mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	needs arbitrary-element removal. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52654 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			556 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			556 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements a top-down list scheduler, using standard algorithms.
 | 
						|
// The basic approach uses a priority queue of available nodes to schedule.
 | 
						|
// One at a time, nodes are taken from the priority queue (thus in priority
 | 
						|
// order), checked for legality to schedule, and emitted if legal.
 | 
						|
//
 | 
						|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
 | 
						|
// pipeline or resource constraints) or because an input to the instruction has
 | 
						|
// not completed execution.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "pre-RA-sched"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/PriorityQueue.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <climits>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumNoops , "Number of noops inserted");
 | 
						|
STATISTIC(NumStalls, "Number of pipeline stalls");
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
  tdListDAGScheduler("list-td", "  Top-down list scheduler",
 | 
						|
                     createTDListDAGScheduler);
 | 
						|
   
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleDAGList - The actual list scheduler implementation.  This supports
 | 
						|
/// top-down scheduling.
 | 
						|
///
 | 
						|
class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAG {
 | 
						|
private:
 | 
						|
  /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
  ///
 | 
						|
  SchedulingPriorityQueue *AvailableQueue;
 | 
						|
  
 | 
						|
  /// PendingQueue - This contains all of the instructions whose operands have
 | 
						|
  /// been issued, but their results are not ready yet (due to the latency of
 | 
						|
  /// the operation).  Once the operands becomes available, the instruction is
 | 
						|
  /// added to the AvailableQueue.  This keeps track of each SUnit and the
 | 
						|
  /// number of cycles left to execute before the operation is available.
 | 
						|
  std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
 | 
						|
 | 
						|
  /// HazardRec - The hazard recognizer to use.
 | 
						|
  HazardRecognizer *HazardRec;
 | 
						|
 | 
						|
public:
 | 
						|
  ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
 | 
						|
                  const TargetMachine &tm,
 | 
						|
                  SchedulingPriorityQueue *availqueue,
 | 
						|
                  HazardRecognizer *HR)
 | 
						|
    : ScheduleDAG(dag, bb, tm),
 | 
						|
      AvailableQueue(availqueue), HazardRec(HR) {
 | 
						|
    }
 | 
						|
 | 
						|
  ~ScheduleDAGList() {
 | 
						|
    delete HazardRec;
 | 
						|
    delete AvailableQueue;
 | 
						|
  }
 | 
						|
 | 
						|
  void Schedule();
 | 
						|
 | 
						|
private:
 | 
						|
  void ReleaseSucc(SUnit *SuccSU, bool isChain);
 | 
						|
  void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | 
						|
  void ListScheduleTopDown();
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
HazardRecognizer::~HazardRecognizer() {}
 | 
						|
 | 
						|
 | 
						|
/// Schedule - Schedule the DAG using list scheduling.
 | 
						|
void ScheduleDAGList::Schedule() {
 | 
						|
  DOUT << "********** List Scheduling **********\n";
 | 
						|
  
 | 
						|
  // Build scheduling units.
 | 
						|
  BuildSchedUnits();
 | 
						|
 | 
						|
  AvailableQueue->initNodes(SUnits);
 | 
						|
  
 | 
						|
  ListScheduleTopDown();
 | 
						|
  
 | 
						|
  AvailableQueue->releaseState();
 | 
						|
  
 | 
						|
  DOUT << "*** Final schedule ***\n";
 | 
						|
  DEBUG(dumpSchedule());
 | 
						|
  DOUT << "\n";
 | 
						|
  
 | 
						|
  // Emit in scheduled order
 | 
						|
  EmitSchedule();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Top-Down Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | 
						|
/// the PendingQueue if the count reaches zero.
 | 
						|
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
 | 
						|
  SuccSU->NumPredsLeft--;
 | 
						|
  
 | 
						|
  assert(SuccSU->NumPredsLeft >= 0 &&
 | 
						|
         "List scheduling internal error");
 | 
						|
  
