mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5446 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			375 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			375 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- FunctionResolution.cpp - Resolve declarations to implementations ---===//
 | 
						|
//
 | 
						|
// Loop over the functions that are in the module and look for functions that
 | 
						|
// have the same name.  More often than not, there will be things like:
 | 
						|
//
 | 
						|
//    declare void %foo(...)
 | 
						|
//    void %foo(int, int) { ... }
 | 
						|
//
 | 
						|
// because of the way things are declared in C.  If this is the case, patch
 | 
						|
// things up.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Assembly/Writer.h"  // FIXME: remove when varargs implemented
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved");
 | 
						|
  Statistic<> NumGlobals("funcresolve", "Number of global variables resolved");
 | 
						|
 | 
						|
  struct FunctionResolvingPass : public Pass {
 | 
						|
    bool run(Module &M);
 | 
						|
  };
 | 
						|
  RegisterOpt<FunctionResolvingPass> X("funcresolve", "Resolve Functions");
 | 
						|
}
 | 
						|
 | 
						|
Pass *createFunctionResolvingPass() {
 | 
						|
  return new FunctionResolvingPass();
 | 
						|
}
 | 
						|
 | 
						|
// ConvertCallTo - Convert a call to a varargs function with no arg types
 | 
						|
// specified to a concrete nonvarargs function.
 | 
						|
//
 | 
						|
static void ConvertCallTo(CallInst *CI, Function *Dest) {
 | 
						|
  const FunctionType::ParamTypes &ParamTys =
 | 
						|
    Dest->getFunctionType()->getParamTypes();
 | 
						|
  BasicBlock *BB = CI->getParent();
 | 
						|
 | 
						|
  // Keep an iterator to where we want to insert cast instructions if the
 | 
						|
  // argument types don't agree.
 | 
						|
  //
 | 
						|
  BasicBlock::iterator BBI = CI;
 | 
						|
  unsigned NumArgsToCopy = CI->getNumOperands()-1;
 | 
						|
  if (CI->getNumOperands()-1 != ParamTys.size() &&
 | 
						|
      !(CI->getNumOperands()-1 > ParamTys.size() &&
 | 
						|
        Dest->getFunctionType()->isVarArg())) {
 | 
						|
    std::cerr << "WARNING: Call arguments do not match expected number of"
 | 
						|
              << " parameters.\n";
 | 
						|
    std::cerr << "WARNING: In function '"
 | 
						|
              << CI->getParent()->getParent()->getName() << "': call: " << *CI;
 | 
						|
    std::cerr << "Function resolved to: ";
 | 
						|
    WriteAsOperand(std::cerr, Dest);
 | 
						|
    std::cerr << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<Value*> Params;
 | 
						|
 | 
						|
  // Convert all of the call arguments over... inserting cast instructions if
 | 
						|
  // the types are not compatible.
 | 
						|
  for (unsigned i = 1; i <= NumArgsToCopy; ++i) {
 | 
						|
    Value *V = CI->getOperand(i);
 | 
						|
 | 
						|
    if (i-1 < ParamTys.size() && V->getType() != ParamTys[i-1]) {
 | 
						|
      // Must insert a cast...
 | 
						|
      V = new CastInst(V, ParamTys[i-1], "argcast", BBI);
 | 
						|
    }
 | 
						|
 | 
						|
    Params.push_back(V);
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace the old call instruction with a new call instruction that calls
 | 
						|
  // the real function.
 | 
						|
  //
 | 
						|
  Instruction *NewCall = new CallInst(Dest, Params, "", BBI);
 | 
						|
 | 
						|
  // Remove the old call instruction from the program...
 | 
						|
  BB->getInstList().remove(BBI);
 | 
						|
 | 
						|
  // Transfer the name over...
 | 
						|
  if (NewCall->getType() != Type::VoidTy)
 | 
						|
    NewCall->setName(CI->getName());
 | 
						|
 | 
						|
  // Replace uses of the old instruction with the appropriate values...
 | 
						|
  //
 | 
						|
  if (NewCall->getType() == CI->getType()) {
 | 
						|
    CI->replaceAllUsesWith(NewCall);
 | 
						|
    NewCall->setName(CI->getName());
 | 
						|
 | 
						|
  } else if (NewCall->getType() == Type::VoidTy) {
 | 
						|
    // Resolved function does not return a value but the prototype does.  This
 | 
						|
    // often occurs because undefined functions default to returning integers.
 | 
						|
    // Just replace uses of the call (which are broken anyway) with dummy
 | 
						|
    // values.
 | 
						|
    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
 | 
						|
  } else if (CI->getType() == Type::VoidTy) {
 | 
						|
    // If we are gaining a new return value, we don't have to do anything
 | 
						|
    // special here, because it will automatically be ignored.
 | 
						|
  } else {
 | 
						|
    // Insert a cast instruction to convert the return value of the function
 | 
						|
    // into it's new type.  Of course we only need to do this if the return
 | 
						|
    // value of the function is actually USED.
 | 
						|
    //
 | 
						|
    if (!CI->use_empty()) {
 | 
						|
      // Insert the new cast instruction...
 | 
						|
      CastInst *NewCast = new CastInst(NewCall, CI->getType(),
 | 
						|
                                       NewCall->getName(), BBI);
 | 
						|
      CI->replaceAllUsesWith(NewCast);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The old instruction is no longer needed, destroy it!
 | 
						|
  delete CI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool ResolveFunctions(Module &M, std::vector<GlobalValue*> &Globals,
 | 
						|
                             Function *Concrete) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (unsigned i = 0; i != Globals.size(); ++i)
 | 
						|
    if (Globals[i] != Concrete) {
 | 
						|
      Function *Old = cast<Function>(Globals[i]);
 | 
						|
      const FunctionType *OldMT = Old->getFunctionType();
 | 
						|
      const FunctionType *ConcreteMT = Concrete->getFunctionType();
 | 
						|
      
 | 
						|
      assert(OldMT->getParamTypes().size() <=
 | 
						|
             ConcreteMT->getParamTypes().size() &&
 | 
						|
             "Concrete type must have more specified parameters!");
 | 
						|
      
 | 
						|
      // Check to make sure that if there are specified types, that they
 | 
						|
      // match...
 | 
						|
      //
 | 
						|
      for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i)
 | 
						|
        if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
 | 
						|
          std::cerr << "funcresolve: Function [" << Old->getName()
 | 
						|
                    << "]: Parameter types conflict for: '" << OldMT
 | 
						|
                    << "' and '" << ConcreteMT << "'\n";
 | 
						|
          return Changed;
 | 
						|
        }
 | 
						|
      
 | 
						|
      // Attempt to convert all of the uses of the old function to the
 | 
						|
      // concrete form of the function.  If there is a use of the fn that
 | 
						|
      // we don't understand here we punt to avoid making a bad
 | 
						|
      // transformation.
 | 
						|
      //
 | 
						|
      // At this point, we know that the return values are the same for
 | 
						|
      // our two functions and that the Old function has no varargs fns
 | 
						|
      // specified.  In otherwords it's just <retty> (...)
 | 
						|
      //
 | 
						|
      for (unsigned i = 0; i < Old->use_size(); ) {
 | 
						|
        User *U = *(Old->use_begin()+i);
 | 
						|
        if (CastInst *CI = dyn_cast<CastInst>(U)) {
 | 
						|
          // Convert casts directly
 | 
						|
          assert(CI->getOperand(0) == Old);
 | 
						|
          CI->setOperand(0, Concrete);
 | 
						|
          Changed = true;
 | 
						|
          ++NumResolved;
 | 
						|
        } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | 
						|
          // Can only fix up calls TO the argument, not args passed in.
 | 
						|
          if (CI->getCalledValue() == Old) {
 | 
						|
            ConvertCallTo(CI, Concrete);
 | 
						|
            Changed = true;
 | 
						|
            ++NumResolved;
 | 
						|
          } else {
 | 
						|
            std::cerr << "Couldn't cleanup this function call, must be an"
 | 
						|
                      << " argument or something!" << CI;
 | 
						|
            ++i;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          std::cerr << "Cannot convert use of function: " << U << "\n";
 | 
						|
          ++i;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool ResolveGlobalVariables(Module &M,
 | 
						|
                                   std::vector<GlobalValue*> &Globals,
 | 
						|
                                   GlobalVariable *Concrete) {
 | 
						|
  bool Changed = false;
 | 
						|
  assert(isa<ArrayType>(Concrete->getType()->getElementType()) &&
 | 
						|
         "Concrete version should be an array type!");
 | 
						|
 | 
						|
  // Get the type of the things that may be resolved to us...
 | 
						|
  const Type *AETy =
 | 
						|
    cast<ArrayType>(Concrete->getType()->getElementType())->getElementType();
 | 
						|
 | 
						|
  std::vector<Constant*> Args;
 | 
						|
  Args.push_back(Constant::getNullValue(Type::LongTy));
 | 
						|
  Args.push_back(Constant::getNullValue(Type::LongTy));
 | 
						|
  ConstantExpr *Replacement =
 | 
						|
    ConstantExpr::getGetElementPtr(ConstantPointerRef::get(Concrete), Args);
 | 
						|
  
 | 
						|
  for (unsigned i = 0; i != Globals.size(); ++i)
 | 
						|
    if (Globals[i] != Concrete) {
 | 
						|
      GlobalVariable *Old = cast<GlobalVariable>(Globals[i]);
 | 
						|
      if (Old->getType()->getElementType() != AETy) {
 | 
						|
        std::cerr << "WARNING: Two global variables exist with the same name "
 | 
						|
                  << "that cannot be resolved!\n";
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // In this case, Old is a pointer to T, Concrete is a pointer to array of
 | 
						|
      // T.  Because of this, replace all uses of Old with a constantexpr
 | 
						|
      // getelementptr that returns the address of the first element of the
 | 
						|
      // array.
 | 
						|
      //
 | 
						|
      Old->replaceAllUsesWith(Replacement);
 | 
						|
      // Since there are no uses of Old anymore, remove it from the module.
 | 
						|
      M.getGlobalList().erase(Old);
 | 
						|
 | 
						|
      ++NumGlobals;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
static bool ProcessGlobalsWithSameName(Module &M,
 | 
						|
                                       std::vector<GlobalValue*> &Globals) {
 | 
						|
  assert(!Globals.empty() && "Globals list shouldn't be empty here!");
 | 
						|
 | 
						|
  bool isFunction = isa<Function>(Globals[0]);   // Is this group all functions?
 | 
						|
  bool Changed = false;
 | 
						|
  GlobalValue *Concrete = 0;  // The most concrete implementation to resolve to
 | 
						|
 | 
						|
  assert((isFunction ^ isa<GlobalVariable>(Globals[0])) &&
 | 
						|
         "Should either be function or gvar!");
 | 
						|
 | 
						|
  for (unsigned i = 0; i != Globals.size(); ) {
 | 
						|
    if (isa<Function>(Globals[i]) != isFunction) {
 | 
						|
      std::cerr << "WARNING: Found function and global variable with the "
 | 
						|
                << "same name: '" << Globals[i]->getName() << "'.\n";
 | 
						|
      return false;                 // Don't know how to handle this, bail out!
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFunction) {
 | 
						|
      // For functions, we look to merge functions definitions of "int (...)"
 | 
						|
      // to 'int (int)' or 'int ()' or whatever else is not completely generic.
 | 
						|
      //
 | 
						|
      Function *F = cast<Function>(Globals[i]);
 | 
						|
      if (!F->isExternal()) {
 | 
						|
        if (Concrete && !Concrete->isExternal())
 | 
						|
          return false;   // Found two different functions types.  Can't choose!
 | 
						|
        
 | 
						|
        Concrete = Globals[i];
 | 
						|
      } else if (Concrete) {
 | 
						|
        if (Concrete->isExternal()) // If we have multiple external symbols...x
 | 
						|
          if (F->getFunctionType()->getNumParams() > 
 | 
						|
              cast<Function>(Concrete)->getFunctionType()->getNumParams())
 | 
						|
            Concrete = F;  // We are more concrete than "Concrete"!
 | 
						|
 | 
						|
      } else {
 | 
						|
        Concrete = F;
 | 
						|
      }
 | 
						|
      ++i;
 | 
						|
    } else {
 | 
						|
      // For global variables, we have to merge C definitions int A[][4] with
 | 
						|
      // int[6][4]
 | 
						|
      GlobalVariable *GV = cast<GlobalVariable>(Globals[i]);
 | 
						|
      if (Concrete == 0) {
 | 
						|
        if (isa<ArrayType>(GV->getType()->getElementType()))
 | 
						|
          Concrete = GV;
 | 
						|
      } else {    // Must have different types... one is an array of the other?
 | 
						|
        const ArrayType *AT =
 | 
						|
          dyn_cast<ArrayType>(GV->getType()->getElementType());
 | 
						|
 | 
						|
        // If GV is an array of Concrete, then GV is the array.
 | 
						|
        if (AT && AT->getElementType() == Concrete->getType()->getElementType())
 | 
						|
          Concrete = GV;
 | 
						|
        else {
 | 
						|
          // Concrete must be an array type, check to see if the element type of
 | 
						|
          // concrete is already GV.
 | 
						|
          AT = cast<ArrayType>(Concrete->getType()->getElementType());
 | 
						|
          if (AT->getElementType() != GV->getType()->getElementType())
 | 
						|
            Concrete = 0;           // Don't know how to handle it!
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      ++i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Globals.size() > 1) {         // Found a multiply defined global...
 | 
						|
    // We should find exactly one concrete function definition, which is
 | 
						|
    // probably the implementation.  Change all of the function definitions and
 | 
						|
    // uses to use it instead.
 | 
						|
    //
 | 
						|
    if (!Concrete) {
 | 
						|
      std::cerr << "WARNING: Found function types that are not compatible:\n";
 | 
						|
      for (unsigned i = 0; i < Globals.size(); ++i) {
 | 
						|
        std::cerr << "\t" << Globals[i]->getType()->getDescription() << " %"
 | 
						|
                  << Globals[i]->getName() << "\n";
 | 
						|
      }
 | 
						|
      std::cerr << "  No linkage of globals named '" << Globals[0]->getName()
 | 
						|
                << "' performed!\n";
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFunction)
 | 
						|
      return Changed | ResolveFunctions(M, Globals, cast<Function>(Concrete));
 | 
						|
    else
 | 
						|
      return Changed | ResolveGlobalVariables(M, Globals,
 | 
						|
                                              cast<GlobalVariable>(Concrete));
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool FunctionResolvingPass::run(Module &M) {
 | 
						|
  SymbolTable &ST = M.getSymbolTable();
 | 
						|
 | 
						|
  std::map<std::string, std::vector<GlobalValue*> > Globals;
 | 
						|
 | 
						|
  // Loop over the entries in the symbol table. If an entry is a func pointer,
 | 
						|
  // then add it to the Functions map.  We do a two pass algorithm here to avoid
 | 
						|
  // problems with iterators getting invalidated if we did a one pass scheme.
 | 
						|
  //
 | 
						|
  for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
 | 
						|
    if (const PointerType *PT = dyn_cast<PointerType>(I->first)) {
 | 
						|
      SymbolTable::VarMap &Plane = I->second;
 | 
						|
      for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
 | 
						|
           PI != PE; ++PI) {
 | 
						|
        GlobalValue *GV = cast<GlobalValue>(PI->second);
 | 
						|
        assert(PI->first == GV->getName() &&
 | 
						|
               "Global name and symbol table do not agree!");
 | 
						|
        if (GV->hasExternalLinkage())  // Only resolve decls to external fns
 | 
						|
          Globals[PI->first].push_back(GV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Now we have a list of all functions with a particular name.  If there is
 | 
						|
  // more than one entry in a list, merge the functions together.
 | 
						|
  //
 | 
						|
  for (std::map<std::string, std::vector<GlobalValue*> >::iterator
 | 
						|
         I = Globals.begin(), E = Globals.end(); I != E; ++I)
 | 
						|
    Changed |= ProcessGlobalsWithSameName(M, I->second);
 | 
						|
 | 
						|
  // Now loop over all of the globals, checking to see if any are trivially
 | 
						|
  // dead.  If so, remove them now.
 | 
						|
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; )
 | 
						|
    if (I->isExternal() && I->use_empty()) {
 | 
						|
      Function *F = I;
 | 
						|
      ++I;
 | 
						|
      M.getFunctionList().erase(F);
 | 
						|
      ++NumResolved;
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
 | 
						|
  for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; )
 | 
						|
    if (I->isExternal() && I->use_empty()) {
 | 
						|
      GlobalVariable *GV = I;
 | 
						|
      ++I;
 | 
						|
      M.getGlobalList().erase(GV);
 | 
						|
      ++NumGlobals;
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |