mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84969 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			372 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs a limited form of tail duplication, intended to simplify
 | |
| // CFGs by removing some unconditional branches.  This pass is necessary to
 | |
| // straighten out loops created by the C front-end, but also is capable of
 | |
| // making other code nicer.  After this pass is run, the CFG simplify pass
 | |
| // should be run to clean up the mess.
 | |
| //
 | |
| // This pass could be enhanced in the future to use profile information to be
 | |
| // more aggressive.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "tailduplicate"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumEliminated, "Number of unconditional branches eliminated");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| TailDupThreshold("taildup-threshold",
 | |
|                  cl::desc("Max block size to tail duplicate"),
 | |
|                  cl::init(1), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
|   class TailDup : public FunctionPass {
 | |
|     bool runOnFunction(Function &F);
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     TailDup() : FunctionPass(&ID) {}
 | |
| 
 | |
|   private:
 | |
|     inline bool shouldEliminateUnconditionalBranch(TerminatorInst *, unsigned);
 | |
|     inline void eliminateUnconditionalBranch(BranchInst *BI);
 | |
|     SmallPtrSet<BasicBlock*, 4> CycleDetector;
 | |
|   };
 | |
| }
 | |
| 
 | |
| char TailDup::ID = 0;
 | |
| static RegisterPass<TailDup> X("tailduplicate", "Tail Duplication");
 | |
| 
 | |
| // Public interface to the Tail Duplication pass
 | |
| FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); }
 | |
| 
 | |
| /// runOnFunction - Top level algorithm - Loop over each unconditional branch in
 | |
| /// the function, eliminating it if it looks attractive enough.  CycleDetector
 | |
| /// prevents infinite loops by checking that we aren't redirecting a branch to
 | |
| /// a place it already pointed to earlier; see PR 2323.
 | |
| bool TailDup::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   CycleDetector.clear();
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
 | |
|     if (shouldEliminateUnconditionalBranch(I->getTerminator(),
 | |
|                                            TailDupThreshold)) {
 | |
|       eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
 | |
|       Changed = true;
 | |
|     } else {
 | |
|       ++I;
 | |
|       CycleDetector.clear();
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// shouldEliminateUnconditionalBranch - Return true if this branch looks
 | |
| /// attractive to eliminate.  We eliminate the branch if the destination basic
 | |
| /// block has <= 5 instructions in it, not counting PHI nodes.  In practice,
 | |
| /// since one of these is a terminator instruction, this means that we will add
 | |
| /// up to 4 instructions to the new block.
 | |
| ///
 | |
| /// We don't count PHI nodes in the count since they will be removed when the
 | |
| /// contents of the block are copied over.
 | |
| ///
 | |
| bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI,
 | |
|                                                  unsigned Threshold) {
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(TI);
 | |
|   if (!BI || !BI->isUnconditional()) return false;  // Not an uncond branch!
 | |
| 
 | |
|   BasicBlock *Dest = BI->getSuccessor(0);
 | |
|   if (Dest == BI->getParent()) return false;        // Do not loop infinitely!
 | |
| 
 | |
|   // Do not inline a block if we will just get another branch to the same block!
 | |
|   TerminatorInst *DTI = Dest->getTerminator();
 | |
|   if (BranchInst *DBI = dyn_cast<BranchInst>(DTI))
 | |
|     if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest)
 | |
|       return false;                                 // Do not loop infinitely!
 | |
| 
 | |
|   // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
 | |
|   // because doing so would require breaking critical edges.  This should be
 | |
|   // fixed eventually.
 | |
|   if (!DTI->use_empty())
 | |
|     return false;
 | |
| 
 | |
|   // Do not bother with blocks with only a single predecessor: simplify
 | |
|   // CFG will fold these two blocks together!
 | |
|   pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
 | |
|   ++PI;
 | |
|   if (PI == PE) return false;  // Exactly one predecessor!
 | |
| 
 | |
|   BasicBlock::iterator I = Dest->getFirstNonPHI();
 | |
| 
 | |
|   for (unsigned Size = 0; I != Dest->end(); ++I) {
 | |
|     if (Size == Threshold) return false;  // The block is too large.
 | |
|     
 | |
|     // Don't tail duplicate call instructions.  They are very large compared to
 | |
|     // other instructions.
 | |
|     if (isa<CallInst>(I) || isa<InvokeInst>(I)) return false;
 | |
| 
 | |
|     // Also alloca and malloc.
 | |
|     if (isa<AllocaInst>(I)) return false;
 | |
| 
 | |
|     // Some vector instructions can expand into a number of instructions.
 | |
|     if (isa<ShuffleVectorInst>(I) || isa<ExtractElementInst>(I) ||
 | |
|         isa<InsertElementInst>(I)) return false;
 | |
|     
 | |
|     // Only count instructions that are not debugger intrinsics.
 | |
|     if (!isa<DbgInfoIntrinsic>(I)) ++Size;
 | |
|   }
 | |
| 
 | |
|   // Do not tail duplicate a block that has thousands of successors into a block
 | |
|   // with a single successor if the block has many other predecessors.  This can
 | |
|   // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
 | |
|   // cases that have a large number of indirect gotos.
 | |
|   unsigned NumSuccs = DTI->getNumSuccessors();
 | |
|   if (NumSuccs > 8) {
 | |
|     unsigned TooMany = 128;
 | |
|     if (NumSuccs >= TooMany) return false;
 | |
|     TooMany = TooMany/NumSuccs;
 | |
|     for (; PI != PE; ++PI)
 | |
|       if (TooMany-- == 0) return false;
 | |
|   }
 | |
|   
 | |
|   // If this unconditional branch is a fall-through, be careful about
 | |
|   // tail duplicating it.  In particular, we don't want to taildup it if the
 | |
|   // original block will still be there after taildup is completed: doing so
 | |
|   // would eliminate the fall-through, requiring unconditional branches.
 | |
|   Function::iterator DestI = Dest;
 | |
|   if (&*--DestI == BI->getParent()) {
 | |
|     // The uncond branch is a fall-through.  Tail duplication of the block is
 | |
|     // will eliminate the fall-through-ness and end up cloning the terminator
 | |
|     // at the end of the Dest block.  Since the original Dest block will
 | |
|     // continue to exist, this means that one or the other will not be able to
 | |
|     // fall through.  One typical example that this helps with is code like:
 | |
|     // if (a)
 | |
|     //   foo();
 | |
|     // if (b)
 | |
|     //   foo();
 | |
|     // Cloning the 'if b' block into the end of the first foo block is messy.
 | |
|     
 | |
|     // The messy case is when the fall-through block falls through to other
 | |
|     // blocks.  This is what we would be preventing if we cloned the block.
 | |
|     DestI = Dest;
 | |
|     if (++DestI != Dest->getParent()->end()) {
 | |
|       BasicBlock *DestSucc = DestI;
 | |
|       // If any of Dest's successors are fall-throughs, don't do this xform.
 | |
|       for (succ_iterator SI = succ_begin(Dest), SE = succ_end(Dest);
 | |
|            SI != SE; ++SI)
 | |
|         if (*SI == DestSucc)
 | |
|           return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finally, check that we haven't redirected to this target block earlier;
 | |
|   // there are cases where we loop forever if we don't check this (PR 2323).
 | |
|   if (!CycleDetector.insert(Dest))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
 | |
| /// DestBlock, and that SrcBlock is not the only predecessor of DstBlock.  If we
 | |
| /// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
 | |
| /// DstBlock, return it.
 | |
| static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock,
 | |
|                                           BasicBlock *DstBlock) {
 | |
|   // SrcBlock must have a single predecessor.
 | |
|   pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock);
 | |
|   if (PI == PE || ++PI != PE) return 0;
 | |
| 
 | |
|   BasicBlock *SrcPred = *pred_begin(SrcBlock);
 | |
| 
 | |
|   // Look at the predecessors of DstBlock.  One of them will be SrcBlock.  If
 | |
|   // there is only one other pred, get it, otherwise we can't handle it.
 | |
|   PI = pred_begin(DstBlock); PE = pred_end(DstBlock);
 | |
|   BasicBlock *DstOtherPred = 0;
 | |
|   if (*PI == SrcBlock) {
 | |
|     if (++PI == PE) return 0;
 | |
|     DstOtherPred = *PI;
 | |
|     if (++PI != PE) return 0;
 | |
|   } else {
 | |
|     DstOtherPred = *PI;
 | |
|     if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0;
 | |
|   }
 | |
| 
 | |
|   // We can handle two situations here: "if then" and "if then else" blocks.  An
 | |
|   // 'if then' situation is just where DstOtherPred == SrcPred.
 | |
|   if (DstOtherPred == SrcPred)
 | |
|     return SrcPred;
 | |
| 
 | |
|   // Check to see if we have an "if then else" situation, which means that
 | |
|   // DstOtherPred will have a single predecessor and it will be SrcPred.
 | |
|   PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred);
 | |
|   if (PI != PE && *PI == SrcPred) {
 | |
|     if (++PI != PE) return 0;  // Not a single pred.
 | |
|     return SrcPred;  // Otherwise, it's an "if then" situation.  Return the if.
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is something we can't handle.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// eliminateUnconditionalBranch - Clone the instructions from the destination
 | |
| /// block into the source block, eliminating the specified unconditional branch.
 | |
| /// If the destination block defines values used by successors of the dest
 | |
| /// block, we may need to insert PHI nodes.
 | |
| ///
 | |
| void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
 | |
|   BasicBlock *SourceBlock = Branch->getParent();
 | |
|   BasicBlock *DestBlock = Branch->getSuccessor(0);
 | |
|   assert(SourceBlock != DestBlock && "Our predicate is broken!");
 | |
| 
 | |
|   DEBUG(errs() << "TailDuplication[" << SourceBlock->getParent()->getName()
 | |
|         << "]: Eliminating branch: " << *Branch);
 | |
| 
 | |
|   // See if we can avoid duplicating code by moving it up to a dominator of both
 | |
|   // blocks.
 | |
|   if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
 | |
|     DEBUG(errs() << "Found shared dominator: " << DomBlock->getName() << "\n");
 | |
| 
 | |
|     // If there are non-phi instructions in DestBlock that have no operands
 | |
|     // defined in DestBlock, and if the instruction has no side effects, we can
 | |
|     // move the instruction to DomBlock instead of duplicating it.
 | |
|     BasicBlock::iterator BBI = DestBlock->getFirstNonPHI();
 | |
|     while (!isa<TerminatorInst>(BBI)) {
 | |
|       Instruction *I = BBI++;
 | |
| 
 | |
|       bool CanHoist = I->isSafeToSpeculativelyExecute() &&
 | |
|                       !I->mayReadFromMemory();
 | |
|       if (CanHoist) {
 | |
|         for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
 | |
|           if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op)))
 | |
|             if (OpI->getParent() == DestBlock ||
 | |
|                 (isa<InvokeInst>(OpI) && OpI->getParent() == DomBlock)) {
 | |
|               CanHoist = false;
 | |
|               break;
 | |
|             }
 | |
|         if (CanHoist) {
 | |
|           // Remove from DestBlock, move right before the term in DomBlock.
 | |
|           DestBlock->getInstList().remove(I);
 | |
|           DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
 | |
|           DEBUG(errs() << "Hoisted: " << *I);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Tail duplication can not update SSA properties correctly if the values
 | |
|   // defined in the duplicated tail are used outside of the tail itself.  For
 | |
|   // this reason, we spill all values that are used outside of the tail to the
 | |
|   // stack.
 | |
|   for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I)
 | |
|     if (I->isUsedOutsideOfBlock(DestBlock)) {
 | |
|       // We found a use outside of the tail.  Create a new stack slot to
 | |
|       // break this inter-block usage pattern.
 | |
|       DemoteRegToStack(*I);
 | |
|     }
 | |
| 
 | |
|   // We are going to have to map operands from the original block B to the new
 | |
|   // copy of the block B'.  If there are PHI nodes in the DestBlock, these PHI
 | |
|   // nodes also define part of this mapping.  Loop over these PHI nodes, adding
 | |
|   // them to our mapping.
 | |
|   //
 | |
|   std::map<Value*, Value*> ValueMapping;
 | |
| 
 | |
|   BasicBlock::iterator BI = DestBlock->begin();
 | |
|   bool HadPHINodes = isa<PHINode>(BI);
 | |
|   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | |
|     ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
 | |
| 
 | |
|   // Clone the non-phi instructions of the dest block into the source block,
 | |
|   // keeping track of the mapping...
 | |
|   //
 | |
|   for (; BI != DestBlock->end(); ++BI) {
 | |
|     Instruction *New = BI->clone();
 | |
|     New->setName(BI->getName());
 | |
|     SourceBlock->getInstList().push_back(New);
 | |
|     ValueMapping[BI] = New;
 | |
|   }
 | |
| 
 | |
|   // Now that we have built the mapping information and cloned all of the
 | |
|   // instructions (giving us a new terminator, among other things), walk the new
 | |
|   // instructions, rewriting references of old instructions to use new
 | |
|   // instructions.
 | |
|   //
 | |
|   BI = Branch; ++BI;  // Get an iterator to the first new instruction
 | |
|   for (; BI != SourceBlock->end(); ++BI)
 | |
|     for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
 | |
|       std::map<Value*, Value*>::const_iterator I =
 | |
|         ValueMapping.find(BI->getOperand(i));
 | |
|       if (I != ValueMapping.end())
 | |
|         BI->setOperand(i, I->second);
 | |
|     }
 | |
| 
 | |
|   // Next we check to see if any of the successors of DestBlock had PHI nodes.
 | |
|   // If so, we need to add entries to the PHI nodes for SourceBlock now.
 | |
|   for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
 | |
|        SI != SE; ++SI) {
 | |
|     BasicBlock *Succ = *SI;
 | |
|     for (BasicBlock::iterator PNI = Succ->begin(); isa<PHINode>(PNI); ++PNI) {
 | |
|       PHINode *PN = cast<PHINode>(PNI);
 | |
|       // Ok, we have a PHI node.  Figure out what the incoming value was for the
 | |
|       // DestBlock.
 | |
|       Value *IV = PN->getIncomingValueForBlock(DestBlock);
 | |
| 
 | |
|       // Remap the value if necessary...
 | |
|       std::map<Value*, Value*>::const_iterator I = ValueMapping.find(IV);
 | |
|       if (I != ValueMapping.end())
 | |
|         IV = I->second;
 | |
|       PN->addIncoming(IV, SourceBlock);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Next, remove the old branch instruction, and any PHI node entries that we
 | |
|   // had.
 | |
|   BI = Branch; ++BI;  // Get an iterator to the first new instruction
 | |
|   DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
 | |
|   SourceBlock->getInstList().erase(Branch);  // Destroy the uncond branch...
 | |
| 
 | |
|   // Final step: now that we have finished everything up, walk the cloned
 | |
|   // instructions one last time, constant propagating and DCE'ing them, because
 | |
|   // they may not be needed anymore.
 | |
|   //
 | |
|   if (HadPHINodes) {
 | |
|     while (BI != SourceBlock->end()) {
 | |
|       Instruction *Inst = BI++;
 | |
|       if (isInstructionTriviallyDead(Inst))
 | |
|         Inst->eraseFromParent();
 | |
|       else if (Constant *C = ConstantFoldInstruction(Inst,
 | |
|                                                      Inst->getContext())) {
 | |
|         Inst->replaceAllUsesWith(C);
 | |
|         Inst->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ++NumEliminated;  // We just killed a branch!
 | |
| }
 |