mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187312 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			581 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			581 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //== llvm/Support/APFloat.h - Arbitrary Precision Floating Point -*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// \brief
 | |
| /// This file declares a class to represent arbitrary precision floating point
 | |
| /// values and provide a variety of arithmetic operations on them.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_APFLOAT_H
 | |
| #define LLVM_ADT_APFLOAT_H
 | |
| 
 | |
| #include "llvm/ADT/APInt.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| struct fltSemantics;
 | |
| class APSInt;
 | |
| class StringRef;
 | |
| 
 | |
| /// Enum that represents what fraction of the LSB truncated bits of an fp number
 | |
| /// represent.
 | |
| ///
 | |
| /// This essentially combines the roles of guard and sticky bits.
 | |
| enum lostFraction { // Example of truncated bits:
 | |
|   lfExactlyZero,    // 000000
 | |
|   lfLessThanHalf,   // 0xxxxx  x's not all zero
 | |
|   lfExactlyHalf,    // 100000
 | |
|   lfMoreThanHalf    // 1xxxxx  x's not all zero
 | |
| };
 | |
| 
 | |
| /// \brief A self-contained host- and target-independent arbitrary-precision
 | |
| /// floating-point software implementation.
 | |
| ///
 | |
| /// APFloat uses bignum integer arithmetic as provided by static functions in
 | |
| /// the APInt class.  The library will work with bignum integers whose parts are
 | |
| /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
 | |
| ///
 | |
| /// Written for clarity rather than speed, in particular with a view to use in
 | |
| /// the front-end of a cross compiler so that target arithmetic can be correctly
 | |
| /// performed on the host.  Performance should nonetheless be reasonable,
 | |
| /// particularly for its intended use.  It may be useful as a base
 | |
| /// implementation for a run-time library during development of a faster
 | |
| /// target-specific one.
 | |
| ///
 | |
| /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
 | |
| /// implemented operations.  Currently implemented operations are add, subtract,
 | |
| /// multiply, divide, fused-multiply-add, conversion-to-float,
 | |
| /// conversion-to-integer and conversion-from-integer.  New rounding modes
 | |
| /// (e.g. away from zero) can be added with three or four lines of code.
 | |
| ///
 | |
| /// Four formats are built-in: IEEE single precision, double precision,
 | |
| /// quadruple precision, and x87 80-bit extended double (when operating with
 | |
| /// full extended precision).  Adding a new format that obeys IEEE semantics
 | |
| /// only requires adding two lines of code: a declaration and definition of the
 | |
| /// format.
 | |
| ///
 | |
| /// All operations return the status of that operation as an exception bit-mask,
 | |
| /// so multiple operations can be done consecutively with their results or-ed
 | |
| /// together.  The returned status can be useful for compiler diagnostics; e.g.,
 | |
| /// inexact, underflow and overflow can be easily diagnosed on constant folding,
 | |
| /// and compiler optimizers can determine what exceptions would be raised by
 | |
| /// folding operations and optimize, or perhaps not optimize, accordingly.
 | |
| ///
 | |
| /// At present, underflow tininess is detected after rounding; it should be
 | |
| /// straight forward to add support for the before-rounding case too.
 | |
| ///
 | |
| /// The library reads hexadecimal floating point numbers as per C99, and
 | |
| /// correctly rounds if necessary according to the specified rounding mode.
 | |
| /// Syntax is required to have been validated by the caller.  It also converts
 | |
| /// floating point numbers to hexadecimal text as per the C99 %a and %A
 | |
| /// conversions.  The output precision (or alternatively the natural minimal
 | |
| /// precision) can be specified; if the requested precision is less than the
 | |
| /// natural precision the output is correctly rounded for the specified rounding
 | |
| /// mode.
 | |
| ///
 | |
| /// It also reads decimal floating point numbers and correctly rounds according
 | |
| /// to the specified rounding mode.
 | |
| ///
 | |
| /// Conversion to decimal text is not currently implemented.
 | |
| ///
 | |
| /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
 | |
| /// signed exponent, and the significand as an array of integer parts.  After
 | |
| /// normalization of a number of precision P the exponent is within the range of
 | |
| /// the format, and if the number is not denormal the P-th bit of the
 | |
| /// significand is set as an explicit integer bit.  For denormals the most
 | |
| /// significant bit is shifted right so that the exponent is maintained at the
 | |
| /// format's minimum, so that the smallest denormal has just the least
 | |
| /// significant bit of the significand set.  The sign of zeroes and infinities
 | |
| /// is significant; the exponent and significand of such numbers is not stored,
 | |
| /// but has a known implicit (deterministic) value: 0 for the significands, 0
 | |
| /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
 | |
| /// significand are deterministic, although not really meaningful, and preserved
 | |
| /// in non-conversion operations.  The exponent is implicitly all 1 bits.
 | |
| ///
 | |
| /// APFloat does not provide any exception handling beyond default exception
 | |
| /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
 | |
| /// by encoding Signaling NaNs with the first bit of its trailing significand as
 | |
| /// 0.
 | |
| ///
 | |
| /// TODO
 | |
| /// ====
 | |
| ///
 | |
| /// Some features that may or may not be worth adding:
 | |
| ///
 | |
| /// Binary to decimal conversion (hard).
 | |
| ///
 | |
| /// Optional ability to detect underflow tininess before rounding.
 | |
| ///
 | |
| /// New formats: x87 in single and double precision mode (IEEE apart from
 | |
| /// extended exponent range) (hard).
 | |
| ///
 | |
| /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
 | |
| ///
 | |
| class APFloat {
 | |
| public:
 | |
| 
 | |
|   /// A signed type to represent a floating point numbers unbiased exponent.
 | |
|   typedef signed short ExponentType;
 | |
| 
 | |
|   /// \name Floating Point Semantics.
 | |
|   /// @{
 | |
| 
 | |
|   static const fltSemantics IEEEhalf;
 | |
|   static const fltSemantics IEEEsingle;
 | |
|   static const fltSemantics IEEEdouble;
 | |
|   static const fltSemantics IEEEquad;
 | |
|   static const fltSemantics PPCDoubleDouble;
 | |
|   static const fltSemantics x87DoubleExtended;
 | |
| 
 | |
|   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
 | |
|   /// anything real.
 | |
|   static const fltSemantics Bogus;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   static unsigned int semanticsPrecision(const fltSemantics &);
 | |
| 
 | |
|   /// IEEE-754R 5.11: Floating Point Comparison Relations.
 | |
|   enum cmpResult {
 | |
|     cmpLessThan,
 | |
|     cmpEqual,
 | |
|     cmpGreaterThan,
 | |
|     cmpUnordered
 | |
|   };
 | |
| 
 | |
|   /// IEEE-754R 4.3: Rounding-direction attributes.
 | |
|   enum roundingMode {
 | |
|     rmNearestTiesToEven,
 | |
|     rmTowardPositive,
 | |
|     rmTowardNegative,
 | |
|     rmTowardZero,
 | |
|     rmNearestTiesToAway
 | |
|   };
 | |
| 
 | |
|   /// IEEE-754R 7: Default exception handling.
 | |
|   ///
 | |
|   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
 | |
|   enum opStatus {
 | |
|     opOK = 0x00,
 | |
|     opInvalidOp = 0x01,
 | |
|     opDivByZero = 0x02,
 | |
|     opOverflow = 0x04,
 | |
|     opUnderflow = 0x08,
 | |
|     opInexact = 0x10
 | |
|   };
 | |
| 
 | |
|   /// Category of internally-represented number.
 | |
|   enum fltCategory {
 | |
|     fcInfinity,
 | |
|     fcNaN,
 | |
|     fcNormal,
 | |
|     fcZero
 | |
|   };
 | |
| 
 | |
|   /// Convenience enum used to construct an uninitialized APFloat.
 | |
|   enum uninitializedTag {
 | |
|     uninitialized
 | |
|   };
 | |
| 
 | |
|   /// \name Constructors
 | |
|   /// @{
 | |
| 
 | |
|   APFloat(const fltSemantics &); // Default construct to 0.0
 | |
|   APFloat(const fltSemantics &, StringRef);
 | |
|   APFloat(const fltSemantics &, integerPart);
 | |
|   APFloat(const fltSemantics &, uninitializedTag);
 | |
|   APFloat(const fltSemantics &, const APInt &);
 | |
|   explicit APFloat(double d);
 | |
|   explicit APFloat(float f);
 | |
|   APFloat(const APFloat &);
 | |
|   ~APFloat();
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \brief Returns whether this instance allocated memory.
 | |
|   bool needsCleanup() const { return partCount() > 1; }
 | |
| 
 | |
|   /// \name Convenience "constructors"
 | |
|   /// @{
 | |
| 
 | |
|   /// Factory for Positive and Negative Zero.
 | |
|   ///
 | |
|   /// \param Negative True iff the number should be negative.
 | |
|   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
 | |
|     APFloat Val(Sem, uninitialized);
 | |
|     Val.makeZero(Negative);
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   /// Factory for Positive and Negative Infinity.
 | |
|   ///
 | |
|   /// \param Negative True iff the number should be negative.
 | |
|   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
 | |
|     APFloat Val(Sem, uninitialized);
 | |
|     Val.makeInf(Negative);
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   /// Factory for QNaN values.
 | |
|   ///
 | |
|   /// \param Negative - True iff the NaN generated should be negative.
 | |
|   /// \param type - The unspecified fill bits for creating the NaN, 0 by
 | |
|   /// default.  The value is truncated as necessary.
 | |
|   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
 | |
|                         unsigned type = 0) {
 | |
|     if (type) {
 | |
|       APInt fill(64, type);
 | |
|       return getQNaN(Sem, Negative, &fill);
 | |
|     } else {
 | |
|       return getQNaN(Sem, Negative, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Factory for QNaN values.
 | |
|   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
 | |
|                          const APInt *payload = 0) {
 | |
|     return makeNaN(Sem, false, Negative, payload);
 | |
|   }
 | |
| 
 | |
|   /// Factory for SNaN values.
 | |
|   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
 | |
|                          const APInt *payload = 0) {
 | |
|     return makeNaN(Sem, true, Negative, payload);
 | |
|   }
 | |
| 
 | |
|   /// Returns the largest finite number in the given semantics.
 | |
|   ///
 | |
|   /// \param Negative - True iff the number should be negative
 | |
|   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
 | |
| 
 | |
|   /// Returns the smallest (by magnitude) finite number in the given semantics.
 | |
|   /// Might be denormalized, which implies a relative loss of precision.
 | |
|   ///
 | |
|   /// \param Negative - True iff the number should be negative
 | |
|   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
 | |
| 
 | |
|   /// Returns the smallest (by magnitude) normalized finite number in the given
 | |
|   /// semantics.
 | |
|   ///
 | |
|   /// \param Negative - True iff the number should be negative
 | |
|   static APFloat getSmallestNormalized(const fltSemantics &Sem,
 | |
|                                        bool Negative = false);
 | |
| 
 | |
|   /// Returns a float which is bitcasted from an all one value int.
 | |
|   ///
 | |
|   /// \param BitWidth - Select float type
 | |
|   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
 | |
|   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// Used to insert APFloat objects, or objects that contain APFloat objects,
 | |
|   /// into FoldingSets.
 | |
|   void Profile(FoldingSetNodeID &NID) const;
 | |
| 
 | |
|   /// \brief Used by the Bitcode serializer to emit APInts to Bitcode.
 | |
|   void Emit(Serializer &S) const;
 | |
| 
 | |
|   /// \brief Used by the Bitcode deserializer to deserialize APInts.
 | |
|   static APFloat ReadVal(Deserializer &D);
 | |
| 
 | |
|   /// \name Arithmetic
 | |
|   /// @{
 | |
| 
 | |
|   opStatus add(const APFloat &, roundingMode);
 | |
|   opStatus subtract(const APFloat &, roundingMode);
 | |
|   opStatus multiply(const APFloat &, roundingMode);
 | |
|   opStatus divide(const APFloat &, roundingMode);
 | |
|   /// IEEE remainder.
 | |
|   opStatus remainder(const APFloat &);
 | |
|   /// C fmod, or llvm frem.
 | |
|   opStatus mod(const APFloat &, roundingMode);
 | |
|   opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
 | |
|   opStatus roundToIntegral(roundingMode);
 | |
|   /// IEEE-754R 5.3.1: nextUp/nextDown.
 | |
|   opStatus next(bool nextDown);
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Sign operations.
 | |
|   /// @{
 | |
| 
 | |
|   void changeSign();
 | |
|   void clearSign();
 | |
|   void copySign(const APFloat &);
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Conversions
 | |
|   /// @{
 | |
| 
 | |
|   opStatus convert(const fltSemantics &, roundingMode, bool *);
 | |
|   opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
 | |
|                             bool *) const;
 | |
|   opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
 | |
|   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
 | |
|   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
 | |
|                                           bool, roundingMode);
 | |
|   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
 | |
|                                           bool, roundingMode);
 | |
|   opStatus convertFromString(StringRef, roundingMode);
 | |
|   APInt bitcastToAPInt() const;
 | |
|   double convertToDouble() const;
 | |
|   float convertToFloat() const;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// The definition of equality is not straightforward for floating point, so
 | |
|   /// we won't use operator==.  Use one of the following, or write whatever it
 | |
|   /// is you really mean.
 | |
|   bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
 | |
| 
 | |
|   /// IEEE comparison with another floating point number (NaNs compare
 | |
|   /// unordered, 0==-0).
 | |
|   cmpResult compare(const APFloat &) const;
 | |
| 
 | |
|   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
 | |
|   bool bitwiseIsEqual(const APFloat &) const;
 | |
| 
 | |
|   /// Write out a hexadecimal representation of the floating point value to DST,
 | |
|   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
 | |
|   /// Return the number of characters written, excluding the terminating NUL.
 | |
|   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
 | |
|                                   bool upperCase, roundingMode) const;
 | |
| 
 | |
|   /// \name IEEE-754R 5.7.2 General operations.
 | |
|   /// @{
 | |
| 
 | |
|   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
 | |
|   /// negative.
 | |
|   ///
 | |
|   /// This applies to zeros and NaNs as well.
 | |
|   bool isNegative() const { return sign; }
 | |
| 
 | |
|   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
 | |
|   ///
 | |
|   /// This implies that the current value of the float is not zero, subnormal,
 | |
|   /// infinite, or NaN following the definition of normality from IEEE-754R.
 | |
|   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
 | |
| 
 | |
|   /// Returns true if and only if the current value is zero, subnormal, or
 | |
|   /// normal.
 | |
|   ///
 | |
|   /// This means that the value is not infinite or NaN.
 | |
|   bool isFinite() const { return !isNaN() && !isInfinity(); }
 | |
| 
 | |
|   /// Returns true if and only if the float is plus or minus zero.
 | |
|   bool isZero() const { return category == fcZero; }
 | |
| 
 | |
|   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
 | |
|   /// denormal.
 | |
|   bool isDenormal() const;
 | |
| 
 | |
|   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
 | |
|   bool isInfinity() const { return category == fcInfinity; }
 | |
| 
 | |
|   /// Returns true if and only if the float is a quiet or signaling NaN.
 | |
|   bool isNaN() const { return category == fcNaN; }
 | |
| 
 | |
|   /// Returns true if and only if the float is a signaling NaN.
 | |
|   bool isSignaling() const;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Simple Queries
 | |
|   /// @{
 | |
| 
 | |
|   fltCategory getCategory() const { return category; }
 | |
|   const fltSemantics &getSemantics() const { return *semantics; }
 | |
|   bool isNonZero() const { return category != fcZero; }
 | |
|   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
 | |
|   bool isPosZero() const { return isZero() && !isNegative(); }
 | |
|   bool isNegZero() const { return isZero() && isNegative(); }
 | |
| 
 | |
|   /// Returns true if and only if the number has the smallest possible non-zero
 | |
|   /// magnitude in the current semantics.
 | |
|   bool isSmallest() const;
 | |
| 
 | |
|   /// Returns true if and only if the number has the largest possible finite
 | |
|   /// magnitude in the current semantics.
 | |
|   bool isLargest() const;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   APFloat &operator=(const APFloat &);
 | |
| 
 | |
|   /// \brief Overload to compute a hash code for an APFloat value.
 | |
|   ///
 | |
|   /// Note that the use of hash codes for floating point values is in general
 | |
|   /// frought with peril. Equality is hard to define for these values. For
 | |
|   /// example, should negative and positive zero hash to different codes? Are
 | |
|   /// they equal or not? This hash value implementation specifically
 | |
|   /// emphasizes producing different codes for different inputs in order to
 | |
|   /// be used in canonicalization and memoization. As such, equality is
 | |
|   /// bitwiseIsEqual, and 0 != -0.
 | |
|   friend hash_code hash_value(const APFloat &Arg);
 | |
| 
 | |
|   /// Converts this value into a decimal string.
 | |
|   ///
 | |
|   /// \param FormatPrecision The maximum number of digits of
 | |
|   ///   precision to output.  If there are fewer digits available,
 | |
|   ///   zero padding will not be used unless the value is
 | |
|   ///   integral and small enough to be expressed in
 | |
|   ///   FormatPrecision digits.  0 means to use the natural
 | |
|   ///   precision of the number.
 | |
|   /// \param FormatMaxPadding The maximum number of zeros to
 | |
|   ///   consider inserting before falling back to scientific
 | |
|   ///   notation.  0 means to always use scientific notation.
 | |
|   ///
 | |
|   /// Number       Precision    MaxPadding      Result
 | |
|   /// ------       ---------    ----------      ------
 | |
|   /// 1.01E+4              5             2       10100
 | |
|   /// 1.01E+4              4             2       1.01E+4
 | |
|   /// 1.01E+4              5             1       1.01E+4
 | |
|   /// 1.01E-2              5             2       0.0101
 | |
|   /// 1.01E-2              4             2       0.0101
 | |
|   /// 1.01E-2              4             1       1.01E-2
 | |
|   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
 | |
|                 unsigned FormatMaxPadding = 3) const;
 | |
| 
 | |
|   /// If this value has an exact multiplicative inverse, store it in inv and
 | |
|   /// return true.
 | |
|   bool getExactInverse(APFloat *inv) const;
 | |
| 
 | |
| private:
 | |
| 
 | |
|   /// \name Simple Queries
 | |
|   /// @{
 | |
| 
 | |
|   integerPart *significandParts();
 | |
|   const integerPart *significandParts() const;
 | |
|   unsigned int partCount() const;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Significand operations.
 | |
|   /// @{
 | |
| 
 | |
|   integerPart addSignificand(const APFloat &);
 | |
|   integerPart subtractSignificand(const APFloat &, integerPart);
 | |
|   lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
 | |
|   lostFraction multiplySignificand(const APFloat &, const APFloat *);
 | |
|   lostFraction divideSignificand(const APFloat &);
 | |
|   void incrementSignificand();
 | |
|   void initialize(const fltSemantics *);
 | |
|   void shiftSignificandLeft(unsigned int);
 | |
|   lostFraction shiftSignificandRight(unsigned int);
 | |
|   unsigned int significandLSB() const;
 | |
|   unsigned int significandMSB() const;
 | |
|   void zeroSignificand();
 | |
|   /// Return true if the significand excluding the integral bit is all ones.
 | |
|   bool isSignificandAllOnes() const;
 | |
|   /// Return true if the significand excluding the integral bit is all zeros.
 | |
|   bool isSignificandAllZeros() const;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Arithmetic on special values.
 | |
|   /// @{
 | |
| 
 | |
|   opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
 | |
|   opStatus divideSpecials(const APFloat &);
 | |
|   opStatus multiplySpecials(const APFloat &);
 | |
|   opStatus modSpecials(const APFloat &);
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Special value setters.
 | |
|   /// @{
 | |
| 
 | |
|   void makeLargest(bool Neg = false);
 | |
|   void makeSmallest(bool Neg = false);
 | |
|   void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = 0);
 | |
|   static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
 | |
|                          const APInt *fill);
 | |
|   void makeInf(bool Neg = false);
 | |
|   void makeZero(bool Neg = false);
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Miscellany
 | |
|   /// @{
 | |
| 
 | |
|   bool convertFromStringSpecials(StringRef str);
 | |
|   opStatus normalize(roundingMode, lostFraction);
 | |
|   opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
 | |
|   cmpResult compareAbsoluteValue(const APFloat &) const;
 | |
|   opStatus handleOverflow(roundingMode);
 | |
|   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
 | |
|   opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
 | |
|                                         roundingMode, bool *) const;
 | |
|   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
 | |
|                                     roundingMode);
 | |
|   opStatus convertFromHexadecimalString(StringRef, roundingMode);
 | |
|   opStatus convertFromDecimalString(StringRef, roundingMode);
 | |
|   char *convertNormalToHexString(char *, unsigned int, bool,
 | |
|                                  roundingMode) const;
 | |
|   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
 | |
|                                         roundingMode);
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   APInt convertHalfAPFloatToAPInt() const;
 | |
|   APInt convertFloatAPFloatToAPInt() const;
 | |
|   APInt convertDoubleAPFloatToAPInt() const;
 | |
|   APInt convertQuadrupleAPFloatToAPInt() const;
 | |
|   APInt convertF80LongDoubleAPFloatToAPInt() const;
 | |
|   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
 | |
|   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
 | |
|   void initFromHalfAPInt(const APInt &api);
 | |
|   void initFromFloatAPInt(const APInt &api);
 | |
|   void initFromDoubleAPInt(const APInt &api);
 | |
|   void initFromQuadrupleAPInt(const APInt &api);
 | |
|   void initFromF80LongDoubleAPInt(const APInt &api);
 | |
|   void initFromPPCDoubleDoubleAPInt(const APInt &api);
 | |
| 
 | |
|   void assign(const APFloat &);
 | |
|   void copySignificand(const APFloat &);
 | |
|   void freeSignificand();
 | |
| 
 | |
|   /// The semantics that this value obeys.
 | |
|   const fltSemantics *semantics;
 | |
| 
 | |
|   /// A binary fraction with an explicit integer bit.
 | |
|   ///
 | |
|   /// The significand must be at least one bit wider than the target precision.
 | |
|   union Significand {
 | |
|     integerPart part;
 | |
|     integerPart *parts;
 | |
|   } significand;
 | |
| 
 | |
|   /// The signed unbiased exponent of the value.
 | |
|   ExponentType exponent;
 | |
| 
 | |
|   /// What kind of floating point number this is.
 | |
|   ///
 | |
|   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
 | |
|   /// Using the extra bit keeps it from failing under VisualStudio.
 | |
|   fltCategory category : 3;
 | |
| 
 | |
|   /// Sign bit of the number.
 | |
|   unsigned int sign : 1;
 | |
| };
 | |
| 
 | |
| /// See friend declaration above.
 | |
| ///
 | |
| /// This additional declaration is required in order to compile LLVM with IBM
 | |
| /// xlC compiler.
 | |
| hash_code hash_value(const APFloat &Arg);
 | |
| } // namespace llvm
 | |
| 
 | |
| #endif // LLVM_ADT_APFLOAT_H
 |