mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	x86 and ppc for 100% dense switch statements when relocations are non-PIC. This support will be extended and enhanced in the coming days to support PIC, and less dense forms of jump tables. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27947 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1404 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1404 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file declares the SDNode class and derived classes, which are used to
 | 
						|
// represent the nodes and operations present in a SelectionDAG.  These nodes
 | 
						|
// and operations are machine code level operations, with some similarities to
 | 
						|
// the GCC RTL representation.
 | 
						|
//
 | 
						|
// Clients should include the SelectionDAG.h file instead of this file directly.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
 | 
						|
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
 | 
						|
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/iterator"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include <cassert>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class SelectionDAG;
 | 
						|
class GlobalValue;
 | 
						|
class MachineBasicBlock;
 | 
						|
class SDNode;
 | 
						|
template <typename T> struct simplify_type;
 | 
						|
template <typename T> struct ilist_traits;
 | 
						|
template<typename NodeTy, typename Traits> class iplist;
 | 
						|
template<typename NodeTy> class ilist_iterator;
 | 
						|
 | 
						|
/// ISD namespace - This namespace contains an enum which represents all of the
 | 
						|
/// SelectionDAG node types and value types.
 | 
						|
///
 | 
						|
namespace ISD {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// ISD::NodeType enum - This enum defines all of the operators valid in a
 | 
						|
  /// SelectionDAG.
 | 
						|
  ///
 | 
						|
  enum NodeType {
 | 
						|
    // EntryToken - This is the marker used to indicate the start of the region.
 | 
						|
    EntryToken,
 | 
						|
 | 
						|
    // Token factor - This node takes multiple tokens as input and produces a
 | 
						|
    // single token result.  This is used to represent the fact that the operand
 | 
						|
    // operators are independent of each other.
 | 
						|
    TokenFactor,
 | 
						|
    
 | 
						|
    // AssertSext, AssertZext - These nodes record if a register contains a 
 | 
						|
    // value that has already been zero or sign extended from a narrower type.  
 | 
						|
    // These nodes take two operands.  The first is the node that has already 
 | 
						|
    // been extended, and the second is a value type node indicating the width
 | 
						|
    // of the extension
 | 
						|
    AssertSext, AssertZext,
 | 
						|
 | 
						|
    // Various leaf nodes.
 | 
						|
    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
 | 
						|
    Constant, ConstantFP,
 | 
						|
    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
 | 
						|
 | 
						|
    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
 | 
						|
    // simplification of the constant.
 | 
						|
    TargetConstant,
 | 
						|
    TargetConstantFP,
 | 
						|
    
 | 
						|
    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
 | 
						|
    // anything else with this node, and this is valid in the target-specific
 | 
						|
    // dag, turning into a GlobalAddress operand.
 | 
						|
    TargetGlobalAddress,
 | 
						|
    TargetFrameIndex,
 | 
						|
    TargetJumpTable,
 | 
						|
    TargetConstantPool,
 | 
						|
    TargetExternalSymbol,
 | 
						|
    
 | 
						|
    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
 | 
						|
    /// This node represents a target intrinsic function with no side effects.
 | 
						|
    /// The first operand is the ID number of the intrinsic from the
 | 
						|
    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
 | 
						|
    /// node has returns the result of the intrinsic.
 | 
						|
    INTRINSIC_WO_CHAIN,
 | 
						|
    
 | 
						|
    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
 | 
						|
    /// This node represents a target intrinsic function with side effects that
 | 
						|
    /// returns a result.  The first operand is a chain pointer.  The second is
 | 
						|
    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
 | 
						|
    /// operands to the intrinsic follow.  The node has two results, the result
 | 
						|
    /// of the intrinsic and an output chain.
 | 
						|
    INTRINSIC_W_CHAIN,
 | 
						|
 | 
						|
    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
 | 
						|
    /// This node represents a target intrinsic function with side effects that
 | 
						|
    /// does not return a result.  The first operand is a chain pointer.  The
 | 
						|
    /// second is the ID number of the intrinsic from the llvm::Intrinsic
 | 
						|
    /// namespace.  The operands to the intrinsic follow.
 | 
						|
    INTRINSIC_VOID,
 | 
						|
    
