mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207426 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1909 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1909 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstCombineCasts.cpp -----------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visit functions for cast operations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombine.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
 | 
						|
/// expression.  If so, decompose it, returning some value X, such that Val is
 | 
						|
/// X*Scale+Offset.
 | 
						|
///
 | 
						|
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
 | 
						|
                                        uint64_t &Offset) {
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | 
						|
    Offset = CI->getZExtValue();
 | 
						|
    Scale  = 0;
 | 
						|
    return ConstantInt::get(Val->getType(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
 | 
						|
    // Cannot look past anything that might overflow.
 | 
						|
    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
 | 
						|
    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
 | 
						|
      Scale = 1;
 | 
						|
      Offset = 0;
 | 
						|
      return Val;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      if (I->getOpcode() == Instruction::Shl) {
 | 
						|
        // This is a value scaled by '1 << the shift amt'.
 | 
						|
        Scale = UINT64_C(1) << RHS->getZExtValue();
 | 
						|
        Offset = 0;
 | 
						|
        return I->getOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      if (I->getOpcode() == Instruction::Mul) {
 | 
						|
        // This value is scaled by 'RHS'.
 | 
						|
        Scale = RHS->getZExtValue();
 | 
						|
        Offset = 0;
 | 
						|
        return I->getOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      if (I->getOpcode() == Instruction::Add) {
 | 
						|
        // We have X+C.  Check to see if we really have (X*C2)+C1,
 | 
						|
        // where C1 is divisible by C2.
 | 
						|
        unsigned SubScale;
 | 
						|
        Value *SubVal =
 | 
						|
          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
 | 
						|
        Offset += RHS->getZExtValue();
 | 
						|
        Scale = SubScale;
 | 
						|
        return SubVal;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we can't look past this.
 | 
						|
  Scale = 1;
 | 
						|
  Offset = 0;
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
 | 
						|
/// try to eliminate the cast by moving the type information into the alloc.
 | 
						|
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
 | 
						|
                                                   AllocaInst &AI) {
 | 
						|
  // This requires DataLayout to get the alloca alignment and size information.
 | 
						|
  if (!DL) return nullptr;
 | 
						|
 | 
						|
  PointerType *PTy = cast<PointerType>(CI.getType());
 | 
						|
 | 
						|
  BuilderTy AllocaBuilder(*Builder);
 | 
						|
  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
 | 
						|
 | 
						|
  // Get the type really allocated and the type casted to.
 | 
						|
  Type *AllocElTy = AI.getAllocatedType();
 | 
						|
  Type *CastElTy = PTy->getElementType();
 | 
						|
  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
 | 
						|
 | 
						|
  unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
 | 
						|
  unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
 | 
						|
  if (CastElTyAlign < AllocElTyAlign) return nullptr;
 | 
						|
 | 
						|
  // If the allocation has multiple uses, only promote it if we are strictly
 | 
						|
  // increasing the alignment of the resultant allocation.  If we keep it the
 | 
						|
  // same, we open the door to infinite loops of various kinds.
 | 
						|
  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
 | 
						|
 | 
						|
  uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
 | 
						|
  uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
 | 
						|
  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
 | 
						|
 | 
						|
  // If the allocation has multiple uses, only promote it if we're not
 | 
						|
  // shrinking the amount of memory being allocated.
 | 
						|
  uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
 | 
						|
  uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
 | 
						|
  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
 | 
						|
 | 
						|
  // See if we can satisfy the modulus by pulling a scale out of the array
 | 
						|
  // size argument.
 | 
						|
  unsigned ArraySizeScale;
 | 
						|
  uint64_t ArrayOffset;
 | 
						|
  Value *NumElements = // See if the array size is a decomposable linear expr.
 | 
						|
    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
 | 
						|
 | 
						|
  // If we can now satisfy the modulus, by using a non-1 scale, we really can
 | 
						|
  // do the xform.
 | 
						|
  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
 | 
						|
      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
 | 
						|
 | 
						|
  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
 | 
						|
  Value *Amt = nullptr;
 | 
						|
  if (Scale == 1) {
 | 
						|
    Amt = NumElements;
 | 
						|
  } else {
 | 
						|
    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
 | 
						|
    // Insert before the alloca, not before the cast.
 | 
						|
    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
 | 
						|
  }
 | 
						|
 | 
						|
  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
 | 
						|
    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
 | 
						|
                                  Offset, true);
 | 
						|
    Amt = AllocaBuilder.CreateAdd(Amt, Off);
 | 
						|
  }
 | 
						|
 | 
						|
  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
 | 
						|
  New->setAlignment(AI.getAlignment());
 | 
						|
  New->takeName(&AI);
 | 
						|
  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
 | 
						|
 | 
						|
  // If the allocation has multiple real uses, insert a cast and change all
 | 
						|
  // things that used it to use the new cast.  This will also hack on CI, but it
 | 
						|
  // will die soon.
 | 
						|
  if (!AI.hasOneUse()) {
 | 
						|
    // New is the allocation instruction, pointer typed. AI is the original
 | 
						|
    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
 | 
						|
    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
 | 
						|
    ReplaceInstUsesWith(AI, NewCast);
 | 
						|
  }
 | 
						|
  return ReplaceInstUsesWith(CI, New);
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateInDifferentType - Given an expression that
 | 
						|
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
 | 
						|
/// insert the code to evaluate the expression.
 | 
						|
Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
 | 
						|
                                             bool isSigned) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
 | 
						|
    // If we got a constantexpr back, try to simplify it with DL info.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | 
						|
      C = ConstantFoldConstantExpression(CE, DL, TLI);
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, it must be an instruction.
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
  Instruction *Res = nullptr;
 | 
						|
  unsigned Opc = I->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::URem: {
 | 
						|
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
 | 
						|
    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | 
						|
    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
    // If the source type of the cast is the type we're trying for then we can
 | 
						|
    // just return the source.  There's no need to insert it because it is not
 | 
						|
    // new.
 | 
						|
    if (I->getOperand(0)->getType() == Ty)
 | 
						|
      return I->getOperand(0);
 | 
						|
 | 
						|
    // Otherwise, must be the same type of cast, so just reinsert a new one.
 | 
						|
    // This also handles the case of zext(trunc(x)) -> zext(x).
 | 
						|
    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
 | 
						|
                                      Opc == Instruction::SExt);
 | 
						|
    break;
 | 
						|
  case Instruction::Select: {
 | 
						|
    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | 
						|
    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
 | 
						|
    Res = SelectInst::Create(I->getOperand(0), True, False);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::PHI: {
 | 
						|
    PHINode *OPN = cast<PHINode>(I);
 | 
						|
    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
 | 
						|
    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
 | 
						|
      NPN->addIncoming(V, OPN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
    Res = NPN;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    llvm_unreachable("Unreachable!");
 | 
						|
  }
 | 
						|
 | 
						|
  Res->takeName(I);
 | 
						|
  return InsertNewInstWith(Res, *I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// This function is a wrapper around CastInst::isEliminableCastPair. It
 | 
						|
/// simply extracts arguments and returns what that function returns.
 | 
						|
static Instruction::CastOps
 | 
						|
isEliminableCastPair(
 | 
						|
  const CastInst *CI, ///< The first cast instruction
 | 
						|
  unsigned opcode,       ///< The opcode of the second cast instruction
 | 
						|
  Type *DstTy,     ///< The target type for the second cast instruction
 | 
						|
  const DataLayout *DL ///< The target data for pointer size
 | 
						|
) {
 | 
						|
 | 
						|
  Type *SrcTy = CI->getOperand(0)->getType();   // A from above
 | 
						|
  Type *MidTy = CI->getType();                  // B from above
 | 
						|
 | 
						|
  // Get the opcodes of the two Cast instructions
 | 
						|
  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
 | 
						|
  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
 | 
						|
  Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
 | 
						|
    DL->getIntPtrType(SrcTy) : nullptr;
 | 
						|
  Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
 | 
						|
    DL->getIntPtrType(MidTy) : nullptr;
 | 
						|
  Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
 | 
						|
    DL->getIntPtrType(DstTy) : nullptr;
 | 
						|
  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
 | 
						|
                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
 | 
						|
                                                DstIntPtrTy);
 | 
						|
 | 
						|
  // We don't want to form an inttoptr or ptrtoint that converts to an integer
 | 
						|
  // type that differs from the pointer size.
 | 
						|
  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
 | 
						|
      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
 | 
						|
    Res = 0;
 | 
						|
 | 
						|
  return Instruction::CastOps(Res);
 | 
						|
}
 | 
						|
 | 
						|
/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
 | 
						|
/// results in any code being generated and is interesting to optimize out. If
 | 
						|
/// the cast can be eliminated by some other simple transformation, we prefer
 | 
						|
/// to do the simplification first.
 | 
						|
bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
 | 
						|
                                      Type *Ty) {
 | 
						|
  // Noop casts and casts of constants should be eliminated trivially.
 | 
						|
  if (V->getType() == Ty || isa<Constant>(V)) return false;
 | 
						|
 | 
						|
  // If this is another cast that can be eliminated, we prefer to have it
 | 
						|
  // eliminated.
 | 
						|
  if (const CastInst *CI = dyn_cast<CastInst>(V))
 | 
						|
    if (isEliminableCastPair(CI, opc, Ty, DL))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If this is a vector sext from a compare, then we don't want to break the
 | 
						|
  // idiom where each element of the extended vector is either zero or all ones.
 | 
						|
  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// @brief Implement the transforms common to all CastInst visitors.
 | 
						|
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
 | 
						|
  // eliminate it now.
 | 
						|
  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | 
						|
    if (Instruction::CastOps opc =
 | 
						|
        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
 | 
						|
      // The first cast (CSrc) is eliminable so we need to fix up or replace
 | 
						|
      // the second cast (CI). CSrc will then have a good chance of being dead.
 | 
						|
      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are casting a select then fold the cast into the select
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
 | 
						|
    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
 | 
						|
      return NV;
 | 
						|
 | 
						|
  // If we are casting a PHI then fold the cast into the PHI
 | 
						|
  if (isa<PHINode>(Src)) {
 | 
						|
    // We don't do this if this would create a PHI node with an illegal type if
 | 
						|
    // it is currently legal.
 | 
						|
    if (!Src->getType()->isIntegerTy() ||
 | 
						|
        !CI.getType()->isIntegerTy() ||
 | 
						|
        ShouldChangeType(CI.getType(), Src->getType()))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(CI))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// CanEvaluateTruncated - Return true if we can evaluate the specified
 | 
						|
/// expression tree as type Ty instead of its larger type, and arrive with the
 | 
						|
/// same value.  This is used by code that tries to eliminate truncates.
 | 
						|
///
 | 
						|
/// Ty will always be a type smaller than V.  We should return true if trunc(V)
 | 
						|
/// can be computed by computing V in the smaller type.  If V is an instruction,
 | 
						|
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
 | 
						|
/// makes sense if x and y can be efficiently truncated.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
///
 | 
						|
static bool CanEvaluateTruncated(Value *V, Type *Ty) {
 | 
						|
  // We can always evaluate constants in another type.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  Type *OrigTy = V->getType();
 | 
						|
 | 
						|
  // If this is an extension from the dest type, we can eliminate it, even if it
 | 
						|
  // has multiple uses.
 | 
						|
  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
 | 
						|
      I->getOperand(0)->getType() == Ty)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can't extend or shrink something that has multiple uses: doing so would
 | 
						|
  // require duplicating the instruction in general, which isn't profitable.
 | 
						|
  if (!I->hasOneUse()) return false;
 | 
						|
 | 
						|
  unsigned Opc = I->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    // These operators can all arbitrarily be extended or truncated.
 | 
						|
    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
 | 
						|
           CanEvaluateTruncated(I->getOperand(1), Ty);
 | 
						|
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::URem: {
 | 
						|
    // UDiv and URem can be truncated if all the truncated bits are zero.
 | 
						|
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | 
						|
    uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
    if (BitWidth < OrigBitWidth) {
 | 
						|
      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
 | 
						|
      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
 | 
						|
          MaskedValueIsZero(I->getOperand(1), Mask)) {
 | 
						|
        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
 | 
						|
               CanEvaluateTruncated(I->getOperand(1), Ty);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Shl:
 | 
						|
    // If we are truncating the result of this SHL, and if it's a shift of a
 | 
						|
    // constant amount, we can always perform a SHL in a smaller type.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
      if (CI->getLimitedValue(BitWidth) < BitWidth)
 | 
						|
        return CanEvaluateTruncated(I->getOperand(0), Ty);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    // If this is a truncate of a logical shr, we can truncate it to a smaller
 | 
						|
    // lshr iff we know that the bits we would otherwise be shifting in are
 | 
						|
    // already zeros.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | 
						|
      uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
      if (MaskedValueIsZero(I->getOperand(0),
 | 
						|
            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
 | 
						|
          CI->getLimitedValue(BitWidth) < BitWidth) {
 | 
						|
        return CanEvaluateTruncated(I->getOperand(0), Ty);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc:
 | 
						|
    // trunc(trunc(x)) -> trunc(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
 | 
						|
    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
 | 
						|
    return true;
 | 
						|
  case Instruction::Select: {
 | 
						|
    SelectInst *SI = cast<SelectInst>(I);
 | 
						|
    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
 | 
						|
           CanEvaluateTruncated(SI->getFalseValue(), Ty);
 | 
						|
  }
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
 | 
						|
  if (Instruction *Result = commonCastTransforms(CI))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the input whose sole
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  if (SimplifyDemandedInstructionBits(CI))
 | 
						|
    return &CI;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *DestTy = CI.getType(), *SrcTy = Src->getType();
 | 
						|
 | 
						|
  // Attempt to truncate the entire input expression tree to the destination
 | 
						|
  // type.   Only do this if the dest type is a simple type, don't convert the
 | 
						|
  // expression tree to something weird like i93 unless the source is also
 | 
						|
  // strange.
 | 
						|
  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
 | 
						|
      CanEvaluateTruncated(Src, DestTy)) {
 | 
						|
 | 
						|
    // If this cast is a truncate, evaluting in a different type always
 | 
						|
    // eliminates the cast, so it is always a win.
 | 
						|
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
          " to avoid cast: " << CI << '\n');
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
    return ReplaceInstUsesWith(CI, Res);
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
 | 
						|
  if (DestTy->getScalarSizeInBits() == 1) {
 | 
						|
    Constant *One = ConstantInt::get(Src->getType(), 1);
 | 
						|
    Src = Builder->CreateAnd(Src, One);
 | 
						|
    Value *Zero = Constant::getNullValue(Src->getType());
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
 | 
						|
  Value *A = nullptr; ConstantInt *Cst = nullptr;
 | 
						|
  if (Src->hasOneUse() &&
 | 
						|
      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
 | 
						|
    // We have three types to worry about here, the type of A, the source of
 | 
						|
    // the truncate (MidSize), and the destination of the truncate. We know that
 | 
						|
    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
 | 
						|
    // between ASize and ResultSize.
 | 
						|
    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
    // If the shift amount is larger than the size of A, then the result is
 | 
						|
    // known to be zero because all the input bits got shifted out.
 | 
						|
    if (Cst->getZExtValue() >= ASize)
 | 
						|
      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
 | 
						|
 | 
						|
    // Since we're doing an lshr and a zero extend, and know that the shift
 | 
						|
    // amount is smaller than ASize, it is always safe to do the shift in A's
 | 
						|
    // type, then zero extend or truncate to the result.
 | 
						|
    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
 | 
						|
    Shift->takeName(Src);
 | 
						|
    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
 | 
						|
  // type isn't non-native.
 | 
						|
  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
 | 
						|
      ShouldChangeType(Src->getType(), CI.getType()) &&
 | 
						|
      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
 | 
						|
    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
 | 
						|
    return BinaryOperator::CreateAnd(NewTrunc,
 | 
						|
                                     ConstantExpr::getTrunc(Cst, CI.getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
 | 
						|
/// in order to eliminate the icmp.
 | 
						|
Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
 | 
						|
                                             bool DoXform) {
 | 
						|
  // If we are just checking for a icmp eq of a single bit and zext'ing it
 | 
						|
  // to an integer, then shift the bit to the appropriate place and then
 | 
						|
  // cast to integer to avoid the comparison.
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
 | 
						|
    const APInt &Op1CV = Op1C->getValue();
 | 
						|
 | 
						|
    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
 | 
						|
    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
 | 
						|
    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
 | 
						|
        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
 | 
						|
      if (!DoXform) return ICI;
 | 
						|
 | 
						|
      Value *In = ICI->getOperand(0);
 | 
						|
      Value *Sh = ConstantInt::get(In->getType(),
 | 
						|
                                   In->getType()->getScalarSizeInBits()-1);
 | 
						|
      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
 | 
						|
      if (In->getType() != CI.getType())
 | 
						|
        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
 | 
						|
 | 
						|
      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
 | 
						|
        Constant *One = ConstantInt::get(In->getType(), 1);
 | 
						|
        In = Builder->CreateXor(In, One, In->getName()+".not");
 | 
						|
      }
 | 
						|
 | 
						|
      return ReplaceInstUsesWith(CI, In);
 | 
						|
    }
 | 
						|
 | 
						|
    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
 | 
						|
    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | 
						|
    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
 | 
						|
    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
 | 
						|
    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
 | 
						|
    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
 | 
						|
    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
 | 
						|
    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | 
						|
    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
 | 
						|
        // This only works for EQ and NE
 | 
						|
        ICI->isEquality()) {
 | 
						|
      // If Op1C some other power of two, convert:
 | 
						|
      uint32_t BitWidth = Op1C->getType()->getBitWidth();
 | 
						|
      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | 
						|
      ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
 | 
						|
 | 
						|
      APInt KnownZeroMask(~KnownZero);
 | 
						|
      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
 | 
						|
        if (!DoXform) return ICI;
 | 
						|
 | 
						|
        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
 | 
						|
          // (X&4) == 2 --> false
 | 
						|
          // (X&4) != 2 --> true
 | 
						|
          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
 | 
						|
                                           isNE);
 | 
						|
          Res = ConstantExpr::getZExt(Res, CI.getType());
 | 
						|
          return ReplaceInstUsesWith(CI, Res);
 | 
						|
        }
 | 
						|
 | 
						|
        uint32_t ShiftAmt = KnownZeroMask.logBase2();
 | 
						|
        Value *In = ICI->getOperand(0);
 | 
						|
        if (ShiftAmt) {
 | 
						|
          // Perform a logical shr by shiftamt.
 | 
						|
          // Insert the shift to put the result in the low bit.
 | 
						|
          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
 | 
						|
                                   In->getName()+".lobit");
 | 
						|
        }
 | 
						|
 | 
						|
        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
 | 
						|
          Constant *One = ConstantInt::get(In->getType(), 1);
 | 
						|
          In = Builder->CreateXor(In, One);
 | 
						|
        }
 | 
						|
 | 
						|
        if (CI.getType() == In->getType())
 | 
						|
          return ReplaceInstUsesWith(CI, In);
 | 
						|
        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
 | 
						|
  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
 | 
						|
  // may lead to additional simplifications.
 | 
						|
  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
 | 
						|
    if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
 | 
						|
      uint32_t BitWidth = ITy->getBitWidth();
 | 
						|
      Value *LHS = ICI->getOperand(0);
 | 
						|
      Value *RHS = ICI->getOperand(1);
 | 
						|
 | 
						|
      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
 | 
						|
      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
 | 
						|
      ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
 | 
						|
      ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
 | 
						|
 | 
						|
      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
 | 
						|
        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
 | 
						|
        APInt UnknownBit = ~KnownBits;
 | 
						|
        if (UnknownBit.countPopulation() == 1) {
 | 
						|
          if (!DoXform) return ICI;
 | 
						|
 | 
						|
          Value *Result = Builder->CreateXor(LHS, RHS);
 | 
						|
 | 
						|
          // Mask off any bits that are set and won't be shifted away.
 | 
						|
          if (KnownOneLHS.uge(UnknownBit))
 | 
						|
            Result = Builder->CreateAnd(Result,
 | 
						|
                                        ConstantInt::get(ITy, UnknownBit));
 | 
						|
 | 
						|
          // Shift the bit we're testing down to the lsb.
 | 
						|
          Result = Builder->CreateLShr(
 | 
						|
               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
 | 
						|
 | 
						|
          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
 | 
						|
          Result->takeName(ICI);
 | 
						|
          return ReplaceInstUsesWith(CI, Result);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// CanEvaluateZExtd - Determine if the specified value can be computed in the
 | 
						|
/// specified wider type and produce the same low bits.  If not, return false.
 | 
						|
///
 | 
						|
/// If this function returns true, it can also return a non-zero number of bits
 | 
						|
/// (in BitsToClear) which indicates that the value it computes is correct for
 | 
						|
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
 | 
						|
/// out.  For example, to promote something like:
 | 
						|
///
 | 
						|
///   %B = trunc i64 %A to i32
 | 
						|
///   %C = lshr i32 %B, 8
 | 
						|
///   %E = zext i32 %C to i64
 | 
						|
///
 | 
						|
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
 | 
						|
/// set to 8 to indicate that the promoted value needs to have bits 24-31
 | 
						|
/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
 | 
						|
/// clear the top bits anyway, doing this has no extra cost.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
 | 
						|
  BitsToClear = 0;
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // If the input is a truncate from the destination type, we can trivially
 | 
						|
  // eliminate it.
 | 
						|
  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can't extend or shrink something that has multiple uses: doing so would
 | 
						|
  // require duplicating the instruction in general, which isn't profitable.
 | 
						|
  if (!I->hasOneUse()) return false;
 | 
						|
 | 
						|
  unsigned Opc = I->getOpcode(), Tmp;
 | 
						|
  switch (Opc) {
 | 
						|
  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
 | 
						|
  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
 | 
						|
  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
 | 
						|
        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
 | 
						|
      return false;
 | 
						|
    // These can all be promoted if neither operand has 'bits to clear'.
 | 
						|
    if (BitsToClear == 0 && Tmp == 0)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
 | 
						|
    // other side, BitsToClear is ok.
 | 
						|
    if (Tmp == 0 &&
 | 
						|
        (Opc == Instruction::And || Opc == Instruction::Or ||
 | 
						|
         Opc == Instruction::Xor)) {
 | 
						|
      // We use MaskedValueIsZero here for generality, but the case we care
 | 
						|
      // about the most is constant RHS.
 | 
						|
      unsigned VSize = V->getType()->getScalarSizeInBits();
 | 
						|
      if (MaskedValueIsZero(I->getOperand(1),
 | 
						|
                            APInt::getHighBitsSet(VSize, BitsToClear)))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we don't know how to analyze this BitsToClear case yet.
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Instruction::Shl:
 | 
						|
    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
 | 
						|
    // upper bits we can reduce BitsToClear by the shift amount.
 | 
						|
    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
 | 
						|
        return false;
 | 
						|
      uint64_t ShiftAmt = Amt->getZExtValue();
 | 
						|
      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  case Instruction::LShr:
 | 
						|
    // We can promote lshr(x, cst) if we can promote x.  This requires the
 | 
						|
    // ultimate 'and' to clear out the high zero bits we're clearing out though.
 | 
						|
    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
 | 
						|
        return false;
 | 
						|
      BitsToClear += Amt->getZExtValue();
 | 
						|
      if (BitsToClear > V->getType()->getScalarSizeInBits())
 | 
						|
        BitsToClear = V->getType()->getScalarSizeInBits();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Cannot promote variable LSHR.
 | 
						|
    return false;
 | 
						|
  case Instruction::Select:
 | 
						|
    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
 | 
						|
        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
 | 
						|
        // TODO: If important, we could handle the case when the BitsToClear are
 | 
						|
        // known zero in the disagreeing side.
 | 
						|
        Tmp != BitsToClear)
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
 | 
						|
          // TODO: If important, we could handle the case when the BitsToClear
 | 
						|
          // are known zero in the disagreeing input.
 | 
						|
          Tmp != BitsToClear)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
 | 
						|
  // If this zero extend is only used by a truncate, let the truncate be
 | 
						|
  // eliminated before we try to optimize this zext.
 | 
						|
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If one of the common conversion will work, do it.
 | 
						|
  if (Instruction *Result = commonCastTransforms(CI))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the input whose sole
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  if (SimplifyDemandedInstructionBits(CI))
 | 
						|
    return &CI;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | 
						|
 | 
						|
  // Attempt to extend the entire input expression tree to the destination
 | 
						|
  // type.   Only do this if the dest type is a simple type, don't convert the
 | 
						|
  // expression tree to something weird like i93 unless the source is also
 | 
						|
  // strange.
 | 
						|
  unsigned BitsToClear;
 | 
						|
  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
 | 
						|
      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
 | 
						|
    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
 | 
						|
           "Unreasonable BitsToClear");
 | 
						|
 | 
						|
    // Okay, we can transform this!  Insert the new expression now.
 | 
						|
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
          " to avoid zero extend: " << CI);
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
 | 
						|
    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
 | 
						|
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
    // If the high bits are already filled with zeros, just replace this
 | 
						|
    // cast with the result.
 | 
						|
    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
 | 
						|
                                                     DestBitSize-SrcBitsKept)))
 | 
						|
      return ReplaceInstUsesWith(CI, Res);
 | 
						|
 | 
						|
    // We need to emit an AND to clear the high bits.
 | 
						|
    Constant *C = ConstantInt::get(Res->getType(),
 | 
						|
                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
 | 
						|
    return BinaryOperator::CreateAnd(Res, C);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
 | 
						|
  // types and if the sizes are just right we can convert this into a logical
 | 
						|
  // 'and' which will be much cheaper than the pair of casts.
 | 
						|
  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
 | 
						|
    // TODO: Subsume this into EvaluateInDifferentType.
 | 
						|
 | 
						|
    // Get the sizes of the types involved.  We know that the intermediate type
 | 
						|
    // will be smaller than A or C, but don't know the relation between A and C.
 | 
						|
    Value *A = CSrc->getOperand(0);
 | 
						|
    unsigned SrcSize = A->getType()->getScalarSizeInBits();
 | 
						|
    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
 | 
						|
    unsigned DstSize = CI.getType()->getScalarSizeInBits();
 | 
						|
    // If we're actually extending zero bits, then if
 | 
						|
    // SrcSize <  DstSize: zext(a & mask)
 | 
						|
    // SrcSize == DstSize: a & mask
 | 
						|
    // SrcSize  > DstSize: trunc(a) & mask
 | 
						|
    if (SrcSize < DstSize) {
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | 
						|
      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
 | 
						|
      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
 | 
						|
      return new ZExtInst(And, CI.getType());
 | 
						|
    }
 | 
						|
 | 
						|
    if (SrcSize == DstSize) {
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | 
						|
      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
 | 
						|
                                                           AndValue));
 | 
						|
    }
 | 
						|
    if (SrcSize > DstSize) {
 | 
						|
      Value *Trunc = Builder->CreateTrunc(A, CI.getType());
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
 | 
						|
      return BinaryOperator::CreateAnd(Trunc,
 | 
						|
                                       ConstantInt::get(Trunc->getType(),
 | 
						|
                                                        AndValue));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | 
						|
    return transformZExtICmp(ICI, CI);
 | 
						|
 | 
						|
  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
 | 
						|
  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
 | 
						|
    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
 | 
						|
    // of the (zext icmp) will be transformed.
 | 
						|
    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
 | 
						|
    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
 | 
						|
    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
 | 
						|
        (transformZExtICmp(LHS, CI, false) ||
 | 
						|
         transformZExtICmp(RHS, CI, false))) {
 | 
						|
      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
 | 
						|
      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
 | 
						|
      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // zext(trunc(X) & C) -> (X & zext(C)).
 | 
						|
  Constant *C;
 | 
						|
  Value *X;
 | 
						|
  if (SrcI &&
 | 
						|
      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
 | 
						|
      X->getType() == CI.getType())
 | 
						|
    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
 | 
						|
 | 
						|
  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
 | 
						|
  Value *And;
 | 
						|
  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
 | 
						|
      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
 | 
						|
      X->getType() == CI.getType()) {
 | 
						|
    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
 | 
						|
    return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
 | 
						|
  }
 | 
						|
 | 
						|
  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
 | 
						|
  if (SrcI && SrcI->hasOneUse() &&
 | 
						|
      SrcI->getType()->getScalarType()->isIntegerTy(1) &&
 | 
						|
      match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
 | 
						|
    Value *New = Builder->CreateZExt(X, CI.getType());
 | 
						|
    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
 | 
						|
/// in order to eliminate the icmp.
 | 
						|
Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
 | 
						|
  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
 | 
						|
  ICmpInst::Predicate Pred = ICI->getPredicate();
 | 
						|
 | 
						|
  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | 
						|
    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
 | 
						|
    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
 | 
						|
    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
 | 
						|
        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
 | 
						|
 | 
						|
      Value *Sh = ConstantInt::get(Op0->getType(),
 | 
						|
                                   Op0->getType()->getScalarSizeInBits()-1);
 | 
						|
      Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
 | 
						|
      if (In->getType() != CI.getType())
 | 
						|
        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
 | 
						|
 | 
						|
      if (Pred == ICmpInst::ICMP_SGT)
 | 
						|
        In = Builder->CreateNot(In, In->getName()+".not");
 | 
						|
      return ReplaceInstUsesWith(CI, In);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // If we know that only one bit of the LHS of the icmp can be set and we
 | 
						|
    // have an equality comparison with zero or a power of 2, we can transform
 | 
						|
    // the icmp and sext into bitwise/integer operations.
 | 
						|
    if (ICI->hasOneUse() &&
 | 
						|
        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
 | 
						|
      unsigned BitWidth = Op1C->getType()->getBitWidth();
 | 
						|
      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | 
						|
      ComputeMaskedBits(Op0, KnownZero, KnownOne);
 | 
						|
 | 
						|
      APInt KnownZeroMask(~KnownZero);
 | 
						|
      if (KnownZeroMask.isPowerOf2()) {
 | 
						|
        Value *In = ICI->getOperand(0);
 | 
						|
 | 
						|
        // If the icmp tests for a known zero bit we can constant fold it.
 | 
						|
        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
 | 
						|
          Value *V = Pred == ICmpInst::ICMP_NE ?
 | 
						|
                       ConstantInt::getAllOnesValue(CI.getType()) :
 | 
						|
                       ConstantInt::getNullValue(CI.getType());
 | 
						|
          return ReplaceInstUsesWith(CI, V);
 | 
						|
        }
 | 
						|
 | 
						|
        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
 | 
						|
          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
 | 
						|
          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
 | 
						|
          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
 | 
						|
          // Perform a right shift to place the desired bit in the LSB.
 | 
						|
          if (ShiftAmt)
 | 
						|
            In = Builder->CreateLShr(In,
 | 
						|
                                     ConstantInt::get(In->getType(), ShiftAmt));
 | 
						|
 | 
						|
          // At this point "In" is either 1 or 0. Subtract 1 to turn
 | 
						|
          // {1, 0} -> {0, -1}.
 | 
						|
          In = Builder->CreateAdd(In,
 | 
						|
                                  ConstantInt::getAllOnesValue(In->getType()),
 | 
						|
                                  "sext");
 | 
						|
        } else {
 | 
						|
          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
 | 
						|
          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
 | 
						|
          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
 | 
						|
          // Perform a left shift to place the desired bit in the MSB.
 | 
						|
          if (ShiftAmt)
 | 
						|
            In = Builder->CreateShl(In,
 | 
						|
                                    ConstantInt::get(In->getType(), ShiftAmt));
 | 
						|
 | 
						|
          // Distribute the bit over the whole bit width.
 | 
						|
          In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
 | 
						|
                                                        BitWidth - 1), "sext");
 | 
						|
        }
 | 
						|
 | 
						|
        if (CI.getType() == In->getType())
 | 
						|
          return ReplaceInstUsesWith(CI, In);
 | 
						|
        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// CanEvaluateSExtd - Return true if we can take the specified value
 | 
						|
/// and return it as type Ty without inserting any new casts and without
 | 
						|
/// changing the value of the common low bits.  This is used by code that tries
 | 
						|
/// to promote integer operations to a wider types will allow us to eliminate
 | 
						|
/// the extension.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
///
 | 
						|
static bool CanEvaluateSExtd(Value *V, Type *Ty) {
 | 
						|
  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
 | 
						|
         "Can't sign extend type to a smaller type");
 | 
						|
  // If this is a constant, it can be trivially promoted.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // If this is a truncate from the dest type, we can trivially eliminate it.
 | 
						|
  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can't extend or shrink something that has multiple uses: doing so would
 | 
						|
  // require duplicating the instruction in general, which isn't profitable.
 | 
						|
  if (!I->hasOneUse()) return false;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
 | 
						|
  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
 | 
						|
  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // These operators can all arbitrarily be extended if their inputs can.
 | 
						|
    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
 | 
						|
           CanEvaluateSExtd(I->getOperand(1), Ty);
 | 
						|
 | 
						|
  //case Instruction::Shl:   TODO
 | 
						|
  //case Instruction::LShr:  TODO
 | 
						|
 | 
						|
  case Instruction::Select:
 | 
						|
    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
 | 
						|
           CanEvaluateSExtd(I->getOperand(2), Ty);
 | 
						|
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
 | 
						|
  // If this sign extend is only used by a truncate, let the truncate be
 | 
						|
  // eliminated before we try to optimize this sext.
 | 
						|
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Instruction *I = commonCastTransforms(CI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the input whose sole
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  if (SimplifyDemandedInstructionBits(CI))
 | 
						|
    return &CI;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | 
						|
 | 
						|
  // Attempt to extend the entire input expression tree to the destination
 | 
						|
  // type.   Only do this if the dest type is a simple type, don't convert the
 | 
						|
  // expression tree to something weird like i93 unless the source is also
 | 
						|
  // strange.
 | 
						|
  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
 | 
						|
      CanEvaluateSExtd(Src, DestTy)) {
 | 
						|
    // Okay, we can transform this!  Insert the new expression now.
 | 
						|
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
          " to avoid sign extend: " << CI);
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
 | 
						|
    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
    // If the high bits are already filled with sign bit, just replace this
 | 
						|
    // cast with the result.
 | 
						|
    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
 | 
						|
      return ReplaceInstUsesWith(CI, Res);
 | 
						|
 | 
						|
    // We need to emit a shl + ashr to do the sign extend.
 | 
						|
    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
 | 
						|
    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
 | 
						|
                                      ShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this input is a trunc from our destination, then turn sext(trunc(x))
 | 
						|
  // into shifts.
 | 
						|
  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
 | 
						|
    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
 | 
						|
      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
      // We need to emit a shl + ashr to do the sign extend.
 | 
						|
      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
 | 
						|
      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
 | 
						|
      return BinaryOperator::CreateAShr(Res, ShAmt);
 | 
						|
    }
 | 
						|
 | 
						|
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | 
						|
    return transformSExtICmp(ICI, CI);
 | 
						|
 | 
						|
  // If the input is a shl/ashr pair of a same constant, then this is a sign
 | 
						|
  // extension from a smaller value.  If we could trust arbitrary bitwidth
 | 
						|
  // integers, we could turn this into a truncate to the smaller bit and then
 | 
						|
  // use a sext for the whole extension.  Since we don't, look deeper and check
 | 
						|
  // for a truncate.  If the source and dest are the same type, eliminate the
 | 
						|
  // trunc and extend and just do shifts.  For example, turn:
 | 
						|
  //   %a = trunc i32 %i to i8
 | 
						|
  //   %b = shl i8 %a, 6
 | 
						|
  //   %c = ashr i8 %b, 6
 | 
						|
  //   %d = sext i8 %c to i32
 | 
						|
  // into:
 | 
						|
  //   %a = shl i32 %i, 30
 | 
						|
  //   %d = ashr i32 %a, 30
 | 
						|
  Value *A = nullptr;
 | 
						|
  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
 | 
						|
  ConstantInt *BA = nullptr, *CA = nullptr;
 | 
						|
  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
 | 
						|
                        m_ConstantInt(CA))) &&
 | 
						|
      BA == CA && A->getType() == CI.getType()) {
 | 
						|
    unsigned MidSize = Src->getType()->getScalarSizeInBits();
 | 
						|
    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
 | 
						|
    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
 | 
						|
    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
 | 
						|
    A = Builder->CreateShl(A, ShAmtV, CI.getName());
 | 
						|
    return BinaryOperator::CreateAShr(A, ShAmtV);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
 | 
						|
/// in the specified FP type without changing its value.
 | 
						|
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
 | 
						|
  bool losesInfo;
 | 
						|
  APFloat F = CFP->getValueAPF();
 | 
						|
  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
 | 
						|
  if (!losesInfo)
 | 
						|
    return ConstantFP::get(CFP->getContext(), F);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// LookThroughFPExtensions - If this is an fp extension instruction, look
 | 
						|
/// through it until we get the source value.
 | 
						|
static Value *LookThroughFPExtensions(Value *V) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    if (I->getOpcode() == Instruction::FPExt)
 | 
						|
      return LookThroughFPExtensions(I->getOperand(0));
 | 
						|
 | 
						|
  // If this value is a constant, return the constant in the smallest FP type
 | 
						|
  // that can accurately represent it.  This allows us to turn
 | 
						|
  // (float)((double)X+2.0) into x+2.0f.
 | 
						|
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
 | 
						|
    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
 | 
						|
      return V;  // No constant folding of this.
 | 
						|
    // See if the value can be truncated to half and then reextended.
 | 
						|
    if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
 | 
						|
      return V;
 | 
						|
    // See if the value can be truncated to float and then reextended.
 | 
						|
    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
 | 
						|
      return V;
 | 
						|
    if (CFP->getType()->isDoubleTy())
 | 
						|
      return V;  // Won't shrink.
 | 
						|
    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
 | 
						|
      return V;
 | 
						|
    // Don't try to shrink to various long double types.
 | 
						|
  }
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
 | 
						|
  if (Instruction *I = commonCastTransforms(CI))
 | 
						|
    return I;
 | 
						|
  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
 | 
						|
  // simpilify this expression to avoid one or more of the trunc/extend
 | 
						|
  // operations if we can do so without changing the numerical results.
 | 
						|
  //
 | 
						|
  // The exact manner in which the widths of the operands interact to limit
 | 
						|
  // what we can and cannot do safely varies from operation to operation, and
 | 
						|
  // is explained below in the various case statements.
 | 
						|
  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
 | 
						|
  if (OpI && OpI->hasOneUse()) {
 | 
						|
    Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
 | 
						|
    Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
 | 
						|
    unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
 | 
						|
    unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
 | 
						|
    unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
 | 
						|
    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
 | 
						|
    unsigned DstWidth = CI.getType()->getFPMantissaWidth();
 | 
						|
    switch (OpI->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case Instruction::FAdd:
 | 
						|
      case Instruction::FSub:
 | 
						|
        // For addition and subtraction, the infinitely precise result can
 | 
						|
        // essentially be arbitrarily wide; proving that double rounding
 | 
						|
        // will not occur because the result of OpI is exact (as we will for
 | 
						|
        // FMul, for example) is hopeless.  However, we *can* nonetheless
 | 
						|
        // frequently know that double rounding cannot occur (or that it is
 | 
						|
        // innocuous) by taking advantage of the specific structure of
 | 
						|
        // infinitely-precise results that admit double rounding.
 | 
						|
        //
 | 
						|
        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
 | 
						|
        // to represent both sources, we can guarantee that the double
 | 
						|
        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
 | 
						|
        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
 | 
						|
        // for proof of this fact).
 | 
						|
        //
 | 
						|
        // Note: Figueroa does not consider the case where DstFormat !=
 | 
						|
        // SrcFormat.  It's possible (likely even!) that this analysis
 | 
						|
        // could be tightened for those cases, but they are rare (the main
 | 
						|
        // case of interest here is (float)((double)float + float)).
 | 
						|
        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
 | 
						|
          if (LHSOrig->getType() != CI.getType())
 | 
						|
            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
 | 
						|
          if (RHSOrig->getType() != CI.getType())
 | 
						|
            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
 | 
						|
          Instruction *RI =
 | 
						|
            BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
 | 
						|
          RI->copyFastMathFlags(OpI);
 | 
						|
          return RI;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FMul:
 | 
						|
        // For multiplication, the infinitely precise result has at most
 | 
						|
        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
 | 
						|
        // that such a value can be exactly represented, then no double
 | 
						|
        // rounding can possibly occur; we can safely perform the operation
 | 
						|
        // in the destination format if it can represent both sources.
 | 
						|
        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
 | 
						|
          if (LHSOrig->getType() != CI.getType())
 | 
						|
            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
 | 
						|
          if (RHSOrig->getType() != CI.getType())
 | 
						|
            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
 | 
						|
          Instruction *RI =
 | 
						|
            BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
 | 
						|
          RI->copyFastMathFlags(OpI);
 | 
						|
          return RI;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FDiv:
 | 
						|
        // For division, we use again use the bound from Figueroa's
 | 
						|
        // dissertation.  I am entirely certain that this bound can be
 | 
						|
        // tightened in the unbalanced operand case by an analysis based on
 | 
						|
        // the diophantine rational approximation bound, but the well-known
 | 
						|
        // condition used here is a good conservative first pass.
 | 
						|
        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
 | 
						|
        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
 | 
						|
          if (LHSOrig->getType() != CI.getType())
 | 
						|
            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
 | 
						|
          if (RHSOrig->getType() != CI.getType())
 | 
						|
            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
 | 
						|
          Instruction *RI =
 | 
						|
            BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
 | 
						|
          RI->copyFastMathFlags(OpI);
 | 
						|
          return RI;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FRem:
 | 
						|
        // Remainder is straightforward.  Remainder is always exact, so the
 | 
						|
        // type of OpI doesn't enter into things at all.  We simply evaluate
 | 
						|
        // in whichever source type is larger, then convert to the
 | 
						|
        // destination type.
 | 
						|
        if (LHSWidth < SrcWidth)
 | 
						|
          LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
 | 
						|
        else if (RHSWidth <= SrcWidth)
 | 
						|
          RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
 | 
						|
        Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
 | 
						|
        if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
 | 
						|
          RI->copyFastMathFlags(OpI);
 | 
						|
        return CastInst::CreateFPCast(ExactResult, CI.getType());
 | 
						|
    }
 | 
						|
 | 
						|
    // (fptrunc (fneg x)) -> (fneg (fptrunc x))
 | 
						|
    if (BinaryOperator::isFNeg(OpI)) {
 | 
						|
      Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
 | 
						|
                                                 CI.getType());
 | 
						|
      Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
 | 
						|
      RI->copyFastMathFlags(OpI);
 | 
						|
      return RI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (fptrunc (select cond, R1, Cst)) -->
 | 
						|
  // (select cond, (fptrunc R1), (fptrunc Cst))
 | 
						|
  SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
 | 
						|
  if (SI &&
 | 
						|
      (isa<ConstantFP>(SI->getOperand(1)) ||
 | 
						|
       isa<ConstantFP>(SI->getOperand(2)))) {
 | 
						|
    Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
 | 
						|
                                             CI.getType());
 | 
						|
    Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
 | 
						|
                                             CI.getType());
 | 
						|
    return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
 | 
						|
  }
 | 
						|
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
 | 
						|
  if (II) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::fabs: {
 | 
						|
        // (fptrunc (fabs x)) -> (fabs (fptrunc x))
 | 
						|
        Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
 | 
						|
                                                   CI.getType());
 | 
						|
        Type *IntrinsicType[] = { CI.getType() };
 | 
						|
        Function *Overload =
 | 
						|
          Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
 | 
						|
                                    II->getIntrinsicID(), IntrinsicType);
 | 
						|
 | 
						|
        Value *Args[] = { InnerTrunc };
 | 
						|
        return CallInst::Create(Overload, Args, II->getName());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
 | 
						|
  // Note that we restrict this transformation based on
 | 
						|
  // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
 | 
						|
  // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
 | 
						|
  // single-precision intrinsic can be expanded in the backend.
 | 
						|
  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
 | 
						|
  if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
 | 
						|
      (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
 | 
						|
       Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
 | 
						|
      Call->getNumArgOperands() == 1 &&
 | 
						|
      Call->hasOneUse()) {
 | 
						|
    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
 | 
						|
    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
 | 
						|
        CI.getType()->isFloatTy() &&
 | 
						|
        Call->getType()->isDoubleTy() &&
 | 
						|
        Arg->getType()->isDoubleTy() &&
 | 
						|
        Arg->getOperand(0)->getType()->isFloatTy()) {
 | 
						|
      Function *Callee = Call->getCalledFunction();
 | 
						|
      Module *M = CI.getParent()->getParent()->getParent();
 | 
						|
      Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
 | 
						|
        Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
 | 
						|
        M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
 | 
						|
                               Builder->getFloatTy(), Builder->getFloatTy(),
 | 
						|
                               NULL);
 | 
						|
      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
 | 
						|
                                       "sqrtfcall");
 | 
						|
      ret->setAttributes(Callee->getAttributes());
 | 
						|
 | 
						|
 | 
						|
      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
 | 
						|
      ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
 | 
						|
      EraseInstFromFunction(*Call);
 | 
						|
      return ret;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
 | 
						|
  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | 
						|
  if (!OpI)
 | 
						|
    return commonCastTransforms(FI);
 | 
						|
 | 
						|
  // fptoui(uitofp(X)) --> X
 | 
						|
  // fptoui(sitofp(X)) --> X
 | 
						|
  // This is safe if the intermediate type has enough bits in its mantissa to
 | 
						|
  // accurately represent all values of X.  For example, do not do this with
 | 
						|
  // i64->float->i64.  This is also safe for sitofp case, because any negative
 | 
						|
  // 'X' value would cause an undefined result for the fptoui.
 | 
						|
  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
 | 
						|
      OpI->getOperand(0)->getType() == FI.getType() &&
 | 
						|
      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
 | 
						|
                    OpI->getType()->getFPMantissaWidth())
 | 
						|
    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
 | 
						|
 | 
						|
  return commonCastTransforms(FI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
 | 
						|
  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | 
						|
  if (!OpI)
 | 
						|
    return commonCastTransforms(FI);
 | 
						|
 | 
						|
  // fptosi(sitofp(X)) --> X
 | 
						|
  // fptosi(uitofp(X)) --> X
 | 
						|
  // This is safe if the intermediate type has enough bits in its mantissa to
 | 
						|
  // accurately represent all values of X.  For example, do not do this with
 | 
						|
  // i64->float->i64.  This is also safe for sitofp case, because any negative
 | 
						|
  // 'X' value would cause an undefined result for the fptoui.
 | 
						|
  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
 | 
						|
      OpI->getOperand(0)->getType() == FI.getType() &&
 | 
						|
      (int)FI.getType()->getScalarSizeInBits() <=
 | 
						|
                    OpI->getType()->getFPMantissaWidth())
 | 
						|
    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
 | 
						|
 | 
						|
  return commonCastTransforms(FI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
 | 
						|
  // If the source integer type is not the intptr_t type for this target, do a
 | 
						|
  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
 | 
						|
  // cast to be exposed to other transforms.
 | 
						|
 | 
						|
  if (DL) {
 | 
						|
    unsigned AS = CI.getAddressSpace();
 | 
						|
    if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
 | 
						|
        DL->getPointerSizeInBits(AS)) {
 | 
						|
      Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
 | 
						|
      if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
 | 
						|
        Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
 | 
						|
 | 
						|
      Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
 | 
						|
      return new IntToPtrInst(P, CI.getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = commonCastTransforms(CI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
 | 
						|
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | 
						|
    // If casting the result of a getelementptr instruction with no offset, turn
 | 
						|
    // this into a cast of the original pointer!
 | 
						|
    if (GEP->hasAllZeroIndices()) {
 | 
						|
      // Changing the cast operand is usually not a good idea but it is safe
 | 
						|
      // here because the pointer operand is being replaced with another
 | 
						|
      // pointer operand so the opcode doesn't need to change.
 | 
						|
      Worklist.Add(GEP);
 | 
						|
      CI.setOperand(0, GEP->getOperand(0));
 | 
						|
      return &CI;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!DL)
 | 
						|
      return commonCastTransforms(CI);
 | 
						|
 | 
						|
    // If the GEP has a single use, and the base pointer is a bitcast, and the
 | 
						|
    // GEP computes a constant offset, see if we can convert these three
 | 
						|
    // instructions into fewer.  This typically happens with unions and other
 | 
						|
    // non-type-safe code.
 | 
						|
    unsigned AS = GEP->getPointerAddressSpace();
 | 
						|
    unsigned OffsetBits = DL->getPointerSizeInBits(AS);
 | 
						|
    APInt Offset(OffsetBits, 0);
 | 
						|
    BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
 | 
						|
    if (GEP->hasOneUse() &&
 | 
						|
        BCI &&
 | 
						|
        GEP->accumulateConstantOffset(*DL, Offset)) {
 | 
						|
      // Get the base pointer input of the bitcast, and the type it points to.
 | 
						|
      Value *OrigBase = BCI->getOperand(0);
 | 
						|
      SmallVector<Value*, 8> NewIndices;
 | 
						|
      if (FindElementAtOffset(OrigBase->getType(),
 | 
						|
                              Offset.getSExtValue(),
 | 
						|
                              NewIndices)) {
 | 
						|
        // If we were able to index down into an element, create the GEP
 | 
						|
        // and bitcast the result.  This eliminates one bitcast, potentially
 | 
						|
        // two.
 | 
						|
        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
 | 
						|
          Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
 | 
						|
          Builder->CreateGEP(OrigBase, NewIndices);
 | 
						|
        NGEP->takeName(GEP);
 | 
						|
 | 
						|
        if (isa<BitCastInst>(CI))
 | 
						|
          return new BitCastInst(NGEP, CI.getType());
 | 
						|
        assert(isa<PtrToIntInst>(CI));
 | 
						|
        return new PtrToIntInst(NGEP, CI.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
 | 
						|
  // If the destination integer type is not the intptr_t type for this target,
 | 
						|
  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
 | 
						|
  // to be exposed to other transforms.
 | 
						|
 | 
						|
  if (!DL)
 | 
						|
    return commonPointerCastTransforms(CI);
 | 
						|
 | 
						|
  Type *Ty = CI.getType();
 | 
						|
  unsigned AS = CI.getPointerAddressSpace();
 | 
						|
 | 
						|
  if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
 | 
						|
    return commonPointerCastTransforms(CI);
 | 
						|
 | 
						|
  Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
 | 
						|
  if (Ty->isVectorTy()) // Handle vectors of pointers.
 | 
						|
    PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
 | 
						|
 | 
						|
  Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
 | 
						|
  return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeVectorResize - This input value (which is known to have vector type)
 | 
						|
/// is being zero extended or truncated to the specified vector type.  Try to
 | 
						|
/// replace it with a shuffle (and vector/vector bitcast) if possible.
 | 
						|
///
 | 
						|
/// The source and destination vector types may have different element types.
 | 
						|
static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
 | 
						|
                                         InstCombiner &IC) {
 | 
						|
  // We can only do this optimization if the output is a multiple of the input
 | 
						|
  // element size, or the input is a multiple of the output element size.
 | 
						|
  // Convert the input type to have the same element type as the output.
 | 
						|
  VectorType *SrcTy = cast<VectorType>(InVal->getType());
 | 
						|
 | 
						|
  if (SrcTy->getElementType() != DestTy->getElementType()) {
 | 
						|
    // The input types don't need to be identical, but for now they must be the
 | 
						|
    // same size.  There is no specific reason we couldn't handle things like
 | 
						|
    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
 | 
						|
    // there yet.
 | 
						|
    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
 | 
						|
        DestTy->getElementType()->getPrimitiveSizeInBits())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
 | 
						|
    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that the element types match, get the shuffle mask and RHS of the
 | 
						|
  // shuffle to use, which depends on whether we're increasing or decreasing the
 | 
						|
  // size of the input.
 | 
						|
  SmallVector<uint32_t, 16> ShuffleMask;
 | 
						|
  Value *V2;
 | 
						|
 | 
						|
  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
 | 
						|
    // If we're shrinking the number of elements, just shuffle in the low
 | 
						|
    // elements from the input and use undef as the second shuffle input.
 | 
						|
    V2 = UndefValue::get(SrcTy);
 | 
						|
    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
 | 
						|
      ShuffleMask.push_back(i);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // If we're increasing the number of elements, shuffle in all of the
 | 
						|
    // elements from InVal and fill the rest of the result elements with zeros
 | 
						|
    // from a constant zero.
 | 
						|
    V2 = Constant::getNullValue(SrcTy);
 | 
						|
    unsigned SrcElts = SrcTy->getNumElements();
 | 
						|
    for (unsigned i = 0, e = SrcElts; i != e; ++i)
 | 
						|
      ShuffleMask.push_back(i);
 | 
						|
 | 
						|
    // The excess elements reference the first element of the zero input.
 | 
						|
    for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
 | 
						|
      ShuffleMask.push_back(SrcElts);
 | 
						|
  }
 | 
						|
 | 
						|
  return new ShuffleVectorInst(InVal, V2,
 | 
						|
                               ConstantDataVector::get(V2->getContext(),
 | 
						|
                                                       ShuffleMask));
 | 
						|
}
 | 
						|
 | 
						|
static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
 | 
						|
  return Value % Ty->getPrimitiveSizeInBits() == 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
 | 
						|
  return Value / Ty->getPrimitiveSizeInBits();
 | 
						|
}
 | 
						|
 | 
						|
/// CollectInsertionElements - V is a value which is inserted into a vector of
 | 
						|
/// VecEltTy.  Look through the value to see if we can decompose it into
 | 
						|
/// insertions into the vector.  See the example in the comment for
 | 
						|
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
 | 
						|
/// The type of V is always a non-zero multiple of VecEltTy's size.
 | 
						|
/// Shift is the number of bits between the lsb of V and the lsb of
 | 
						|
/// the vector.
 | 
						|
///
 | 
						|
/// This returns false if the pattern can't be matched or true if it can,
 | 
						|
/// filling in Elements with the elements found here.
 | 
						|
static bool CollectInsertionElements(Value *V, unsigned Shift,
 | 
						|
                                     SmallVectorImpl<Value*> &Elements,
 | 
						|
                                     Type *VecEltTy, InstCombiner &IC) {
 | 
						|
  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
 | 
						|
         "Shift should be a multiple of the element type size");
 | 
						|
 | 
						|
  // Undef values never contribute useful bits to the result.
 | 
						|
  if (isa<UndefValue>(V)) return true;
 | 
						|
 | 
						|
  // If we got down to a value of the right type, we win, try inserting into the
 | 
						|
  // right element.
 | 
						|
  if (V->getType() == VecEltTy) {
 | 
						|
    // Inserting null doesn't actually insert any elements.
 | 
						|
    if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
      if (C->isNullValue())
 | 
						|
        return true;
 | 
						|
 | 
						|
    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
 | 
						|
    if (IC.getDataLayout()->isBigEndian())
 | 
						|
      ElementIndex = Elements.size() - ElementIndex - 1;
 | 
						|
 | 
						|
    // Fail if multiple elements are inserted into this slot.
 | 
						|
    if (Elements[ElementIndex])
 | 
						|
      return false;
 | 
						|
 | 
						|
    Elements[ElementIndex] = V;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    // Figure out the # elements this provides, and bitcast it or slice it up
 | 
						|
    // as required.
 | 
						|
    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
 | 
						|
                                        VecEltTy);
 | 
						|
    // If the constant is the size of a vector element, we just need to bitcast
 | 
						|
    // it to the right type so it gets properly inserted.
 | 
						|
    if (NumElts == 1)
 | 
						|
      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
 | 
						|
                                      Shift, Elements, VecEltTy, IC);
 | 
						|
 | 
						|
    // Okay, this is a constant that covers multiple elements.  Slice it up into
 | 
						|
    // pieces and insert each element-sized piece into the vector.
 | 
						|
    if (!isa<IntegerType>(C->getType()))
 | 
						|
      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
 | 
						|
                                       C->getType()->getPrimitiveSizeInBits()));
 | 
						|
    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
 | 
						|
    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
      unsigned ShiftI = Shift+i*ElementSize;
 | 
						|
      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
 | 
						|
                                                                  ShiftI));
 | 
						|
      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
 | 
						|
      if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!V->hasOneUse()) return false;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: return false; // Unhandled case.
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return CollectInsertionElements(I->getOperand(0), Shift,
 | 
						|
                                    Elements, VecEltTy, IC);
 | 
						|
  case Instruction::ZExt:
 | 
						|
    if (!isMultipleOfTypeSize(
 | 
						|
                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
 | 
						|
                              VecEltTy))
 | 
						|
      return false;
 | 
						|
    return CollectInsertionElements(I->getOperand(0), Shift,
 | 
						|
                                    Elements, VecEltTy, IC);
 | 
						|
  case Instruction::Or:
 | 
						|
    return CollectInsertionElements(I->getOperand(0), Shift,
 | 
						|
                                    Elements, VecEltTy, IC) &&
 | 
						|
           CollectInsertionElements(I->getOperand(1), Shift,
 | 
						|
                                    Elements, VecEltTy, IC);
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // Must be shifting by a constant that is a multiple of the element size.
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
 | 
						|
    if (!CI) return false;
 | 
						|
    Shift += CI->getZExtValue();
 | 
						|
    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
 | 
						|
    return CollectInsertionElements(I->getOperand(0), Shift,
 | 
						|
                                    Elements, VecEltTy, IC);
 | 
						|
  }
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
 | 
						|
/// may be doing shifts and ors to assemble the elements of the vector manually.
 | 
						|
/// Try to rip the code out and replace it with insertelements.  This is to
 | 
						|
/// optimize code like this:
 | 
						|
///
 | 
						|
///    %tmp37 = bitcast float %inc to i32
 | 
						|
///    %tmp38 = zext i32 %tmp37 to i64
 | 
						|
///    %tmp31 = bitcast float %inc5 to i32
 | 
						|
///    %tmp32 = zext i32 %tmp31 to i64
 | 
						|
///    %tmp33 = shl i64 %tmp32, 32
 | 
						|
///    %ins35 = or i64 %tmp33, %tmp38
 | 
						|
///    %tmp43 = bitcast i64 %ins35 to <2 x float>
 | 
						|
///
 | 
						|
/// Into two insertelements that do "buildvector{%inc, %inc5}".
 | 
						|
static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
 | 
						|
                                                InstCombiner &IC) {
 | 
						|
  // We need to know the target byte order to perform this optimization.
 | 
						|
  if (!IC.getDataLayout()) return nullptr;
 | 
						|
 | 
						|
  VectorType *DestVecTy = cast<VectorType>(CI.getType());
 | 
						|
  Value *IntInput = CI.getOperand(0);
 | 
						|
 | 
						|
  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
 | 
						|
  if (!CollectInsertionElements(IntInput, 0, Elements,
 | 
						|
                                DestVecTy->getElementType(), IC))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we succeeded, we know that all of the element are specified by Elements
 | 
						|
  // or are zero if Elements has a null entry.  Recast this as a set of
 | 
						|
  // insertions.
 | 
						|
  Value *Result = Constant::getNullValue(CI.getType());
 | 
						|
  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | 
						|
    if (!Elements[i]) continue;  // Unset element.
 | 
						|
 | 
						|
    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
 | 
						|
                                             IC.Builder->getInt32(i));
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
 | 
						|
/// bitcast.  The various long double bitcasts can't get in here.
 | 
						|
static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
 | 
						|
  // We need to know the target byte order to perform this optimization.
 | 
						|
  if (!IC.getDataLayout()) return nullptr;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *DestTy = CI.getType();
 | 
						|
 | 
						|
  // If this is a bitcast from int to float, check to see if the int is an
 | 
						|
  // extraction from a vector.
 | 
						|
  Value *VecInput = nullptr;
 | 
						|
  // bitcast(trunc(bitcast(somevector)))
 | 
						|
  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
 | 
						|
      isa<VectorType>(VecInput->getType())) {
 | 
						|
    VectorType *VecTy = cast<VectorType>(VecInput->getType());
 | 
						|
    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
 | 
						|
      // If the element type of the vector doesn't match the result type,
 | 
						|
      // bitcast it to be a vector type we can extract from.
 | 
						|
      if (VecTy->getElementType() != DestTy) {
 | 
						|
        VecTy = VectorType::get(DestTy,
 | 
						|
                                VecTy->getPrimitiveSizeInBits() / DestWidth);
 | 
						|
        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned Elt = 0;
 | 
						|
      if (IC.getDataLayout()->isBigEndian())
 | 
						|
        Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
 | 
						|
      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // bitcast(trunc(lshr(bitcast(somevector), cst))
 | 
						|
  ConstantInt *ShAmt = nullptr;
 | 
						|
  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
 | 
						|
                                m_ConstantInt(ShAmt)))) &&
 | 
						|
      isa<VectorType>(VecInput->getType())) {
 | 
						|
    VectorType *VecTy = cast<VectorType>(VecInput->getType());
 | 
						|
    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
 | 
						|
    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
 | 
						|
        ShAmt->getZExtValue() % DestWidth == 0) {
 | 
						|
      // If the element type of the vector doesn't match the result type,
 | 
						|
      // bitcast it to be a vector type we can extract from.
 | 
						|
      if (VecTy->getElementType() != DestTy) {
 | 
						|
        VecTy = VectorType::get(DestTy,
 | 
						|
                                VecTy->getPrimitiveSizeInBits() / DestWidth);
 | 
						|
        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
 | 
						|
      if (IC.getDataLayout()->isBigEndian())
 | 
						|
        Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
 | 
						|
      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
 | 
						|
  // If the operands are integer typed then apply the integer transforms,
 | 
						|
  // otherwise just apply the common ones.
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType();
 | 
						|
  Type *DestTy = CI.getType();
 | 
						|
 | 
						|
  // Get rid of casts from one type to the same type. These are useless and can
 | 
						|
  // be replaced by the operand.
 | 
						|
  if (DestTy == Src->getType())
 | 
						|
    return ReplaceInstUsesWith(CI, Src);
 | 
						|
 | 
						|
  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
 | 
						|
    PointerType *SrcPTy = cast<PointerType>(SrcTy);
 | 
						|
    Type *DstElTy = DstPTy->getElementType();
 | 
						|
    Type *SrcElTy = SrcPTy->getElementType();
 | 
						|
 | 
						|
    // If we are casting a alloca to a pointer to a type of the same
 | 
						|
    // size, rewrite the allocation instruction to allocate the "right" type.
 | 
						|
    // There is no need to modify malloc calls because it is their bitcast that
 | 
						|
    // needs to be cleaned up.
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
 | 
						|
      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
 | 
						|
        return V;
 | 
						|
 | 
						|
    // If the source and destination are pointers, and this cast is equivalent
 | 
						|
    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
 | 
						|
    // This can enhance SROA and other transforms that want type-safe pointers.
 | 
						|
    Constant *ZeroUInt =
 | 
						|
      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
 | 
						|
    unsigned NumZeros = 0;
 | 
						|
    while (SrcElTy != DstElTy &&
 | 
						|
           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
 | 
						|
           SrcElTy->getNumContainedTypes() /* not "{}" */) {
 | 
						|
      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
 | 
						|
      ++NumZeros;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a path from the src to dest, create the getelementptr now.
 | 
						|
    if (SrcElTy == DstElTy) {
 | 
						|
      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
 | 
						|
      return GetElementPtrInst::CreateInBounds(Src, Idxs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to optimize int -> float bitcasts.
 | 
						|
  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
 | 
						|
    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
 | 
						|
      return I;
 | 
						|
 | 
						|
  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
 | 
						|
    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
 | 
						|
      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
 | 
						|
      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
 | 
						|
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | 
						|
      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<IntegerType>(SrcTy)) {
 | 
						|
      // If this is a cast from an integer to vector, check to see if the input
 | 
						|
      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
 | 
						|
      // the casts with a shuffle and (potentially) a bitcast.
 | 
						|
      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
 | 
						|
        CastInst *SrcCast = cast<CastInst>(Src);
 | 
						|
        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
 | 
						|
          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
 | 
						|
            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
 | 
						|
                                               cast<VectorType>(DestTy), *this))
 | 
						|
              return I;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the input is an 'or' instruction, we may be doing shifts and ors to
 | 
						|
      // assemble the elements of the vector manually.  Try to rip the code out
 | 
						|
      // and replace it with insertelements.
 | 
						|
      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
 | 
						|
        return ReplaceInstUsesWith(CI, V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
 | 
						|
    if (SrcVTy->getNumElements() == 1) {
 | 
						|
      // If our destination is not a vector, then make this a straight
 | 
						|
      // scalar-scalar cast.
 | 
						|
      if (!DestTy->isVectorTy()) {
 | 
						|
        Value *Elem =
 | 
						|
          Builder->CreateExtractElement(Src,
 | 
						|
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | 
						|
        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, see if our source is an insert. If so, then use the scalar
 | 
						|
      // component directly.
 | 
						|
      if (InsertElementInst *IEI =
 | 
						|
            dyn_cast<InsertElementInst>(CI.getOperand(0)))
 | 
						|
        return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
 | 
						|
                                DestTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
 | 
						|
    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
 | 
						|
    // a bitcast to a vector with the same # elts.
 | 
						|
    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
 | 
						|
        DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
 | 
						|
        SVI->getType()->getNumElements() ==
 | 
						|
        SVI->getOperand(0)->getType()->getVectorNumElements()) {
 | 
						|
      BitCastInst *Tmp;
 | 
						|
      // If either of the operands is a cast from CI.getType(), then
 | 
						|
      // evaluating the shuffle in the casted destination's type will allow
 | 
						|
      // us to eliminate at least one cast.
 | 
						|
      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
 | 
						|
           Tmp->getOperand(0)->getType() == DestTy) ||
 | 
						|
          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
 | 
						|
           Tmp->getOperand(0)->getType() == DestTy)) {
 | 
						|
        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
 | 
						|
        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
 | 
						|
        // Return a new shuffle vector.  Use the same element ID's, as we
 | 
						|
        // know the vector types match #elts.
 | 
						|
        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SrcTy->isPointerTy())
 | 
						|
    return commonPointerCastTransforms(CI);
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
 | 
						|
  return commonPointerCastTransforms(CI);
 | 
						|
}
 |