerInductionVar) {
 | 
						|
    DEBUG(dbgs() << "Induction variable not found\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Triangular loops are not handled for now.
 | 
						|
  if (!isLoopStructureUnderstood(InnerInductionVar)) {
 | 
						|
    DEBUG(dbgs() << "Loop structure not understood by pass\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Loops with LCSSA PHI's are currently not handled.
 | 
						|
  if (isa<PHINode>(OuterLoopLatch->begin())) {
 | 
						|
    DEBUG(dbgs() << "Found and LCSSA PHI in outer loop latch\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (InnerLoopLatch != InnerLoopHeader &&
 | 
						|
      isa<PHINode>(InnerLoopLatch->begin())) {
 | 
						|
    DEBUG(dbgs() << "Found and LCSSA PHI in inner loop latch\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Current limitation: Since we split the inner loop latch at the point
 | 
						|
  // were induction variable is incremented (induction.next); We cannot have
 | 
						|
  // more than 1 user of induction.next since it would result in broken code
 | 
						|
  // after split.
 | 
						|
  // e.g.
 | 
						|
  // for(i=0;i<N;i++) {
 | 
						|
  //    for(j = 0;j<M;j++) {
 | 
						|
  //      A[j+1][i+2] = A[j][i]+k;
 | 
						|
  //  }
 | 
						|
  // }
 | 
						|
  bool FoundInduction = false;
 | 
						|
  Instruction *InnerIndexVarInc = nullptr;
 | 
						|
  if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
 | 
						|
    InnerIndexVarInc =
 | 
						|
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
 | 
						|
  else
 | 
						|
    InnerIndexVarInc =
 | 
						|
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
 | 
						|
 | 
						|
  if (!InnerIndexVarInc)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Since we split the inner loop latch on this induction variable. Make sure
 | 
						|
  // we do not have any instruction between the induction variable and branch
 | 
						|
  // instruction.
 | 
						|
 | 
						|
  for (auto I = InnerLoopLatch->rbegin(), E = InnerLoopLatch->rend();
 | 
						|
       I != E && !FoundInduction; ++I) {
 | 
						|
    if (isa<BranchInst>(*I) || isa<CmpInst>(*I) || isa<TruncInst>(*I))
 | 
						|
      continue;
 | 
						|
    const Instruction &Ins = *I;
 | 
						|
    // We found an instruction. If this is not induction variable then it is not
 | 
						|
    // safe to split this loop latch.
 | 
						|
    if (!Ins.isIdenticalTo(InnerIndexVarInc))
 | 
						|
      return true;
 | 
						|
    else
 | 
						|
      FoundInduction = true;
 | 
						|
  }
 | 
						|
  // The loop latch ended and we didnt find the induction variable return as
 | 
						|
  // current limitation.
 | 
						|
  if (!FoundInduction)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
 | 
						|
                                                  unsigned OuterLoopId,
 | 
						|
                                                  CharMatrix &DepMatrix) {
 | 
						|
 | 
						|
  if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
 | 
						|
    DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
 | 
						|
                 << "and OuterLoopId = " << OuterLoopId
 | 
						|
                 << "due to dependence\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create unique Preheaders if we already do not have one.
 | 
						|
  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
 | 
						|
  // Create  a unique outer preheader -
 | 
						|
  // 1) If OuterLoop preheader is not present.
 | 
						|
  // 2) If OuterLoop Preheader is same as OuterLoop Header
 | 
						|
  // 3) If OuterLoop Preheader is same as Header of the previous loop.
 | 
						|
  // 4) If OuterLoop Preheader is Entry node.
 | 
						|
  if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
 | 
						|
      isa<PHINode>(OuterLoopPreHeader->begin()) ||
 | 
						|
      !OuterLoopPreHeader->getUniquePredecessor()) {
 | 
						|
    OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, CurrentPass);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
 | 
						|
      InnerLoopPreHeader == OuterLoop->getHeader()) {
 | 
						|
    InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, CurrentPass);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the loops are tightly nested.
 | 
						|
  if (!tightlyNested(OuterLoop, InnerLoop)) {
 | 
						|
    DEBUG(dbgs() << "Loops not tightly nested\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: The loops could not be interchanged due to current limitations in the
 | 
						|
  // transform module.
 | 
						|
  if (currentLimitations()) {
 | 
						|
    DEBUG(dbgs() << "Not legal because of current transform limitation\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int LoopInterchangeProfitability::getInstrOrderCost() {
 | 
						|
  unsigned GoodOrder, BadOrder;
 | 
						|
  BadOrder = GoodOrder = 0;
 | 
						|
  for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end();
 | 
						|
       BI != BE; ++BI) {
 | 
						|
    for (auto I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
 | 
						|
      const Instruction &Ins = *I;
 | 
						|
      if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
 | 
						|
        unsigned NumOp = GEP->getNumOperands();
 | 
						|
        bool FoundInnerInduction = false;
 | 
						|
        bool FoundOuterInduction = false;
 | 
						|
        for (unsigned i = 0; i < NumOp; ++i) {
 | 
						|
          const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
 | 
						|
          const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
 | 
						|
          if (!AR)
 | 
						|
            continue;
 | 
						|
 | 
						|
          // If we find the inner induction after an outer induction e.g.
 | 
						|
          // for(int i=0;i<N;i++)
 | 
						|
          //   for(int j=0;j<N;j++)
 | 
						|
          //     A[i][j] = A[i-1][j-1]+k;
 | 
						|
          // then it is a good order.
 | 
						|
          if (AR->getLoop() == InnerLoop) {
 | 
						|
            // We found an InnerLoop induction after OuterLoop induction. It is
 | 
						|
            // a good order.
 | 
						|
            FoundInnerInduction = true;
 | 
						|
            if (FoundOuterInduction) {
 | 
						|
              GoodOrder++;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // If we find the outer induction after an inner induction e.g.
 | 
						|
          // for(int i=0;i<N;i++)
 | 
						|
          //   for(int j=0;j<N;j++)
 | 
						|
          //     A[j][i] = A[j-1][i-1]+k;
 | 
						|
          // then it is a bad order.
 | 
						|
          if (AR->getLoop() == OuterLoop) {
 | 
						|
            // We found an OuterLoop induction after InnerLoop induction. It is
 | 
						|
            // a bad order.
 | 
						|
            FoundOuterInduction = true;
 | 
						|
            if (FoundInnerInduction) {
 | 
						|
              BadOrder++;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return GoodOrder - BadOrder;
 | 
						|
}
 | 
						|
 | 
						|
static bool isProfitabileForVectorization(unsigned InnerLoopId,
 | 
						|
                                          unsigned OuterLoopId,
 | 
						|
                                          CharMatrix &DepMatrix) {
 | 
						|
  // TODO: Improve this heuristic to catch more cases.
 | 
						|
  // If the inner loop is loop independent or doesn't carry any dependency it is
 | 
						|
  // profitable to move this to outer position.
 | 
						|
  unsigned Row = DepMatrix.size();
 | 
						|
  for (unsigned i = 0; i < Row; ++i) {
 | 
						|
    if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I')
 | 
						|
      return false;
 | 
						|
    // TODO: We need to improve this heuristic.
 | 
						|
    if (DepMatrix[i][OuterLoopId] != '=')
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // If outer loop has dependence and inner loop is loop independent then it is
 | 
						|
  // profitable to interchange to enable parallelism.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
 | 
						|
                                                unsigned OuterLoopId,
 | 
						|
                                                CharMatrix &DepMatrix) {
 | 
						|
 | 
						|
  // TODO: Add Better Profitibility checks.
 | 
						|
  // e.g
 | 
						|
  // 1) Construct dependency matrix and move the one with no loop carried dep
 | 
						|
  //    inside to enable vectorization.
 | 
						|
 | 
						|
  // This is rough cost estimation algorithm. It counts the good and bad order
 | 
						|
  // of induction variables in the instruction and allows reordering if number
 | 
						|
  // of bad orders is more than good.
 | 
						|
  int Cost = 0;
 | 
						|
  Cost += getInstrOrderCost();
 | 
						|
  DEBUG(dbgs() << "Cost = " << Cost << "\n");
 | 
						|
  if (Cost < 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // It is not profitable as per current cache profitibility model. But check if
 | 
						|
  // we can move this loop outside to improve parallelism.
 | 
						|
  bool ImprovesPar =
 | 
						|
      isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
 | 
						|
  return ImprovesPar;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
 | 
						|
                                               Loop *InnerLoop) {
 | 
						|
  for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    if (*I == InnerLoop) {
 | 
						|
      OuterLoop->removeChildLoop(I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(false && "Couldn't find loop");
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
 | 
						|
                                                Loop *OuterLoop) {
 | 
						|
  Loop *OuterLoopParent = OuterLoop->getParentLoop();
 | 
						|
  if (OuterLoopParent) {
 | 
						|
    // Remove the loop from its parent loop.
 | 
						|
    removeChildLoop(OuterLoopParent, OuterLoop);
 | 
						|
    removeChildLoop(OuterLoop, InnerLoop);
 | 
						|
    OuterLoopParent->addChildLoop(InnerLoop);
 | 
						|
  } else {
 | 
						|
    removeChildLoop(OuterLoop, InnerLoop);
 | 
						|
    LI->changeTopLevelLoop(OuterLoop, InnerLoop);
 | 
						|
  }
 | 
						|
 | 
						|
  for (Loop::iterator I = InnerLoop->begin(), E = InnerLoop->end(); I != E; ++I)
 | 
						|
    OuterLoop->addChildLoop(InnerLoop->removeChildLoop(I));
 | 
						|
 | 
						|
  InnerLoop->addChildLoop(OuterLoop);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::transform() {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "transform\n");
 | 
						|
  bool Transformed = false;
 | 
						|
  Instruction *InnerIndexVar;
 | 
						|
 | 
						|
  if (InnerLoop->getSubLoops().size() == 0) {
 | 
						|
    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
    DEBUG(dbgs() << "Calling Split Inner Loop\n");
 | 
						|
    PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
 | 
						|
    if (!InductionPHI) {
 | 
						|
      DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
 | 
						|
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
 | 
						|
    else
 | 
						|
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
 | 
						|
 | 
						|
    //
 | 
						|
    // Split at the place were the induction variable is
 | 
						|
    // incremented/decremented.
 | 
						|
    // TODO: This splitting logic may not work always. Fix this.
 | 
						|
    splitInnerLoopLatch(InnerIndexVar);
 | 
						|
    DEBUG(dbgs() << "splitInnerLoopLatch Done\n");
 | 
						|
 | 
						|
    // Splits the inner loops phi nodes out into a seperate basic block.
 | 
						|
    splitInnerLoopHeader();
 | 
						|
    DEBUG(dbgs() << "splitInnerLoopHeader Done\n");
 | 
						|
  }
 | 
						|
 | 
						|
  Transformed |= adjustLoopLinks();
 | 
						|
  if (!Transformed) {
 | 
						|
    DEBUG(dbgs() << "adjustLoopLinks Failed\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  restructureLoops(InnerLoop, OuterLoop);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
  BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
 | 
						|
  InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::splitOuterLoopLatch() {
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLatchLcssaPhiBlock = OuterLoopLatch;
 | 
						|
  OuterLoopLatch = SplitBlock(OuterLatchLcssaPhiBlock,
 | 
						|
                              OuterLoopLatch->getFirstNonPHI(), DT, LI);
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::splitInnerLoopHeader() {
 | 
						|
 | 
						|
  // Split the inner loop header out.
 | 
						|
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | 
						|
  SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
 | 
						|
                  "InnerLoopHeader \n");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Move all instructions except the terminator from FromBB right before
 | 
						|
/// InsertBefore
 | 
						|
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
 | 
						|
  auto &ToList = InsertBefore->getParent()->getInstList();
 | 
						|
  auto &FromList = FromBB->getInstList();
 | 
						|
 | 
						|
  ToList.splice(InsertBefore, FromList, FromList.begin(),
 | 
						|
                FromBB->getTerminator());
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::adjustOuterLoopPreheader() {
 | 
						|
  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
 | 
						|
  moveBBContents(OuterLoopPreHeader, InnerPreHeader->getTerminator());
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::adjustInnerLoopPreheader() {
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterHeader = OuterLoop->getHeader();
 | 
						|
 | 
						|
  moveBBContents(InnerLoopPreHeader, OuterHeader->getTerminator());
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::adjustLoopBranches() {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "adjustLoopBranches called\n");
 | 
						|
  // Adjust the loop preheader
 | 
						|
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
 | 
						|
  BasicBlock *InnerLoopLatchPredecessor =
 | 
						|
      InnerLoopLatch->getUniquePredecessor();
 | 
						|
  BasicBlock *InnerLoopLatchSuccessor;
 | 
						|
  BasicBlock *OuterLoopLatchSuccessor;
 | 
						|
 | 
						|
  BranchInst *OuterLoopLatchBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
 | 
						|
  BranchInst *InnerLoopLatchBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
 | 
						|
  BranchInst *OuterLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
 | 
						|
  BranchInst *InnerLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
 | 
						|
 | 
						|
  if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
 | 
						|
      !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
 | 
						|
      !InnerLoopHeaderBI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BranchInst *InnerLoopLatchPredecessorBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
 | 
						|
  BranchInst *OuterLoopPredecessorBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
 | 
						|
 | 
						|
  if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
 | 
						|
    return false;
 | 
						|
  BasicBlock *InnerLoopHeaderSucessor = InnerLoopHeader->getUniqueSuccessor();
 | 
						|
  if (!InnerLoopHeaderSucessor)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Adjust Loop Preheader and headers
 | 
						|
 | 
						|
  unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
 | 
						|
  for (unsigned i = 0; i < NumSucc; ++i) {
 | 
						|
    if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
 | 
						|
      OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
 | 
						|
  }
 | 
						|
 | 
						|
  NumSucc = OuterLoopHeaderBI->getNumSuccessors();
 | 
						|
  for (unsigned i = 0; i < NumSucc; ++i) {
 | 
						|
    if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
 | 
						|
      OuterLoopHeaderBI->setSuccessor(i, LoopExit);
 | 
						|
    else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
 | 
						|
      OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSucessor);
 | 
						|
  }
 | 
						|
 | 
						|
  BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
 | 
						|
  InnerLoopHeaderBI->eraseFromParent();
 | 
						|
 | 
						|
  // -------------Adjust loop latches-----------
 | 
						|
  if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
 | 
						|
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
 | 
						|
  else
 | 
						|
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
 | 
						|
 | 
						|
  NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
 | 
						|
  for (unsigned i = 0; i < NumSucc; ++i) {
 | 
						|
    if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
 | 
						|
      InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
 | 
						|
  }
 | 
						|
 | 
						|
  if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
 | 
						|
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
 | 
						|
  else
 | 
						|
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
 | 
						|
 | 
						|
  if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
 | 
						|
    InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
 | 
						|
  else
 | 
						|
    InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
 | 
						|
 | 
						|
  if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
 | 
						|
    OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
 | 
						|
  } else {
 | 
						|
    OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
void LoopInterchangeTransform::adjustLoopPreheaders() {
 | 
						|
 | 
						|
  // We have interchanged the preheaders so we need to interchange the data in
 | 
						|
  // the preheader as well.
 | 
						|
  // This is because the content of inner preheader was previously executed
 | 
						|
  // inside the outer loop.
 | 
						|
  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BranchInst *InnerTermBI =
 | 
						|
      cast<BranchInst>(InnerLoopPreHeader->getTerminator());
 | 
						|
 | 
						|
  BasicBlock *HeaderSplit =
 | 
						|
      SplitBlock(OuterLoopHeader, OuterLoopHeader->getTerminator(), DT, LI);
 | 
						|
  Instruction *InsPoint = HeaderSplit->getFirstNonPHI();
 | 
						|
  // These instructions should now be executed inside the loop.
 | 
						|
  // Move instruction into a new block after outer header.
 | 
						|
  moveBBContents(InnerLoopPreHeader, InsPoint);
 | 
						|
  // These instructions were not executed previously in the loop so move them to
 | 
						|
  // the older inner loop preheader.
 | 
						|
  moveBBContents(OuterLoopPreHeader, InnerTermBI);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::adjustLoopLinks() {
 | 
						|
 | 
						|
  // Adjust all branches in the inner and outer loop.
 | 
						|
  bool Changed = adjustLoopBranches();
 | 
						|
  if (Changed)
 | 
						|
    adjustLoopPreheaders();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
char LoopInterchange::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
 | 
						|
                      "Interchanges loops for cache reuse", false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
 | 
						|
INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
 | 
						|
                    "Interchanges loops for cache reuse", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
 |