mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207197 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2575 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2575 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the X86-specific support for the FastISel class. Much
 | |
| // of the target-specific code is generated by tablegen in the file
 | |
| // X86GenFastISel.inc, which is #included here.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86CallingConv.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class X86FastISel final : public FastISel {
 | |
|   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | |
|   /// make the right decision when generating code for different targets.
 | |
|   const X86Subtarget *Subtarget;
 | |
| 
 | |
|   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
 | |
|   /// floating point ops.
 | |
|   /// When SSE is available, use it for f32 operations.
 | |
|   /// When SSE2 is available, use it for f64 operations.
 | |
|   bool X86ScalarSSEf64;
 | |
|   bool X86ScalarSSEf32;
 | |
| 
 | |
| public:
 | |
|   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
 | |
|                        const TargetLibraryInfo *libInfo)
 | |
|     : FastISel(funcInfo, libInfo) {
 | |
|     Subtarget = &TM.getSubtarget<X86Subtarget>();
 | |
|     X86ScalarSSEf64 = Subtarget->hasSSE2();
 | |
|     X86ScalarSSEf32 = Subtarget->hasSSE1();
 | |
|   }
 | |
| 
 | |
|   bool TargetSelectInstruction(const Instruction *I) override;
 | |
| 
 | |
|   /// \brief The specified machine instr operand is a vreg, and that
 | |
|   /// vreg is being provided by the specified load instruction.  If possible,
 | |
|   /// try to fold the load as an operand to the instruction, returning true if
 | |
|   /// possible.
 | |
|   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
 | |
|                            const LoadInst *LI) override;
 | |
| 
 | |
|   bool FastLowerArguments() override;
 | |
| 
 | |
| #include "X86GenFastISel.inc"
 | |
| 
 | |
| private:
 | |
|   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
 | |
| 
 | |
|   bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
 | |
| 
 | |
|   bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,
 | |
|                         bool Aligned = false);
 | |
|   bool X86FastEmitStore(EVT VT, unsigned ValReg, const X86AddressMode &AM,
 | |
|                         bool Aligned = false);
 | |
| 
 | |
|   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
 | |
|                          unsigned &ResultReg);
 | |
| 
 | |
|   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
 | |
|   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
 | |
| 
 | |
|   bool X86SelectLoad(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectStore(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectRet(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectCmp(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectZExt(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectBranch(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectShift(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectDivRem(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectSelect(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectTrunc(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectFPExt(const Instruction *I);
 | |
|   bool X86SelectFPTrunc(const Instruction *I);
 | |
| 
 | |
|   bool X86VisitIntrinsicCall(const IntrinsicInst &I);
 | |
|   bool X86SelectCall(const Instruction *I);
 | |
| 
 | |
|   bool DoSelectCall(const Instruction *I, const char *MemIntName);
 | |
| 
 | |
|   const X86InstrInfo *getInstrInfo() const {
 | |
|     return getTargetMachine()->getInstrInfo();
 | |
|   }
 | |
|   const X86TargetMachine *getTargetMachine() const {
 | |
|     return static_cast<const X86TargetMachine *>(&TM);
 | |
|   }
 | |
| 
 | |
|   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
 | |
| 
 | |
|   unsigned TargetMaterializeConstant(const Constant *C) override;
 | |
| 
 | |
|   unsigned TargetMaterializeAlloca(const AllocaInst *C) override;
 | |
| 
 | |
|   unsigned TargetMaterializeFloatZero(const ConstantFP *CF) override;
 | |
| 
 | |
|   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
 | |
|   /// computed in an SSE register, not on the X87 floating point stack.
 | |
|   bool isScalarFPTypeInSSEReg(EVT VT) const {
 | |
|     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
 | |
|       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
 | |
|   }
 | |
| 
 | |
|   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
 | |
| 
 | |
|   bool IsMemcpySmall(uint64_t Len);
 | |
| 
 | |
|   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
 | |
|                           X86AddressMode SrcAM, uint64_t Len);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
 | |
|   EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
 | |
|   if (evt == MVT::Other || !evt.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   VT = evt.getSimpleVT();
 | |
|   // For now, require SSE/SSE2 for performing floating-point operations,
 | |
|   // since x87 requires additional work.
 | |
|   if (VT == MVT::f64 && !X86ScalarSSEf64)
 | |
|     return false;
 | |
|   if (VT == MVT::f32 && !X86ScalarSSEf32)
 | |
|     return false;
 | |
|   // Similarly, no f80 support yet.
 | |
|   if (VT == MVT::f80)
 | |
|     return false;
 | |
|   // We only handle legal types. For example, on x86-32 the instruction
 | |
|   // selector contains all of the 64-bit instructions from x86-64,
 | |
|   // under the assumption that i64 won't be used if the target doesn't
 | |
|   // support it.
 | |
|   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
 | |
| }
 | |
| 
 | |
| #include "X86GenCallingConv.inc"
 | |
| 
 | |
| /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
 | |
| /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
 | |
| /// Return true and the result register by reference if it is possible.
 | |
| bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
 | |
|                                   unsigned &ResultReg) {
 | |
|   // Get opcode and regclass of the output for the given load instruction.
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|     Opc = X86::MOV8rm;
 | |
|     RC  = &X86::GR8RegClass;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     Opc = X86::MOV16rm;
 | |
|     RC  = &X86::GR16RegClass;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     Opc = X86::MOV32rm;
 | |
|     RC  = &X86::GR32RegClass;
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     // Must be in x86-64 mode.
 | |
|     Opc = X86::MOV64rm;
 | |
|     RC  = &X86::GR64RegClass;
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|     if (X86ScalarSSEf32) {
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
 | |
|       RC  = &X86::FR32RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp32m;
 | |
|       RC  = &X86::RFP32RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (X86ScalarSSEf64) {
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
 | |
|       RC  = &X86::FR64RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp64m;
 | |
|       RC  = &X86::RFP64RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f80:
 | |
|     // No f80 support yet.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   ResultReg = createResultReg(RC);
 | |
|   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                          DbgLoc, TII.get(Opc), ResultReg), AM);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// X86FastEmitStore - Emit a machine instruction to store a value Val of
 | |
| /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
 | |
| /// and a displacement offset, or a GlobalAddress,
 | |
| /// i.e. V. Return true if it is possible.
 | |
| bool
 | |
| X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg,
 | |
|                               const X86AddressMode &AM, bool Aligned) {
 | |
|   // Get opcode and regclass of the output for the given store instruction.
 | |
|   unsigned Opc = 0;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f80: // No f80 support yet.
 | |
|   default: return false;
 | |
|   case MVT::i1: {
 | |
|     // Mask out all but lowest bit.
 | |
|     unsigned AndResult = createResultReg(&X86::GR8RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(X86::AND8ri), AndResult).addReg(ValReg).addImm(1);
 | |
|     ValReg = AndResult;
 | |
|   }
 | |
|   // FALLTHROUGH, handling i1 as i8.
 | |
|   case MVT::i8:  Opc = X86::MOV8mr;  break;
 | |
|   case MVT::i16: Opc = X86::MOV16mr; break;
 | |
|   case MVT::i32: Opc = X86::MOV32mr; break;
 | |
|   case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
 | |
|   case MVT::f32:
 | |
|     Opc = X86ScalarSSEf32 ?
 | |
|           (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     Opc = X86ScalarSSEf64 ?
 | |
|           (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
 | |
|     break;
 | |
|   case MVT::v4f32:
 | |
|     if (Aligned)
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
 | |
|     else
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
 | |
|     break;
 | |
|   case MVT::v2f64:
 | |
|     if (Aligned)
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
 | |
|     else
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
 | |
|     break;
 | |
|   case MVT::v4i32:
 | |
|   case MVT::v2i64:
 | |
|   case MVT::v8i16:
 | |
|   case MVT::v16i8:
 | |
|     if (Aligned)
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
 | |
|     else
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                          DbgLoc, TII.get(Opc)), AM).addReg(ValReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
 | |
|                                    const X86AddressMode &AM, bool Aligned) {
 | |
|   // Handle 'null' like i32/i64 0.
 | |
|   if (isa<ConstantPointerNull>(Val))
 | |
|     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
 | |
| 
 | |
|   // If this is a store of a simple constant, fold the constant into the store.
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|     unsigned Opc = 0;
 | |
|     bool Signed = true;
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: break;
 | |
|     case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
 | |
|     case MVT::i8:  Opc = X86::MOV8mi;  break;
 | |
|     case MVT::i16: Opc = X86::MOV16mi; break;
 | |
|     case MVT::i32: Opc = X86::MOV32mi; break;
 | |
|     case MVT::i64:
 | |
|       // Must be a 32-bit sign extended value.
 | |
|       if (isInt<32>(CI->getSExtValue()))
 | |
|         Opc = X86::MOV64mi32;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (Opc) {
 | |
|       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                              DbgLoc, TII.get(Opc)), AM)
 | |
|                              .addImm(Signed ? (uint64_t) CI->getSExtValue() :
 | |
|                                               CI->getZExtValue());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned ValReg = getRegForValue(Val);
 | |
|   if (ValReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   return X86FastEmitStore(VT, ValReg, AM, Aligned);
 | |
| }
 | |
| 
 | |
| /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
 | |
| /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
 | |
| /// ISD::SIGN_EXTEND).
 | |
| bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
 | |
|                                     unsigned Src, EVT SrcVT,
 | |
|                                     unsigned &ResultReg) {
 | |
|   unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
 | |
|                            Src, /*TODO: Kill=*/false);
 | |
|   if (RR == 0)
 | |
|     return false;
 | |
| 
 | |
|   ResultReg = RR;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
 | |
|   // Handle constant address.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     // Can't handle alternate code models yet.
 | |
|     if (TM.getCodeModel() != CodeModel::Small)
 | |
|       return false;
 | |
| 
 | |
|     // Can't handle TLS yet.
 | |
|     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
 | |
|       if (GVar->isThreadLocal())
 | |
|         return false;
 | |
| 
 | |
|     // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how
 | |
|     // it works...).
 | |
|     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
 | |
|       if (const GlobalVariable *GVar =
 | |
|               dyn_cast_or_null<GlobalVariable>(GA->getAliasedGlobal()))
 | |
|         if (GVar->isThreadLocal())
 | |
|           return false;
 | |
| 
 | |
|     // RIP-relative addresses can't have additional register operands, so if
 | |
|     // we've already folded stuff into the addressing mode, just force the
 | |
|     // global value into its own register, which we can use as the basereg.
 | |
|     if (!Subtarget->isPICStyleRIPRel() ||
 | |
|         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
 | |
|       // Okay, we've committed to selecting this global. Set up the address.
 | |
|       AM.GV = GV;
 | |
| 
 | |
|       // Allow the subtarget to classify the global.
 | |
|       unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
 | |
| 
 | |
|       // If this reference is relative to the pic base, set it now.
 | |
|       if (isGlobalRelativeToPICBase(GVFlags)) {
 | |
|         // FIXME: How do we know Base.Reg is free??
 | |
|         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | |
|       }
 | |
| 
 | |
|       // Unless the ABI requires an extra load, return a direct reference to
 | |
|       // the global.
 | |
|       if (!isGlobalStubReference(GVFlags)) {
 | |
|         if (Subtarget->isPICStyleRIPRel()) {
 | |
|           // Use rip-relative addressing if we can.  Above we verified that the
 | |
|           // base and index registers are unused.
 | |
|           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
 | |
|           AM.Base.Reg = X86::RIP;
 | |
|         }
 | |
|         AM.GVOpFlags = GVFlags;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Ok, we need to do a load from a stub.  If we've already loaded from
 | |
|       // this stub, reuse the loaded pointer, otherwise emit the load now.
 | |
|       DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
 | |
|       unsigned LoadReg;
 | |
|       if (I != LocalValueMap.end() && I->second != 0) {
 | |
|         LoadReg = I->second;
 | |
|       } else {
 | |
|         // Issue load from stub.
 | |
|         unsigned Opc = 0;
 | |
|         const TargetRegisterClass *RC = nullptr;
 | |
|         X86AddressMode StubAM;
 | |
|         StubAM.Base.Reg = AM.Base.Reg;
 | |
|         StubAM.GV = GV;
 | |
|         StubAM.GVOpFlags = GVFlags;
 | |
| 
 | |
|         // Prepare for inserting code in the local-value area.
 | |
|         SavePoint SaveInsertPt = enterLocalValueArea();
 | |
| 
 | |
|         if (TLI.getPointerTy() == MVT::i64) {
 | |
|           Opc = X86::MOV64rm;
 | |
|           RC  = &X86::GR64RegClass;
 | |
| 
 | |
|           if (Subtarget->isPICStyleRIPRel())
 | |
|             StubAM.Base.Reg = X86::RIP;
 | |
|         } else {
 | |
|           Opc = X86::MOV32rm;
 | |
|           RC  = &X86::GR32RegClass;
 | |
|         }
 | |
| 
 | |
|         LoadReg = createResultReg(RC);
 | |
|         MachineInstrBuilder LoadMI =
 | |
|           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
 | |
|         addFullAddress(LoadMI, StubAM);
 | |
| 
 | |
|         // Ok, back to normal mode.
 | |
|         leaveLocalValueArea(SaveInsertPt);
 | |
| 
 | |
|         // Prevent loading GV stub multiple times in same MBB.
 | |
|         LocalValueMap[V] = LoadReg;
 | |
|       }
 | |
| 
 | |
|       // Now construct the final address. Note that the Disp, Scale,
 | |
|       // and Index values may already be set here.
 | |
|       AM.Base.Reg = LoadReg;
 | |
|       AM.GV = nullptr;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If all else fails, try to materialize the value in a register.
 | |
|   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
 | |
|     if (AM.Base.Reg == 0) {
 | |
|       AM.Base.Reg = getRegForValue(V);
 | |
|       return AM.Base.Reg != 0;
 | |
|     }
 | |
|     if (AM.IndexReg == 0) {
 | |
|       assert(AM.Scale == 1 && "Scale with no index!");
 | |
|       AM.IndexReg = getRegForValue(V);
 | |
|       return AM.IndexReg != 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// X86SelectAddress - Attempt to fill in an address from the given value.
 | |
| ///
 | |
| bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
 | |
|   SmallVector<const Value *, 32> GEPs;
 | |
| redo_gep:
 | |
|   const User *U = nullptr;
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // Don't walk into other basic blocks; it's possible we haven't
 | |
|     // visited them yet, so the instructions may not yet be assigned
 | |
|     // virtual registers.
 | |
|     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
 | |
|         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
 | |
|       Opcode = I->getOpcode();
 | |
|       U = I;
 | |
|     }
 | |
|   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | |
|     Opcode = C->getOpcode();
 | |
|     U = C;
 | |
|   }
 | |
| 
 | |
|   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
 | |
|     if (Ty->getAddressSpace() > 255)
 | |
|       // Fast instruction selection doesn't support the special
 | |
|       // address spaces.
 | |
|       return false;
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::BitCast:
 | |
|     // Look past bitcasts.
 | |
|     return X86SelectAddress(U->getOperand(0), AM);
 | |
| 
 | |
|   case Instruction::IntToPtr:
 | |
|     // Look past no-op inttoptrs.
 | |
|     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
 | |
|       return X86SelectAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PtrToInt:
 | |
|     // Look past no-op ptrtoints.
 | |
|     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
 | |
|       return X86SelectAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Alloca: {
 | |
|     // Do static allocas.
 | |
|     const AllocaInst *A = cast<AllocaInst>(V);
 | |
|     DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|       FuncInfo.StaticAllocaMap.find(A);
 | |
|     if (SI != FuncInfo.StaticAllocaMap.end()) {
 | |
|       AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = SI->second;
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Add: {
 | |
|     // Adds of constants are common and easy enough.
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
 | |
|       // They have to fit in the 32-bit signed displacement field though.
 | |
|       if (isInt<32>(Disp)) {
 | |
|         AM.Disp = (uint32_t)Disp;
 | |
|         return X86SelectAddress(U->getOperand(0), AM);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::GetElementPtr: {
 | |
|     X86AddressMode SavedAM = AM;
 | |
| 
 | |
|     // Pattern-match simple GEPs.
 | |
|     uint64_t Disp = (int32_t)AM.Disp;
 | |
|     unsigned IndexReg = AM.IndexReg;
 | |
|     unsigned Scale = AM.Scale;
 | |
|     gep_type_iterator GTI = gep_type_begin(U);
 | |
|     // Iterate through the indices, folding what we can. Constants can be
 | |
|     // folded, and one dynamic index can be handled, if the scale is supported.
 | |
|     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
 | |
|          i != e; ++i, ++GTI) {
 | |
|       const Value *Op = *i;
 | |
|       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         const StructLayout *SL = DL.getStructLayout(STy);
 | |
|         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // A array/variable index is always of the form i*S where S is the
 | |
|       // constant scale size.  See if we can push the scale into immediates.
 | |
|       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
|       for (;;) {
 | |
|         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|           // Constant-offset addressing.
 | |
|           Disp += CI->getSExtValue() * S;
 | |
|           break;
 | |
|         }
 | |
|         if (canFoldAddIntoGEP(U, Op)) {
 | |
|           // A compatible add with a constant operand. Fold the constant.
 | |
|           ConstantInt *CI =
 | |
|             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
 | |
|           Disp += CI->getSExtValue() * S;
 | |
|           // Iterate on the other operand.
 | |
|           Op = cast<AddOperator>(Op)->getOperand(0);
 | |
|           continue;
 | |
|         }
 | |
|         if (IndexReg == 0 &&
 | |
|             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
 | |
|             (S == 1 || S == 2 || S == 4 || S == 8)) {
 | |
|           // Scaled-index addressing.
 | |
|           Scale = S;
 | |
|           IndexReg = getRegForGEPIndex(Op).first;
 | |
|           if (IndexReg == 0)
 | |
|             return false;
 | |
|           break;
 | |
|         }
 | |
|         // Unsupported.
 | |
|         goto unsupported_gep;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for displacement overflow.
 | |
|     if (!isInt<32>(Disp))
 | |
|       break;
 | |
| 
 | |
|     AM.IndexReg = IndexReg;
 | |
|     AM.Scale = Scale;
 | |
|     AM.Disp = (uint32_t)Disp;
 | |
|     GEPs.push_back(V);
 | |
| 
 | |
|     if (const GetElementPtrInst *GEP =
 | |
|           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
 | |
|       // Ok, the GEP indices were covered by constant-offset and scaled-index
 | |
|       // addressing. Update the address state and move on to examining the base.
 | |
|       V = GEP;
 | |
|       goto redo_gep;
 | |
|     } else if (X86SelectAddress(U->getOperand(0), AM)) {
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If we couldn't merge the gep value into this addr mode, revert back to
 | |
|     // our address and just match the value instead of completely failing.
 | |
|     AM = SavedAM;
 | |
| 
 | |
|     for (SmallVectorImpl<const Value *>::reverse_iterator
 | |
|            I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
 | |
|       if (handleConstantAddresses(*I, AM))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
|   unsupported_gep:
 | |
|     // Ok, the GEP indices weren't all covered.
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return handleConstantAddresses(V, AM);
 | |
| }
 | |
| 
 | |
| /// X86SelectCallAddress - Attempt to fill in an address from the given value.
 | |
| ///
 | |
| bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
 | |
|   const User *U = nullptr;
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   const Instruction *I = dyn_cast<Instruction>(V);
 | |
|   // Record if the value is defined in the same basic block.
 | |
|   //
 | |
|   // This information is crucial to know whether or not folding an
 | |
|   // operand is valid.
 | |
|   // Indeed, FastISel generates or reuses a virtual register for all
 | |
|   // operands of all instructions it selects. Obviously, the definition and
 | |
|   // its uses must use the same virtual register otherwise the produced
 | |
|   // code is incorrect.
 | |
|   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
 | |
|   // registers for values that are alive across basic blocks. This ensures
 | |
|   // that the values are consistently set between across basic block, even
 | |
|   // if different instruction selection mechanisms are used (e.g., a mix of
 | |
|   // SDISel and FastISel).
 | |
|   // For values local to a basic block, the instruction selection process
 | |
|   // generates these virtual registers with whatever method is appropriate
 | |
|   // for its needs. In particular, FastISel and SDISel do not share the way
 | |
|   // local virtual registers are set.
 | |
|   // Therefore, this is impossible (or at least unsafe) to share values
 | |
|   // between basic blocks unless they use the same instruction selection
 | |
|   // method, which is not guarantee for X86.
 | |
|   // Moreover, things like hasOneUse could not be used accurately, if we
 | |
|   // allow to reference values across basic blocks whereas they are not
 | |
|   // alive across basic blocks initially.
 | |
|   bool InMBB = true;
 | |
|   if (I) {
 | |
|     Opcode = I->getOpcode();
 | |
|     U = I;
 | |
|     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
 | |
|   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | |
|     Opcode = C->getOpcode();
 | |
|     U = C;
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::BitCast:
 | |
|     // Look past bitcasts if its operand is in the same BB.
 | |
|     if (InMBB)
 | |
|       return X86SelectCallAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::IntToPtr:
 | |
|     // Look past no-op inttoptrs if its operand is in the same BB.
 | |
|     if (InMBB &&
 | |
|         TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
 | |
|       return X86SelectCallAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PtrToInt:
 | |
|     // Look past no-op ptrtoints if its operand is in the same BB.
 | |
|     if (InMBB &&
 | |
|         TLI.getValueType(U->getType()) == TLI.getPointerTy())
 | |
|       return X86SelectCallAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Handle constant address.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     // Can't handle alternate code models yet.
 | |
|     if (TM.getCodeModel() != CodeModel::Small)
 | |
|       return false;
 | |
| 
 | |
|     // RIP-relative addresses can't have additional register operands.
 | |
|     if (Subtarget->isPICStyleRIPRel() &&
 | |
|         (AM.Base.Reg != 0 || AM.IndexReg != 0))
 | |
|       return false;
 | |
| 
 | |
|     // Can't handle DbgLocLImport.
 | |
|     if (GV->hasDLLImportStorageClass())
 | |
|       return false;
 | |
| 
 | |
|     // Can't handle TLS.
 | |
|     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
 | |
|       if (GVar->isThreadLocal())
 | |
|         return false;
 | |
| 
 | |
|     // Okay, we've committed to selecting this global. Set up the basic address.
 | |
|     AM.GV = GV;
 | |
| 
 | |
|     // No ABI requires an extra load for anything other than DLLImport, which
 | |
|     // we rejected above. Return a direct reference to the global.
 | |
|     if (Subtarget->isPICStyleRIPRel()) {
 | |
|       // Use rip-relative addressing if we can.  Above we verified that the
 | |
|       // base and index registers are unused.
 | |
|       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
 | |
|       AM.Base.Reg = X86::RIP;
 | |
|     } else if (Subtarget->isPICStyleStubPIC()) {
 | |
|       AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
 | |
|     } else if (Subtarget->isPICStyleGOT()) {
 | |
|       AM.GVOpFlags = X86II::MO_GOTOFF;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If all else fails, try to materialize the value in a register.
 | |
|   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
 | |
|     if (AM.Base.Reg == 0) {
 | |
|       AM.Base.Reg = getRegForValue(V);
 | |
|       return AM.Base.Reg != 0;
 | |
|     }
 | |
|     if (AM.IndexReg == 0) {
 | |
|       assert(AM.Scale == 1 && "Scale with no index!");
 | |
|       AM.IndexReg = getRegForValue(V);
 | |
|       return AM.IndexReg != 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// X86SelectStore - Select and emit code to implement store instructions.
 | |
| bool X86FastISel::X86SelectStore(const Instruction *I) {
 | |
|   // Atomic stores need special handling.
 | |
|   const StoreInst *S = cast<StoreInst>(I);
 | |
| 
 | |
|   if (S->isAtomic())
 | |
|     return false;
 | |
| 
 | |
|   unsigned SABIAlignment =
 | |
|     DL.getABITypeAlignment(S->getValueOperand()->getType());
 | |
|   bool Aligned = S->getAlignment() == 0 || S->getAlignment() >= SABIAlignment;
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
 | |
|     return false;
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(I->getOperand(1), AM))
 | |
|     return false;
 | |
| 
 | |
|   return X86FastEmitStore(VT, I->getOperand(0), AM, Aligned);
 | |
| }
 | |
| 
 | |
| /// X86SelectRet - Select and emit code to implement ret instructions.
 | |
| bool X86FastISel::X86SelectRet(const Instruction *I) {
 | |
|   const ReturnInst *Ret = cast<ReturnInst>(I);
 | |
|   const Function &F = *I->getParent()->getParent();
 | |
|   const X86MachineFunctionInfo *X86MFInfo =
 | |
|       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
 | |
| 
 | |
|   if (!FuncInfo.CanLowerReturn)
 | |
|     return false;
 | |
| 
 | |
|   CallingConv::ID CC = F.getCallingConv();
 | |
|   if (CC != CallingConv::C &&
 | |
|       CC != CallingConv::Fast &&
 | |
|       CC != CallingConv::X86_FastCall &&
 | |
|       CC != CallingConv::X86_64_SysV)
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->isCallingConvWin64(CC))
 | |
|     return false;
 | |
| 
 | |
|   // Don't handle popping bytes on return for now.
 | |
|   if (X86MFInfo->getBytesToPopOnReturn() != 0)
 | |
|     return false;
 | |
| 
 | |
|   // fastcc with -tailcallopt is intended to provide a guaranteed
 | |
|   // tail call optimization. Fastisel doesn't know how to do that.
 | |
|   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
 | |
|     return false;
 | |
| 
 | |
|   // Let SDISel handle vararg functions.
 | |
|   if (F.isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   // Build a list of return value registers.
 | |
|   SmallVector<unsigned, 4> RetRegs;
 | |
| 
 | |
|   if (Ret->getNumOperands() > 0) {
 | |
|     SmallVector<ISD::OutputArg, 4> Outs;
 | |
|     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
 | |
| 
 | |
|     // Analyze operands of the call, assigning locations to each operand.
 | |
|     SmallVector<CCValAssign, 16> ValLocs;
 | |
|     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
 | |
|                    I->getContext());
 | |
|     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
 | |
| 
 | |
|     const Value *RV = Ret->getOperand(0);
 | |
|     unsigned Reg = getRegForValue(RV);
 | |
|     if (Reg == 0)
 | |
|       return false;
 | |
| 
 | |
|     // Only handle a single return value for now.
 | |
|     if (ValLocs.size() != 1)
 | |
|       return false;
 | |
| 
 | |
|     CCValAssign &VA = ValLocs[0];
 | |
| 
 | |
|     // Don't bother handling odd stuff for now.
 | |
|     if (VA.getLocInfo() != CCValAssign::Full)
 | |
|       return false;
 | |
|     // Only handle register returns for now.
 | |
|     if (!VA.isRegLoc())
 | |
|       return false;
 | |
| 
 | |
|     // The calling-convention tables for x87 returns don't tell
 | |
|     // the whole story.
 | |
|     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
 | |
|       return false;
 | |
| 
 | |
|     unsigned SrcReg = Reg + VA.getValNo();
 | |
|     EVT SrcVT = TLI.getValueType(RV->getType());
 | |
|     EVT DstVT = VA.getValVT();
 | |
|     // Special handling for extended integers.
 | |
|     if (SrcVT != DstVT) {
 | |
|       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
 | |
|         return false;
 | |
| 
 | |
|       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
 | |
|         return false;
 | |
| 
 | |
|       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
 | |
| 
 | |
|       if (SrcVT == MVT::i1) {
 | |
|         if (Outs[0].Flags.isSExt())
 | |
|           return false;
 | |
|         SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
 | |
|         SrcVT = MVT::i8;
 | |
|       }
 | |
|       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
 | |
|                                              ISD::SIGN_EXTEND;
 | |
|       SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
 | |
|                           SrcReg, /*TODO: Kill=*/false);
 | |
|     }
 | |
| 
 | |
|     // Make the copy.
 | |
|     unsigned DstReg = VA.getLocReg();
 | |
|     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
 | |
|     // Avoid a cross-class copy. This is very unlikely.
 | |
|     if (!SrcRC->contains(DstReg))
 | |
|       return false;
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
 | |
|             DstReg).addReg(SrcReg);
 | |
| 
 | |
|     // Add register to return instruction.
 | |
|     RetRegs.push_back(VA.getLocReg());
 | |
|   }
 | |
| 
 | |
|   // The x86-64 ABI for returning structs by value requires that we copy
 | |
|   // the sret argument into %rax for the return. We saved the argument into
 | |
|   // a virtual register in the entry block, so now we copy the value out
 | |
|   // and into %rax. We also do the same with %eax for Win32.
 | |
|   if (F.hasStructRetAttr() &&
 | |
|       (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
 | |
|     unsigned Reg = X86MFInfo->getSRetReturnReg();
 | |
|     assert(Reg &&
 | |
|            "SRetReturnReg should have been set in LowerFormalArguments()!");
 | |
|     unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
 | |
|             RetReg).addReg(Reg);
 | |
|     RetRegs.push_back(RetReg);
 | |
|   }
 | |
| 
 | |
|   // Now emit the RET.
 | |
|   MachineInstrBuilder MIB =
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
 | |
|   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
 | |
|     MIB.addReg(RetRegs[i], RegState::Implicit);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// X86SelectLoad - Select and emit code to implement load instructions.
 | |
| ///
 | |
| bool X86FastISel::X86SelectLoad(const Instruction *I)  {
 | |
|   // Atomic loads need special handling.
 | |
|   if (cast<LoadInst>(I)->isAtomic())
 | |
|     return false;
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
 | |
|     return false;
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(I->getOperand(0), AM))
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResultReg = 0;
 | |
|   if (X86FastEmitLoad(VT, AM, ResultReg)) {
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
 | |
|   bool HasAVX = Subtarget->hasAVX();
 | |
|   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
 | |
|   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:       return 0;
 | |
|   case MVT::i8:  return X86::CMP8rr;
 | |
|   case MVT::i16: return X86::CMP16rr;
 | |
|   case MVT::i32: return X86::CMP32rr;
 | |
|   case MVT::i64: return X86::CMP64rr;
 | |
|   case MVT::f32:
 | |
|     return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
 | |
|   case MVT::f64:
 | |
|     return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
 | |
| /// of the comparison, return an opcode that works for the compare (e.g.
 | |
| /// CMP32ri) otherwise return 0.
 | |
| static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   // Otherwise, we can't fold the immediate into this comparison.
 | |
|   default: return 0;
 | |
|   case MVT::i8: return X86::CMP8ri;
 | |
|   case MVT::i16: return X86::CMP16ri;
 | |
|   case MVT::i32: return X86::CMP32ri;
 | |
|   case MVT::i64:
 | |
|     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
 | |
|     // field.
 | |
|     if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
 | |
|       return X86::CMP64ri32;
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
 | |
|                                      EVT VT) {
 | |
|   unsigned Op0Reg = getRegForValue(Op0);
 | |
|   if (Op0Reg == 0) return false;
 | |
| 
 | |
|   // Handle 'null' like i32/i64 0.
 | |
|   if (isa<ConstantPointerNull>(Op1))
 | |
|     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
 | |
| 
 | |
|   // We have two options: compare with register or immediate.  If the RHS of
 | |
|   // the compare is an immediate that we can fold into this compare, use
 | |
|   // CMPri, otherwise use CMPrr.
 | |
|   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareImmOpc))
 | |
|         .addReg(Op0Reg)
 | |
|         .addImm(Op1C->getSExtValue());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
 | |
|   if (CompareOpc == 0) return false;
 | |
| 
 | |
|   unsigned Op1Reg = getRegForValue(Op1);
 | |
|   if (Op1Reg == 0) return false;
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareOpc))
 | |
|     .addReg(Op0Reg)
 | |
|     .addReg(Op1Reg);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectCmp(const Instruction *I) {
 | |
|   const CmpInst *CI = cast<CmpInst>(I);
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(&X86::GR8RegClass);
 | |
|   unsigned SetCCOpc;
 | |
|   bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
 | |
|   switch (CI->getPredicate()) {
 | |
|   case CmpInst::FCMP_OEQ: {
 | |
|     if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
 | |
|       return false;
 | |
| 
 | |
|     unsigned EReg = createResultReg(&X86::GR8RegClass);
 | |
|     unsigned NPReg = createResultReg(&X86::GR8RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETEr), EReg);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(X86::SETNPr), NPReg);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   case CmpInst::FCMP_UNE: {
 | |
|     if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
 | |
|       return false;
 | |
| 
 | |
|     unsigned NEReg = createResultReg(&X86::GR8RegClass);
 | |
|     unsigned PReg = createResultReg(&X86::GR8RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETNEr), NEReg);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETPr), PReg);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::OR8rr),ResultReg)
 | |
|       .addReg(PReg).addReg(NEReg);
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
 | |
|   case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
 | |
|   case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
 | |
|   case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
 | |
|   case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
 | |
|   case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
 | |
|   case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
 | |
|   case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
 | |
|   case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
 | |
|   case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
 | |
|   case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
 | |
|   case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
 | |
| 
 | |
|   case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
 | |
|   case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
 | |
|   case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
 | |
|   case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
 | |
|   case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
 | |
|   case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
 | |
|   case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
 | |
|   case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
 | |
|   case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
 | |
|   case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | |
|   if (SwapArgs)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   // Emit a compare of Op0/Op1.
 | |
|   if (!X86FastEmitCompare(Op0, Op1, VT))
 | |
|     return false;
 | |
| 
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SetCCOpc), ResultReg);
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectZExt(const Instruction *I) {
 | |
|   EVT DstVT = TLI.getValueType(I->getType());
 | |
|   if (!TLI.isTypeLegal(DstVT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResultReg = getRegForValue(I->getOperand(0));
 | |
|   if (ResultReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Handle zero-extension from i1 to i8, which is common.
 | |
|   MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());
 | |
|   if (SrcVT.SimpleTy == MVT::i1) {
 | |
|     // Set the high bits to zero.
 | |
|     ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
 | |
|     SrcVT = MVT::i8;
 | |
| 
 | |
|     if (ResultReg == 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (DstVT == MVT::i64) {
 | |
|     // Handle extension to 64-bits via sub-register shenanigans.
 | |
|     unsigned MovInst;
 | |
| 
 | |
|     switch (SrcVT.SimpleTy) {
 | |
|     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
 | |
|     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
 | |
|     case MVT::i32: MovInst = X86::MOV32rr;     break;
 | |
|     default: llvm_unreachable("Unexpected zext to i64 source type");
 | |
|     }
 | |
| 
 | |
|     unsigned Result32 = createResultReg(&X86::GR32RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
 | |
|       .addReg(ResultReg);
 | |
| 
 | |
|     ResultReg = createResultReg(&X86::GR64RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
 | |
|             ResultReg)
 | |
|       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
 | |
|   } else if (DstVT != MVT::i8) {
 | |
|     ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
 | |
|                            ResultReg, /*Kill=*/true);
 | |
|     if (ResultReg == 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86FastISel::X86SelectBranch(const Instruction *I) {
 | |
|   // Unconditional branches are selected by tablegen-generated code.
 | |
|   // Handle a conditional branch.
 | |
|   const BranchInst *BI = cast<BranchInst>(I);
 | |
|   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
 | |
|   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
 | |
| 
 | |
|   // Fold the common case of a conditional branch with a comparison
 | |
|   // in the same block (values defined on other blocks may not have
 | |
|   // initialized registers).
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
 | |
|     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
 | |
|       EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
 | |
| 
 | |
|       // Try to take advantage of fallthrough opportunities.
 | |
|       CmpInst::Predicate Predicate = CI->getPredicate();
 | |
|       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
 | |
|         std::swap(TrueMBB, FalseMBB);
 | |
|         Predicate = CmpInst::getInversePredicate(Predicate);
 | |
|       }
 | |
| 
 | |
|       bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
 | |
|       unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
 | |
| 
 | |
|       switch (Predicate) {
 | |
|       case CmpInst::FCMP_OEQ:
 | |
|         std::swap(TrueMBB, FalseMBB);
 | |
|         Predicate = CmpInst::FCMP_UNE;
 | |
|         // FALL THROUGH
 | |
|       case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | |
|       case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
 | |
|       case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
 | |
|       case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
 | |
|       case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
 | |
|       case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | |
|       case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
 | |
|       case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
 | |
|       case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
 | |
|       case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
 | |
|       case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
 | |
|       case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
 | |
|       case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
 | |
| 
 | |
|       case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
 | |
|       case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | |
|       case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
 | |
|       case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
 | |
|       case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
 | |
|       case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
 | |
|       case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
 | |
|       case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
 | |
|       case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
 | |
|       case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
 | |
|       default:
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | |
|       if (SwapArgs)
 | |
|         std::swap(Op0, Op1);
 | |
| 
 | |
|       // Emit a compare of the LHS and RHS, setting the flags.
 | |
|       if (!X86FastEmitCompare(Op0, Op1, VT))
 | |
|         return false;
 | |
| 
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
 | |
|         .addMBB(TrueMBB);
 | |
| 
 | |
|       if (Predicate == CmpInst::FCMP_UNE) {
 | |
|         // X86 requires a second branch to handle UNE (and OEQ,
 | |
|         // which is mapped to UNE above).
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_4))
 | |
|           .addMBB(TrueMBB);
 | |
|       }
 | |
| 
 | |
|       FastEmitBranch(FalseMBB, DbgLoc);
 | |
|       FuncInfo.MBB->addSuccessor(TrueMBB);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
 | |
|     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
 | |
|     // typically happen for _Bool and C++ bools.
 | |
|     MVT SourceVT;
 | |
|     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
 | |
|         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
 | |
|       unsigned TestOpc = 0;
 | |
|       switch (SourceVT.SimpleTy) {
 | |
|       default: break;
 | |
|       case MVT::i8:  TestOpc = X86::TEST8ri; break;
 | |
|       case MVT::i16: TestOpc = X86::TEST16ri; break;
 | |
|       case MVT::i32: TestOpc = X86::TEST32ri; break;
 | |
|       case MVT::i64: TestOpc = X86::TEST64ri32; break;
 | |
|       }
 | |
|       if (TestOpc) {
 | |
|         unsigned OpReg = getRegForValue(TI->getOperand(0));
 | |
|         if (OpReg == 0) return false;
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
 | |
|           .addReg(OpReg).addImm(1);
 | |
| 
 | |
|         unsigned JmpOpc = X86::JNE_4;
 | |
|         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
 | |
|           std::swap(TrueMBB, FalseMBB);
 | |
|           JmpOpc = X86::JE_4;
 | |
|         }
 | |
| 
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
 | |
|           .addMBB(TrueMBB);
 | |
|         FastEmitBranch(FalseMBB, DbgLoc);
 | |
|         FuncInfo.MBB->addSuccessor(TrueMBB);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise do a clumsy setcc and re-test it.
 | |
|   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
 | |
|   // in an explicit cast, so make sure to handle that correctly.
 | |
|   unsigned OpReg = getRegForValue(BI->getCondition());
 | |
|   if (OpReg == 0) return false;
 | |
| 
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
 | |
|     .addReg(OpReg).addImm(1);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_4))
 | |
|     .addMBB(TrueMBB);
 | |
|   FastEmitBranch(FalseMBB, DbgLoc);
 | |
|   FuncInfo.MBB->addSuccessor(TrueMBB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectShift(const Instruction *I) {
 | |
|   unsigned CReg = 0, OpReg = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   if (I->getType()->isIntegerTy(8)) {
 | |
|     CReg = X86::CL;
 | |
|     RC = &X86::GR8RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(16)) {
 | |
|     CReg = X86::CX;
 | |
|     RC = &X86::GR16RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(32)) {
 | |
|     CReg = X86::ECX;
 | |
|     RC = &X86::GR32RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(64)) {
 | |
|     CReg = X86::RCX;
 | |
|     RC = &X86::GR64RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | |
|   if (Op0Reg == 0) return false;
 | |
| 
 | |
|   unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | |
|   if (Op1Reg == 0) return false;
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
 | |
|           CReg).addReg(Op1Reg);
 | |
| 
 | |
|   // The shift instruction uses X86::CL. If we defined a super-register
 | |
|   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
 | |
|   if (CReg != X86::CL)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::KILL), X86::CL)
 | |
|       .addReg(CReg, RegState::Kill);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
 | |
|     .addReg(Op0Reg);
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectDivRem(const Instruction *I) {
 | |
|   const static unsigned NumTypes = 4; // i8, i16, i32, i64
 | |
|   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
 | |
|   const static bool S = true;  // IsSigned
 | |
|   const static bool U = false; // !IsSigned
 | |
|   const static unsigned Copy = TargetOpcode::COPY;
 | |
|   // For the X86 DIV/IDIV instruction, in most cases the dividend
 | |
|   // (numerator) must be in a specific register pair highreg:lowreg,
 | |
|   // producing the quotient in lowreg and the remainder in highreg.
 | |
|   // For most data types, to set up the instruction, the dividend is
 | |
|   // copied into lowreg, and lowreg is sign-extended or zero-extended
 | |
|   // into highreg.  The exception is i8, where the dividend is defined
 | |
|   // as a single register rather than a register pair, and we
 | |
|   // therefore directly sign-extend or zero-extend the dividend into
 | |
|   // lowreg, instead of copying, and ignore the highreg.
 | |
|   const static struct DivRemEntry {
 | |
|     // The following portion depends only on the data type.
 | |
|     const TargetRegisterClass *RC;
 | |
|     unsigned LowInReg;  // low part of the register pair
 | |
|     unsigned HighInReg; // high part of the register pair
 | |
|     // The following portion depends on both the data type and the operation.
 | |
|     struct DivRemResult {
 | |
|     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
 | |
|     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
 | |
|                               // highreg, or copying a zero into highreg.
 | |
|     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
 | |
|                               // zero/sign-extending into lowreg for i8.
 | |
|     unsigned DivRemResultReg; // Register containing the desired result.
 | |
|     bool IsOpSigned;          // Whether to use signed or unsigned form.
 | |
|     } ResultTable[NumOps];
 | |
|   } OpTable[NumTypes] = {
 | |
|     { &X86::GR8RegClass,  X86::AX,  0, {
 | |
|         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
 | |
|         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
 | |
|         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
 | |
|         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
 | |
|       }
 | |
|     }, // i8
 | |
|     { &X86::GR16RegClass, X86::AX,  X86::DX, {
 | |
|         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
 | |
|         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
 | |
|         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
 | |
|         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
 | |
|       }
 | |
|     }, // i16
 | |
|     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
 | |
|         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
 | |
|         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
 | |
|         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
 | |
|         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
 | |
|       }
 | |
|     }, // i32
 | |
|     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
 | |
|         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
 | |
|         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
 | |
|         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
 | |
|         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
 | |
|       }
 | |
|     }, // i64
 | |
|   };
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned TypeIndex, OpIndex;
 | |
|   switch (VT.SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i8:  TypeIndex = 0; break;
 | |
|   case MVT::i16: TypeIndex = 1; break;
 | |
|   case MVT::i32: TypeIndex = 2; break;
 | |
|   case MVT::i64: TypeIndex = 3;
 | |
|     if (!Subtarget->is64Bit())
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default: llvm_unreachable("Unexpected div/rem opcode");
 | |
|   case Instruction::SDiv: OpIndex = 0; break;
 | |
|   case Instruction::SRem: OpIndex = 1; break;
 | |
|   case Instruction::UDiv: OpIndex = 2; break;
 | |
|   case Instruction::URem: OpIndex = 3; break;
 | |
|   }
 | |
| 
 | |
|   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
 | |
|   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
 | |
|   unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | |
|   if (Op0Reg == 0)
 | |
|     return false;
 | |
|   unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | |
|   if (Op1Reg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Move op0 into low-order input register.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
 | |
|   // Zero-extend or sign-extend into high-order input register.
 | |
|   if (OpEntry.OpSignExtend) {
 | |
|     if (OpEntry.IsOpSigned)
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(OpEntry.OpSignExtend));
 | |
|     else {
 | |
|       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(X86::MOV32r0), Zero32);
 | |
| 
 | |
|       // Copy the zero into the appropriate sub/super/identical physical
 | |
|       // register. Unfortunately the operations needed are not uniform enough to
 | |
|       // fit neatly into the table above.
 | |
|       if (VT.SimpleTy == MVT::i16) {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(Copy), TypeEntry.HighInReg)
 | |
|           .addReg(Zero32, 0, X86::sub_16bit);
 | |
|       } else if (VT.SimpleTy == MVT::i32) {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(Copy), TypeEntry.HighInReg)
 | |
|             .addReg(Zero32);
 | |
|       } else if (VT.SimpleTy == MVT::i64) {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
 | |
|             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Generate the DIV/IDIV instruction.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
 | |
|   // For i8 remainder, we can't reference AH directly, as we'll end
 | |
|   // up with bogus copies like %R9B = COPY %AH. Reference AX
 | |
|   // instead to prevent AH references in a REX instruction.
 | |
|   //
 | |
|   // The current assumption of the fast register allocator is that isel
 | |
|   // won't generate explicit references to the GPR8_NOREX registers. If
 | |
|   // the allocator and/or the backend get enhanced to be more robust in
 | |
|   // that regard, this can be, and should be, removed.
 | |
|   unsigned ResultReg = 0;
 | |
|   if ((I->getOpcode() == Instruction::SRem ||
 | |
|        I->getOpcode() == Instruction::URem) &&
 | |
|       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
 | |
|     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
 | |
|     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
 | |
| 
 | |
|     // Shift AX right by 8 bits instead of using AH.
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
 | |
|             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
 | |
| 
 | |
|     // Now reference the 8-bit subreg of the result.
 | |
|     ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
 | |
|                                            /*Kill=*/true, X86::sub_8bit);
 | |
|   }
 | |
|   // Copy the result out of the physreg if we haven't already.
 | |
|   if (!ResultReg) {
 | |
|     ResultReg = createResultReg(TypeEntry.RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
 | |
|         .addReg(OpEntry.DivRemResultReg);
 | |
|   }
 | |
|   UpdateValueMap(I, ResultReg);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectSelect(const Instruction *I) {
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   // We only use cmov here, if we don't have a cmov instruction bail.
 | |
|   if (!Subtarget->hasCMov()) return false;
 | |
| 
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   if (VT == MVT::i16) {
 | |
|     Opc = X86::CMOVE16rr;
 | |
|     RC = &X86::GR16RegClass;
 | |
|   } else if (VT == MVT::i32) {
 | |
|     Opc = X86::CMOVE32rr;
 | |
|     RC = &X86::GR32RegClass;
 | |
|   } else if (VT == MVT::i64) {
 | |
|     Opc = X86::CMOVE64rr;
 | |
|     RC = &X86::GR64RegClass;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | |
|   if (Op0Reg == 0) return false;
 | |
|   unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | |
|   if (Op1Reg == 0) return false;
 | |
|   unsigned Op2Reg = getRegForValue(I->getOperand(2));
 | |
|   if (Op2Reg == 0) return false;
 | |
| 
 | |
|   // Selects operate on i1, however, Op0Reg is 8 bits width and may contain
 | |
|   // garbage. Indeed, only the less significant bit is supposed to be accurate.
 | |
|   // If we read more than the lsb, we may see non-zero values whereas lsb
 | |
|   // is zero. Therefore, we have to truncate Op0Reg to i1 for the select.
 | |
|   // This is achieved by performing TEST against 1.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
 | |
|     .addReg(Op0Reg).addImm(1);
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
 | |
|     .addReg(Op1Reg).addReg(Op2Reg);
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectFPExt(const Instruction *I) {
 | |
|   // fpext from float to double.
 | |
|   if (X86ScalarSSEf64 &&
 | |
|       I->getType()->isDoubleTy()) {
 | |
|     const Value *V = I->getOperand(0);
 | |
|     if (V->getType()->isFloatTy()) {
 | |
|       unsigned OpReg = getRegForValue(V);
 | |
|       if (OpReg == 0) return false;
 | |
|       unsigned ResultReg = createResultReg(&X86::FR64RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(X86::CVTSS2SDrr), ResultReg)
 | |
|         .addReg(OpReg);
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
 | |
|   if (X86ScalarSSEf64) {
 | |
|     if (I->getType()->isFloatTy()) {
 | |
|       const Value *V = I->getOperand(0);
 | |
|       if (V->getType()->isDoubleTy()) {
 | |
|         unsigned OpReg = getRegForValue(V);
 | |
|         if (OpReg == 0) return false;
 | |
|         unsigned ResultReg = createResultReg(&X86::FR32RegClass);
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(X86::CVTSD2SSrr), ResultReg)
 | |
|           .addReg(OpReg);
 | |
|         UpdateValueMap(I, ResultReg);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectTrunc(const Instruction *I) {
 | |
|   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(I->getType());
 | |
| 
 | |
|   // This code only handles truncation to byte.
 | |
|   if (DstVT != MVT::i8 && DstVT != MVT::i1)
 | |
|     return false;
 | |
|   if (!TLI.isTypeLegal(SrcVT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned InputReg = getRegForValue(I->getOperand(0));
 | |
|   if (!InputReg)
 | |
|     // Unhandled operand.  Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   if (SrcVT == MVT::i8) {
 | |
|     // Truncate from i8 to i1; no code needed.
 | |
|     UpdateValueMap(I, InputReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     // If we're on x86-32; we can't extract an i8 from a general register.
 | |
|     // First issue a copy to GR16_ABCD or GR32_ABCD.
 | |
|     const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ?
 | |
|       (const TargetRegisterClass*)&X86::GR16_ABCDRegClass :
 | |
|       (const TargetRegisterClass*)&X86::GR32_ABCDRegClass;
 | |
|     unsigned CopyReg = createResultReg(CopyRC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
 | |
|             CopyReg).addReg(InputReg);
 | |
|     InputReg = CopyReg;
 | |
|   }
 | |
| 
 | |
|   // Issue an extract_subreg.
 | |
|   unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
 | |
|                                                   InputReg, /*Kill=*/true,
 | |
|                                                   X86::sub_8bit);
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
| 
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::IsMemcpySmall(uint64_t Len) {
 | |
|   return Len <= (Subtarget->is64Bit() ? 32 : 16);
 | |
| }
 | |
| 
 | |
| bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
 | |
|                                      X86AddressMode SrcAM, uint64_t Len) {
 | |
| 
 | |
|   // Make sure we don't bloat code by inlining very large memcpy's.
 | |
|   if (!IsMemcpySmall(Len))
 | |
|     return false;
 | |
| 
 | |
|   bool i64Legal = Subtarget->is64Bit();
 | |
| 
 | |
|   // We don't care about alignment here since we just emit integer accesses.
 | |
|   while (Len) {
 | |
|     MVT VT;
 | |
|     if (Len >= 8 && i64Legal)
 | |
|       VT = MVT::i64;
 | |
|     else if (Len >= 4)
 | |
|       VT = MVT::i32;
 | |
|     else if (Len >= 2)
 | |
|       VT = MVT::i16;
 | |
|     else {
 | |
|       VT = MVT::i8;
 | |
|     }
 | |
| 
 | |
|     unsigned Reg;
 | |
|     bool RV = X86FastEmitLoad(VT, SrcAM, Reg);
 | |
|     RV &= X86FastEmitStore(VT, Reg, DestAM);
 | |
|     assert(RV && "Failed to emit load or store??");
 | |
| 
 | |
|     unsigned Size = VT.getSizeInBits()/8;
 | |
|     Len -= Size;
 | |
|     DestAM.Disp += Size;
 | |
|     SrcAM.Disp += Size;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
 | |
|   // FIXME: Handle more intrinsics.
 | |
|   switch (I.getIntrinsicID()) {
 | |
|   default: return false;
 | |
|   case Intrinsic::memcpy: {
 | |
|     const MemCpyInst &MCI = cast<MemCpyInst>(I);
 | |
|     // Don't handle volatile or variable length memcpys.
 | |
|     if (MCI.isVolatile())
 | |
|       return false;
 | |
| 
 | |
|     if (isa<ConstantInt>(MCI.getLength())) {
 | |
|       // Small memcpy's are common enough that we want to do them
 | |
|       // without a call if possible.
 | |
|       uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
 | |
|       if (IsMemcpySmall(Len)) {
 | |
|         X86AddressMode DestAM, SrcAM;
 | |
|         if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
 | |
|             !X86SelectAddress(MCI.getRawSource(), SrcAM))
 | |
|           return false;
 | |
|         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
 | |
|     if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
 | |
|       return false;
 | |
| 
 | |
|     if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
 | |
|       return false;
 | |
| 
 | |
|     return DoSelectCall(&I, "memcpy");
 | |
|   }
 | |
|   case Intrinsic::memset: {
 | |
|     const MemSetInst &MSI = cast<MemSetInst>(I);
 | |
| 
 | |
|     if (MSI.isVolatile())
 | |
|       return false;
 | |
| 
 | |
|     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
 | |
|     if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
 | |
|       return false;
 | |
| 
 | |
|     if (MSI.getDestAddressSpace() > 255)
 | |
|       return false;
 | |
| 
 | |
|     return DoSelectCall(&I, "memset");
 | |
|   }
 | |
|   case Intrinsic::stackprotector: {
 | |
|     // Emit code to store the stack guard onto the stack.
 | |
|     EVT PtrTy = TLI.getPointerTy();
 | |
| 
 | |
|     const Value *Op1 = I.getArgOperand(0); // The guard's value.
 | |
|     const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
 | |
| 
 | |
|     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
 | |
| 
 | |
|     // Grab the frame index.
 | |
|     X86AddressMode AM;
 | |
|     if (!X86SelectAddress(Slot, AM)) return false;
 | |
|     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
 | |
|     X86AddressMode AM;
 | |
|     assert(DI->getAddress() && "Null address should be checked earlier!");
 | |
|     if (!X86SelectAddress(DI->getAddress(), AM))
 | |
|       return false;
 | |
|     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
 | |
|     // FIXME may need to add RegState::Debug to any registers produced,
 | |
|     // although ESP/EBP should be the only ones at the moment.
 | |
|     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM).
 | |
|       addImm(0).addMetadata(DI->getVariable());
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::trap: {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow: {
 | |
|     // FIXME: Should fold immediates.
 | |
| 
 | |
|     // Replace "add with overflow" intrinsics with an "add" instruction followed
 | |
|     // by a seto/setc instruction.
 | |
|     const Function *Callee = I.getCalledFunction();
 | |
|     Type *RetTy =
 | |
|       cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
 | |
| 
 | |
|     MVT VT;
 | |
|     if (!isTypeLegal(RetTy, VT))
 | |
|       return false;
 | |
| 
 | |
|     const Value *Op1 = I.getArgOperand(0);
 | |
|     const Value *Op2 = I.getArgOperand(1);
 | |
|     unsigned Reg1 = getRegForValue(Op1);
 | |
|     unsigned Reg2 = getRegForValue(Op2);
 | |
| 
 | |
|     if (Reg1 == 0 || Reg2 == 0)
 | |
|       // FIXME: Handle values *not* in registers.
 | |
|       return false;
 | |
| 
 | |
|     unsigned OpC = 0;
 | |
|     if (VT == MVT::i32)
 | |
|       OpC = X86::ADD32rr;
 | |
|     else if (VT == MVT::i64)
 | |
|       OpC = X86::ADD64rr;
 | |
|     else
 | |
|       return false;
 | |
| 
 | |
|     // The call to CreateRegs builds two sequential registers, to store the
 | |
|     // both the returned values.
 | |
|     unsigned ResultReg = FuncInfo.CreateRegs(I.getType());
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpC), ResultReg)
 | |
|       .addReg(Reg1).addReg(Reg2);
 | |
| 
 | |
|     unsigned Opc = X86::SETBr;
 | |
|     if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
 | |
|       Opc = X86::SETOr;
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
 | |
|             ResultReg + 1);
 | |
| 
 | |
|     UpdateValueMap(&I, ResultReg, 2);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86FastISel::FastLowerArguments() {
 | |
|   if (!FuncInfo.CanLowerReturn)
 | |
|     return false;
 | |
| 
 | |
|   const Function *F = FuncInfo.Fn;
 | |
|   if (F->isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   CallingConv::ID CC = F->getCallingConv();
 | |
|   if (CC != CallingConv::C)
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->isCallingConvWin64(CC))
 | |
|     return false;
 | |
| 
 | |
|   if (!Subtarget->is64Bit())
 | |
|     return false;
 | |
|   
 | |
|   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
 | |
|   unsigned Idx = 1;
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I, ++Idx) {
 | |
|     if (Idx > 6)
 | |
|       return false;
 | |
| 
 | |
|     if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
 | |
|         F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
 | |
|         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
 | |
|         F->getAttributes().hasAttribute(Idx, Attribute::Nest))
 | |
|       return false;
 | |
| 
 | |
|     Type *ArgTy = I->getType();
 | |
|     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
 | |
|       return false;
 | |
| 
 | |
|     EVT ArgVT = TLI.getValueType(ArgTy);
 | |
|     if (!ArgVT.isSimple()) return false;
 | |
|     switch (ArgVT.getSimpleVT().SimpleTy) {
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static const MCPhysReg GPR32ArgRegs[] = {
 | |
|     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
 | |
|   };
 | |
|   static const MCPhysReg GPR64ArgRegs[] = {
 | |
|     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
 | |
|   };
 | |
| 
 | |
|   Idx = 0;
 | |
|   const TargetRegisterClass *RC32 = TLI.getRegClassFor(MVT::i32);
 | |
|   const TargetRegisterClass *RC64 = TLI.getRegClassFor(MVT::i64);
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I, ++Idx) {
 | |
|     bool is32Bit = TLI.getValueType(I->getType()) == MVT::i32;
 | |
|     const TargetRegisterClass *RC = is32Bit ? RC32 : RC64;
 | |
|     unsigned SrcReg = is32Bit ? GPR32ArgRegs[Idx] : GPR64ArgRegs[Idx];
 | |
|     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
 | |
|     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
 | |
|     // Without this, EmitLiveInCopies may eliminate the livein if its only
 | |
|     // use is a bitcast (which isn't turned into an instruction).
 | |
|     unsigned ResultReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY),
 | |
|             ResultReg).addReg(DstReg, getKillRegState(true));
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectCall(const Instruction *I) {
 | |
|   const CallInst *CI = cast<CallInst>(I);
 | |
|   const Value *Callee = CI->getCalledValue();
 | |
| 
 | |
|   // Can't handle inline asm yet.
 | |
|   if (isa<InlineAsm>(Callee))
 | |
|     return false;
 | |
| 
 | |
|   // Handle intrinsic calls.
 | |
|   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
 | |
|     return X86VisitIntrinsicCall(*II);
 | |
| 
 | |
|   // Allow SelectionDAG isel to handle tail calls.
 | |
|   if (cast<CallInst>(I)->isTailCall())
 | |
|     return false;
 | |
| 
 | |
|   return DoSelectCall(I, nullptr);
 | |
| }
 | |
| 
 | |
| static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget,
 | |
|                                            const ImmutableCallSite &CS) {
 | |
|   if (Subtarget.is64Bit())
 | |
|     return 0;
 | |
|   if (Subtarget.getTargetTriple().isOSMSVCRT())
 | |
|     return 0;
 | |
|   CallingConv::ID CC = CS.getCallingConv();
 | |
|   if (CC == CallingConv::Fast || CC == CallingConv::GHC)
 | |
|     return 0;
 | |
|   if (!CS.paramHasAttr(1, Attribute::StructRet))
 | |
|     return 0;
 | |
|   if (CS.paramHasAttr(1, Attribute::InReg))
 | |
|     return 0;
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| // Select either a call, or an llvm.memcpy/memmove/memset intrinsic
 | |
| bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
 | |
|   const CallInst *CI = cast<CallInst>(I);
 | |
|   const Value *Callee = CI->getCalledValue();
 | |
| 
 | |
|   // Handle only C and fastcc calling conventions for now.
 | |
|   ImmutableCallSite CS(CI);
 | |
|   CallingConv::ID CC = CS.getCallingConv();
 | |
|   bool isWin64 = Subtarget->isCallingConvWin64(CC);
 | |
|   if (CC != CallingConv::C && CC != CallingConv::Fast &&
 | |
|       CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 &&
 | |
|       CC != CallingConv::X86_64_SysV)
 | |
|     return false;
 | |
| 
 | |
|   // fastcc with -tailcallopt is intended to provide a guaranteed
 | |
|   // tail call optimization. Fastisel doesn't know how to do that.
 | |
|   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
 | |
|     return false;
 | |
| 
 | |
|   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | |
|   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | |
|   bool isVarArg = FTy->isVarArg();
 | |
| 
 | |
|   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
 | |
|   // x86-32.  Special handling for x86-64 is implemented.
 | |
|   if (isVarArg && isWin64)
 | |
|     return false;
 | |
| 
 | |
|   // Don't know about inalloca yet.
 | |
|   if (CS.hasInAllocaArgument())
 | |
|     return false;
 | |
| 
 | |
|   // Fast-isel doesn't know about callee-pop yet.
 | |
|   if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
 | |
|                        TM.Options.GuaranteedTailCallOpt))
 | |
|     return false;
 | |
| 
 | |
|   // Check whether the function can return without sret-demotion.
 | |
|   SmallVector<ISD::OutputArg, 4> Outs;
 | |
|   GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI);
 | |
|   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
 | |
|                                            *FuncInfo.MF, FTy->isVarArg(),
 | |
|                                            Outs, FTy->getContext());
 | |
|   if (!CanLowerReturn)
 | |
|     return false;
 | |
| 
 | |
|   // Materialize callee address in a register. FIXME: GV address can be
 | |
|   // handled with a CALLpcrel32 instead.
 | |
|   X86AddressMode CalleeAM;
 | |
|   if (!X86SelectCallAddress(Callee, CalleeAM))
 | |
|     return false;
 | |
|   unsigned CalleeOp = 0;
 | |
|   const GlobalValue *GV = nullptr;
 | |
|   if (CalleeAM.GV != nullptr) {
 | |
|     GV = CalleeAM.GV;
 | |
|   } else if (CalleeAM.Base.Reg != 0) {
 | |
|     CalleeOp = CalleeAM.Base.Reg;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Deal with call operands first.
 | |
|   SmallVector<const Value *, 8> ArgVals;
 | |
|   SmallVector<unsigned, 8> Args;
 | |
|   SmallVector<MVT, 8> ArgVTs;
 | |
|   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
 | |
|   unsigned arg_size = CS.arg_size();
 | |
|   Args.reserve(arg_size);
 | |
|   ArgVals.reserve(arg_size);
 | |
|   ArgVTs.reserve(arg_size);
 | |
|   ArgFlags.reserve(arg_size);
 | |
|   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | |
|        i != e; ++i) {
 | |
|     // If we're lowering a mem intrinsic instead of a regular call, skip the
 | |
|     // last two arguments, which should not passed to the underlying functions.
 | |
|     if (MemIntName && e-i <= 2)
 | |
|       break;
 | |
|     Value *ArgVal = *i;
 | |
|     ISD::ArgFlagsTy Flags;
 | |
|     unsigned AttrInd = i - CS.arg_begin() + 1;
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
 | |
|       Flags.setSExt();
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
 | |
|       Flags.setZExt();
 | |
| 
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
 | |
|       PointerType *Ty = cast<PointerType>(ArgVal->getType());
 | |
|       Type *ElementTy = Ty->getElementType();
 | |
|       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
 | |
|       unsigned FrameAlign = CS.getParamAlignment(AttrInd);
 | |
|       if (!FrameAlign)
 | |
|         FrameAlign = TLI.getByValTypeAlignment(ElementTy);
 | |
|       Flags.setByVal();
 | |
|       Flags.setByValSize(FrameSize);
 | |
|       Flags.setByValAlign(FrameAlign);
 | |
|       if (!IsMemcpySmall(FrameSize))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::InReg))
 | |
|       Flags.setInReg();
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::Nest))
 | |
|       Flags.setNest();
 | |
| 
 | |
|     // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
 | |
|     // instruction.  This is safe because it is common to all fastisel supported
 | |
|     // calling conventions on x86.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
 | |
|       if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
 | |
|           CI->getBitWidth() == 16) {
 | |
|         if (Flags.isSExt())
 | |
|           ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
 | |
|         else
 | |
|           ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned ArgReg;
 | |
| 
 | |
|     // Passing bools around ends up doing a trunc to i1 and passing it.
 | |
|     // Codegen this as an argument + "and 1".
 | |
|     if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
 | |
|         cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
 | |
|         ArgVal->hasOneUse()) {
 | |
|       ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
 | |
|       ArgReg = getRegForValue(ArgVal);
 | |
|       if (ArgReg == 0) return false;
 | |
| 
 | |
|       MVT ArgVT;
 | |
|       if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
 | |
| 
 | |
|       ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
 | |
|                            ArgVal->hasOneUse(), 1);
 | |
|     } else {
 | |
|       ArgReg = getRegForValue(ArgVal);
 | |
|     }
 | |
| 
 | |
|     if (ArgReg == 0) return false;
 | |
| 
 | |
|     Type *ArgTy = ArgVal->getType();
 | |
|     MVT ArgVT;
 | |
|     if (!isTypeLegal(ArgTy, ArgVT))
 | |
|       return false;
 | |
|     if (ArgVT == MVT::x86mmx)
 | |
|       return false;
 | |
|     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
 | |
|     Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|     Args.push_back(ArgReg);
 | |
|     ArgVals.push_back(ArgVal);
 | |
|     ArgVTs.push_back(ArgVT);
 | |
|     ArgFlags.push_back(Flags);
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
 | |
|                  I->getParent()->getContext());
 | |
| 
 | |
|   // Allocate shadow area for Win64
 | |
|   if (isWin64)
 | |
|     CCInfo.AllocateStack(32, 8);
 | |
| 
 | |
|   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   // Issue CALLSEQ_START
 | |
|   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
 | |
|     .addImm(NumBytes);
 | |
| 
 | |
|   // Process argument: walk the register/memloc assignments, inserting
 | |
|   // copies / loads.
 | |
|   SmallVector<unsigned, 4> RegArgs;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     unsigned Arg = Args[VA.getValNo()];
 | |
|     EVT ArgVT = ArgVTs[VA.getValNo()];
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt: {
 | |
|       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
 | |
|              "Unexpected extend");
 | |
|       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
 | |
|                                        Arg, ArgVT, Arg);
 | |
|       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::ZExt: {
 | |
|       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
 | |
|              "Unexpected extend");
 | |
|       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
 | |
|                                        Arg, ArgVT, Arg);
 | |
|       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::AExt: {
 | |
|       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
 | |
|              "Unexpected extend");
 | |
|       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
 | |
|                                        Arg, ArgVT, Arg);
 | |
|       if (!Emitted)
 | |
|         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
 | |
|                                     Arg, ArgVT, Arg);
 | |
|       if (!Emitted)
 | |
|         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
 | |
|                                     Arg, ArgVT, Arg);
 | |
| 
 | |
|       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::BCvt: {
 | |
|       unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
 | |
|                                ISD::BITCAST, Arg, /*TODO: Kill=*/false);
 | |
|       assert(BC != 0 && "Failed to emit a bitcast!");
 | |
|       Arg = BC;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::VExt: 
 | |
|       // VExt has not been implemented, so this should be impossible to reach
 | |
|       // for now.  However, fallback to Selection DAG isel once implemented.
 | |
|       return false;
 | |
|     case CCValAssign::Indirect:
 | |
|       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
 | |
|       // support this.
 | |
|       return false;
 | |
|     case CCValAssign::FPExt:
 | |
|       llvm_unreachable("Unexpected loc info!");
 | |
|     }
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
 | |
|       RegArgs.push_back(VA.getLocReg());
 | |
|     } else {
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|       X86AddressMode AM;
 | |
|       const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>(
 | |
|           getTargetMachine()->getRegisterInfo());
 | |
|       AM.Base.Reg = RegInfo->getStackRegister();
 | |
|       AM.Disp = LocMemOffset;
 | |
|       const Value *ArgVal = ArgVals[VA.getValNo()];
 | |
|       ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         X86AddressMode SrcAM;
 | |
|         SrcAM.Base.Reg = Arg;
 | |
|         bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
 | |
|         assert(Res && "memcpy length already checked!"); (void)Res;
 | |
|       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
 | |
|         // If this is a really simple value, emit this with the Value* version
 | |
|         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
 | |
|         // as it can cause us to reevaluate the argument.
 | |
|         if (!X86FastEmitStore(ArgVT, ArgVal, AM))
 | |
|           return false;
 | |
|       } else {
 | |
|         if (!X86FastEmitStore(ArgVT, Arg, AM))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | |
|   // GOT pointer.
 | |
|   if (Subtarget->isPICStyleGOT()) {
 | |
|     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->is64Bit() && isVarArg && !isWin64) {
 | |
|     // Count the number of XMM registers allocated.
 | |
|     static const MCPhysReg XMMArgRegs[] = {
 | |
|       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|     };
 | |
|     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
 | |
|             X86::AL).addImm(NumXMMRegs);
 | |
|   }
 | |
| 
 | |
|   // Issue the call.
 | |
|   MachineInstrBuilder MIB;
 | |
|   if (CalleeOp) {
 | |
|     // Register-indirect call.
 | |
|     unsigned CallOpc;
 | |
|     if (Subtarget->is64Bit())
 | |
|       CallOpc = X86::CALL64r;
 | |
|     else
 | |
|       CallOpc = X86::CALL32r;
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
 | |
|       .addReg(CalleeOp);
 | |
| 
 | |
|   } else {
 | |
|     // Direct call.
 | |
|     assert(GV && "Not a direct call");
 | |
|     unsigned CallOpc;
 | |
|     if (Subtarget->is64Bit())
 | |
|       CallOpc = X86::CALL64pcrel32;
 | |
|     else
 | |
|       CallOpc = X86::CALLpcrel32;
 | |
| 
 | |
|     // See if we need any target-specific flags on the GV operand.
 | |
|     unsigned char OpFlags = 0;
 | |
| 
 | |
|     // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
 | |
|     // external symbols most go through the PLT in PIC mode.  If the symbol
 | |
|     // has hidden or protected visibility, or if it is static or local, then
 | |
|     // we don't need to use the PLT - we can directly call it.
 | |
|     if (Subtarget->isTargetELF() &&
 | |
|         TM.getRelocationModel() == Reloc::PIC_ &&
 | |
|         GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
 | |
|       OpFlags = X86II::MO_PLT;
 | |
|     } else if (Subtarget->isPICStyleStubAny() &&
 | |
|                (GV->isDeclaration() || GV->isWeakForLinker()) &&
 | |
|                (!Subtarget->getTargetTriple().isMacOSX() ||
 | |
|                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
 | |
|       // PC-relative references to external symbols should go through $stub,
 | |
|       // unless we're building with the leopard linker or later, which
 | |
|       // automatically synthesizes these stubs.
 | |
|       OpFlags = X86II::MO_DARWIN_STUB;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
 | |
|     if (MemIntName)
 | |
|       MIB.addExternalSymbol(MemIntName, OpFlags);
 | |
|     else
 | |
|       MIB.addGlobalAddress(GV, 0, OpFlags);
 | |
|   }
 | |
| 
 | |
|   // Add a register mask with the call-preserved registers.
 | |
|   // Proper defs for return values will be added by setPhysRegsDeadExcept().
 | |
|   MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
 | |
| 
 | |
|   // Add an implicit use GOT pointer in EBX.
 | |
|   if (Subtarget->isPICStyleGOT())
 | |
|     MIB.addReg(X86::EBX, RegState::Implicit);
 | |
| 
 | |
|   if (Subtarget->is64Bit() && isVarArg && !isWin64)
 | |
|     MIB.addReg(X86::AL, RegState::Implicit);
 | |
| 
 | |
|   // Add implicit physical register uses to the call.
 | |
|   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
 | |
|     MIB.addReg(RegArgs[i], RegState::Implicit);
 | |
| 
 | |
|   // Issue CALLSEQ_END
 | |
|   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
 | |
|   const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
 | |
|     .addImm(NumBytes).addImm(NumBytesCallee);
 | |
| 
 | |
|   // Build info for return calling conv lowering code.
 | |
|   // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
 | |
|   SmallVector<ISD::InputArg, 32> Ins;
 | |
|   SmallVector<EVT, 4> RetTys;
 | |
|   ComputeValueVTs(TLI, I->getType(), RetTys);
 | |
|   for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
 | |
|     EVT VT = RetTys[i];
 | |
|     MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
 | |
|     unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
 | |
|     for (unsigned j = 0; j != NumRegs; ++j) {
 | |
|       ISD::InputArg MyFlags;
 | |
|       MyFlags.VT = RegisterVT;
 | |
|       MyFlags.Used = !CS.getInstruction()->use_empty();
 | |
|       if (CS.paramHasAttr(0, Attribute::SExt))
 | |
|         MyFlags.Flags.setSExt();
 | |
|       if (CS.paramHasAttr(0, Attribute::ZExt))
 | |
|         MyFlags.Flags.setZExt();
 | |
|       if (CS.paramHasAttr(0, Attribute::InReg))
 | |
|         MyFlags.Flags.setInReg();
 | |
|       Ins.push_back(MyFlags);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now handle call return values.
 | |
|   SmallVector<unsigned, 4> UsedRegs;
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
 | |
|                     I->getParent()->getContext());
 | |
|   unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
 | |
|   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     EVT CopyVT = RVLocs[i].getValVT();
 | |
|     unsigned CopyReg = ResultReg + i;
 | |
| 
 | |
|     // If this is a call to a function that returns an fp value on the x87 fp
 | |
|     // stack, but where we prefer to use the value in xmm registers, copy it
 | |
|     // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
 | |
|     if ((RVLocs[i].getLocReg() == X86::ST0 ||
 | |
|          RVLocs[i].getLocReg() == X86::ST1)) {
 | |
|       if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
 | |
|         CopyVT = MVT::f80;
 | |
|         CopyReg = createResultReg(&X86::RFP80RegClass);
 | |
|       }
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(X86::FpPOP_RETVAL), CopyReg);
 | |
|     } else {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY),
 | |
|               CopyReg).addReg(RVLocs[i].getLocReg());
 | |
|       UsedRegs.push_back(RVLocs[i].getLocReg());
 | |
|     }
 | |
| 
 | |
|     if (CopyVT != RVLocs[i].getValVT()) {
 | |
|       // Round the F80 the right size, which also moves to the appropriate xmm
 | |
|       // register. This is accomplished by storing the F80 value in memory and
 | |
|       // then loading it back. Ewww...
 | |
|       EVT ResVT = RVLocs[i].getValVT();
 | |
|       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
 | |
|       unsigned MemSize = ResVT.getSizeInBits()/8;
 | |
|       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
 | |
|       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                 TII.get(Opc)), FI)
 | |
|         .addReg(CopyReg);
 | |
|       Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
 | |
|       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                 TII.get(Opc), ResultReg + i), FI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (RVLocs.size())
 | |
|     UpdateValueMap(I, ResultReg, RVLocs.size());
 | |
| 
 | |
|   // Set all unused physreg defs as dead.
 | |
|   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool
 | |
| X86FastISel::TargetSelectInstruction(const Instruction *I)  {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: break;
 | |
|   case Instruction::Load:
 | |
|     return X86SelectLoad(I);
 | |
|   case Instruction::Store:
 | |
|     return X86SelectStore(I);
 | |
|   case Instruction::Ret:
 | |
|     return X86SelectRet(I);
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|     return X86SelectCmp(I);
 | |
|   case Instruction::ZExt:
 | |
|     return X86SelectZExt(I);
 | |
|   case Instruction::Br:
 | |
|     return X86SelectBranch(I);
 | |
|   case Instruction::Call:
 | |
|     return X86SelectCall(I);
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::Shl:
 | |
|     return X86SelectShift(I);
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::URem:
 | |
|     return X86SelectDivRem(I);
 | |
|   case Instruction::Select:
 | |
|     return X86SelectSelect(I);
 | |
|   case Instruction::Trunc:
 | |
|     return X86SelectTrunc(I);
 | |
|   case Instruction::FPExt:
 | |
|     return X86SelectFPExt(I);
 | |
|   case Instruction::FPTrunc:
 | |
|     return X86SelectFPTrunc(I);
 | |
|   case Instruction::IntToPtr: // Deliberate fall-through.
 | |
|   case Instruction::PtrToInt: {
 | |
|     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|     EVT DstVT = TLI.getValueType(I->getType());
 | |
|     if (DstVT.bitsGT(SrcVT))
 | |
|       return X86SelectZExt(I);
 | |
|     if (DstVT.bitsLT(SrcVT))
 | |
|       return X86SelectTrunc(I);
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0) return false;
 | |
|     UpdateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(C->getType(), VT))
 | |
|     return 0;
 | |
| 
 | |
|   // Can't handle alternate code models yet.
 | |
|   if (TM.getCodeModel() != CodeModel::Small)
 | |
|     return 0;
 | |
| 
 | |
|   // Get opcode and regclass of the output for the given load instruction.
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   switch (VT.SimpleTy) {
 | |
|   default: return 0;
 | |
|   case MVT::i8:
 | |
|     Opc = X86::MOV8rm;
 | |
|     RC  = &X86::GR8RegClass;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     Opc = X86::MOV16rm;
 | |
|     RC  = &X86::GR16RegClass;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     Opc = X86::MOV32rm;
 | |
|     RC  = &X86::GR32RegClass;
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     // Must be in x86-64 mode.
 | |
|     Opc = X86::MOV64rm;
 | |
|     RC  = &X86::GR64RegClass;
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|     if (X86ScalarSSEf32) {
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
 | |
|       RC  = &X86::FR32RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp32m;
 | |
|       RC  = &X86::RFP32RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (X86ScalarSSEf64) {
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
 | |
|       RC  = &X86::FR64RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp64m;
 | |
|       RC  = &X86::RFP64RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f80:
 | |
|     // No f80 support yet.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Materialize addresses with LEA instructions.
 | |
|   if (isa<GlobalValue>(C)) {
 | |
|     X86AddressMode AM;
 | |
|     if (X86SelectAddress(C, AM)) {
 | |
|       // If the expression is just a basereg, then we're done, otherwise we need
 | |
|       // to emit an LEA.
 | |
|       if (AM.BaseType == X86AddressMode::RegBase &&
 | |
|           AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
 | |
|         return AM.Base.Reg;
 | |
| 
 | |
|       Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
 | |
|       unsigned ResultReg = createResultReg(RC);
 | |
|       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                              TII.get(Opc), ResultReg), AM);
 | |
|       return ResultReg;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // MachineConstantPool wants an explicit alignment.
 | |
|   unsigned Align = DL.getPrefTypeAlignment(C->getType());
 | |
|   if (Align == 0) {
 | |
|     // Alignment of vector types.  FIXME!
 | |
|     Align = DL.getTypeAllocSize(C->getType());
 | |
|   }
 | |
| 
 | |
|   // x86-32 PIC requires a PIC base register for constant pools.
 | |
|   unsigned PICBase = 0;
 | |
|   unsigned char OpFlag = 0;
 | |
|   if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
 | |
|     OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | |
|     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | |
|   } else if (Subtarget->isPICStyleGOT()) {
 | |
|     OpFlag = X86II::MO_GOTOFF;
 | |
|     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | |
|   } else if (Subtarget->isPICStyleRIPRel() &&
 | |
|              TM.getCodeModel() == CodeModel::Small) {
 | |
|     PICBase = X86::RIP;
 | |
|   }
 | |
| 
 | |
|   // Create the load from the constant pool.
 | |
|   unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                    TII.get(Opc), ResultReg),
 | |
|                            MCPOffset, PICBase, OpFlag);
 | |
| 
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
 | |
|   // Fail on dynamic allocas. At this point, getRegForValue has already
 | |
|   // checked its CSE maps, so if we're here trying to handle a dynamic
 | |
|   // alloca, we're not going to succeed. X86SelectAddress has a
 | |
|   // check for dynamic allocas, because it's called directly from
 | |
|   // various places, but TargetMaterializeAlloca also needs a check
 | |
|   // in order to avoid recursion between getRegForValue,
 | |
|   // X86SelectAddrss, and TargetMaterializeAlloca.
 | |
|   if (!FuncInfo.StaticAllocaMap.count(C))
 | |
|     return 0;
 | |
|   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(C, AM))
 | |
|     return 0;
 | |
|   unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
 | |
|   const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                          TII.get(Opc), ResultReg), AM);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(CF->getType(), VT))
 | |
|     return 0;
 | |
| 
 | |
|   // Get opcode and regclass for the given zero.
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   switch (VT.SimpleTy) {
 | |
|   default: return 0;
 | |
|   case MVT::f32:
 | |
|     if (X86ScalarSSEf32) {
 | |
|       Opc = X86::FsFLD0SS;
 | |
|       RC  = &X86::FR32RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp032;
 | |
|       RC  = &X86::RFP32RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (X86ScalarSSEf64) {
 | |
|       Opc = X86::FsFLD0SD;
 | |
|       RC  = &X86::FR64RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp064;
 | |
|       RC  = &X86::RFP64RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f80:
 | |
|     // No f80 support yet.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
 | |
|                                       const LoadInst *LI) {
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(LI->getOperand(0), AM))
 | |
|     return false;
 | |
| 
 | |
|   const X86InstrInfo &XII = (const X86InstrInfo&)TII;
 | |
| 
 | |
|   unsigned Size = DL.getTypeAllocSize(LI->getType());
 | |
|   unsigned Alignment = LI->getAlignment();
 | |
| 
 | |
|   SmallVector<MachineOperand, 8> AddrOps;
 | |
|   AM.getFullAddress(AddrOps);
 | |
| 
 | |
|   MachineInstr *Result =
 | |
|     XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
 | |
|   if (!Result) return false;
 | |
| 
 | |
|   FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
 | |
|   MI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace llvm {
 | |
|   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
 | |
|                                 const TargetLibraryInfo *libInfo) {
 | |
|     return new X86FastISel(funcInfo, libInfo);
 | |
|   }
 | |
| }
 |