mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	AKA: Recompile *ALL* the source code! This one went much better. No manual edits here. I spot-checked for silliness and grep-checked for really broken edits and everything seemed good. It all still compiles. Yell if you see something that looks goofy. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169133 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			309 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			309 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the SparseSet class derived from the version described in
 | |
| // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
 | |
| // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec.  1993.
 | |
| //
 | |
| // A sparse set holds a small number of objects identified by integer keys from
 | |
| // a moderately sized universe. The sparse set uses more memory than other
 | |
| // containers in order to provide faster operations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_SPARSESET_H
 | |
| #define LLVM_ADT_SPARSESET_H
 | |
| 
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include <limits>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
 | |
| /// be uniquely converted to a small integer less than the set's universe. This
 | |
| /// class allows the set to hold values that differ from the set's key type as
 | |
| /// long as an index can still be derived from the value. SparseSet never
 | |
| /// directly compares ValueT, only their indices, so it can map keys to
 | |
| /// arbitrary values. SparseSetValTraits computes the index from the value
 | |
| /// object. To compute the index from a key, SparseSet uses a separate
 | |
| /// KeyFunctorT template argument.
 | |
| ///
 | |
| /// A simple type declaration, SparseSet<Type>, handles these cases:
 | |
| /// - unsigned key, identity index, identity value
 | |
| /// - unsigned key, identity index, fat value providing getSparseSetIndex()
 | |
| ///
 | |
| /// The type declaration SparseSet<Type, UnaryFunction> handles:
 | |
| /// - unsigned key, remapped index, identity value (virtual registers)
 | |
| /// - pointer key, pointer-derived index, identity value (node+ID)
 | |
| /// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
 | |
| ///
 | |
| /// Only other, unexpected cases require specializing SparseSetValTraits.
 | |
| ///
 | |
| /// For best results, ValueT should not require a destructor.
 | |
| ///
 | |
| template<typename ValueT>
 | |
| struct SparseSetValTraits {
 | |
|   static unsigned getValIndex(const ValueT &Val) {
 | |
|     return Val.getSparseSetIndex();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
 | |
| /// generic implementation handles ValueT classes which either provide
 | |
| /// getSparseSetIndex() or specialize SparseSetValTraits<>.
 | |
| ///
 | |
| template<typename KeyT, typename ValueT, typename KeyFunctorT>
 | |
| struct SparseSetValFunctor {
 | |
|   unsigned operator()(const ValueT &Val) const {
 | |
|     return SparseSetValTraits<ValueT>::getValIndex(Val);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
 | |
| /// identity key/value sets.
 | |
| template<typename KeyT, typename KeyFunctorT>
 | |
| struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
 | |
|   unsigned operator()(const KeyT &Key) const {
 | |
|     return KeyFunctorT()(Key);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// SparseSet - Fast set implmentation for objects that can be identified by
 | |
| /// small unsigned keys.
 | |
| ///
 | |
| /// SparseSet allocates memory proportional to the size of the key universe, so
 | |
| /// it is not recommended for building composite data structures.  It is useful
 | |
| /// for algorithms that require a single set with fast operations.
 | |
| ///
 | |
| /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
 | |
| /// clear() and iteration as fast as a vector.  The find(), insert(), and
 | |
| /// erase() operations are all constant time, and typically faster than a hash
 | |
| /// table.  The iteration order doesn't depend on numerical key values, it only
 | |
| /// depends on the order of insert() and erase() operations.  When no elements
 | |
| /// have been erased, the iteration order is the insertion order.
 | |
| ///
 | |
| /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
 | |
| /// offers constant-time clear() and size() operations as well as fast
 | |
| /// iteration independent on the size of the universe.
 | |
| ///
 | |
| /// SparseSet contains a dense vector holding all the objects and a sparse
 | |
| /// array holding indexes into the dense vector.  Most of the memory is used by
 | |
| /// the sparse array which is the size of the key universe.  The SparseT
 | |
| /// template parameter provides a space/speed tradeoff for sets holding many
 | |
| /// elements.
 | |
| ///
 | |
| /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
 | |
| /// array uses 4 x Universe bytes.
 | |
| ///
 | |
| /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
 | |
| /// lines, but the sparse array is 4x smaller.  N is the number of elements in
 | |
| /// the set.
 | |
| ///
 | |
| /// For sets that may grow to thousands of elements, SparseT should be set to
 | |
| /// uint16_t or uint32_t.
 | |
| ///
 | |
| /// @tparam ValueT      The type of objects in the set.
 | |
| /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
 | |
| /// @tparam SparseT     An unsigned integer type. See above.
 | |
| ///
 | |
| template<typename ValueT,
 | |
|          typename KeyFunctorT = llvm::identity<unsigned>,
 | |
|          typename SparseT = uint8_t>
 | |
| class SparseSet {
 | |
|   typedef typename KeyFunctorT::argument_type KeyT;
 | |
|   typedef SmallVector<ValueT, 8> DenseT;
 | |
|   DenseT Dense;
 | |
|   SparseT *Sparse;
 | |
|   unsigned Universe;
 | |
|   KeyFunctorT KeyIndexOf;
 | |
|   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
 | |
| 
 | |
|   // Disable copy construction and assignment.
 | |
|   // This data structure is not meant to be used that way.
 | |
|   SparseSet(const SparseSet&) LLVM_DELETED_FUNCTION;
 | |
|   SparseSet &operator=(const SparseSet&) LLVM_DELETED_FUNCTION;
 | |
| 
 | |
| public:
 | |
|   typedef ValueT value_type;
 | |
|   typedef ValueT &reference;
 | |
|   typedef const ValueT &const_reference;
 | |
|   typedef ValueT *pointer;
 | |
|   typedef const ValueT *const_pointer;
 | |
| 
 | |
|   SparseSet() : Sparse(0), Universe(0) {}
 | |
|   ~SparseSet() { free(Sparse); }
 | |
| 
 | |
|   /// setUniverse - Set the universe size which determines the largest key the
 | |
|   /// set can hold.  The universe must be sized before any elements can be
 | |
|   /// added.
 | |
|   ///
 | |
|   /// @param U Universe size. All object keys must be less than U.
 | |
|   ///
 | |
|   void setUniverse(unsigned U) {
 | |
|     // It's not hard to resize the universe on a non-empty set, but it doesn't
 | |
|     // seem like a likely use case, so we can add that code when we need it.
 | |
|     assert(empty() && "Can only resize universe on an empty map");
 | |
|     // Hysteresis prevents needless reallocations.
 | |
|     if (U >= Universe/4 && U <= Universe)
 | |
|       return;
 | |
|     free(Sparse);
 | |
|     // The Sparse array doesn't actually need to be initialized, so malloc
 | |
|     // would be enough here, but that will cause tools like valgrind to
 | |
|     // complain about branching on uninitialized data.
 | |
|     Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
 | |
|     Universe = U;
 | |
|   }
 | |
| 
 | |
|   // Import trivial vector stuff from DenseT.
 | |
|   typedef typename DenseT::iterator iterator;
 | |
|   typedef typename DenseT::const_iterator const_iterator;
 | |
| 
 | |
|   const_iterator begin() const { return Dense.begin(); }
 | |
|   const_iterator end() const { return Dense.end(); }
 | |
|   iterator begin() { return Dense.begin(); }
 | |
|   iterator end() { return Dense.end(); }
 | |
| 
 | |
|   /// empty - Returns true if the set is empty.
 | |
|   ///
 | |
|   /// This is not the same as BitVector::empty().
 | |
|   ///
 | |
|   bool empty() const { return Dense.empty(); }
 | |
| 
 | |
|   /// size - Returns the number of elements in the set.
 | |
|   ///
 | |
|   /// This is not the same as BitVector::size() which returns the size of the
 | |
|   /// universe.
 | |
|   ///
 | |
|   unsigned size() const { return Dense.size(); }
 | |
| 
 | |
|   /// clear - Clears the set.  This is a very fast constant time operation.
 | |
|   ///
 | |
|   void clear() {
 | |
|     // Sparse does not need to be cleared, see find().
 | |
|     Dense.clear();
 | |
|   }
 | |
| 
 | |
|   /// findIndex - Find an element by its index.
 | |
|   ///
 | |
|   /// @param   Idx A valid index to find.
 | |
|   /// @returns An iterator to the element identified by key, or end().
 | |
|   ///
 | |
|   iterator findIndex(unsigned Idx) {
 | |
|     assert(Idx < Universe && "Key out of range");
 | |
|     assert(std::numeric_limits<SparseT>::is_integer &&
 | |
|            !std::numeric_limits<SparseT>::is_signed &&
 | |
|            "SparseT must be an unsigned integer type");
 | |
|     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
 | |
|     for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
 | |
|       const unsigned FoundIdx = ValIndexOf(Dense[i]);
 | |
|       assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
 | |
|       if (Idx == FoundIdx)
 | |
|         return begin() + i;
 | |
|       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
 | |
|       if (!Stride)
 | |
|         break;
 | |
|     }
 | |
|     return end();
 | |
|   }
 | |
| 
 | |
|   /// find - Find an element by its key.
 | |
|   ///
 | |
|   /// @param   Key A valid key to find.
 | |
|   /// @returns An iterator to the element identified by key, or end().
 | |
|   ///
 | |
|   iterator find(const KeyT &Key) {
 | |
|     return findIndex(KeyIndexOf(Key));
 | |
|   }
 | |
| 
 | |
|   const_iterator find(const KeyT &Key) const {
 | |
|     return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
 | |
|   }
 | |
| 
 | |
|   /// count - Returns true if this set contains an element identified by Key.
 | |
|   ///
 | |
|   bool count(const KeyT &Key) const {
 | |
|     return find(Key) != end();
 | |
|   }
 | |
| 
 | |
|   /// insert - Attempts to insert a new element.
 | |
|   ///
 | |
|   /// If Val is successfully inserted, return (I, true), where I is an iterator
 | |
|   /// pointing to the newly inserted element.
 | |
|   ///
 | |
|   /// If the set already contains an element with the same key as Val, return
 | |
|   /// (I, false), where I is an iterator pointing to the existing element.
 | |
|   ///
 | |
|   /// Insertion invalidates all iterators.
 | |
|   ///
 | |
|   std::pair<iterator, bool> insert(const ValueT &Val) {
 | |
|     unsigned Idx = ValIndexOf(Val);
 | |
|     iterator I = findIndex(Idx);
 | |
|     if (I != end())
 | |
|       return std::make_pair(I, false);
 | |
|     Sparse[Idx] = size();
 | |
|     Dense.push_back(Val);
 | |
|     return std::make_pair(end() - 1, true);
 | |
|   }
 | |
| 
 | |
|   /// array subscript - If an element already exists with this key, return it.
 | |
|   /// Otherwise, automatically construct a new value from Key, insert it,
 | |
|   /// and return the newly inserted element.
 | |
|   ValueT &operator[](const KeyT &Key) {
 | |
|     return *insert(ValueT(Key)).first;
 | |
|   }
 | |
| 
 | |
|   /// erase - Erases an existing element identified by a valid iterator.
 | |
|   ///
 | |
|   /// This invalidates all iterators, but erase() returns an iterator pointing
 | |
|   /// to the next element.  This makes it possible to erase selected elements
 | |
|   /// while iterating over the set:
 | |
|   ///
 | |
|   ///   for (SparseSet::iterator I = Set.begin(); I != Set.end();)
 | |
|   ///     if (test(*I))
 | |
|   ///       I = Set.erase(I);
 | |
|   ///     else
 | |
|   ///       ++I;
 | |
|   ///
 | |
|   /// Note that end() changes when elements are erased, unlike std::list.
 | |
|   ///
 | |
|   iterator erase(iterator I) {
 | |
|     assert(unsigned(I - begin()) < size() && "Invalid iterator");
 | |
|     if (I != end() - 1) {
 | |
|       *I = Dense.back();
 | |
|       unsigned BackIdx = ValIndexOf(Dense.back());
 | |
|       assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
 | |
|       Sparse[BackIdx] = I - begin();
 | |
|     }
 | |
|     // This depends on SmallVector::pop_back() not invalidating iterators.
 | |
|     // std::vector::pop_back() doesn't give that guarantee.
 | |
|     Dense.pop_back();
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   /// erase - Erases an element identified by Key, if it exists.
 | |
|   ///
 | |
|   /// @param   Key The key identifying the element to erase.
 | |
|   /// @returns True when an element was erased, false if no element was found.
 | |
|   ///
 | |
|   bool erase(const KeyT &Key) {
 | |
|     iterator I = find(Key);
 | |
|     if (I == end())
 | |
|       return false;
 | |
|     erase(I);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |