mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Useful for tri-state maps: true, false, and "no data yet". git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194266 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1246 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1246 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the ImutAVLTree and ImmutableSet classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_IMMUTABLESET_H
 | |
| #define LLVM_ADT_IMMUTABLESET_H
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <cassert>
 | |
| #include <functional>
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Immutable AVL-Tree Definition.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ImutInfo> class ImutAVLFactory;
 | |
| template <typename ImutInfo> class ImutIntervalAVLFactory;
 | |
| template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
 | |
| template <typename ImutInfo> class ImutAVLTreeGenericIterator;
 | |
| 
 | |
| template <typename ImutInfo >
 | |
| class ImutAVLTree {
 | |
| public:
 | |
|   typedef typename ImutInfo::key_type_ref   key_type_ref;
 | |
|   typedef typename ImutInfo::value_type     value_type;
 | |
|   typedef typename ImutInfo::value_type_ref value_type_ref;
 | |
| 
 | |
|   typedef ImutAVLFactory<ImutInfo>          Factory;
 | |
|   friend class ImutAVLFactory<ImutInfo>;
 | |
|   friend class ImutIntervalAVLFactory<ImutInfo>;
 | |
| 
 | |
|   friend class ImutAVLTreeGenericIterator<ImutInfo>;
 | |
| 
 | |
|   typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
 | |
| 
 | |
|   //===----------------------------------------------------===//
 | |
|   // Public Interface.
 | |
|   //===----------------------------------------------------===//
 | |
| 
 | |
|   /// Return a pointer to the left subtree.  This value
 | |
|   ///  is NULL if there is no left subtree.
 | |
|   ImutAVLTree *getLeft() const { return left; }
 | |
| 
 | |
|   /// Return a pointer to the right subtree.  This value is
 | |
|   ///  NULL if there is no right subtree.
 | |
|   ImutAVLTree *getRight() const { return right; }
 | |
| 
 | |
|   /// getHeight - Returns the height of the tree.  A tree with no subtrees
 | |
|   ///  has a height of 1.
 | |
|   unsigned getHeight() const { return height; }
 | |
| 
 | |
|   /// getValue - Returns the data value associated with the tree node.
 | |
|   const value_type& getValue() const { return value; }
 | |
| 
 | |
|   /// find - Finds the subtree associated with the specified key value.
 | |
|   ///  This method returns NULL if no matching subtree is found.
 | |
|   ImutAVLTree* find(key_type_ref K) {
 | |
|     ImutAVLTree *T = this;
 | |
|     while (T) {
 | |
|       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
 | |
|       if (ImutInfo::isEqual(K,CurrentKey))
 | |
|         return T;
 | |
|       else if (ImutInfo::isLess(K,CurrentKey))
 | |
|         T = T->getLeft();
 | |
|       else
 | |
|         T = T->getRight();
 | |
|     }
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   /// getMaxElement - Find the subtree associated with the highest ranged
 | |
|   ///  key value.
 | |
|   ImutAVLTree* getMaxElement() {
 | |
|     ImutAVLTree *T = this;
 | |
|     ImutAVLTree *Right = T->getRight();
 | |
|     while (Right) { T = Right; Right = T->getRight(); }
 | |
|     return T;
 | |
|   }
 | |
| 
 | |
|   /// size - Returns the number of nodes in the tree, which includes
 | |
|   ///  both leaves and non-leaf nodes.
 | |
|   unsigned size() const {
 | |
|     unsigned n = 1;
 | |
|     if (const ImutAVLTree* L = getLeft())
 | |
|       n += L->size();
 | |
|     if (const ImutAVLTree* R = getRight())
 | |
|       n += R->size();
 | |
|     return n;
 | |
|   }
 | |
| 
 | |
|   /// begin - Returns an iterator that iterates over the nodes of the tree
 | |
|   ///  in an inorder traversal.  The returned iterator thus refers to the
 | |
|   ///  the tree node with the minimum data element.
 | |
|   iterator begin() const { return iterator(this); }
 | |
| 
 | |
|   /// end - Returns an iterator for the tree that denotes the end of an
 | |
|   ///  inorder traversal.
 | |
|   iterator end() const { return iterator(); }
 | |
| 
 | |
|   bool isElementEqual(value_type_ref V) const {
 | |
|     // Compare the keys.
 | |
|     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
 | |
|                            ImutInfo::KeyOfValue(V)))
 | |
|       return false;
 | |
| 
 | |
|     // Also compare the data values.
 | |
|     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
 | |
|                                ImutInfo::DataOfValue(V)))
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isElementEqual(const ImutAVLTree* RHS) const {
 | |
|     return isElementEqual(RHS->getValue());
 | |
|   }
 | |
| 
 | |
|   /// isEqual - Compares two trees for structural equality and returns true
 | |
|   ///   if they are equal.  This worst case performance of this operation is
 | |
|   //    linear in the sizes of the trees.
 | |
|   bool isEqual(const ImutAVLTree& RHS) const {
 | |
|     if (&RHS == this)
 | |
|       return true;
 | |
| 
 | |
|     iterator LItr = begin(), LEnd = end();
 | |
|     iterator RItr = RHS.begin(), REnd = RHS.end();
 | |
| 
 | |
|     while (LItr != LEnd && RItr != REnd) {
 | |
|       if (*LItr == *RItr) {
 | |
|         LItr.skipSubTree();
 | |
|         RItr.skipSubTree();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!LItr->isElementEqual(*RItr))
 | |
|         return false;
 | |
| 
 | |
|       ++LItr;
 | |
|       ++RItr;
 | |
|     }
 | |
| 
 | |
|     return LItr == LEnd && RItr == REnd;
 | |
|   }
 | |
| 
 | |
|   /// isNotEqual - Compares two trees for structural inequality.  Performance
 | |
|   ///  is the same is isEqual.
 | |
|   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
 | |
| 
 | |
|   /// contains - Returns true if this tree contains a subtree (node) that
 | |
|   ///  has an data element that matches the specified key.  Complexity
 | |
|   ///  is logarithmic in the size of the tree.
 | |
|   bool contains(key_type_ref K) { return (bool) find(K); }
 | |
| 
 | |
|   /// foreach - A member template the accepts invokes operator() on a functor
 | |
|   ///  object (specifed by Callback) for every node/subtree in the tree.
 | |
|   ///  Nodes are visited using an inorder traversal.
 | |
|   template <typename Callback>
 | |
|   void foreach(Callback& C) {
 | |
|     if (ImutAVLTree* L = getLeft())
 | |
|       L->foreach(C);
 | |
| 
 | |
|     C(value);
 | |
| 
 | |
|     if (ImutAVLTree* R = getRight())
 | |
|       R->foreach(C);
 | |
|   }
 | |
| 
 | |
|   /// validateTree - A utility method that checks that the balancing and
 | |
|   ///  ordering invariants of the tree are satisifed.  It is a recursive
 | |
|   ///  method that returns the height of the tree, which is then consumed
 | |
|   ///  by the enclosing validateTree call.  External callers should ignore the
 | |
|   ///  return value.  An invalid tree will cause an assertion to fire in
 | |
|   ///  a debug build.
 | |
|   unsigned validateTree() const {
 | |
|     unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
 | |
|     unsigned HR = getRight() ? getRight()->validateTree() : 0;
 | |
|     (void) HL;
 | |
|     (void) HR;
 | |
| 
 | |
|     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
 | |
|             && "Height calculation wrong");
 | |
| 
 | |
|     assert((HL > HR ? HL-HR : HR-HL) <= 2
 | |
|            && "Balancing invariant violated");
 | |
| 
 | |
|     assert((!getLeft() ||
 | |
|             ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
 | |
|                              ImutInfo::KeyOfValue(getValue()))) &&
 | |
|            "Value in left child is not less that current value");
 | |
| 
 | |
| 
 | |
|     assert(!(getRight() ||
 | |
|              ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
 | |
|                               ImutInfo::KeyOfValue(getRight()->getValue()))) &&
 | |
|            "Current value is not less that value of right child");
 | |
| 
 | |
|     return getHeight();
 | |
|   }
 | |
| 
 | |
|   //===----------------------------------------------------===//
 | |
|   // Internal values.
 | |
|   //===----------------------------------------------------===//
 | |
| 
 | |
| private:
 | |
|   Factory *factory;
 | |
|   ImutAVLTree *left;
 | |
|   ImutAVLTree *right;
 | |
|   ImutAVLTree *prev;
 | |
|   ImutAVLTree *next;
 | |
| 
 | |
|   unsigned height         : 28;
 | |
|   unsigned IsMutable      : 1;
 | |
|   unsigned IsDigestCached : 1;
 | |
|   unsigned IsCanonicalized : 1;
 | |
| 
 | |
|   value_type value;
 | |
|   uint32_t digest;
 | |
|   uint32_t refCount;
 | |
| 
 | |
|   //===----------------------------------------------------===//
 | |
|   // Internal methods (node manipulation; used by Factory).
 | |
|   //===----------------------------------------------------===//
 | |
| 
 | |
| private:
 | |
|   /// ImutAVLTree - Internal constructor that is only called by
 | |
|   ///   ImutAVLFactory.
 | |
|   ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
 | |
|               unsigned height)
 | |
|     : factory(f), left(l), right(r), prev(0), next(0), height(height),
 | |
|       IsMutable(true), IsDigestCached(false), IsCanonicalized(0),
 | |
|       value(v), digest(0), refCount(0)
 | |
|   {
 | |
|     if (left) left->retain();
 | |
|     if (right) right->retain();
 | |
|   }
 | |
| 
 | |
|   /// isMutable - Returns true if the left and right subtree references
 | |
|   ///  (as well as height) can be changed.  If this method returns false,
 | |
|   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
 | |
|   ///  object should always have this method return true.  Further, if this
 | |
|   ///  method returns false for an instance of ImutAVLTree, all subtrees
 | |
|   ///  will also have this method return false.  The converse is not true.
 | |
|   bool isMutable() const { return IsMutable; }
 | |
| 
 | |
|   /// hasCachedDigest - Returns true if the digest for this tree is cached.
 | |
|   ///  This can only be true if the tree is immutable.
 | |
|   bool hasCachedDigest() const { return IsDigestCached; }
 | |
| 
 | |
|   //===----------------------------------------------------===//
 | |
|   // Mutating operations.  A tree root can be manipulated as
 | |
|   // long as its reference has not "escaped" from internal
 | |
|   // methods of a factory object (see below).  When a tree
 | |
|   // pointer is externally viewable by client code, the
 | |
|   // internal "mutable bit" is cleared to mark the tree
 | |
|   // immutable.  Note that a tree that still has its mutable
 | |
|   // bit set may have children (subtrees) that are themselves
 | |
|   // immutable.
 | |
|   //===----------------------------------------------------===//
 | |
| 
 | |
|   /// markImmutable - Clears the mutable flag for a tree.  After this happens,
 | |
|   ///   it is an error to call setLeft(), setRight(), and setHeight().
 | |
|   void markImmutable() {
 | |
|     assert(isMutable() && "Mutable flag already removed.");
 | |
|     IsMutable = false;
 | |
|   }
 | |
| 
 | |
|   /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
 | |
|   void markedCachedDigest() {
 | |
|     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
 | |
|     IsDigestCached = true;
 | |
|   }
 | |
| 
 | |
|   /// setHeight - Changes the height of the tree.  Used internally by
 | |
|   ///  ImutAVLFactory.
 | |
|   void setHeight(unsigned h) {
 | |
|     assert(isMutable() && "Only a mutable tree can have its height changed.");
 | |
|     height = h;
 | |
|   }
 | |
| 
 | |
|   static inline
 | |
|   uint32_t computeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) {
 | |
|     uint32_t digest = 0;
 | |
| 
 | |
|     if (L)
 | |
|       digest += L->computeDigest();
 | |
| 
 | |
|     // Compute digest of stored data.
 | |
|     FoldingSetNodeID ID;
 | |
|     ImutInfo::Profile(ID,V);
 | |
|     digest += ID.ComputeHash();
 | |
| 
 | |
|     if (R)
 | |
|       digest += R->computeDigest();
 | |
| 
 | |
|     return digest;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t computeDigest() {
 | |
|     // Check the lowest bit to determine if digest has actually been
 | |
|     // pre-computed.
 | |
|     if (hasCachedDigest())
 | |
|       return digest;
 | |
| 
 | |
|     uint32_t X = computeDigest(getLeft(), getRight(), getValue());
 | |
|     digest = X;
 | |
|     markedCachedDigest();
 | |
|     return X;
 | |
|   }
 | |
| 
 | |
|   //===----------------------------------------------------===//
 | |
|   // Reference count operations.
 | |
|   //===----------------------------------------------------===//
 | |
| 
 | |
| public:
 | |
|   void retain() { ++refCount; }
 | |
|   void release() {
 | |
|     assert(refCount > 0);
 | |
|     if (--refCount == 0)
 | |
|       destroy();
 | |
|   }
 | |
|   void destroy() {
 | |
|     if (left)
 | |
|       left->release();
 | |
|     if (right)
 | |
|       right->release();
 | |
|     if (IsCanonicalized) {
 | |
|       if (next)
 | |
|         next->prev = prev;
 | |
| 
 | |
|       if (prev)
 | |
|         prev->next = next;
 | |
|       else
 | |
|         factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
 | |
|     }
 | |
| 
 | |
|     // We need to clear the mutability bit in case we are
 | |
|     // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
 | |
|     IsMutable = false;
 | |
|     factory->freeNodes.push_back(this);
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Immutable AVL-Tree Factory class.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ImutInfo >
 | |
| class ImutAVLFactory {
 | |
|   friend class ImutAVLTree<ImutInfo>;
 | |
|   typedef ImutAVLTree<ImutInfo> TreeTy;
 | |
|   typedef typename TreeTy::value_type_ref value_type_ref;
 | |
|   typedef typename TreeTy::key_type_ref   key_type_ref;
 | |
| 
 | |
|   typedef DenseMap<unsigned, TreeTy*> CacheTy;
 | |
| 
 | |
|   CacheTy Cache;
 | |
|   uintptr_t Allocator;
 | |
|   std::vector<TreeTy*> createdNodes;
 | |
|   std::vector<TreeTy*> freeNodes;
 | |
| 
 | |
|   bool ownsAllocator() const {
 | |
|     return Allocator & 0x1 ? false : true;
 | |
|   }
 | |
| 
 | |
|   BumpPtrAllocator& getAllocator() const {
 | |
|     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // Public interface.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
| public:
 | |
|   ImutAVLFactory()
 | |
|     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
 | |
| 
 | |
|   ImutAVLFactory(BumpPtrAllocator& Alloc)
 | |
|     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
 | |
| 
 | |
|   ~ImutAVLFactory() {
 | |
|     if (ownsAllocator()) delete &getAllocator();
 | |
|   }
 | |
| 
 | |
|   TreeTy* add(TreeTy* T, value_type_ref V) {
 | |
|     T = add_internal(V,T);
 | |
|     markImmutable(T);
 | |
|     recoverNodes();
 | |
|     return T;
 | |
|   }
 | |
| 
 | |
|   TreeTy* remove(TreeTy* T, key_type_ref V) {
 | |
|     T = remove_internal(V,T);
 | |
|     markImmutable(T);
 | |
|     recoverNodes();
 | |
|     return T;
 | |
|   }
 | |
| 
 | |
|   TreeTy* getEmptyTree() const { return NULL; }
 | |
| 
 | |
| protected:
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // A bunch of quick helper functions used for reasoning
 | |
|   // about the properties of trees and their children.
 | |
|   // These have succinct names so that the balancing code
 | |
|   // is as terse (and readable) as possible.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
|   bool            isEmpty(TreeTy* T) const { return !T; }
 | |
|   unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
 | |
|   TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
 | |
|   TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
 | |
|   value_type_ref  getValue(TreeTy* T) const { return T->value; }
 | |
| 
 | |
|   // Make sure the index is not the Tombstone or Entry key of the DenseMap.
 | |
|   static inline unsigned maskCacheIndex(unsigned I) {
 | |
|     return (I & ~0x02);
 | |
|   }
 | |
| 
 | |
|   unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
 | |
|     unsigned hl = getHeight(L);
 | |
|     unsigned hr = getHeight(R);
 | |
|     return (hl > hr ? hl : hr) + 1;
 | |
|   }
 | |
| 
 | |
|   static bool compareTreeWithSection(TreeTy* T,
 | |
|                                      typename TreeTy::iterator& TI,
 | |
|                                      typename TreeTy::iterator& TE) {
 | |
|     typename TreeTy::iterator I = T->begin(), E = T->end();
 | |
|     for ( ; I!=E ; ++I, ++TI) {
 | |
|       if (TI == TE || !I->isElementEqual(*TI))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // "createNode" is used to generate new tree roots that link
 | |
|   // to other trees.  The functon may also simply move links
 | |
|   // in an existing root if that root is still marked mutable.
 | |
|   // This is necessary because otherwise our balancing code
 | |
|   // would leak memory as it would create nodes that are
 | |
|   // then discarded later before the finished tree is
 | |
|   // returned to the caller.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
|   TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
 | |
|     BumpPtrAllocator& A = getAllocator();
 | |
|     TreeTy* T;
 | |
|     if (!freeNodes.empty()) {
 | |
|       T = freeNodes.back();
 | |
|       freeNodes.pop_back();
 | |
|       assert(T != L);
 | |
|       assert(T != R);
 | |
|     } else {
 | |
|       T = (TreeTy*) A.Allocate<TreeTy>();
 | |
|     }
 | |
|     new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
 | |
|     createdNodes.push_back(T);
 | |
|     return T;
 | |
|   }
 | |
| 
 | |
|   TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
 | |
|     return createNode(newLeft, getValue(oldTree), newRight);
 | |
|   }
 | |
| 
 | |
|   void recoverNodes() {
 | |
|     for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
 | |
|       TreeTy *N = createdNodes[i];
 | |
|       if (N->isMutable() && N->refCount == 0)
 | |
|         N->destroy();
 | |
|     }
 | |
|     createdNodes.clear();
 | |
|   }
 | |
| 
 | |
|   /// balanceTree - Used by add_internal and remove_internal to
 | |
|   ///  balance a newly created tree.
 | |
|   TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
 | |
|     unsigned hl = getHeight(L);
 | |
|     unsigned hr = getHeight(R);
 | |
| 
 | |
|     if (hl > hr + 2) {
 | |
|       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
 | |
| 
 | |
|       TreeTy *LL = getLeft(L);
 | |
|       TreeTy *LR = getRight(L);
 | |
| 
 | |
|       if (getHeight(LL) >= getHeight(LR))
 | |
|         return createNode(LL, L, createNode(LR,V,R));
 | |
| 
 | |
|       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
 | |
| 
 | |
|       TreeTy *LRL = getLeft(LR);
 | |
|       TreeTy *LRR = getRight(LR);
 | |
| 
 | |
|       return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
 | |
|     }
 | |
| 
 | |
|     if (hr > hl + 2) {
 | |
|       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
 | |
| 
 | |
|       TreeTy *RL = getLeft(R);
 | |
|       TreeTy *RR = getRight(R);
 | |
| 
 | |
|       if (getHeight(RR) >= getHeight(RL))
 | |
|         return createNode(createNode(L,V,RL), R, RR);
 | |
| 
 | |
|       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
 | |
| 
 | |
|       TreeTy *RLL = getLeft(RL);
 | |
|       TreeTy *RLR = getRight(RL);
 | |
| 
 | |
|       return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
 | |
|     }
 | |
| 
 | |
|     return createNode(L,V,R);
 | |
|   }
 | |
| 
 | |
|   /// add_internal - Creates a new tree that includes the specified
 | |
|   ///  data and the data from the original tree.  If the original tree
 | |
|   ///  already contained the data item, the original tree is returned.
 | |
|   TreeTy* add_internal(value_type_ref V, TreeTy* T) {
 | |
|     if (isEmpty(T))
 | |
|       return createNode(T, V, T);
 | |
|     assert(!T->isMutable());
 | |
| 
 | |
|     key_type_ref K = ImutInfo::KeyOfValue(V);
 | |
|     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
 | |
| 
 | |
|     if (ImutInfo::isEqual(K,KCurrent))
 | |
|       return createNode(getLeft(T), V, getRight(T));
 | |
|     else if (ImutInfo::isLess(K,KCurrent))
 | |
|       return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
 | |
|     else
 | |
|       return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
 | |
|   }
 | |
| 
 | |
|   /// remove_internal - Creates a new tree that includes all the data
 | |
|   ///  from the original tree except the specified data.  If the
 | |
|   ///  specified data did not exist in the original tree, the original
 | |
|   ///  tree is returned.
 | |
|   TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
 | |
|     if (isEmpty(T))
 | |
|       return T;
 | |
| 
 | |
|     assert(!T->isMutable());
 | |
| 
 | |
|     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
 | |
| 
 | |
|     if (ImutInfo::isEqual(K,KCurrent)) {
 | |
|       return combineTrees(getLeft(T), getRight(T));
 | |
|     } else if (ImutInfo::isLess(K,KCurrent)) {
 | |
|       return balanceTree(remove_internal(K, getLeft(T)),
 | |
|                                             getValue(T), getRight(T));
 | |
|     } else {
 | |
|       return balanceTree(getLeft(T), getValue(T),
 | |
|                          remove_internal(K, getRight(T)));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
 | |
|     if (isEmpty(L))
 | |
|       return R;
 | |
|     if (isEmpty(R))
 | |
|       return L;
 | |
|     TreeTy* OldNode;
 | |
|     TreeTy* newRight = removeMinBinding(R,OldNode);
 | |
|     return balanceTree(L, getValue(OldNode), newRight);
 | |
|   }
 | |
| 
 | |
|   TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
 | |
|     assert(!isEmpty(T));
 | |
|     if (isEmpty(getLeft(T))) {
 | |
|       Noderemoved = T;
 | |
|       return getRight(T);
 | |
|     }
 | |
|     return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
 | |
|                        getValue(T), getRight(T));
 | |
|   }
 | |
| 
 | |
|   /// markImmutable - Clears the mutable bits of a root and all of its
 | |
|   ///  descendants.
 | |
|   void markImmutable(TreeTy* T) {
 | |
|     if (!T || !T->isMutable())
 | |
|       return;
 | |
|     T->markImmutable();
 | |
|     markImmutable(getLeft(T));
 | |
|     markImmutable(getRight(T));
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   TreeTy *getCanonicalTree(TreeTy *TNew) {
 | |
|     if (!TNew)
 | |
|       return 0;
 | |
| 
 | |
|     if (TNew->IsCanonicalized)
 | |
|       return TNew;
 | |
| 
 | |
|     // Search the hashtable for another tree with the same digest, and
 | |
|     // if find a collision compare those trees by their contents.
 | |
|     unsigned digest = TNew->computeDigest();
 | |
|     TreeTy *&entry = Cache[maskCacheIndex(digest)];
 | |
|     do {
 | |
|       if (!entry)
 | |
|         break;
 | |
|       for (TreeTy *T = entry ; T != 0; T = T->next) {
 | |
|         // Compare the Contents('T') with Contents('TNew')
 | |
|         typename TreeTy::iterator TI = T->begin(), TE = T->end();
 | |
|         if (!compareTreeWithSection(TNew, TI, TE))
 | |
|           continue;
 | |
|         if (TI != TE)
 | |
|           continue; // T has more contents than TNew.
 | |
|         // Trees did match!  Return 'T'.
 | |
|         if (TNew->refCount == 0)
 | |
|           TNew->destroy();
 | |
|         return T;
 | |
|       }
 | |
|       entry->prev = TNew;
 | |
|       TNew->next = entry;
 | |
|     }
 | |
|     while (false);
 | |
| 
 | |
|     entry = TNew;
 | |
|     TNew->IsCanonicalized = true;
 | |
|     return TNew;
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Immutable AVL-Tree Iterators.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ImutInfo>
 | |
| class ImutAVLTreeGenericIterator {
 | |
|   SmallVector<uintptr_t,20> stack;
 | |
| public:
 | |
|   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
 | |
|                    Flags=0x3 };
 | |
| 
 | |
|   typedef ImutAVLTree<ImutInfo> TreeTy;
 | |
|   typedef ImutAVLTreeGenericIterator<ImutInfo> _Self;
 | |
| 
 | |
|   inline ImutAVLTreeGenericIterator() {}
 | |
|   inline ImutAVLTreeGenericIterator(const TreeTy* Root) {
 | |
|     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
 | |
|   }
 | |
| 
 | |
|   TreeTy* operator*() const {
 | |
|     assert(!stack.empty());
 | |
|     return reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
 | |
|   }
 | |
| 
 | |
|   uintptr_t getVisitState() const {
 | |
|     assert(!stack.empty());
 | |
|     return stack.back() & Flags;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool atEnd() const { return stack.empty(); }
 | |
| 
 | |
|   bool atBeginning() const {
 | |
|     return stack.size() == 1 && getVisitState() == VisitedNone;
 | |
|   }
 | |
| 
 | |
|   void skipToParent() {
 | |
|     assert(!stack.empty());
 | |
|     stack.pop_back();
 | |
|     if (stack.empty())
 | |
|       return;
 | |
|     switch (getVisitState()) {
 | |
|       case VisitedNone:
 | |
|         stack.back() |= VisitedLeft;
 | |
|         break;
 | |
|       case VisitedLeft:
 | |
|         stack.back() |= VisitedRight;
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("Unreachable.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline bool operator==(const _Self& x) const {
 | |
|     if (stack.size() != x.stack.size())
 | |
|       return false;
 | |
|     for (unsigned i = 0 ; i < stack.size(); i++)
 | |
|       if (stack[i] != x.stack[i])
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   inline bool operator!=(const _Self& x) const { return !operator==(x); }
 | |
| 
 | |
|   _Self& operator++() {
 | |
|     assert(!stack.empty());
 | |
|     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
 | |
|     assert(Current);
 | |
|     switch (getVisitState()) {
 | |
|       case VisitedNone:
 | |
|         if (TreeTy* L = Current->getLeft())
 | |
|           stack.push_back(reinterpret_cast<uintptr_t>(L));
 | |
|         else
 | |
|           stack.back() |= VisitedLeft;
 | |
|         break;
 | |
|       case VisitedLeft:
 | |
|         if (TreeTy* R = Current->getRight())
 | |
|           stack.push_back(reinterpret_cast<uintptr_t>(R));
 | |
|         else
 | |
|           stack.back() |= VisitedRight;
 | |
|         break;
 | |
|       case VisitedRight:
 | |
|         skipToParent();
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("Unreachable.");
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   _Self& operator--() {
 | |
|     assert(!stack.empty());
 | |
|     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
 | |
|     assert(Current);
 | |
|     switch (getVisitState()) {
 | |
|       case VisitedNone:
 | |
|         stack.pop_back();
 | |
|         break;
 | |
|       case VisitedLeft:
 | |
|         stack.back() &= ~Flags; // Set state to "VisitedNone."
 | |
|         if (TreeTy* L = Current->getLeft())
 | |
|           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
 | |
|         break;
 | |
|       case VisitedRight:
 | |
|         stack.back() &= ~Flags;
 | |
|         stack.back() |= VisitedLeft;
 | |
|         if (TreeTy* R = Current->getRight())
 | |
|           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("Unreachable.");
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename ImutInfo>
 | |
| class ImutAVLTreeInOrderIterator {
 | |
|   typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
 | |
|   InternalIteratorTy InternalItr;
 | |
| 
 | |
| public:
 | |
|   typedef ImutAVLTree<ImutInfo> TreeTy;
 | |
|   typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self;
 | |
| 
 | |
|   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
 | |
|     if (Root) operator++(); // Advance to first element.
 | |
|   }
 | |
| 
 | |
|   ImutAVLTreeInOrderIterator() : InternalItr() {}
 | |
| 
 | |
|   inline bool operator==(const _Self& x) const {
 | |
|     return InternalItr == x.InternalItr;
 | |
|   }
 | |
| 
 | |
|   inline bool operator!=(const _Self& x) const { return !operator==(x); }
 | |
| 
 | |
|   inline TreeTy* operator*() const { return *InternalItr; }
 | |
|   inline TreeTy* operator->() const { return *InternalItr; }
 | |
| 
 | |
|   inline _Self& operator++() {
 | |
|     do ++InternalItr;
 | |
|     while (!InternalItr.atEnd() &&
 | |
|            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline _Self& operator--() {
 | |
|     do --InternalItr;
 | |
|     while (!InternalItr.atBeginning() &&
 | |
|            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline void skipSubTree() {
 | |
|     InternalItr.skipToParent();
 | |
| 
 | |
|     while (!InternalItr.atEnd() &&
 | |
|            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
 | |
|       ++InternalItr;
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Trait classes for Profile information.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Generic profile template.  The default behavior is to invoke the
 | |
| /// profile method of an object.  Specializations for primitive integers
 | |
| /// and generic handling of pointers is done below.
 | |
| template <typename T>
 | |
| struct ImutProfileInfo {
 | |
|   typedef const T  value_type;
 | |
|   typedef const T& value_type_ref;
 | |
| 
 | |
|   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
 | |
|     FoldingSetTrait<T>::Profile(X,ID);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Profile traits for integers.
 | |
| template <typename T>
 | |
| struct ImutProfileInteger {
 | |
|   typedef const T  value_type;
 | |
|   typedef const T& value_type_ref;
 | |
| 
 | |
|   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
 | |
|     ID.AddInteger(X);
 | |
|   }
 | |
| };
 | |
| 
 | |
| #define PROFILE_INTEGER_INFO(X)\
 | |
| template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
 | |
| 
 | |
| PROFILE_INTEGER_INFO(char)
 | |
| PROFILE_INTEGER_INFO(unsigned char)
 | |
| PROFILE_INTEGER_INFO(short)
 | |
| PROFILE_INTEGER_INFO(unsigned short)
 | |
| PROFILE_INTEGER_INFO(unsigned)
 | |
| PROFILE_INTEGER_INFO(signed)
 | |
| PROFILE_INTEGER_INFO(long)
 | |
| PROFILE_INTEGER_INFO(unsigned long)
 | |
| PROFILE_INTEGER_INFO(long long)
 | |
| PROFILE_INTEGER_INFO(unsigned long long)
 | |
| 
 | |
| #undef PROFILE_INTEGER_INFO
 | |
| 
 | |
| /// Profile traits for booleans.
 | |
| template <>
 | |
| struct ImutProfileInfo<bool> {
 | |
|   typedef const bool  value_type;
 | |
|   typedef const bool& value_type_ref;
 | |
| 
 | |
|   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
 | |
|     ID.AddBoolean(X);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// Generic profile trait for pointer types.  We treat pointers as
 | |
| /// references to unique objects.
 | |
| template <typename T>
 | |
| struct ImutProfileInfo<T*> {
 | |
|   typedef const T*   value_type;
 | |
|   typedef value_type value_type_ref;
 | |
| 
 | |
|   static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
 | |
|     ID.AddPointer(X);
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Trait classes that contain element comparison operators and type
 | |
| //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
 | |
| //  inherit from the profile traits (ImutProfileInfo) to include operations
 | |
| //  for element profiling.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| /// ImutContainerInfo - Generic definition of comparison operations for
 | |
| ///   elements of immutable containers that defaults to using
 | |
| ///   std::equal_to<> and std::less<> to perform comparison of elements.
 | |
| template <typename T>
 | |
| struct ImutContainerInfo : public ImutProfileInfo<T> {
 | |
|   typedef typename ImutProfileInfo<T>::value_type      value_type;
 | |
|   typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
 | |
|   typedef value_type      key_type;
 | |
|   typedef value_type_ref  key_type_ref;
 | |
|   typedef bool            data_type;
 | |
|   typedef bool            data_type_ref;
 | |
| 
 | |
|   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
 | |
|   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
 | |
| 
 | |
|   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
 | |
|     return std::equal_to<key_type>()(LHS,RHS);
 | |
|   }
 | |
| 
 | |
|   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
 | |
|     return std::less<key_type>()(LHS,RHS);
 | |
|   }
 | |
| 
 | |
|   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
 | |
| };
 | |
| 
 | |
| /// ImutContainerInfo - Specialization for pointer values to treat pointers
 | |
| ///  as references to unique objects.  Pointers are thus compared by
 | |
| ///  their addresses.
 | |
| template <typename T>
 | |
| struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
 | |
|   typedef typename ImutProfileInfo<T*>::value_type      value_type;
 | |
|   typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
 | |
|   typedef value_type      key_type;
 | |
|   typedef value_type_ref  key_type_ref;
 | |
|   typedef bool            data_type;
 | |
|   typedef bool            data_type_ref;
 | |
| 
 | |
|   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
 | |
|   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
 | |
| 
 | |
|   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
 | |
|     return LHS == RHS;
 | |
|   }
 | |
| 
 | |
|   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
 | |
|     return LHS < RHS;
 | |
|   }
 | |
| 
 | |
|   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Immutable Set
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
 | |
| class ImmutableSet {
 | |
| public:
 | |
|   typedef typename ValInfo::value_type      value_type;
 | |
|   typedef typename ValInfo::value_type_ref  value_type_ref;
 | |
|   typedef ImutAVLTree<ValInfo> TreeTy;
 | |
| 
 | |
| private:
 | |
|   TreeTy *Root;
 | |
| 
 | |
| public:
 | |
|   /// Constructs a set from a pointer to a tree root.  In general one
 | |
|   /// should use a Factory object to create sets instead of directly
 | |
|   /// invoking the constructor, but there are cases where make this
 | |
|   /// constructor public is useful.
 | |
|   explicit ImmutableSet(TreeTy* R) : Root(R) {
 | |
|     if (Root) { Root->retain(); }
 | |
|   }
 | |
|   ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
 | |
|     if (Root) { Root->retain(); }
 | |
|   }
 | |
|   ImmutableSet &operator=(const ImmutableSet &X) {
 | |
|     if (Root != X.Root) {
 | |
|       if (X.Root) { X.Root->retain(); }
 | |
|       if (Root) { Root->release(); }
 | |
|       Root = X.Root;
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
|   ~ImmutableSet() {
 | |
|     if (Root) { Root->release(); }
 | |
|   }
 | |
| 
 | |
|   class Factory {
 | |
|     typename TreeTy::Factory F;
 | |
|     const bool Canonicalize;
 | |
| 
 | |
|   public:
 | |
|     Factory(bool canonicalize = true)
 | |
|       : Canonicalize(canonicalize) {}
 | |
| 
 | |
|     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
 | |
|       : F(Alloc), Canonicalize(canonicalize) {}
 | |
| 
 | |
|     /// getEmptySet - Returns an immutable set that contains no elements.
 | |
|     ImmutableSet getEmptySet() {
 | |
|       return ImmutableSet(F.getEmptyTree());
 | |
|     }
 | |
| 
 | |
|     /// add - Creates a new immutable set that contains all of the values
 | |
|     ///  of the original set with the addition of the specified value.  If
 | |
|     ///  the original set already included the value, then the original set is
 | |
|     ///  returned and no memory is allocated.  The time and space complexity
 | |
|     ///  of this operation is logarithmic in the size of the original set.
 | |
|     ///  The memory allocated to represent the set is released when the
 | |
|     ///  factory object that created the set is destroyed.
 | |
|     ImmutableSet add(ImmutableSet Old, value_type_ref V) {
 | |
|       TreeTy *NewT = F.add(Old.Root, V);
 | |
|       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
 | |
|     }
 | |
| 
 | |
|     /// remove - Creates a new immutable set that contains all of the values
 | |
|     ///  of the original set with the exception of the specified value.  If
 | |
|     ///  the original set did not contain the value, the original set is
 | |
|     ///  returned and no memory is allocated.  The time and space complexity
 | |
|     ///  of this operation is logarithmic in the size of the original set.
 | |
|     ///  The memory allocated to represent the set is released when the
 | |
|     ///  factory object that created the set is destroyed.
 | |
|     ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
 | |
|       TreeTy *NewT = F.remove(Old.Root, V);
 | |
|       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
 | |
|     }
 | |
| 
 | |
|     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
 | |
| 
 | |
|     typename TreeTy::Factory *getTreeFactory() const {
 | |
|       return const_cast<typename TreeTy::Factory *>(&F);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     Factory(const Factory& RHS) LLVM_DELETED_FUNCTION;
 | |
|     void operator=(const Factory& RHS) LLVM_DELETED_FUNCTION;
 | |
|   };
 | |
| 
 | |
|   friend class Factory;
 | |
| 
 | |
|   /// Returns true if the set contains the specified value.
 | |
|   bool contains(value_type_ref V) const {
 | |
|     return Root ? Root->contains(V) : false;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const ImmutableSet &RHS) const {
 | |
|     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const ImmutableSet &RHS) const {
 | |
|     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
 | |
|   }
 | |
| 
 | |
|   TreeTy *getRoot() {
 | |
|     if (Root) { Root->retain(); }
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   TreeTy *getRootWithoutRetain() const {
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   /// isEmpty - Return true if the set contains no elements.
 | |
|   bool isEmpty() const { return !Root; }
 | |
| 
 | |
|   /// isSingleton - Return true if the set contains exactly one element.
 | |
|   ///   This method runs in constant time.
 | |
|   bool isSingleton() const { return getHeight() == 1; }
 | |
| 
 | |
|   template <typename Callback>
 | |
|   void foreach(Callback& C) { if (Root) Root->foreach(C); }
 | |
| 
 | |
|   template <typename Callback>
 | |
|   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // Iterators.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
|   class iterator {
 | |
|     typename TreeTy::iterator itr;
 | |
| 
 | |
|     iterator() {}
 | |
|     iterator(TreeTy* t) : itr(t) {}
 | |
|     friend class ImmutableSet<ValT,ValInfo>;
 | |
| 
 | |
|   public:
 | |
|     typedef ptrdiff_t difference_type;
 | |
|     typedef typename ImmutableSet<ValT,ValInfo>::value_type value_type;
 | |
|     typedef typename ImmutableSet<ValT,ValInfo>::value_type_ref reference;
 | |
|     typedef typename iterator::value_type *pointer;
 | |
|     typedef std::bidirectional_iterator_tag iterator_category;
 | |
| 
 | |
|     typename iterator::reference operator*() const { return itr->getValue(); }
 | |
|     typename iterator::pointer   operator->() const { return &(operator*()); }
 | |
| 
 | |
|     iterator& operator++() { ++itr; return *this; }
 | |
|     iterator  operator++(int) { iterator tmp(*this); ++itr; return tmp; }
 | |
|     iterator& operator--() { --itr; return *this; }
 | |
|     iterator  operator--(int) { iterator tmp(*this); --itr; return tmp; }
 | |
| 
 | |
|     bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
 | |
|     bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
 | |
|   };
 | |
| 
 | |
|   iterator begin() const { return iterator(Root); }
 | |
|   iterator end() const { return iterator(); }
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // Utility methods.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
|   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
 | |
| 
 | |
|   static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) {
 | |
|     ID.AddPointer(S.Root);
 | |
|   }
 | |
| 
 | |
|   inline void Profile(FoldingSetNodeID& ID) const {
 | |
|     return Profile(ID,*this);
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // For testing.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
|   void validateTree() const { if (Root) Root->validateTree(); }
 | |
| };
 | |
| 
 | |
| // NOTE: This may some day replace the current ImmutableSet.
 | |
| template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
 | |
| class ImmutableSetRef {
 | |
| public:
 | |
|   typedef typename ValInfo::value_type      value_type;
 | |
|   typedef typename ValInfo::value_type_ref  value_type_ref;
 | |
|   typedef ImutAVLTree<ValInfo> TreeTy;
 | |
|   typedef typename TreeTy::Factory          FactoryTy;
 | |
| 
 | |
| private:
 | |
|   TreeTy *Root;
 | |
|   FactoryTy *Factory;
 | |
| 
 | |
| public:
 | |
|   /// Constructs a set from a pointer to a tree root.  In general one
 | |
|   /// should use a Factory object to create sets instead of directly
 | |
|   /// invoking the constructor, but there are cases where make this
 | |
|   /// constructor public is useful.
 | |
|   explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
 | |
|     : Root(R),
 | |
|       Factory(F) {
 | |
|     if (Root) { Root->retain(); }
 | |
|   }
 | |
|   ImmutableSetRef(const ImmutableSetRef &X)
 | |
|     : Root(X.Root),
 | |
|       Factory(X.Factory) {
 | |
|     if (Root) { Root->retain(); }
 | |
|   }
 | |
|   ImmutableSetRef &operator=(const ImmutableSetRef &X) {
 | |
|     if (Root != X.Root) {
 | |
|       if (X.Root) { X.Root->retain(); }
 | |
|       if (Root) { Root->release(); }
 | |
|       Root = X.Root;
 | |
|       Factory = X.Factory;
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
|   ~ImmutableSetRef() {
 | |
|     if (Root) { Root->release(); }
 | |
|   }
 | |
| 
 | |
|   static inline ImmutableSetRef getEmptySet(FactoryTy *F) {
 | |
|     return ImmutableSetRef(0, F);
 | |
|   }
 | |
| 
 | |
|   ImmutableSetRef add(value_type_ref V) {
 | |
|     return ImmutableSetRef(Factory->add(Root, V), Factory);
 | |
|   }
 | |
| 
 | |
|   ImmutableSetRef remove(value_type_ref V) {
 | |
|     return ImmutableSetRef(Factory->remove(Root, V), Factory);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the set contains the specified value.
 | |
|   bool contains(value_type_ref V) const {
 | |
|     return Root ? Root->contains(V) : false;
 | |
|   }
 | |
| 
 | |
|   ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
 | |
|     return ImmutableSet<ValT>(canonicalize ?
 | |
|                               Factory->getCanonicalTree(Root) : Root);
 | |
|   }
 | |
| 
 | |
|   TreeTy *getRootWithoutRetain() const {
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const ImmutableSetRef &RHS) const {
 | |
|     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const ImmutableSetRef &RHS) const {
 | |
|     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
 | |
|   }
 | |
| 
 | |
|   /// isEmpty - Return true if the set contains no elements.
 | |
|   bool isEmpty() const { return !Root; }
 | |
| 
 | |
|   /// isSingleton - Return true if the set contains exactly one element.
 | |
|   ///   This method runs in constant time.
 | |
|   bool isSingleton() const { return getHeight() == 1; }
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // Iterators.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
|   class iterator {
 | |
|     typename TreeTy::iterator itr;
 | |
|     iterator(TreeTy* t) : itr(t) {}
 | |
|     friend class ImmutableSetRef<ValT,ValInfo>;
 | |
|   public:
 | |
|     iterator() {}
 | |
|     inline value_type_ref operator*() const { return itr->getValue(); }
 | |
|     inline iterator& operator++() { ++itr; return *this; }
 | |
|     inline iterator  operator++(int) { iterator tmp(*this); ++itr; return tmp; }
 | |
|     inline iterator& operator--() { --itr; return *this; }
 | |
|     inline iterator  operator--(int) { iterator tmp(*this); --itr; return tmp; }
 | |
|     inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
 | |
|     inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
 | |
|     inline value_type *operator->() const { return &(operator*()); }
 | |
|   };
 | |
| 
 | |
|   iterator begin() const { return iterator(Root); }
 | |
|   iterator end() const { return iterator(); }
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // Utility methods.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
|   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
 | |
| 
 | |
|   static inline void Profile(FoldingSetNodeID& ID, const ImmutableSetRef& S) {
 | |
|     ID.AddPointer(S.Root);
 | |
|   }
 | |
| 
 | |
|   inline void Profile(FoldingSetNodeID& ID) const {
 | |
|     return Profile(ID,*this);
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------===//
 | |
|   // For testing.
 | |
|   //===--------------------------------------------------===//
 | |
| 
 | |
|   void validateTree() const { if (Root) Root->validateTree(); }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |