mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237376 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			185 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/CodeGen/TargetSchedule.h - Sched Machine Model -----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a wrapper around MCSchedModel that allows the interface to
 | 
						|
// benefit from information currently only available in TargetInstrInfo.
 | 
						|
// Ideally, the scheduling interface would be fully defined in the MC layer.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_CODEGEN_TARGETSCHEDULE_H
 | 
						|
#define LLVM_CODEGEN_TARGETSCHEDULE_H
 | 
						|
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/MC/MCInstrItineraries.h"
 | 
						|
#include "llvm/MC/MCSchedule.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class TargetRegisterInfo;
 | 
						|
class TargetSubtargetInfo;
 | 
						|
class TargetInstrInfo;
 | 
						|
class MachineInstr;
 | 
						|
 | 
						|
/// Provide an instruction scheduling machine model to CodeGen passes.
 | 
						|
class TargetSchedModel {
 | 
						|
  // For efficiency, hold a copy of the statically defined MCSchedModel for this
 | 
						|
  // processor.
 | 
						|
  MCSchedModel SchedModel;
 | 
						|
  InstrItineraryData InstrItins;
 | 
						|
  const TargetSubtargetInfo *STI;
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
 | 
						|
  SmallVector<unsigned, 16> ResourceFactors;
 | 
						|
  unsigned MicroOpFactor; // Multiply to normalize microops to resource units.
 | 
						|
  unsigned ResourceLCM;   // Resource units per cycle. Latency normalization factor.
 | 
						|
 | 
						|
  unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const;
 | 
						|
 | 
						|
public:
 | 
						|
  TargetSchedModel(): SchedModel(MCSchedModel::GetDefaultSchedModel()), STI(nullptr), TII(nullptr) {}
 | 
						|
 | 
						|
  /// \brief Initialize the machine model for instruction scheduling.
 | 
						|
  ///
 | 
						|
  /// The machine model API keeps a copy of the top-level MCSchedModel table
 | 
						|
  /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve
 | 
						|
  /// dynamic properties.
 | 
						|
  void init(const MCSchedModel &sm, const TargetSubtargetInfo *sti,
 | 
						|
            const TargetInstrInfo *tii);
 | 
						|
 | 
						|
  /// Return the MCSchedClassDesc for this instruction.
 | 
						|
  const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const;
 | 
						|
 | 
						|
  /// \brief TargetInstrInfo getter.
 | 
						|
  const TargetInstrInfo *getInstrInfo() const { return TII; }
 | 
						|
 | 
						|
  /// \brief Return true if this machine model includes an instruction-level
 | 
						|
  /// scheduling model.
 | 
						|
  ///
 | 
						|
  /// This is more detailed than the course grain IssueWidth and default
 | 
						|
  /// latency properties, but separate from the per-cycle itinerary data.
 | 
						|
  bool hasInstrSchedModel() const;
 | 
						|
 | 
						|
  const MCSchedModel *getMCSchedModel() const { return &SchedModel; }
 | 
						|
 | 
						|
  /// \brief Return true if this machine model includes cycle-to-cycle itinerary
 | 
						|
  /// data.
 | 
						|
  ///
 | 
						|
  /// This models scheduling at each stage in the processor pipeline.
 | 
						|
  bool hasInstrItineraries() const;
 | 
						|
 | 
						|
  const InstrItineraryData *getInstrItineraries() const {
 | 
						|
    if (hasInstrItineraries())
 | 
						|
      return &InstrItins;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Identify the processor corresponding to the current subtarget.
 | 
						|
  unsigned getProcessorID() const { return SchedModel.getProcessorID(); }
 | 
						|
 | 
						|
  /// \brief Maximum number of micro-ops that may be scheduled per cycle.
 | 
						|
  unsigned getIssueWidth() const { return SchedModel.IssueWidth; }
 | 
						|
 | 
						|
  /// \brief Return the number of issue slots required for this MI.
 | 
						|
  unsigned getNumMicroOps(const MachineInstr *MI,
 | 
						|
                          const MCSchedClassDesc *SC = nullptr) const;
 | 
						|
 | 
						|
  /// \brief Get the number of kinds of resources for this target.
 | 
						|
  unsigned getNumProcResourceKinds() const {
 | 
						|
    return SchedModel.getNumProcResourceKinds();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Get a processor resource by ID for convenience.
 | 
						|
  const MCProcResourceDesc *getProcResource(unsigned PIdx) const {
 | 
						|
    return SchedModel.getProcResource(PIdx);
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  const char *getResourceName(unsigned PIdx) const {
 | 
						|
    if (!PIdx)
 | 
						|
      return "MOps";
 | 
						|
    return SchedModel.getProcResource(PIdx)->Name;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  typedef const MCWriteProcResEntry *ProcResIter;
 | 
						|
 | 
						|
  // \brief Get an iterator into the processor resources consumed by this
 | 
						|
  // scheduling class.
 | 
						|
  ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const {
 | 
						|
    // The subtarget holds a single resource table for all processors.
 | 
						|
    return STI->getWriteProcResBegin(SC);
 | 
						|
  }
 | 
						|
  ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const {
 | 
						|
    return STI->getWriteProcResEnd(SC);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Multiply the number of units consumed for a resource by this factor
 | 
						|
  /// to normalize it relative to other resources.
 | 
						|
  unsigned getResourceFactor(unsigned ResIdx) const {
 | 
						|
    return ResourceFactors[ResIdx];
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Multiply number of micro-ops by this factor to normalize it
 | 
						|
  /// relative to other resources.
 | 
						|
  unsigned getMicroOpFactor() const {
 | 
						|
    return MicroOpFactor;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Multiply cycle count by this factor to normalize it relative to
 | 
						|
  /// other resources. This is the number of resource units per cycle.
 | 
						|
  unsigned getLatencyFactor() const {
 | 
						|
    return ResourceLCM;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Number of micro-ops that may be buffered for OOO execution.
 | 
						|
  unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; }
 | 
						|
 | 
						|
  /// \brief Number of resource units that may be buffered for OOO execution.
 | 
						|
  /// \return The buffer size in resource units or -1 for unlimited.
 | 
						|
  int getResourceBufferSize(unsigned PIdx) const {
 | 
						|
    return SchedModel.getProcResource(PIdx)->BufferSize;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute operand latency based on the available machine model.
 | 
						|
  ///
 | 
						|
  /// Compute and return the latency of the given data dependent def and use
 | 
						|
  /// when the operand indices are already known. UseMI may be NULL for an
 | 
						|
  /// unknown user.
 | 
						|
  unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
 | 
						|
                                 const MachineInstr *UseMI, unsigned UseOperIdx)
 | 
						|
    const;
 | 
						|
 | 
						|
  /// \brief Compute the instruction latency based on the available machine
 | 
						|
  /// model.
 | 
						|
  ///
 | 
						|
  /// Compute and return the expected latency of this instruction independent of
 | 
						|
  /// a particular use. computeOperandLatency is the preferred API, but this is
 | 
						|
  /// occasionally useful to help estimate instruction cost.
 | 
						|
  ///
 | 
						|
  /// If UseDefaultDefLatency is false and no new machine sched model is
 | 
						|
  /// present this method falls back to TII->getInstrLatency with an empty
 | 
						|
  /// instruction itinerary (this is so we preserve the previous behavior of the
 | 
						|
  /// if converter after moving it to TargetSchedModel).
 | 
						|
  unsigned computeInstrLatency(const MachineInstr *MI,
 | 
						|
                               bool UseDefaultDefLatency = true) const;
 | 
						|
  unsigned computeInstrLatency(unsigned Opcode) const;
 | 
						|
 | 
						|
  /// \brief Output dependency latency of a pair of defs of the same register.
 | 
						|
  ///
 | 
						|
  /// This is typically one cycle.
 | 
						|
  unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefIdx,
 | 
						|
                                const MachineInstr *DepMI) const;
 | 
						|
};
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
#endif
 |