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    // Compute how many cycles it will be before this actually becomes
 | 
						|
    // available.  This is the max of the start time of all predecessors plus
 | 
						|
    // their latencies.
 | 
						|
    unsigned AvailableCycle = 0;
 | 
						|
    for (SUnit::pred_iterator I = SuccSU->Preds.begin(),
 | 
						|
         E = SuccSU->Preds.end(); I != E; ++I) {
 | 
						|
      // If this is a token edge, we don't need to wait for the latency of the
 | 
						|
      // preceeding instruction (e.g. a long-latency load) unless there is also
 | 
						|
      // some other data dependence.
 | 
						|
      SUnit &Pred = *I->Dep;
 | 
						|
      unsigned PredDoneCycle = Pred.Cycle;
 | 
						|
      if (!I->isCtrl)
 | 
						|
        PredDoneCycle += Pred.Latency;
 | 
						|
      else if (Pred.Latency)
 | 
						|
        PredDoneCycle += 1;
 | 
						|
 | 
						|
      AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
 | 
						|
    }
 | 
						|
    
 | 
						|
    PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its successors. If a successor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  
 | 
						|
  Sequence.push_back(SU);
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
  
 | 
						|
  // Bottom up: release successors.
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ReleaseSucc(I->Dep, I->isCtrl);
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGList::ListScheduleTopDown() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
 | 
						|
  // All leaves to Available queue.
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    // It is available if it has no predecessors.
 | 
						|
    if (SUnits[i].Preds.empty()) {
 | 
						|
      AvailableQueue->push(&SUnits[i]);
 | 
						|
      SUnits[i].isAvailable = SUnits[i].isPending = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  Sequence.reserve(SUnits.size());
 | 
						|
  while (!AvailableQueue->empty() || !PendingQueue.empty()) {
 | 
						|
    // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
    // so, add them to the available queue.
 | 
						|
    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
 | 
						|
      if (PendingQueue[i].first == CurCycle) {
 | 
						|
        AvailableQueue->push(PendingQueue[i].second);
 | 
						|
        PendingQueue[i].second->isAvailable = true;
 | 
						|
        PendingQueue[i] = PendingQueue.back();
 | 
						|
        PendingQueue.pop_back();
 | 
						|
        --i; --e;
 | 
						|
      } else {
 | 
						|
        assert(PendingQueue[i].first > CurCycle && "Negative latency?");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If there are no instructions available, don't try to issue anything, and
 | 
						|
    // don't advance the hazard recognizer.
 | 
						|
    if (AvailableQueue->empty()) {
 | 
						|
      ++CurCycle;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SUnit *FoundSUnit = 0;
 | 
						|
    SDNode *FoundNode = 0;
 | 
						|
    
 | 
						|
    bool HasNoopHazards = false;
 | 
						|
    while (!AvailableQueue->empty()) {
 | 
						|
      SUnit *CurSUnit = AvailableQueue->pop();
 | 
						|
      
 | 
						|
      // Get the node represented by this SUnit.
 | 
						|
      FoundNode = CurSUnit->Node;
 | 
						|
      
 | 
						|
      // If this is a pseudo op, like copyfromreg, look to see if there is a
 | 
						|
      // real target node flagged to it.  If so, use the target node.
 | 
						|
      for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size(); 
 | 
						|
           FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
 | 
						|
        FoundNode = CurSUnit->FlaggedNodes[i];
 | 
						|
      
 | 
						|
      HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
 | 
						|
      if (HT == HazardRecognizer::NoHazard) {
 | 
						|
        FoundSUnit = CurSUnit;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Remember if this is a noop hazard.
 | 
						|
      HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
 | 
						|
      
 | 
						|
      NotReady.push_back(CurSUnit);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    if (!NotReady.empty()) {
 | 
						|
      AvailableQueue->push_all(NotReady);
 | 
						|
      NotReady.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a node to schedule, do it now.
 | 
						|
    if (FoundSUnit) {
 | 
						|
      ScheduleNodeTopDown(FoundSUnit, CurCycle);
 | 
						|
      HazardRec->EmitInstruction(FoundNode);
 | 
						|
      FoundSUnit->isScheduled = true;
 | 
						|
      AvailableQueue->ScheduledNode(FoundSUnit);
 | 
						|
 | 
						|
      // If this is a pseudo-op node, we don't want to increment the current
 | 
						|
      // cycle.
 | 
						|
      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
 | 
						|
        ++CurCycle;        
 | 
						|
    } else if (!HasNoopHazards) {
 | 
						|
      // Otherwise, we have a pipeline stall, but no other problem, just advance
 | 
						|
      // the current cycle and try again.
 | 
						|
      DOUT << "*** Advancing cycle, no work to do\n";
 | 
						|
      HazardRec->AdvanceCycle();
 | 
						|
      ++NumStalls;
 | 
						|
      ++CurCycle;
 | 
						|
    } else {
 | 
						|
      // Otherwise, we have no instructions to issue and we have instructions
 | 
						|
      // that will fault if we don't do this right.  This is the case for
 | 
						|
      // processors without pipeline interlocks and other cases.
 | 
						|
      DOUT << "*** Emitting noop\n";
 | 
						|
      HazardRec->EmitNoop();
 | 
						|
      Sequence.push_back(0);   // NULL SUnit* -> noop
 | 
						|
      ++NumNoops;
 | 
						|
      ++CurCycle;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (SUnits[i].NumPredsLeft != 0) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(!AnyNotSched);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                    LatencyPriorityQueue Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is a SchedulingPriorityQueue that schedules using latency information to
 | 
						|
// reduce the length of the critical path through the basic block.
 | 
						|
// 
 | 
						|
namespace {
 | 
						|
  class LatencyPriorityQueue;
 | 
						|
  
 | 
						|
  /// Sorting functions for the Available queue.
 | 
						|
  struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    LatencyPriorityQueue *PQ;
 | 
						|
    latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
 | 
						|
    latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
  class LatencyPriorityQueue : public SchedulingPriorityQueue {
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // Latencies - The latency (max of latency from this node to the bb exit)
 | 
						|
    // for each node.
 | 
						|
    std::vector<int> Latencies;
 | 
						|
 | 
						|
    /// NumNodesSolelyBlocking - This vector contains, for every node in the
 | 
						|
    /// Queue, the number of nodes that the node is the sole unscheduled
 | 
						|
    /// predecessor for.  This is used as a tie-breaker heuristic for better
 | 
						|
    /// mobility.
 | 
						|
    std::vector<unsigned> NumNodesSolelyBlocking;
 | 
						|
 | 
						|
    PriorityQueue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
 | 
						|
public:
 | 
						|
    LatencyPriorityQueue() : Queue(latency_sort(this)) {
 | 
						|
    }
 | 
						|
    
 | 
						|
    void initNodes(std::vector<SUnit> &sunits) {
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculatePriorities();
 | 
						|
    }
 | 
						|
 | 
						|
    void addNode(const SUnit *SU) {
 | 
						|
      Latencies.resize(SUnits->size(), -1);
 | 
						|
      NumNodesSolelyBlocking.resize(SUnits->size(), 0);
 | 
						|
      CalcLatency(*SU);
 | 
						|
    }
 | 
						|
 | 
						|
    void updateNode(const SUnit *SU) {
 | 
						|
      Latencies[SU->NodeNum] = -1;
 | 
						|
      CalcLatency(*SU);
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      Latencies.clear();
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned getLatency(unsigned NodeNum) const {
 | 
						|
      assert(NodeNum < Latencies.size());
 | 
						|
      return Latencies[NodeNum];
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
 | 
						|
      assert(NodeNum < NumNodesSolelyBlocking.size());
 | 
						|
      return NumNodesSolelyBlocking[NodeNum];
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned size() const { return Queue.size(); }
 | 
						|
 | 
						|
    bool empty() const { return Queue.empty(); }
 | 
						|
    
 | 
						|
    virtual void push(SUnit *U) {
 | 
						|
      push_impl(U);
 | 
						|
    }
 | 
						|
    void push_impl(SUnit *U);
 | 
						|
    
 | 
						|
    void push_all(const std::vector<SUnit *> &Nodes) {
 | 
						|
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | 
						|
        push_impl(Nodes[i]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    SUnit *pop() {
 | 
						|
      if (empty()) return NULL;
 | 
						|
      SUnit *V = Queue.top();
 | 
						|
      Queue.pop();
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    void remove(SUnit *SU) {
 | 
						|
      assert(!Queue.empty() && "Not in queue!");
 | 
						|
      Queue.erase_one(SU);
 | 
						|
    }
 | 
						|
 | 
						|
    // ScheduledNode - As nodes are scheduled, we look to see if there are any
 | 
						|
    // successor nodes that have a single unscheduled predecessor.  If so, that
 | 
						|
    // single predecessor has a higher priority, since scheduling it will make
 | 
						|
    // the node available.
 | 
						|
    void ScheduledNode(SUnit *Node);
 | 
						|
 | 
						|
private:
 | 
						|
    void CalculatePriorities();
 | 
						|
    int CalcLatency(const SUnit &SU);
 | 
						|
    void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
 | 
						|
    SUnit *getSingleUnscheduledPred(SUnit *SU);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
 | 
						|
  unsigned LHSNum = LHS->NodeNum;
 | 
						|
  unsigned RHSNum = RHS->NodeNum;
 | 
						|
 | 
						|
  // The most important heuristic is scheduling the critical path.
 | 
						|
  unsigned LHSLatency = PQ->getLatency(LHSNum);
 | 
						|
  unsigned RHSLatency = PQ->getLatency(RHSNum);
 | 
						|
  if (LHSLatency < RHSLatency) return true;
 | 
						|
  if (LHSLatency > RHSLatency) return false;
 | 
						|
  
 | 
						|
  // After that, if two nodes have identical latencies, look to see if one will
 | 
						|
  // unblock more other nodes than the other.
 | 
						|
  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
 | 
						|
  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
 | 
						|
  if (LHSBlocked < RHSBlocked) return true;
 | 
						|
  if (LHSBlocked > RHSBlocked) return false;
 | 
						|
  
 | 
						|
  // Finally, just to provide a stable ordering, use the node number as a
 | 
						|
  // deciding factor.
 | 
						|
  return LHSNum < RHSNum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CalcNodePriority - Calculate the maximal path from the node to the exit.
 | 
						|
///
 | 
						|
int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
 | 
						|
  int &Latency = Latencies[SU.NodeNum];
 | 
						|
  if (Latency != -1)
 | 
						|
    return Latency;
 | 
						|
 | 
						|
  std::vector<const SUnit*> WorkList;
 | 
						|
  WorkList.push_back(&SU);
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    const SUnit *Cur = WorkList.back();
 | 
						|
    bool AllDone = true;
 | 
						|
    int MaxSuccLatency = 0;
 | 
						|
    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      int SuccLatency = Latencies[I->Dep->NodeNum];
 | 
						|
      if (SuccLatency == -1) {
 | 
						|
        AllDone = false;
 | 
						|
        WorkList.push_back(I->Dep);
 | 
						|
      } else {
 | 
						|
        MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (AllDone) {
 | 
						|
      Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
 | 
						|
      WorkList.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Latency;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculatePriorities - Calculate priorities of all scheduling units.
 | 
						|
void LatencyPriorityQueue::CalculatePriorities() {
 | 
						|
  Latencies.assign(SUnits->size(), -1);
 | 
						|
  NumNodesSolelyBlocking.assign(SUnits->size(), 0);
 | 
						|
 | 
						|
  // For each node, calculate the maximal path from the node to the exit.
 | 
						|
  std::vector<std::pair<const SUnit*, unsigned> > WorkList;
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | 
						|
    const SUnit *SU = &(*SUnits)[i];
 | 
						|
    if (SU->Succs.empty())
 | 
						|
      WorkList.push_back(std::make_pair(SU, 0U));
 | 
						|
  }
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    const SUnit *SU = WorkList.back().first;
 | 
						|
    unsigned SuccLat = WorkList.back().second;
 | 
						|
    WorkList.pop_back();
 | 
						|
    int &Latency = Latencies[SU->NodeNum];
 | 
						|
    if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
 | 
						|
      Latency = SU->Latency + SuccLat;
 | 
						|
      for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | 
						|
           I != E; ++I)
 | 
						|
        WorkList.push_back(std::make_pair(I->Dep, Latency));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
 | 
						|
/// of SU, return it, otherwise return null.
 | 
						|
SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
 | 
						|
  SUnit *OnlyAvailablePred = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SUnit &Pred = *I->Dep;
 | 
						|
    if (!Pred.isScheduled) {
 | 
						|
      // We found an available, but not scheduled, predecessor.  If it's the
 | 
						|
      // only one we have found, keep track of it... otherwise give up.
 | 
						|
      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
 | 
						|
        return 0;
 | 
						|
      OnlyAvailablePred = &Pred;
 | 
						|
    }
 | 
						|
  }
 | 
						|
      
 | 
						|
  return OnlyAvailablePred;
 | 
						|
}
 | 
						|
 | 
						|
void LatencyPriorityQueue::push_impl(SUnit *SU) {
 | 
						|
  // Look at all of the successors of this node.  Count the number of nodes that
 | 
						|
  // this node is the sole unscheduled node for.
 | 
						|
  unsigned NumNodesBlocking = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (getSingleUnscheduledPred(I->Dep) == SU)
 | 
						|
      ++NumNodesBlocking;
 | 
						|
  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
 | 
						|
  
 | 
						|
  Queue.push(SU);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ScheduledNode - As nodes are scheduled, we look to see if there are any
 | 
						|
// successor nodes that have a single unscheduled predecessor.  If so, that
 | 
						|
// single predecessor has a higher priority, since scheduling it will make
 | 
						|
// the node available.
 | 
						|
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    AdjustPriorityOfUnscheduledPreds(I->Dep);
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
 | 
						|
/// scheduled.  If SU is not itself available, then there is at least one
 | 
						|
/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
 | 
						|
/// unscheduled predecessor, we want to increase its priority: it getting
 | 
						|
/// scheduled will make this node available, so it is better than some other
 | 
						|
/// node of the same priority that will not make a node available.
 | 
						|
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
 | 
						|
  if (SU->isPending) return;  // All preds scheduled.
 | 
						|
  
 | 
						|
  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
 | 
						|
  if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
 | 
						|
  
 | 
						|
  // Okay, we found a single predecessor that is available, but not scheduled.
 | 
						|
  // Since it is available, it must be in the priority queue.  First remove it.
 | 
						|
  remove(OnlyAvailablePred);
 | 
						|
 | 
						|
  // Reinsert the node into the priority queue, which recomputes its
 | 
						|
  // NumNodesSolelyBlocking value.
 | 
						|
  push(OnlyAvailablePred);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// createTDListDAGScheduler - This creates a top-down list scheduler with a
 | 
						|
/// new hazard recognizer. This scheduler takes ownership of the hazard
 | 
						|
/// recognizer and deletes it when done.
 | 
						|
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS,
 | 
						|
                                            SelectionDAG *DAG,
 | 
						|
                                            MachineBasicBlock *BB) {
 | 
						|
  return new ScheduleDAGList(*DAG, BB, DAG->getTarget(),
 | 
						|
                             new LatencyPriorityQueue(),
 | 
						|
                             IS->CreateTargetHazardRecognizer());
 | 
						|
}
 |