mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	in favor of the widespread llvm style. Capitalize variables and add newlines for visual parsing. Rename variables for readability. And other cleanup. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120490 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			561 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			561 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the RABasic function pass, which provides a minimal
 | |
| // implementation of the basic register allocator.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "LiveIntervalUnion.h"
 | |
| #include "RegAllocBase.h"
 | |
| #include "RenderMachineFunction.h"
 | |
| #include "Spiller.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "VirtRegRewriter.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/PassAnalysisSupport.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveStackAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/CodeGen/RegisterCoalescer.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #ifndef NDEBUG
 | |
| #include "llvm/ADT/SparseBitVector.h"
 | |
| #endif
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| #include <vector>
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
 | |
|                                       createBasicRegisterAllocator);
 | |
| 
 | |
| // Temporary verification option until we can put verification inside
 | |
| // MachineVerifier.
 | |
| static cl::opt<bool>
 | |
| VerifyRegAlloc("verify-regalloc",
 | |
|                cl::desc("Verify live intervals before renaming"));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class PhysicalRegisterDescription : public AbstractRegisterDescription {
 | |
|   const TargetRegisterInfo *TRI;
 | |
| public:
 | |
|   PhysicalRegisterDescription(const TargetRegisterInfo *T): TRI(T) {}
 | |
|   virtual const char *getName(unsigned Reg) const { return TRI->getName(Reg); }
 | |
| };
 | |
| 
 | |
| /// RABasic provides a minimal implementation of the basic register allocation
 | |
| /// algorithm. It prioritizes live virtual registers by spill weight and spills
 | |
| /// whenever a register is unavailable. This is not practical in production but
 | |
| /// provides a useful baseline both for measuring other allocators and comparing
 | |
| /// the speed of the basic algorithm against other styles of allocators.
 | |
| class RABasic : public MachineFunctionPass, public RegAllocBase
 | |
| {
 | |
|   // context
 | |
|   MachineFunction *MF;
 | |
|   const TargetMachine *TM;
 | |
|   MachineRegisterInfo *MRI;
 | |
| 
 | |
|   BitVector ReservedRegs;
 | |
| 
 | |
|   // analyses
 | |
|   LiveStacks *LS;
 | |
|   RenderMachineFunction *RMF;
 | |
| 
 | |
|   // state
 | |
|   std::auto_ptr<Spiller> SpillerInstance;
 | |
| 
 | |
| public:
 | |
|   RABasic();
 | |
| 
 | |
|   /// Return the pass name.
 | |
|   virtual const char* getPassName() const {
 | |
|     return "Basic Register Allocator";
 | |
|   }
 | |
| 
 | |
|   /// RABasic analysis usage.
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
| 
 | |
|   virtual void releaseMemory();
 | |
| 
 | |
|   virtual Spiller &spiller() { return *SpillerInstance; }
 | |
| 
 | |
|   virtual unsigned selectOrSplit(LiveInterval &VirtReg,
 | |
|                                  SmallVectorImpl<LiveInterval*> &SplitVRegs);
 | |
| 
 | |
|   /// Perform register allocation.
 | |
|   virtual bool runOnMachineFunction(MachineFunction &mf);
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   void addMBBLiveIns();
 | |
| };
 | |
| 
 | |
| char RABasic::ID = 0;
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| RABasic::RABasic(): MachineFunctionPass(ID) {
 | |
|   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
 | |
|   initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
 | |
|   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
 | |
|   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | |
|   initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   if (StrongPHIElim)
 | |
|     AU.addRequiredID(StrongPHIEliminationID);
 | |
|   AU.addRequiredTransitive<RegisterCoalescer>();
 | |
|   AU.addRequired<CalculateSpillWeights>();
 | |
|   AU.addRequired<LiveStacks>();
 | |
|   AU.addPreserved<LiveStacks>();
 | |
|   AU.addRequiredID(MachineDominatorsID);
 | |
|   AU.addPreservedID(MachineDominatorsID);
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addPreserved<MachineLoopInfo>();
 | |
|   AU.addRequired<VirtRegMap>();
 | |
|   AU.addPreserved<VirtRegMap>();
 | |
|   DEBUG(AU.addRequired<RenderMachineFunction>());
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void RABasic::releaseMemory() {
 | |
|   SpillerInstance.reset(0);
 | |
|   RegAllocBase::releaseMemory();
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // Verify each LiveIntervalUnion.
 | |
| void RegAllocBase::verify() {
 | |
|   LiveVirtRegBitSet VisitedVRegs;
 | |
|   OwningArrayPtr<LiveVirtRegBitSet>
 | |
|     unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
 | |
| 
 | |
|   // Verify disjoint unions.
 | |
|   for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
 | |
|     DEBUG(PhysicalRegisterDescription PRD(TRI);
 | |
|           PhysReg2LiveUnion[PhysReg].dump(&PRD));
 | |
|     LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
 | |
|     PhysReg2LiveUnion[PhysReg].verify(VRegs);
 | |
|     // Union + intersection test could be done efficiently in one pass, but
 | |
|     // don't add a method to SparseBitVector unless we really need it.
 | |
|     assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
 | |
|     VisitedVRegs |= VRegs;
 | |
|   }
 | |
| 
 | |
|   // Verify vreg coverage.
 | |
|   for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
 | |
|        liItr != liEnd; ++liItr) {
 | |
|     unsigned reg = liItr->first;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
 | |
|     if (!VRM->hasPhys(reg)) continue; // spilled?
 | |
|     unsigned PhysReg = VRM->getPhys(reg);
 | |
|     if (!unionVRegs[PhysReg].test(reg)) {
 | |
|       dbgs() << "LiveVirtReg " << reg << " not in union " <<
 | |
|         TRI->getName(PhysReg) << "\n";
 | |
|       llvm_unreachable("unallocated live vreg");
 | |
|     }
 | |
|   }
 | |
|   // FIXME: I'm not sure how to verify spilled intervals.
 | |
| }
 | |
| #endif //!NDEBUG
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         RegAllocBase Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Instantiate a LiveIntervalUnion for each physical register.
 | |
| void RegAllocBase::LiveUnionArray::init(unsigned NRegs) {
 | |
|   Array.reset(new LiveIntervalUnion[NRegs]);
 | |
|   NumRegs = NRegs;
 | |
|   for (unsigned RegNum = 0; RegNum < NRegs; ++RegNum) {
 | |
|     Array[RegNum].init(RegNum);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
 | |
|                         LiveIntervals &lis) {
 | |
|   TRI = &tri;
 | |
|   VRM = &vrm;
 | |
|   LIS = &lis;
 | |
|   PhysReg2LiveUnion.init(TRI->getNumRegs());
 | |
|   // Cache an interferece query for each physical reg
 | |
|   Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
 | |
| }
 | |
| 
 | |
| void RegAllocBase::LiveUnionArray::clear() {
 | |
|   NumRegs =  0;
 | |
|   Array.reset(0);
 | |
| }
 | |
| 
 | |
| void RegAllocBase::releaseMemory() {
 | |
|   PhysReg2LiveUnion.clear();
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| /// This class defines a queue of live virtual registers prioritized by spill
 | |
| /// weight. The heaviest vreg is popped first.
 | |
| ///
 | |
| /// Currently, this is trivial wrapper that gives us an opaque type in the
 | |
| /// header, but we may later give it a virtual interface for register allocators
 | |
| /// to override the priority queue comparator.
 | |
| class LiveVirtRegQueue {
 | |
|   typedef std::priority_queue
 | |
|     <LiveInterval*, std::vector<LiveInterval*>, LessSpillWeightPriority>
 | |
|     PriorityQ;
 | |
|   PriorityQ PQ;
 | |
| 
 | |
| public:
 | |
|   // Is the queue empty?
 | |
|   bool empty() { return PQ.empty(); }
 | |
| 
 | |
|   // Get the highest priority lvr (top + pop)
 | |
|   LiveInterval *get() {
 | |
|     LiveInterval *VirtReg = PQ.top();
 | |
|     PQ.pop();
 | |
|     return VirtReg;
 | |
|   }
 | |
|   // Add this lvr to the queue
 | |
|   void push(LiveInterval *VirtReg) {
 | |
|     PQ.push(VirtReg);
 | |
|   }
 | |
| };
 | |
| } // end namespace llvm
 | |
| 
 | |
| // Visit all the live virtual registers. If they are already assigned to a
 | |
| // physical register, unify them with the corresponding LiveIntervalUnion,
 | |
| // otherwise push them on the priority queue for later assignment.
 | |
| void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue &VirtRegQ) {
 | |
|   for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
 | |
|     unsigned RegNum = I->first;
 | |
|     LiveInterval &VirtReg = *I->second;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(RegNum)) {
 | |
|       PhysReg2LiveUnion[RegNum].unify(VirtReg);
 | |
|     }
 | |
|     else {
 | |
|       VirtRegQ.push(&VirtReg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Top-level driver to manage the queue of unassigned VirtRegs and call the
 | |
| // selectOrSplit implementation.
 | |
| void RegAllocBase::allocatePhysRegs() {
 | |
| 
 | |
|   // Push each vreg onto a queue or "precolor" by adding it to a physreg union.
 | |
|   LiveVirtRegQueue VirtRegQ;
 | |
|   seedLiveVirtRegs(VirtRegQ);
 | |
| 
 | |
|   // Continue assigning vregs one at a time to available physical registers.
 | |
|   while (!VirtRegQ.empty()) {
 | |
|     // Pop the highest priority vreg.
 | |
|     LiveInterval *VirtReg = VirtRegQ.get();
 | |
| 
 | |
|     // selectOrSplit requests the allocator to return an available physical
 | |
|     // register if possible and populate a list of new live intervals that
 | |
|     // result from splitting.
 | |
|     typedef SmallVector<LiveInterval*, 4> VirtRegVec;
 | |
|     VirtRegVec SplitVRegs;
 | |
|     unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
 | |
| 
 | |
|     if (AvailablePhysReg) {
 | |
|       DEBUG(dbgs() << "allocating: " << TRI->getName(AvailablePhysReg) <<
 | |
|             " " << *VirtReg << '\n');
 | |
|       assert(!VRM->hasPhys(VirtReg->reg) && "duplicate vreg in union");
 | |
|       VRM->assignVirt2Phys(VirtReg->reg, AvailablePhysReg);
 | |
|       PhysReg2LiveUnion[AvailablePhysReg].unify(*VirtReg);
 | |
|     }
 | |
|     for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
 | |
|          I != E; ++I) {
 | |
|       LiveInterval* SplitVirtReg = *I;
 | |
|       if (SplitVirtReg->empty()) continue;
 | |
|       DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
 | |
|              "expect split value in virtual register");
 | |
|       VirtRegQ.push(SplitVirtReg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check if this live virtual register interferes with a physical register. If
 | |
| // not, then check for interference on each register that aliases with the
 | |
| // physical register. Return the interfering register.
 | |
| unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
 | |
|                                                 unsigned PhysReg) {
 | |
|   if (query(VirtReg, PhysReg).checkInterference())
 | |
|     return PhysReg;
 | |
|   for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) {
 | |
|     if (query(VirtReg, *AliasI).checkInterference())
 | |
|       return *AliasI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Helper for spillInteferences() that spills all interfering vregs currently
 | |
| // assigned to this physical register.
 | |
| void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
 | |
|                             SmallVectorImpl<LiveInterval*> &SplitVRegs) {
 | |
|   LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
 | |
|   assert(Q.seenAllInterferences() && "need collectInterferences()");
 | |
|   const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
 | |
| 
 | |
|   for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
 | |
|          E = PendingSpills.end(); I != E; ++I) {
 | |
|     LiveInterval &SpilledVReg = **I;
 | |
|     DEBUG(dbgs() << "extracting from " <<
 | |
|           TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
 | |
| 
 | |
|     // Deallocate the interfering vreg by removing it from the union.
 | |
|     // A LiveInterval instance may not be in a union during modification!
 | |
|     PhysReg2LiveUnion[PhysReg].extract(SpilledVReg);
 | |
| 
 | |
|     // Clear the vreg assignment.
 | |
|     VRM->clearVirt(SpilledVReg.reg);
 | |
| 
 | |
|     // Spill the extracted interval.
 | |
|     spiller().spill(&SpilledVReg, SplitVRegs, PendingSpills);
 | |
|   }
 | |
|   // After extracting segments, the query's results are invalid. But keep the
 | |
|   // contents valid until we're done accessing pendingSpills.
 | |
|   Q.clear();
 | |
| }
 | |
| 
 | |
| // Spill or split all live virtual registers currently unified under PhysReg
 | |
| // that interfere with VirtReg. The newly spilled or split live intervals are
 | |
| // returned by appending them to SplitVRegs.
 | |
| bool
 | |
| RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
 | |
|                                  SmallVectorImpl<LiveInterval*> &SplitVRegs) {
 | |
|   // Record each interference and determine if all are spillable before mutating
 | |
|   // either the union or live intervals.
 | |
| 
 | |
|   // Collect interferences assigned to the requested physical register.
 | |
|   LiveIntervalUnion::Query &QPreg = query(VirtReg, PhysReg);
 | |
|   unsigned NumInterferences = QPreg.collectInterferingVRegs();
 | |
|   if (QPreg.seenUnspillableVReg()) {
 | |
|     return false;
 | |
|   }
 | |
|   // Collect interferences assigned to any alias of the physical register.
 | |
|   for (const unsigned *asI = TRI->getAliasSet(PhysReg); *asI; ++asI) {
 | |
|     LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
 | |
|     NumInterferences += QAlias.collectInterferingVRegs();
 | |
|     if (QAlias.seenUnspillableVReg()) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
 | |
|         " interferences with " << VirtReg << "\n");
 | |
|   assert(NumInterferences > 0 && "expect interference");
 | |
| 
 | |
|   // Spill each interfering vreg allocated to PhysReg or an alias.
 | |
|   spillReg(VirtReg, PhysReg, SplitVRegs);
 | |
|   for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI)
 | |
|     spillReg(VirtReg, *AliasI, SplitVRegs);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         RABasic Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Driver for the register assignment and splitting heuristics.
 | |
| // Manages iteration over the LiveIntervalUnions.
 | |
| //
 | |
| // This is a minimal implementation of register assignment and splitting that
 | |
| // spills whenever we run out of registers.
 | |
| //
 | |
| // selectOrSplit can only be called once per live virtual register. We then do a
 | |
| // single interference test for each register the correct class until we find an
 | |
| // available register. So, the number of interference tests in the worst case is
 | |
| // |vregs| * |machineregs|. And since the number of interference tests is
 | |
| // minimal, there is no value in caching them outside the scope of
 | |
| // selectOrSplit().
 | |
| unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
 | |
|                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
 | |
|   // Populate a list of physical register spill candidates.
 | |
|   SmallVector<unsigned, 8> PhysRegSpillCands;
 | |
| 
 | |
|   // Check for an available register in this class.
 | |
|   const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg);
 | |
|   DEBUG(dbgs() << "RegClass: " << TRC->getName() << ' ');
 | |
| 
 | |
|   for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
 | |
|          E = TRC->allocation_order_end(*MF);
 | |
|        I != E; ++I) {
 | |
| 
 | |
|     unsigned PhysReg = *I;
 | |
|     if (ReservedRegs.test(PhysReg)) continue;
 | |
| 
 | |
|     // Check interference and as a side effect, intialize queries for this
 | |
|     // VirtReg and its aliases.
 | |
|     unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
 | |
|     if (interfReg == 0) {
 | |
|       // Found an available register.
 | |
|       return PhysReg;
 | |
|     }
 | |
|     LiveInterval *interferingVirtReg =
 | |
|       Queries[interfReg].firstInterference().liveUnionPos()->VirtReg;
 | |
| 
 | |
|     // The current VirtReg must either spillable, or one of its interferences
 | |
|     // must have less spill weight.
 | |
|     if (interferingVirtReg->weight < VirtReg.weight ) {
 | |
|       PhysRegSpillCands.push_back(PhysReg);
 | |
|     }
 | |
|   }
 | |
|   // Try to spill another interfering reg with less spill weight.
 | |
|   //
 | |
|   // FIXME: RAGreedy will sort this list by spill weight.
 | |
|   for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
 | |
|          PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
 | |
| 
 | |
|     if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
 | |
| 
 | |
|     unsigned InterferingReg = checkPhysRegInterference(VirtReg, *PhysRegI);
 | |
|     if (InterferingReg != 0) {
 | |
|       const LiveSegment &seg =
 | |
|         *Queries[InterferingReg].firstInterference().liveUnionPos();
 | |
| 
 | |
|       dbgs() << "spilling cannot free " << TRI->getName(*PhysRegI) <<
 | |
|         " for " << VirtReg.reg << " with interference " << *seg.VirtReg << "\n";
 | |
|       llvm_unreachable("Interference after spill.");
 | |
|     }
 | |
|     // Tell the caller to allocate to this newly freed physical register.
 | |
|     return *PhysRegI;
 | |
|   }
 | |
|   // No other spill candidates were found, so spill the current VirtReg.
 | |
|   DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
 | |
|   SmallVector<LiveInterval*, 1> pendingSpills;
 | |
| 
 | |
|   spiller().spill(&VirtReg, SplitVRegs, pendingSpills);
 | |
| 
 | |
|   // The live virtual register requesting allocation was spilled, so tell
 | |
|   // the caller not to allocate anything during this round.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Add newly allocated physical registers to the MBB live in sets.
 | |
| void RABasic::addMBBLiveIns() {
 | |
|   typedef SmallVector<MachineBasicBlock*, 8> MBBVec;
 | |
|   MBBVec liveInMBBs;
 | |
|   MachineBasicBlock &entryMBB = *MF->begin();
 | |
| 
 | |
|   for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
 | |
|     LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
 | |
| 
 | |
|     for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(),
 | |
|            SegEnd = LiveUnion.end();
 | |
|          SI != SegEnd; ++SI) {
 | |
| 
 | |
|       // Find the set of basic blocks which this range is live into...
 | |
|       liveInMBBs.clear();
 | |
|       if (!LIS->findLiveInMBBs(SI->Start, SI->End, liveInMBBs)) continue;
 | |
| 
 | |
|       // And add the physreg for this interval to their live-in sets.
 | |
|       for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end();
 | |
|            I != E; ++I) {
 | |
|         MachineBasicBlock *MBB = *I;
 | |
|         if (MBB == &entryMBB) continue;
 | |
|         if (MBB->isLiveIn(PhysReg)) continue;
 | |
|         MBB->addLiveIn(PhysReg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RABasic::runOnMachineFunction(MachineFunction &mf) {
 | |
|   DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
 | |
|                << "********** Function: "
 | |
|                << ((Value*)mf.getFunction())->getName() << '\n');
 | |
| 
 | |
|   MF = &mf;
 | |
|   TM = &mf.getTarget();
 | |
|   MRI = &mf.getRegInfo();
 | |
| 
 | |
|   DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = TM->getRegisterInfo();
 | |
|   RegAllocBase::init(*TRI, getAnalysis<VirtRegMap>(),
 | |
|                      getAnalysis<LiveIntervals>());
 | |
| 
 | |
|   ReservedRegs = TRI->getReservedRegs(*MF);
 | |
| 
 | |
|   SpillerInstance.reset(createSpiller(*this, *MF, *VRM));
 | |
| 
 | |
|   allocatePhysRegs();
 | |
| 
 | |
|   addMBBLiveIns();
 | |
| 
 | |
|   // Diagnostic output before rewriting
 | |
|   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
 | |
| 
 | |
|   // optional HTML output
 | |
|   DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
 | |
| 
 | |
|   // FIXME: Verification currently must run before VirtRegRewriter. We should
 | |
|   // make the rewriter a separate pass and override verifyAnalysis instead. When
 | |
|   // that happens, verification naturally falls under VerifyMachineCode.
 | |
| #ifndef NDEBUG
 | |
|   if (VerifyRegAlloc) {
 | |
|     // Verify accuracy of LiveIntervals. The standard machine code verifier
 | |
|     // ensures that each LiveIntervals covers all uses of the virtual reg.
 | |
| 
 | |
|     // FIXME: MachineVerifier is badly broken when using the standard
 | |
|     // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
 | |
|     // inline spiller, some tests fail to verify because the coalescer does not
 | |
|     // always generate verifiable code.
 | |
|     MF->verify(this);
 | |
| 
 | |
|     // Verify that LiveIntervals are partitioned into unions and disjoint within
 | |
|     // the unions.
 | |
|     verify();
 | |
|   }
 | |
| #endif // !NDEBUG
 | |
| 
 | |
|   // Run rewriter
 | |
|   std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
 | |
|   rewriter->runOnMachineFunction(*MF, *VRM, LIS);
 | |
| 
 | |
|   // The pass output is in VirtRegMap. Release all the transient data.
 | |
|   releaseMemory();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionPass* llvm::createBasicRegisterAllocator()
 | |
| {
 | |
|   return new RABasic();
 | |
| }
 |