mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207196 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1184 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1184 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements a simple loop reroller.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-reroll"
 | 
						|
 | 
						|
STATISTIC(NumRerolledLoops, "Number of rerolled loops");
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
 | 
						|
  cl::desc("The maximum increment for loop rerolling"));
 | 
						|
 | 
						|
// This loop re-rolling transformation aims to transform loops like this:
 | 
						|
//
 | 
						|
// int foo(int a);
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; i += 3) {
 | 
						|
//     foo(i);
 | 
						|
//     foo(i+1);
 | 
						|
//     foo(i+2);
 | 
						|
//   }
 | 
						|
// }
 | 
						|
//
 | 
						|
// into a loop like this:
 | 
						|
//
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; ++i)
 | 
						|
//     foo(i);
 | 
						|
// }
 | 
						|
//
 | 
						|
// It does this by looking for loops that, besides the latch code, are composed
 | 
						|
// of isomorphic DAGs of instructions, with each DAG rooted at some increment
 | 
						|
// to the induction variable, and where each DAG is isomorphic to the DAG
 | 
						|
// rooted at the induction variable (excepting the sub-DAGs which root the
 | 
						|
// other induction-variable increments). In other words, we're looking for loop
 | 
						|
// bodies of the form:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// f(%iv)
 | 
						|
// %iv.1 = add %iv, 1                <-- a root increment
 | 
						|
// f(%iv.1)
 | 
						|
// %iv.2 = add %iv, 2                <-- a root increment
 | 
						|
// f(%iv.2)
 | 
						|
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | 
						|
// f(%iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, scale
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
//
 | 
						|
// where each f(i) is a set of instructions that, collectively, are a function
 | 
						|
// only of i (and other loop-invariant values).
 | 
						|
//
 | 
						|
// As a special case, we can also reroll loops like this:
 | 
						|
//
 | 
						|
// int foo(int);
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; ++i) {
 | 
						|
//     x[3*i] = foo(0);
 | 
						|
//     x[3*i+1] = foo(0);
 | 
						|
//     x[3*i+2] = foo(0);
 | 
						|
//   }
 | 
						|
// }
 | 
						|
//
 | 
						|
// into this:
 | 
						|
//
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 1500; ++i)
 | 
						|
//     x[i] = foo(0);
 | 
						|
// }
 | 
						|
//
 | 
						|
// in which case, we're looking for inputs like this:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// %scaled.iv = mul %iv, scale
 | 
						|
// f(%scaled.iv)
 | 
						|
// %scaled.iv.1 = add %scaled.iv, 1
 | 
						|
// f(%scaled.iv.1)
 | 
						|
// %scaled.iv.2 = add %scaled.iv, 2
 | 
						|
// f(%scaled.iv.2)
 | 
						|
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
 | 
						|
// f(%scaled.iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, 1
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
 | 
						|
namespace {
 | 
						|
  class LoopReroll : public LoopPass {
 | 
						|
  public:
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
    LoopReroll() : LoopPass(ID) {
 | 
						|
      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
      AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
      AU.addRequired<TargetLibraryInfo>();
 | 
						|
    }
 | 
						|
 | 
						|
protected:
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    LoopInfo *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    const DataLayout *DL;
 | 
						|
    TargetLibraryInfo *TLI;
 | 
						|
    DominatorTree *DT;
 | 
						|
 | 
						|
    typedef SmallVector<Instruction *, 16> SmallInstructionVector;
 | 
						|
    typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
 | 
						|
 | 
						|
    // A chain of isomorphic instructions, indentified by a single-use PHI,
 | 
						|
    // representing a reduction. Only the last value may be used outside the
 | 
						|
    // loop.
 | 
						|
    struct SimpleLoopReduction {
 | 
						|
      SimpleLoopReduction(Instruction *P, Loop *L)
 | 
						|
        : Valid(false), Instructions(1, P) {
 | 
						|
        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
 | 
						|
        add(L);
 | 
						|
      }
 | 
						|
 | 
						|
      bool valid() const {
 | 
						|
        return Valid;
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *getPHI() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.front();
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *getReducedValue() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.back();
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *get(size_t i) const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions[i+1];
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *operator [] (size_t i) const { return get(i); }
 | 
						|
 | 
						|
      // The size, ignoring the initial PHI.
 | 
						|
      size_t size() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.size()-1;
 | 
						|
      }
 | 
						|
 | 
						|
      typedef SmallInstructionVector::iterator iterator;
 | 
						|
      typedef SmallInstructionVector::const_iterator const_iterator;
 | 
						|
 | 
						|
      iterator begin() {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return std::next(Instructions.begin());
 | 
						|
      }
 | 
						|
 | 
						|
      const_iterator begin() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return std::next(Instructions.begin());
 | 
						|
      }
 | 
						|
 | 
						|
      iterator end() { return Instructions.end(); }
 | 
						|
      const_iterator end() const { return Instructions.end(); }
 | 
						|
 | 
						|
    protected:
 | 
						|
      bool Valid;
 | 
						|
      SmallInstructionVector Instructions;
 | 
						|
 | 
						|
      void add(Loop *L);
 | 
						|
    };
 | 
						|
 | 
						|
    // The set of all reductions, and state tracking of possible reductions
 | 
						|
    // during loop instruction processing.
 | 
						|
    struct ReductionTracker {
 | 
						|
      typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
 | 
						|
 | 
						|
      // Add a new possible reduction.
 | 
						|
      void addSLR(SimpleLoopReduction &SLR) {
 | 
						|
        PossibleReds.push_back(SLR);
 | 
						|
      }
 | 
						|
 | 
						|
      // Setup to track possible reductions corresponding to the provided
 | 
						|
      // rerolling scale. Only reductions with a number of non-PHI instructions
 | 
						|
      // that is divisible by the scale are considered. Three instructions sets
 | 
						|
      // are filled in:
 | 
						|
      //   - A set of all possible instructions in eligible reductions.
 | 
						|
      //   - A set of all PHIs in eligible reductions
 | 
						|
      //   - A set of all reduced values (last instructions) in eligible reductions.
 | 
						|
      void restrictToScale(uint64_t Scale,
 | 
						|
                           SmallInstructionSet &PossibleRedSet,
 | 
						|
                           SmallInstructionSet &PossibleRedPHISet,
 | 
						|
                           SmallInstructionSet &PossibleRedLastSet) {
 | 
						|
        PossibleRedIdx.clear();
 | 
						|
        PossibleRedIter.clear();
 | 
						|
        Reds.clear();
 | 
						|
 | 
						|
        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
 | 
						|
          if (PossibleReds[i].size() % Scale == 0) {
 | 
						|
            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
 | 
						|
            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
 | 
						|
      
 | 
						|
            PossibleRedSet.insert(PossibleReds[i].getPHI());
 | 
						|
            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
 | 
						|
            for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
 | 
						|
                 JE = PossibleReds[i].end(); J != JE; ++J) {
 | 
						|
              PossibleRedSet.insert(*J);
 | 
						|
              PossibleRedIdx[*J] = i;
 | 
						|
            }
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      // The functions below are used while processing the loop instructions.
 | 
						|
 | 
						|
      // Are the two instructions both from reductions, and furthermore, from
 | 
						|
      // the same reduction?
 | 
						|
      bool isPairInSame(Instruction *J1, Instruction *J2) {
 | 
						|
        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
 | 
						|
        if (J1I != PossibleRedIdx.end()) {
 | 
						|
          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
 | 
						|
          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // The two provided instructions, the first from the base iteration, and
 | 
						|
      // the second from iteration i, form a matched pair. If these are part of
 | 
						|
      // a reduction, record that fact.
 | 
						|
      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
 | 
						|
        if (PossibleRedIdx.count(J1)) {
 | 
						|
          assert(PossibleRedIdx.count(J2) &&
 | 
						|
                 "Recording reduction vs. non-reduction instruction?");
 | 
						|
 | 
						|
          PossibleRedIter[J1] = 0;
 | 
						|
          PossibleRedIter[J2] = i;
 | 
						|
 | 
						|
          int Idx = PossibleRedIdx[J1];
 | 
						|
          assert(Idx == PossibleRedIdx[J2] &&
 | 
						|
                 "Recording pair from different reductions?");
 | 
						|
          Reds.insert(Idx);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // The functions below can be called after we've finished processing all
 | 
						|
      // instructions in the loop, and we know which reductions were selected.
 | 
						|
 | 
						|
      // Is the provided instruction the PHI of a reduction selected for
 | 
						|
      // rerolling?
 | 
						|
      bool isSelectedPHI(Instruction *J) {
 | 
						|
        if (!isa<PHINode>(J))
 | 
						|
          return false;
 | 
						|
 | 
						|
        for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | 
						|
             RI != RIE; ++RI) {
 | 
						|
          int i = *RI;
 | 
						|
          if (cast<Instruction>(J) == PossibleReds[i].getPHI())
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      bool validateSelected();
 | 
						|
      void replaceSelected();
 | 
						|
 | 
						|
    protected:
 | 
						|
      // The vector of all possible reductions (for any scale).
 | 
						|
      SmallReductionVector PossibleReds;
 | 
						|
 | 
						|
      DenseMap<Instruction *, int> PossibleRedIdx;
 | 
						|
      DenseMap<Instruction *, int> PossibleRedIter;
 | 
						|
      DenseSet<int> Reds;
 | 
						|
    };
 | 
						|
 | 
						|
    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
 | 
						|
    void collectPossibleReductions(Loop *L,
 | 
						|
           ReductionTracker &Reductions);
 | 
						|
    void collectInLoopUserSet(Loop *L,
 | 
						|
           const SmallInstructionVector &Roots,
 | 
						|
           const SmallInstructionSet &Exclude,
 | 
						|
           const SmallInstructionSet &Final,
 | 
						|
           DenseSet<Instruction *> &Users);
 | 
						|
    void collectInLoopUserSet(Loop *L,
 | 
						|
           Instruction * Root,
 | 
						|
           const SmallInstructionSet &Exclude,
 | 
						|
           const SmallInstructionSet &Final,
 | 
						|
           DenseSet<Instruction *> &Users);
 | 
						|
    bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
 | 
						|
                          Instruction *&IV,
 | 
						|
                          SmallInstructionVector &LoopIncs);
 | 
						|
    bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
 | 
						|
                         SmallVector<SmallInstructionVector, 32> &Roots,
 | 
						|
                         SmallInstructionSet &AllRoots,
 | 
						|
                         SmallInstructionVector &LoopIncs);
 | 
						|
    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
 | 
						|
                ReductionTracker &Reductions);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char LoopReroll::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | 
						|
INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopRerollPass() {
 | 
						|
  return new LoopReroll;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if the provided instruction is used outside the given loop.
 | 
						|
// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
 | 
						|
// non-loop blocks to be outside the loop.
 | 
						|
static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
 | 
						|
  for (User *U : I->users())
 | 
						|
    if (!L->contains(cast<Instruction>(U)))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Collect the list of loop induction variables with respect to which it might
 | 
						|
// be possible to reroll the loop.
 | 
						|
void LoopReroll::collectPossibleIVs(Loop *L,
 | 
						|
                                    SmallInstructionVector &PossibleIVs) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  for (BasicBlock::iterator I = Header->begin(),
 | 
						|
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | 
						|
    if (!isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
    if (!I->getType()->isIntegerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (const SCEVAddRecExpr *PHISCEV =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
 | 
						|
      if (PHISCEV->getLoop() != L)
 | 
						|
        continue;
 | 
						|
      if (!PHISCEV->isAffine())
 | 
						|
        continue;
 | 
						|
      if (const SCEVConstant *IncSCEV =
 | 
						|
          dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
 | 
						|
        if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
 | 
						|
          continue;
 | 
						|
        if (IncSCEV->getValue()->uge(MaxInc))
 | 
						|
          continue;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
 | 
						|
              *PHISCEV << "\n");
 | 
						|
        PossibleIVs.push_back(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Add the remainder of the reduction-variable chain to the instruction vector
 | 
						|
// (the initial PHINode has already been added). If successful, the object is
 | 
						|
// marked as valid.
 | 
						|
void LoopReroll::SimpleLoopReduction::add(Loop *L) {
 | 
						|
  assert(!Valid && "Cannot add to an already-valid chain");
 | 
						|
 | 
						|
  // The reduction variable must be a chain of single-use instructions
 | 
						|
  // (including the PHI), except for the last value (which is used by the PHI
 | 
						|
  // and also outside the loop).
 | 
						|
  Instruction *C = Instructions.front();
 | 
						|
 | 
						|
  do {
 | 
						|
    C = cast<Instruction>(*C->user_begin());
 | 
						|
    if (C->hasOneUse()) {
 | 
						|
      if (!C->isBinaryOp())
 | 
						|
        return;
 | 
						|
 | 
						|
      if (!(isa<PHINode>(Instructions.back()) ||
 | 
						|
            C->isSameOperationAs(Instructions.back())))
 | 
						|
        return;
 | 
						|
 | 
						|
      Instructions.push_back(C);
 | 
						|
    }
 | 
						|
  } while (C->hasOneUse());
 | 
						|
 | 
						|
  if (Instructions.size() < 2 ||
 | 
						|
      !C->isSameOperationAs(Instructions.back()) ||
 | 
						|
      C->use_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // C is now the (potential) last instruction in the reduction chain.
 | 
						|
  for (User *U : C->users())
 | 
						|
    // The only in-loop user can be the initial PHI.
 | 
						|
    if (L->contains(cast<Instruction>(U)))
 | 
						|
      if (cast<Instruction>(U) != Instructions.front())
 | 
						|
        return;
 | 
						|
 | 
						|
  Instructions.push_back(C);
 | 
						|
  Valid = true;
 | 
						|
}
 | 
						|
 | 
						|
// Collect the vector of possible reduction variables.
 | 
						|
void LoopReroll::collectPossibleReductions(Loop *L,
 | 
						|
  ReductionTracker &Reductions) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  for (BasicBlock::iterator I = Header->begin(),
 | 
						|
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | 
						|
    if (!isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
    if (!I->getType()->isSingleValueType())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SimpleLoopReduction SLR(I, L);
 | 
						|
    if (!SLR.valid())
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
 | 
						|
          SLR.size() << " chained instructions)\n");
 | 
						|
    Reductions.addSLR(SLR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Collect the set of all users of the provided root instruction. This set of
 | 
						|
// users contains not only the direct users of the root instruction, but also
 | 
						|
// all users of those users, and so on. There are two exceptions:
 | 
						|
//
 | 
						|
//   1. Instructions in the set of excluded instructions are never added to the
 | 
						|
//   use set (even if they are users). This is used, for example, to exclude
 | 
						|
//   including root increments in the use set of the primary IV.
 | 
						|
//
 | 
						|
//   2. Instructions in the set of final instructions are added to the use set
 | 
						|
//   if they are users, but their users are not added. This is used, for
 | 
						|
//   example, to prevent a reduction update from forcing all later reduction
 | 
						|
//   updates into the use set.
 | 
						|
void LoopReroll::collectInLoopUserSet(Loop *L,
 | 
						|
  Instruction *Root, const SmallInstructionSet &Exclude,
 | 
						|
  const SmallInstructionSet &Final,
 | 
						|
  DenseSet<Instruction *> &Users) {
 | 
						|
  SmallInstructionVector Queue(1, Root);
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    Instruction *I = Queue.pop_back_val();
 | 
						|
    if (!Users.insert(I).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!Final.count(I))
 | 
						|
      for (Use &U : I->uses()) {
 | 
						|
        Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
        if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | 
						|
          // Ignore "wrap-around" uses to PHIs of this loop's header.
 | 
						|
          if (PN->getIncomingBlock(U) == L->getHeader())
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
  
 | 
						|
        if (L->contains(User) && !Exclude.count(User)) {
 | 
						|
          Queue.push_back(User);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // We also want to collect single-user "feeder" values.
 | 
						|
    for (User::op_iterator OI = I->op_begin(),
 | 
						|
         OIE = I->op_end(); OI != OIE; ++OI) {
 | 
						|
      if (Instruction *Op = dyn_cast<Instruction>(*OI))
 | 
						|
        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
 | 
						|
            !Final.count(Op))
 | 
						|
          Queue.push_back(Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Collect all of the users of all of the provided root instructions (combined
 | 
						|
// into a single set).
 | 
						|
void LoopReroll::collectInLoopUserSet(Loop *L,
 | 
						|
  const SmallInstructionVector &Roots,
 | 
						|
  const SmallInstructionSet &Exclude,
 | 
						|
  const SmallInstructionSet &Final,
 | 
						|
  DenseSet<Instruction *> &Users) {
 | 
						|
  for (SmallInstructionVector::const_iterator I = Roots.begin(),
 | 
						|
       IE = Roots.end(); I != IE; ++I)
 | 
						|
    collectInLoopUserSet(L, *I, Exclude, Final, Users);
 | 
						|
}
 | 
						|
 | 
						|
static bool isSimpleLoadStore(Instruction *I) {
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return LI->isSimple();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->isSimple();
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | 
						|
    return !MI->isVolatile();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Recognize loops that are setup like this:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// %scaled.iv = mul %iv, scale
 | 
						|
// f(%scaled.iv)
 | 
						|
// %scaled.iv.1 = add %scaled.iv, 1
 | 
						|
// f(%scaled.iv.1)
 | 
						|
// %scaled.iv.2 = add %scaled.iv, 2
 | 
						|
// f(%scaled.iv.2)
 | 
						|
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
 | 
						|
// f(%scaled.iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, 1
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
//
 | 
						|
// and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
 | 
						|
bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
 | 
						|
                                  Instruction *&IV,
 | 
						|
                                  SmallInstructionVector &LoopIncs) {
 | 
						|
  // This is a special case: here we're looking for all uses (except for
 | 
						|
  // the increment) to be multiplied by a common factor. The increment must
 | 
						|
  // be by one. This is to capture loops like:
 | 
						|
  //   for (int i = 0; i < 500; ++i) {
 | 
						|
  //     foo(3*i); foo(3*i+1); foo(3*i+2);
 | 
						|
  //   }
 | 
						|
  if (RealIV->getNumUses() != 2)
 | 
						|
    return false;
 | 
						|
  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
 | 
						|
  Instruction *User1 = cast<Instruction>(*RealIV->user_begin()),
 | 
						|
              *User2 = cast<Instruction>(*std::next(RealIV->user_begin()));
 | 
						|
  if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
 | 
						|
    return false;
 | 
						|
  const SCEVAddRecExpr *User1SCEV =
 | 
						|
                         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
 | 
						|
                       *User2SCEV =
 | 
						|
                         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
 | 
						|
  if (!User1SCEV || !User1SCEV->isAffine() ||
 | 
						|
      !User2SCEV || !User2SCEV->isAffine())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We assume below that User1 is the scale multiply and User2 is the
 | 
						|
  // increment. If this can't be true, then swap them.
 | 
						|
  if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
 | 
						|
    std::swap(User1, User2);
 | 
						|
    std::swap(User1SCEV, User2SCEV);
 | 
						|
  }
 | 
						|
 | 
						|
  if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
 | 
						|
    return false;
 | 
						|
  assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
 | 
						|
         "Invalid non-unit step for multiplicative scaling");
 | 
						|
  LoopIncs.push_back(User2);
 | 
						|
 | 
						|
  if (const SCEVConstant *MulScale =
 | 
						|
      dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
 | 
						|
    // Make sure that both the start and step have the same multiplier.
 | 
						|
    if (RealIVSCEV->getStart()->getType() != MulScale->getType())
 | 
						|
      return false;
 | 
						|
    if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
 | 
						|
        User1SCEV->getStart())
 | 
						|
      return false;
 | 
						|
 | 
						|
    ConstantInt *MulScaleCI = MulScale->getValue();
 | 
						|
    if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
 | 
						|
      return false;
 | 
						|
    Scale = MulScaleCI->getZExtValue();
 | 
						|
    IV = User1;
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Collect all root increments with respect to the provided induction variable
 | 
						|
// (normally the PHI, but sometimes a multiply). A root increment is an
 | 
						|
// instruction, normally an add, with a positive constant less than Scale. In a
 | 
						|
// rerollable loop, each of these increments is the root of an instruction
 | 
						|
// graph isomorphic to the others. Also, we collect the final induction
 | 
						|
// increment (the increment equal to the Scale), and its users in LoopIncs.
 | 
						|
bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
 | 
						|
                                 Instruction *IV,
 | 
						|
                                 SmallVector<SmallInstructionVector, 32> &Roots,
 | 
						|
                                 SmallInstructionSet &AllRoots,
 | 
						|
                                 SmallInstructionVector &LoopIncs) {
 | 
						|
  for (User *U : IV->users()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U);
 | 
						|
    if (!SE->isSCEVable(UI->getType()))
 | 
						|
      continue;
 | 
						|
    if (UI->getType() != IV->getType())
 | 
						|
      continue;
 | 
						|
    if (!L->contains(UI))
 | 
						|
      continue;
 | 
						|
    if (hasUsesOutsideLoop(UI, L))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
 | 
						|
          SE->getSCEV(UI), SE->getSCEV(IV)))) {
 | 
						|
      uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
 | 
						|
      if (Idx > 0 && Idx < Scale) {
 | 
						|
        Roots[Idx-1].push_back(UI);
 | 
						|
        AllRoots.insert(UI);
 | 
						|
      } else if (Idx == Scale && Inc > 1) {
 | 
						|
        LoopIncs.push_back(UI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Roots[0].empty())
 | 
						|
    return false;
 | 
						|
  bool AllSame = true;
 | 
						|
  for (unsigned i = 1; i < Scale-1; ++i)
 | 
						|
    if (Roots[i].size() != Roots[0].size()) {
 | 
						|
      AllSame = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  if (!AllSame)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Validate the selected reductions. All iterations must have an isomorphic
 | 
						|
// part of the reduction chain and, for non-associative reductions, the chain
 | 
						|
// entries must appear in order.
 | 
						|
bool LoopReroll::ReductionTracker::validateSelected() {
 | 
						|
  // For a non-associative reduction, the chain entries must appear in order.
 | 
						|
  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | 
						|
       RI != RIE; ++RI) {
 | 
						|
    int i = *RI;
 | 
						|
    int PrevIter = 0, BaseCount = 0, Count = 0;
 | 
						|
    for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
 | 
						|
         JE = PossibleReds[i].end(); J != JE; ++J) {
 | 
						|
	// Note that all instructions in the chain must have been found because
 | 
						|
	// all instructions in the function must have been assigned to some
 | 
						|
	// iteration.
 | 
						|
      int Iter = PossibleRedIter[*J];
 | 
						|
      if (Iter != PrevIter && Iter != PrevIter + 1 &&
 | 
						|
          !PossibleReds[i].getReducedValue()->isAssociative()) {
 | 
						|
        DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
 | 
						|
                        *J << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Iter != PrevIter) {
 | 
						|
        if (Count != BaseCount) {
 | 
						|
          DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
 | 
						|
                " reduction use count " << Count <<
 | 
						|
                " is not equal to the base use count " <<
 | 
						|
                BaseCount << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        Count = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      ++Count;
 | 
						|
      if (Iter == 0)
 | 
						|
        ++BaseCount;
 | 
						|
 | 
						|
      PrevIter = Iter;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// For all selected reductions, remove all parts except those in the first
 | 
						|
// iteration (and the PHI). Replace outside uses of the reduced value with uses
 | 
						|
// of the first-iteration reduced value (in other words, reroll the selected
 | 
						|
// reductions).
 | 
						|
void LoopReroll::ReductionTracker::replaceSelected() {
 | 
						|
  // Fixup reductions to refer to the last instruction associated with the
 | 
						|
  // first iteration (not the last).
 | 
						|
  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | 
						|
       RI != RIE; ++RI) {
 | 
						|
    int i = *RI;
 | 
						|
    int j = 0;
 | 
						|
    for (int e = PossibleReds[i].size(); j != e; ++j)
 | 
						|
      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
 | 
						|
        --j;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    // Replace users with the new end-of-chain value.
 | 
						|
    SmallInstructionVector Users;
 | 
						|
    for (User *U : PossibleReds[i].getReducedValue()->users())
 | 
						|
      Users.push_back(cast<Instruction>(U));
 | 
						|
 | 
						|
    for (SmallInstructionVector::iterator J = Users.begin(),
 | 
						|
         JE = Users.end(); J != JE; ++J)
 | 
						|
      (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
 | 
						|
                              PossibleReds[i][j]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Reroll the provided loop with respect to the provided induction variable.
 | 
						|
// Generally, we're looking for a loop like this:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// f(%iv)
 | 
						|
// %iv.1 = add %iv, 1                <-- a root increment
 | 
						|
// f(%iv.1)
 | 
						|
// %iv.2 = add %iv, 2                <-- a root increment
 | 
						|
// f(%iv.2)
 | 
						|
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | 
						|
// f(%iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, scale
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
//
 | 
						|
// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
 | 
						|
// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
 | 
						|
// be intermixed with eachother. The restriction imposed by this algorithm is
 | 
						|
// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
 | 
						|
// etc. be the same.
 | 
						|
//
 | 
						|
// First, we collect the use set of %iv, excluding the other increment roots.
 | 
						|
// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
 | 
						|
// times, having collected the use set of f(%iv.(i+1)), during which we:
 | 
						|
//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
 | 
						|
//     the next unmatched instruction in f(%iv.(i+1)).
 | 
						|
//   - Ensure that both matched instructions don't have any external users
 | 
						|
//     (with the exception of last-in-chain reduction instructions).
 | 
						|
//   - Track the (aliasing) write set, and other side effects, of all
 | 
						|
//     instructions that belong to future iterations that come before the matched
 | 
						|
//     instructions. If the matched instructions read from that write set, then
 | 
						|
//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
 | 
						|
//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
 | 
						|
//     if any of these future instructions had side effects (could not be
 | 
						|
//     speculatively executed), and so do the matched instructions, when we
 | 
						|
//     cannot reorder those side-effect-producing instructions, and rerolling
 | 
						|
//     fails.
 | 
						|
//
 | 
						|
// Finally, we make sure that all loop instructions are either loop increment
 | 
						|
// roots, belong to simple latch code, parts of validated reductions, part of
 | 
						|
// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
 | 
						|
// have been validated), then we reroll the loop.
 | 
						|
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
 | 
						|
                        const SCEV *IterCount,
 | 
						|
                        ReductionTracker &Reductions) {
 | 
						|
  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
 | 
						|
  uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
 | 
						|
                   getValue()->getZExtValue();
 | 
						|
  // The collection of loop increment instructions.
 | 
						|
  SmallInstructionVector LoopIncs;
 | 
						|
  uint64_t Scale = Inc;
 | 
						|
 | 
						|
  // The effective induction variable, IV, is normally also the real induction
 | 
						|
  // variable. When we're dealing with a loop like:
 | 
						|
  //   for (int i = 0; i < 500; ++i)
 | 
						|
  //     x[3*i] = ...;
 | 
						|
  //     x[3*i+1] = ...;
 | 
						|
  //     x[3*i+2] = ...;
 | 
						|
  // then the real IV is still i, but the effective IV is (3*i).
 | 
						|
  Instruction *RealIV = IV;
 | 
						|
  if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(Scale <= MaxInc && "Scale is too large");
 | 
						|
  assert(Scale > 1 && "Scale must be at least 2");
 | 
						|
 | 
						|
  // The set of increment instructions for each increment value.
 | 
						|
  SmallVector<SmallInstructionVector, 32> Roots(Scale-1);
 | 
						|
  SmallInstructionSet AllRoots;
 | 
						|
  if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
 | 
						|
                  *RealIV << "\n");
 | 
						|
 | 
						|
  // An array of just the possible reductions for this scale factor. When we
 | 
						|
  // collect the set of all users of some root instructions, these reduction
 | 
						|
  // instructions are treated as 'final' (their uses are not considered).
 | 
						|
  // This is important because we don't want the root use set to search down
 | 
						|
  // the reduction chain.
 | 
						|
  SmallInstructionSet PossibleRedSet;
 | 
						|
  SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
 | 
						|
  Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
 | 
						|
                             PossibleRedLastSet);
 | 
						|
 | 
						|
  // We now need to check for equivalence of the use graph of each root with
 | 
						|
  // that of the primary induction variable (excluding the roots). Our goal
 | 
						|
  // here is not to solve the full graph isomorphism problem, but rather to
 | 
						|
  // catch common cases without a lot of work. As a result, we will assume
 | 
						|
  // that the relative order of the instructions in each unrolled iteration
 | 
						|
  // is the same (although we will not make an assumption about how the
 | 
						|
  // different iterations are intermixed). Note that while the order must be
 | 
						|
  // the same, the instructions may not be in the same basic block.
 | 
						|
  SmallInstructionSet Exclude(AllRoots);
 | 
						|
  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
 | 
						|
 | 
						|
  DenseSet<Instruction *> BaseUseSet;
 | 
						|
  collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);
 | 
						|
 | 
						|
  DenseSet<Instruction *> AllRootUses;
 | 
						|
  std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);
 | 
						|
 | 
						|
  bool MatchFailed = false;
 | 
						|
  for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
 | 
						|
    DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
 | 
						|
    collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
 | 
						|
                         PossibleRedSet, RootUseSet);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
 | 
						|
                    " vs. iteration increment " << (i+1) <<
 | 
						|
                    " use set size: " << RootUseSet.size() << "\n");
 | 
						|
 | 
						|
    if (BaseUseSet.size() != RootUseSet.size()) {
 | 
						|
      MatchFailed = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // In addition to regular aliasing information, we need to look for
 | 
						|
    // instructions from later (future) iterations that have side effects
 | 
						|
    // preventing us from reordering them past other instructions with side
 | 
						|
    // effects.
 | 
						|
    bool FutureSideEffects = false;
 | 
						|
    AliasSetTracker AST(*AA);
 | 
						|
 | 
						|
    // The map between instructions in f(%iv.(i+1)) and f(%iv).
 | 
						|
    DenseMap<Value *, Value *> BaseMap;
 | 
						|
 | 
						|
    assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
 | 
						|
    for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
 | 
						|
         JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
 | 
						|
      if (cast<Instruction>(J1) == RealIV)
 | 
						|
        continue;
 | 
						|
      if (cast<Instruction>(J1) == IV)
 | 
						|
        continue;
 | 
						|
      if (!BaseUseSet.count(J1))
 | 
						|
        continue;
 | 
						|
      if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
 | 
						|
        continue;
 | 
						|
 | 
						|
      while (J2 != JE && (!RootUseSet.count(J2) ||
 | 
						|
             std::find(Roots[i].begin(), Roots[i].end(), J2) !=
 | 
						|
               Roots[i].end())) {
 | 
						|
        // As we iterate through the instructions, instructions that don't
 | 
						|
        // belong to previous iterations (or the base case), must belong to
 | 
						|
        // future iterations. We want to track the alias set of writes from
 | 
						|
        // previous iterations.
 | 
						|
        if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
 | 
						|
            !AllRootUses.count(J2)) {
 | 
						|
          if (J2->mayWriteToMemory())
 | 
						|
            AST.add(J2);
 | 
						|
 | 
						|
          // Note: This is specifically guarded by a check on isa<PHINode>,
 | 
						|
          // which while a valid (somewhat arbitrary) micro-optimization, is
 | 
						|
          // needed because otherwise isSafeToSpeculativelyExecute returns
 | 
						|
          // false on PHI nodes.
 | 
						|
          if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
 | 
						|
            FutureSideEffects = true; 
 | 
						|
        }
 | 
						|
 | 
						|
        ++J2;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!J1->isSameOperationAs(J2)) {
 | 
						|
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | 
						|
                        " vs. " << *J2 << "\n");
 | 
						|
        MatchFailed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Make sure that this instruction, which is in the use set of this
 | 
						|
      // root instruction, does not also belong to the base set or the set of
 | 
						|
      // some previous root instruction.
 | 
						|
      if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
 | 
						|
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | 
						|
                        " vs. " << *J2 << " (prev. case overlap)\n");
 | 
						|
        MatchFailed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Make sure that we don't alias with any instruction in the alias set
 | 
						|
      // tracker. If we do, then we depend on a future iteration, and we
 | 
						|
      // can't reroll.
 | 
						|
      if (J2->mayReadFromMemory()) {
 | 
						|
        for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
 | 
						|
             K != KE && !MatchFailed; ++K) {
 | 
						|
          if (K->aliasesUnknownInst(J2, *AA)) {
 | 
						|
            DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | 
						|
                            " vs. " << *J2 << " (depends on future store)\n");
 | 
						|
            MatchFailed = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we've past an instruction from a future iteration that may have
 | 
						|
      // side effects, and this instruction might also, then we can't reorder
 | 
						|
      // them, and this matching fails. As an exception, we allow the alias
 | 
						|
      // set tracker to handle regular (simple) load/store dependencies.
 | 
						|
      if (FutureSideEffects &&
 | 
						|
            ((!isSimpleLoadStore(J1) && !isSafeToSpeculativelyExecute(J1)) ||
 | 
						|
             (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2)))) {
 | 
						|
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | 
						|
                        " vs. " << *J2 <<
 | 
						|
                        " (side effects prevent reordering)\n");
 | 
						|
        MatchFailed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // For instructions that are part of a reduction, if the operation is
 | 
						|
      // associative, then don't bother matching the operands (because we
 | 
						|
      // already know that the instructions are isomorphic, and the order
 | 
						|
      // within the iteration does not matter). For non-associative reductions,
 | 
						|
      // we do need to match the operands, because we need to reject
 | 
						|
      // out-of-order instructions within an iteration!
 | 
						|
      // For example (assume floating-point addition), we need to reject this:
 | 
						|
      //   x += a[i]; x += b[i];
 | 
						|
      //   x += a[i+1]; x += b[i+1];
 | 
						|
      //   x += b[i+2]; x += a[i+2];
 | 
						|
      bool InReduction = Reductions.isPairInSame(J1, J2);
 | 
						|
 | 
						|
      if (!(InReduction && J1->isAssociative())) {
 | 
						|
        bool Swapped = false, SomeOpMatched = false;
 | 
						|
        for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
 | 
						|
          Value *Op2 = J2->getOperand(j);
 | 
						|
 | 
						|
	  // If this is part of a reduction (and the operation is not
 | 
						|
	  // associatve), then we match all operands, but not those that are
 | 
						|
	  // part of the reduction.
 | 
						|
          if (InReduction)
 | 
						|
            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
 | 
						|
              if (Reductions.isPairInSame(J2, Op2I))
 | 
						|
                continue;
 | 
						|
 | 
						|
          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
 | 
						|
          if (BMI != BaseMap.end())
 | 
						|
            Op2 = BMI->second;
 | 
						|
          else if (std::find(Roots[i].begin(), Roots[i].end(),
 | 
						|
                             (Instruction*) Op2) != Roots[i].end())
 | 
						|
            Op2 = IV;
 | 
						|
 | 
						|
          if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
 | 
						|
	    // If we've not already decided to swap the matched operands, and
 | 
						|
	    // we've not already matched our first operand (note that we could
 | 
						|
	    // have skipped matching the first operand because it is part of a
 | 
						|
	    // reduction above), and the instruction is commutative, then try
 | 
						|
	    // the swapped match.
 | 
						|
            if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
 | 
						|
                J1->getOperand(!j) == Op2) {
 | 
						|
              Swapped = true;
 | 
						|
            } else {
 | 
						|
              DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | 
						|
                              " vs. " << *J2 << " (operand " << j << ")\n");
 | 
						|
              MatchFailed = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          SomeOpMatched = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
 | 
						|
          (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
 | 
						|
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | 
						|
                        " vs. " << *J2 << " (uses outside loop)\n");
 | 
						|
        MatchFailed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!MatchFailed)
 | 
						|
        BaseMap.insert(std::pair<Value *, Value *>(J2, J1));
 | 
						|
 | 
						|
      AllRootUses.insert(J2);
 | 
						|
      Reductions.recordPair(J1, J2, i+1);
 | 
						|
 | 
						|
      ++J2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MatchFailed)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
 | 
						|
                  *RealIV << "\n");
 | 
						|
 | 
						|
  DenseSet<Instruction *> LoopIncUseSet;
 | 
						|
  collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
 | 
						|
                       SmallInstructionSet(), LoopIncUseSet);
 | 
						|
  DEBUG(dbgs() << "LRR: Loop increment set size: " <<
 | 
						|
                  LoopIncUseSet.size() << "\n");
 | 
						|
 | 
						|
  // Make sure that all instructions in the loop have been included in some
 | 
						|
  // use set.
 | 
						|
  for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
 | 
						|
       J != JE; ++J) {
 | 
						|
    if (isa<DbgInfoIntrinsic>(J))
 | 
						|
      continue;
 | 
						|
    if (cast<Instruction>(J) == RealIV)
 | 
						|
      continue;
 | 
						|
    if (cast<Instruction>(J) == IV)
 | 
						|
      continue;
 | 
						|
    if (BaseUseSet.count(J) || AllRootUses.count(J) ||
 | 
						|
        (LoopIncUseSet.count(J) && (J->isTerminator() ||
 | 
						|
                                    isSafeToSpeculativelyExecute(J, DL))))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (AllRoots.count(J))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Reductions.isSelectedPHI(J))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
 | 
						|
                    " unprocessed instruction found: " << *J << "\n");
 | 
						|
    MatchFailed = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MatchFailed)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LRR: all instructions processed from " <<
 | 
						|
                  *RealIV << "\n");
 | 
						|
 | 
						|
  if (!Reductions.validateSelected())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // At this point, we've validated the rerolling, and we're committed to
 | 
						|
  // making changes!
 | 
						|
 | 
						|
  Reductions.replaceSelected();
 | 
						|
 | 
						|
  // Remove instructions associated with non-base iterations.
 | 
						|
  for (BasicBlock::reverse_iterator J = Header->rbegin();
 | 
						|
       J != Header->rend();) {
 | 
						|
    if (AllRootUses.count(&*J)) {
 | 
						|
      Instruction *D = &*J;
 | 
						|
      DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
 | 
						|
      D->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ++J; 
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert the new induction variable.
 | 
						|
  const SCEV *Start = RealIVSCEV->getStart();
 | 
						|
  if (Inc == 1)
 | 
						|
    Start = SE->getMulExpr(Start,
 | 
						|
                           SE->getConstant(Start->getType(), Scale));
 | 
						|
  const SCEVAddRecExpr *H =
 | 
						|
    cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
 | 
						|
                           SE->getConstant(RealIVSCEV->getType(), 1),
 | 
						|
                           L, SCEV::FlagAnyWrap));
 | 
						|
  { // Limit the lifetime of SCEVExpander.
 | 
						|
    SCEVExpander Expander(*SE, "reroll");
 | 
						|
    Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
 | 
						|
 | 
						|
    for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
 | 
						|
         JE = BaseUseSet.end(); J != JE; ++J)
 | 
						|
      (*J)->replaceUsesOfWith(IV, NewIV);
 | 
						|
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
 | 
						|
      if (LoopIncUseSet.count(BI)) {
 | 
						|
        const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
 | 
						|
        if (Inc == 1)
 | 
						|
          ICSCEV =
 | 
						|
            SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
 | 
						|
        // Iteration count SCEV minus 1
 | 
						|
        const SCEV *ICMinus1SCEV =
 | 
						|
          SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
 | 
						|
 | 
						|
        Value *ICMinus1; // Iteration count minus 1
 | 
						|
        if (isa<SCEVConstant>(ICMinus1SCEV)) {
 | 
						|
          ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
 | 
						|
        } else {
 | 
						|
          BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
          if (!Preheader)
 | 
						|
            Preheader = InsertPreheaderForLoop(L, this);
 | 
						|
 | 
						|
          ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
 | 
						|
                                            Preheader->getTerminator());
 | 
						|
        }
 | 
						|
 
 | 
						|
        Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1,
 | 
						|
                                   "exitcond");
 | 
						|
        BI->setCondition(Cond);
 | 
						|
 | 
						|
        if (BI->getSuccessor(1) != Header)
 | 
						|
          BI->swapSuccessors();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SimplifyInstructionsInBlock(Header, DL, TLI);
 | 
						|
  DeleteDeadPHIs(Header, TLI);
 | 
						|
  ++NumRerolledLoops;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  if (skipOptnoneFunction(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  TLI = &getAnalysis<TargetLibraryInfo>();
 | 
						|
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
  DL = DLP ? &DLP->getDataLayout() : nullptr;
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
 | 
						|
        "] Loop %" << Header->getName() << " (" <<
 | 
						|
        L->getNumBlocks() << " block(s))\n");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // For now, we'll handle only single BB loops.
 | 
						|
  if (L->getNumBlocks() > 1)
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
 | 
						|
  const SCEV *IterCount =
 | 
						|
    SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
 | 
						|
  DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
 | 
						|
 | 
						|
  // First, we need to find the induction variable with respect to which we can
 | 
						|
  // reroll (there may be several possible options).
 | 
						|
  SmallInstructionVector PossibleIVs;
 | 
						|
  collectPossibleIVs(L, PossibleIVs);
 | 
						|
 | 
						|
  if (PossibleIVs.empty()) {
 | 
						|
    DEBUG(dbgs() << "LRR: No possible IVs found\n");
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  ReductionTracker Reductions;
 | 
						|
  collectPossibleReductions(L, Reductions);
 | 
						|
 | 
						|
  // For each possible IV, collect the associated possible set of 'root' nodes
 | 
						|
  // (i+1, i+2, etc.).
 | 
						|
  for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
 | 
						|
       IE = PossibleIVs.end(); I != IE; ++I)
 | 
						|
    if (reroll(*I, L, Header, IterCount, Reductions)) {
 | 
						|
      Changed = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 |