 | 
						|
    // CopyToReg - This node has three operands: a chain, a register number to
 | 
						|
    // set to this value, and a value.  
 | 
						|
    CopyToReg,
 | 
						|
 | 
						|
    // CopyFromReg - This node indicates that the input value is a virtual or
 | 
						|
    // physical register that is defined outside of the scope of this
 | 
						|
    // SelectionDAG.  The register is available from the RegSDNode object.
 | 
						|
    CopyFromReg,
 | 
						|
 | 
						|
    // UNDEF - An undefined node
 | 
						|
    UNDEF,
 | 
						|
    
 | 
						|
    /// FORMAL_ARGUMENTS(CC#, ISVARARG) - This node represents the formal
 | 
						|
    /// arguments for a function.  CC# is a Constant value indicating the
 | 
						|
    /// calling convention of the function, and ISVARARG is a flag that
 | 
						|
    /// indicates whether the function is varargs or not.  This node has one
 | 
						|
    /// result value for each incoming argument, and is typically custom
 | 
						|
    /// legalized.
 | 
						|
    FORMAL_ARGUMENTS,
 | 
						|
 | 
						|
    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
 | 
						|
    // a Constant, which is required to be operand #1), element of the aggregate
 | 
						|
    // value specified as operand #0.  This is only for use before legalization,
 | 
						|
    // for values that will be broken into multiple registers.
 | 
						|
    EXTRACT_ELEMENT,
 | 
						|
 | 
						|
    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
 | 
						|
    // two values of the same integer value type, this produces a value twice as
 | 
						|
    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
 | 
						|
    BUILD_PAIR,
 | 
						|
    
 | 
						|
    // MERGE_VALUES - This node takes multiple discrete operands and returns
 | 
						|
    // them all as its individual results.  This nodes has exactly the same
 | 
						|
    // number of inputs and outputs, and is only valid before legalization.
 | 
						|
    // This node is useful for some pieces of the code generator that want to
 | 
						|
    // think about a single node with multiple results, not multiple nodes.
 | 
						|
    MERGE_VALUES,
 | 
						|
 | 
						|
    // Simple integer binary arithmetic operators.
 | 
						|
    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
 | 
						|
    
 | 
						|
    // Carry-setting nodes for multiple precision addition and subtraction.
 | 
						|
    // These nodes take two operands of the same value type, and produce two
 | 
						|
    // results.  The first result is the normal add or sub result, the second
 | 
						|
    // result is the carry flag result.
 | 
						|
    ADDC, SUBC,
 | 
						|
    
 | 
						|
    // Carry-using nodes for multiple precision addition and subtraction.  These
 | 
						|
    // nodes take three operands: The first two are the normal lhs and rhs to
 | 
						|
    // the add or sub, and the third is the input carry flag.  These nodes
 | 
						|
    // produce two results; the normal result of the add or sub, and the output
 | 
						|
    // carry flag.  These nodes both read and write a carry flag to allow them
 | 
						|
    // to them to be chained together for add and sub of arbitrarily large
 | 
						|
    // values.
 | 
						|
    ADDE, SUBE,
 | 
						|
    
 | 
						|
    // Simple binary floating point operators.
 | 
						|
    FADD, FSUB, FMUL, FDIV, FREM,
 | 
						|
 | 
						|
    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
 | 
						|
    // DAG node does not require that X and Y have the same type, just that they
 | 
						|
    // are both floating point.  X and the result must have the same type.
 | 
						|
    // FCOPYSIGN(f32, f64) is allowed.
 | 
						|
    FCOPYSIGN,
 | 
						|
 | 
						|
    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
 | 
						|
    /// with the specified, possibly variable, elements.  The number of elements
 | 
						|
    /// is required to be a power of two.
 | 
						|
    VBUILD_VECTOR,
 | 
						|
 | 
						|
    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
 | 
						|
    /// with the specified, possibly variable, elements.  The number of elements
 | 
						|
    /// is required to be a power of two.
 | 
						|
    BUILD_VECTOR,
 | 
						|
    
 | 
						|
    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
 | 
						|
    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
 | 
						|
    /// return an vector with the specified element of VECTOR replaced with VAL.
 | 
						|
    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
 | 
						|
    VINSERT_VECTOR_ELT,
 | 
						|
    
 | 
						|
    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
 | 
						|
    /// type) with the element at IDX replaced with VAL.
 | 
						|
    INSERT_VECTOR_ELT,
 | 
						|
 | 
						|
    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
 | 
						|
    /// (an MVT::Vector value) identified by the (potentially variable) element
 | 
						|
    /// number IDX.
 | 
						|
    VEXTRACT_VECTOR_ELT,
 | 
						|
    
 | 
						|
    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
 | 
						|
    /// (a legal packed type vector) identified by the (potentially variable)
 | 
						|
    /// element number IDX.
 | 
						|
    EXTRACT_VECTOR_ELT,
 | 
						|
    
 | 
						|
    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
 | 
						|
    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
 | 
						|
    /// constant int values that indicate which value each result element will
 | 
						|
    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
 | 
						|
    /// similar to the Altivec 'vperm' instruction, except that the indices must
 | 
						|
    /// be constants and are in terms of the element size of VEC1/VEC2, not in
 | 
						|
    /// terms of bytes.
 | 
						|
    VVECTOR_SHUFFLE,
 | 
						|
 | 
						|
    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
 | 
						|
    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
 | 
						|
    /// (regardless of whether its datatype is legal or not) that indicate
 | 
						|
    /// which value each result element will get.  The elements of VEC1/VEC2 are
 | 
						|
    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
 | 
						|
    /// instruction, except that the indices must be constants and are in terms
 | 
						|
    /// of the element size of VEC1/VEC2, not in terms of bytes.
 | 
						|
    VECTOR_SHUFFLE,
 | 
						|
    
 | 
						|
    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
 | 
						|
    /// represents a conversion from or to an ISD::Vector type.
 | 
						|
    ///
 | 
						|
    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
 | 
						|
    /// The input and output are required to have the same size and at least one
 | 
						|
    /// is required to be a vector (if neither is a vector, just use
 | 
						|
    /// BIT_CONVERT).
 | 
						|
    ///
 | 
						|
    /// If the result is a vector, this takes three operands (like any other
 | 
						|
    /// vector producer) which indicate the size and type of the vector result.
 | 
						|
    /// Otherwise it takes one input.
 | 
						|
    VBIT_CONVERT,
 | 
						|
    
 | 
						|
    /// BINOP(LHS, RHS,  COUNT,TYPE)
 | 
						|
    /// Simple abstract vector operators.  Unlike the integer and floating point
 | 
						|
    /// binary operators, these nodes also take two additional operands:
 | 
						|
    /// a constant element count, and a value type node indicating the type of
 | 
						|
    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
 | 
						|
    /// including VLOAD and VConstant must currently have count and type as
 | 
						|
    /// their last two operands.
 | 
						|
    VADD, VSUB, VMUL, VSDIV, VUDIV,
 | 
						|
    VAND, VOR, VXOR,
 | 
						|
    
 | 
						|
    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
 | 
						|
    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
 | 
						|
    /// COND is false.
 | 
						|
    VSELECT,
 | 
						|
    
 | 
						|
    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
 | 
						|
    /// scalar value into the low element of the resultant vector type.  The top
 | 
						|
    /// elements of the vector are undefined.
 | 
						|
    SCALAR_TO_VECTOR,
 | 
						|
    
 | 
						|
    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
 | 
						|
    // an unsigned/signed value of type i[2*n], then return the top part.
 | 
						|
    MULHU, MULHS,
 | 
						|
 | 
						|
    // Bitwise operators - logical and, logical or, logical xor, shift left,
 | 
						|
    // shift right algebraic (shift in sign bits), shift right logical (shift in
 | 
						|
    // zeroes), rotate left, rotate right, and byteswap.
 | 
						|
    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
 | 
						|
 | 
						|
    // Counting operators
 | 
						|
    CTTZ, CTLZ, CTPOP,
 | 
						|
 | 
						|
    // Select(COND, TRUEVAL, FALSEVAL)
 | 
						|
    SELECT, 
 | 
						|
    
 | 
						|
    // Select with condition operator - This selects between a true value and 
 | 
						|
    // a false value (ops #2 and #3) based on the boolean result of comparing
 | 
						|
    // the lhs and rhs (ops #0 and #1) of a conditional expression with the 
 | 
						|
    // condition code in op #4, a CondCodeSDNode.
 | 
						|
    SELECT_CC,
 | 
						|
 | 
						|
    // SetCC operator - This evaluates to a boolean (i1) true value if the
 | 
						|
    // condition is true.  The operands to this are the left and right operands
 | 
						|
    // to compare (ops #0, and #1) and the condition code to compare them with
 | 
						|
    // (op #2) as a CondCodeSDNode.
 | 
						|
    SETCC,
 | 
						|
 | 
						|
    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
 | 
						|
    // integer shift operations, just like ADD/SUB_PARTS.  The operation
 | 
						|
    // ordering is:
 | 
						|
    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
 | 
						|
    SHL_PARTS, SRA_PARTS, SRL_PARTS,
 | 
						|
 | 
						|
    // Conversion operators.  These are all single input single output
 | 
						|
    // operations.  For all of these, the result type must be strictly
 | 
						|
    // wider or narrower (depending on the operation) than the source
 | 
						|
    // type.
 | 
						|
 | 
						|
    // SIGN_EXTEND - Used for integer types, replicating the sign bit
 | 
						|
    // into new bits.
 | 
						|
    SIGN_EXTEND,
 | 
						|
 | 
						|
    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
 | 
						|
    ZERO_EXTEND,
 | 
						|
 | 
						|
    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
 | 
						|
    ANY_EXTEND,
 | 
						|
    
 | 
						|
    // TRUNCATE - Completely drop the high bits.
 | 
						|
    TRUNCATE,
 | 
						|
 | 
						|
    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
 | 
						|
    // depends on the first letter) to floating point.
 | 
						|
    SINT_TO_FP,
 | 
						|
    UINT_TO_FP,
 | 
						|
 | 
						|
    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
 | 
						|
    // sign extend a small value in a large integer register (e.g. sign
 | 
						|
    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
 | 
						|
    // with the 7th bit).  The size of the smaller type is indicated by the 1th
 | 
						|
    // operand, a ValueType node.
 | 
						|
    SIGN_EXTEND_INREG,
 | 
						|
 | 
						|
    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
 | 
						|
    // integer.
 | 
						|
    FP_TO_SINT,
 | 
						|
    FP_TO_UINT,
 | 
						|
 | 
						|
    // FP_ROUND - Perform a rounding operation from the current
 | 
						|
    // precision down to the specified precision (currently always 64->32).
 | 
						|
    FP_ROUND,
 | 
						|
 | 
						|
    // FP_ROUND_INREG - This operator takes a floating point register, and
 | 
						|
    // rounds it to a floating point value.  It then promotes it and returns it
 | 
						|
    // in a register of the same size.  This operation effectively just discards
 | 
						|
    // excess precision.  The type to round down to is specified by the 1th
 | 
						|
    // operation, a VTSDNode (currently always 64->32->64).
 | 
						|
    FP_ROUND_INREG,
 | 
						|
 | 
						|
    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
 | 
						|
    FP_EXTEND,
 | 
						|
 | 
						|
    // BIT_CONVERT - Theis operator converts between integer and FP values, as
 | 
						|
    // if one was stored to memory as integer and the other was loaded from the
 | 
						|
    // same address (or equivalently for vector format conversions, etc).  The 
 | 
						|
    // source and result are required to have the same bit size (e.g. 
 | 
						|
    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp 
 | 
						|
    // conversions, but that is a noop, deleted by getNode().
 | 
						|
    BIT_CONVERT,
 | 
						|
    
 | 
						|
    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
 | 
						|
    // absolute value, square root, sine and cosine operations.
 | 
						|
    FNEG, FABS, FSQRT, FSIN, FCOS,
 | 
						|
    
 | 
						|
    // Other operators.  LOAD and STORE have token chains as their first
 | 
						|
    // operand, then the same operands as an LLVM load/store instruction, then a
 | 
						|
    // SRCVALUE node that provides alias analysis information.
 | 
						|
    LOAD, STORE,
 | 
						|
    
 | 
						|
    // Abstract vector version of LOAD.  VLOAD has a constant element count as
 | 
						|
    // the first operand, followed by a value type node indicating the type of
 | 
						|
    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
 | 
						|
    VLOAD,
 | 
						|
 | 
						|
    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
 | 
						|
    // memory and extend them to a larger value (e.g. load a byte into a word
 | 
						|
    // register).  All three of these have four operands, a token chain, a
 | 
						|
    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
 | 
						|
    // indicating the type to load.
 | 
						|
    //
 | 
						|
    // SEXTLOAD loads the integer operand and sign extends it to a larger
 | 
						|
    //          integer result type.
 | 
						|
    // ZEXTLOAD loads the integer operand and zero extends it to a larger
 | 
						|
    //          integer result type.
 | 
						|
    // EXTLOAD  is used for three things: floating point extending loads, 
 | 
						|
    //          integer extending loads [the top bits are undefined], and vector
 | 
						|
    //          extending loads [load into low elt].
 | 
						|
    EXTLOAD, SEXTLOAD, ZEXTLOAD,
 | 
						|
 | 
						|
    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
 | 
						|
    // value and stores it to memory in one operation.  This can be used for
 | 
						|
    // either integer or floating point operands.  The first four operands of
 | 
						|
    // this are the same as a standard store.  The fifth is the ValueType to
 | 
						|
    // store it as (which will be smaller than the source value).
 | 
						|
    TRUNCSTORE,
 | 
						|
 | 
						|
    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
 | 
						|
    // to a specified boundary.  The first operand is the token chain, the
 | 
						|
    // second is the number of bytes to allocate, and the third is the alignment
 | 
						|
    // boundary.  The size is guaranteed to be a multiple of the stack 
 | 
						|
    // alignment, and the alignment is guaranteed to be bigger than the stack 
 | 
						|
    // alignment (if required) or 0 to get standard stack alignment.
 | 
						|
    DYNAMIC_STACKALLOC,
 | 
						|
 | 
						|
    // Control flow instructions.  These all have token chains.
 | 
						|
 | 
						|
    // BR - Unconditional branch.  The first operand is the chain
 | 
						|
    // operand, the second is the MBB to branch to.
 | 
						|
    BR,
 | 
						|
 | 
						|
    // BRIND - Indirect branch.  The first operand is the chain, the second
 | 
						|
    // is the value to branch to, which must be of the same type as the target's
 | 
						|
    // pointer type.
 | 
						|
    BRIND,
 | 
						|
    
 | 
						|
    // BRCOND - Conditional branch.  The first operand is the chain,
 | 
						|
    // the second is the condition, the third is the block to branch
 | 
						|
    // to if the condition is true.
 | 
						|
    BRCOND,
 | 
						|
 | 
						|
    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
 | 
						|
    // that the condition is represented as condition code, and two nodes to
 | 
						|
    // compare, rather than as a combined SetCC node.  The operands in order are
 | 
						|
    // chain, cc, lhs, rhs, block to branch to if condition is true.
 | 
						|
    BR_CC,
 | 
						|
    
 | 
						|
    // RET - Return from function.  The first operand is the chain,
 | 
						|
    // and any subsequent operands are the return values for the
 | 
						|
    // function.  This operation can have variable number of operands.
 | 
						|
    RET,
 | 
						|
 | 
						|
    // INLINEASM - Represents an inline asm block.  This node always has two
 | 
						|
    // return values: a chain and a flag result.  The inputs are as follows:
 | 
						|
    //   Operand #0   : Input chain.
 | 
						|
    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
 | 
						|
    //   Operand #2n+2: A RegisterNode.
 | 
						|
    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
 | 
						|
    //   Operand #last: Optional, an incoming flag.
 | 
						|
    INLINEASM,
 | 
						|
 | 
						|
    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
 | 
						|
    // value, the same type as the pointer type for the system, and an output
 | 
						|
    // chain.
 | 
						|
    STACKSAVE,
 | 
						|
    
 | 
						|
    // STACKRESTORE has two operands, an input chain and a pointer to restore to
 | 
						|
    // it returns an output chain.
 | 
						|
    STACKRESTORE,
 | 
						|
    
 | 
						|
    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
 | 
						|
    // correspond to the operands of the LLVM intrinsic functions.  The only
 | 
						|
    // result is a token chain.  The alignment argument is guaranteed to be a
 | 
						|
    // Constant node.
 | 
						|
    MEMSET,
 | 
						|
    MEMMOVE,
 | 
						|
    MEMCPY,
 | 
						|
 | 
						|
    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
 | 
						|
    // a call sequence, and carry arbitrary information that target might want
 | 
						|
    // to know.  The first operand is a chain, the rest are specified by the
 | 
						|
    // target and not touched by the DAG optimizers.
 | 
						|
    CALLSEQ_START,  // Beginning of a call sequence
 | 
						|
    CALLSEQ_END,    // End of a call sequence
 | 
						|
    
 | 
						|
    // VAARG - VAARG has three operands: an input chain, a pointer, and a 
 | 
						|
    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
 | 
						|
    VAARG,
 | 
						|
    
 | 
						|
    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
 | 
						|
    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
 | 
						|
    // source.
 | 
						|
    VACOPY,
 | 
						|
    
 | 
						|
    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
 | 
						|
    // pointer, and a SRCVALUE.
 | 
						|
    VAEND, VASTART,
 | 
						|
 | 
						|
    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
 | 
						|
    // locations with their value.  This allows one use alias analysis
 | 
						|
    // information in the backend.
 | 
						|
    SRCVALUE,
 | 
						|
 | 
						|
    // PCMARKER - This corresponds to the pcmarker intrinsic.
 | 
						|
    PCMARKER,
 | 
						|
 | 
						|
    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
 | 
						|
    // The only operand is a chain and a value and a chain are produced.  The
 | 
						|
    // value is the contents of the architecture specific cycle counter like 
 | 
						|
    // register (or other high accuracy low latency clock source)
 | 
						|
    READCYCLECOUNTER,
 | 
						|
 | 
						|
    // HANDLENODE node - Used as a handle for various purposes.
 | 
						|
    HANDLENODE,
 | 
						|
 | 
						|
    // LOCATION - This node is used to represent a source location for debug
 | 
						|
    // info.  It takes token chain as input, then a line number, then a column
 | 
						|
    // number, then a filename, then a working dir.  It produces a token chain
 | 
						|
    // as output.
 | 
						|
    LOCATION,
 | 
						|
    
 | 
						|
    // DEBUG_LOC - This node is used to represent source line information
 | 
						|
    // embedded in the code.  It takes a token chain as input, then a line
 | 
						|
    // number, then a column then a file id (provided by MachineDebugInfo.) It
 | 
						|
    // produces a token chain as output.
 | 
						|
    DEBUG_LOC,
 | 
						|
    
 | 
						|
    // DEBUG_LABEL - This node is used to mark a location in the code where a
 | 
						|
    // label should be generated for use by the debug information.  It takes a
 | 
						|
    // token chain as input and then a unique id (provided by MachineDebugInfo.)
 | 
						|
    // It produces a token chain as output.
 | 
						|
    DEBUG_LABEL,
 | 
						|
    
 | 
						|
    // BUILTIN_OP_END - This must be the last enum value in this list.
 | 
						|
    BUILTIN_OP_END
 | 
						|
  };
 | 
						|
 | 
						|
  /// Node predicates
 | 
						|
 | 
						|
  /// isBuildVectorAllOnes - Return true if the specified node is a
 | 
						|
  /// BUILD_VECTOR where all of the elements are ~0 or undef.
 | 
						|
  bool isBuildVectorAllOnes(const SDNode *N);
 | 
						|
 | 
						|
  /// isBuildVectorAllZeros - Return true if the specified node is a
 | 
						|
  /// BUILD_VECTOR where all of the elements are 0 or undef.
 | 
						|
  bool isBuildVectorAllZeros(const SDNode *N);
 | 
						|
  
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
 | 
						|
  /// below work out, when considering SETFALSE (something that never exists
 | 
						|
  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
 | 
						|
  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
 | 
						|
  /// to.  If the "N" column is 1, the result of the comparison is undefined if
 | 
						|
  /// the input is a NAN.
 | 
						|
  ///
 | 
						|
  /// All of these (except for the 'always folded ops') should be handled for
 | 
						|
  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
 | 
						|
  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
 | 
						|
  ///
 | 
						|
  /// Note that these are laid out in a specific order to allow bit-twiddling
 | 
						|
  /// to transform conditions.
 | 
						|
  enum CondCode {
 | 
						|
    // Opcode          N U L G E       Intuitive operation
 | 
						|
    SETFALSE,      //    0 0 0 0       Always false (always folded)
 | 
						|
    SETOEQ,        //    0 0 0 1       True if ordered and equal
 | 
						|
    SETOGT,        //    0 0 1 0       True if ordered and greater than
 | 
						|
    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
 | 
						|
    SETOLT,        //    0 1 0 0       True if ordered and less than
 | 
						|
    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
 | 
						|
    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
 | 
						|
    SETO,          //    0 1 1 1       True if ordered (no nans)
 | 
						|
    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
 | 
						|
    SETUEQ,        //    1 0 0 1       True if unordered or equal
 | 
						|
    SETUGT,        //    1 0 1 0       True if unordered or greater than
 | 
						|
    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
 | 
						|
    SETULT,        //    1 1 0 0       True if unordered or less than
 | 
						|
    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
 | 
						|
    SETUNE,        //    1 1 1 0       True if unordered or not equal
 | 
						|
    SETTRUE,       //    1 1 1 1       Always true (always folded)
 | 
						|
    // Don't care operations: undefined if the input is a nan.
 | 
						|
    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
 | 
						|
    SETEQ,         //  1 X 0 0 1       True if equal
 | 
						|
    SETGT,         //  1 X 0 1 0       True if greater than
 | 
						|
    SETGE,         //  1 X 0 1 1       True if greater than or equal
 | 
						|
    SETLT,         //  1 X 1 0 0       True if less than
 | 
						|
    SETLE,         //  1 X 1 0 1       True if less than or equal
 | 
						|
    SETNE,         //  1 X 1 1 0       True if not equal
 | 
						|
    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
 | 
						|
 | 
						|
    SETCC_INVALID       // Marker value.
 | 
						|
  };
 | 
						|
 | 
						|
  /// isSignedIntSetCC - Return true if this is a setcc instruction that
 | 
						|
  /// performs a signed comparison when used with integer operands.
 | 
						|
  inline bool isSignedIntSetCC(CondCode Code) {
 | 
						|
    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
 | 
						|
  /// performs an unsigned comparison when used with integer operands.
 | 
						|
  inline bool isUnsignedIntSetCC(CondCode Code) {
 | 
						|
    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isTrueWhenEqual - Return true if the specified condition returns true if
 | 
						|
  /// the two operands to the condition are equal.  Note that if one of the two
 | 
						|
  /// operands is a NaN, this value is meaningless.
 | 
						|
  inline bool isTrueWhenEqual(CondCode Cond) {
 | 
						|
    return ((int)Cond & 1) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getUnorderedFlavor - This function returns 0 if the condition is always
 | 
						|
  /// false if an operand is a NaN, 1 if the condition is always true if the
 | 
						|
  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
 | 
						|
  /// NaN.
 | 
						|
  inline unsigned getUnorderedFlavor(CondCode Cond) {
 | 
						|
    return ((int)Cond >> 3) & 3;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
 | 
						|
  /// 'op' is a valid SetCC operation.
 | 
						|
  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
 | 
						|
 | 
						|
  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
 | 
						|
  /// when given the operation for (X op Y).
 | 
						|
  CondCode getSetCCSwappedOperands(CondCode Operation);
 | 
						|
 | 
						|
  /// getSetCCOrOperation - Return the result of a logical OR between different
 | 
						|
  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
 | 
						|
  /// function returns SETCC_INVALID if it is not possible to represent the
 | 
						|
  /// resultant comparison.
 | 
						|
  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
 | 
						|
 | 
						|
  /// getSetCCAndOperation - Return the result of a logical AND between
 | 
						|
  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
 | 
						|
  /// function returns SETCC_INVALID if it is not possible to represent the
 | 
						|
  /// resultant comparison.
 | 
						|
  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
 | 
						|
}  // end llvm::ISD namespace
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
 | 
						|
/// values as the result of a computation.  Many nodes return multiple values,
 | 
						|
/// from loads (which define a token and a return value) to ADDC (which returns
 | 
						|
/// a result and a carry value), to calls (which may return an arbitrary number
 | 
						|
/// of values).
 | 
						|
///
 | 
						|
/// As such, each use of a SelectionDAG computation must indicate the node that
 | 
						|
/// computes it as well as which return value to use from that node.  This pair
 | 
						|
/// of information is represented with the SDOperand value type.
 | 
						|
///
 | 
						|
class SDOperand {
 | 
						|
public:
 | 
						|
  SDNode *Val;        // The node defining the value we are using.
 | 
						|
  unsigned ResNo;     // Which return value of the node we are using.
 | 
						|
 | 
						|
  SDOperand() : Val(0), ResNo(0) {}
 | 
						|
  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
 | 
						|
 | 
						|
  bool operator==(const SDOperand &O) const {
 | 
						|
    return Val == O.Val && ResNo == O.ResNo;
 | 
						|
  }
 | 
						|
  bool operator!=(const SDOperand &O) const {
 | 
						|
    return !operator==(O);
 | 
						|
  }
 | 
						|
  bool operator<(const SDOperand &O) const {
 | 
						|
    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand getValue(unsigned R) const {
 | 
						|
    return SDOperand(Val, R);
 | 
						|
  }
 | 
						|
 | 
						|
  // isOperand - Return true if this node is an operand of N.
 | 
						|
  bool isOperand(SDNode *N) const;
 | 
						|
 | 
						|
  /// getValueType - Return the ValueType of the referenced return value.
 | 
						|
  ///
 | 
						|
  inline MVT::ValueType getValueType() const;
 | 
						|
 | 
						|
  // Forwarding methods - These forward to the corresponding methods in SDNode.
 | 
						|
  inline unsigned getOpcode() const;
 | 
						|
  inline unsigned getNodeDepth() const;
 | 
						|
  inline unsigned getNumOperands() const;
 | 
						|
  inline const SDOperand &getOperand(unsigned i) const;
 | 
						|
  inline bool isTargetOpcode() const;
 | 
						|
  inline unsigned getTargetOpcode() const;
 | 
						|
 | 
						|
  /// hasOneUse - Return true if there is exactly one operation using this
 | 
						|
  /// result value of the defining operator.
 | 
						|
  inline bool hasOneUse() const;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// simplify_type specializations - Allow casting operators to work directly on
 | 
						|
/// SDOperands as if they were SDNode*'s.
 | 
						|
template<> struct simplify_type<SDOperand> {
 | 
						|
  typedef SDNode* SimpleType;
 | 
						|
  static SimpleType getSimplifiedValue(const SDOperand &Val) {
 | 
						|
    return static_cast<SimpleType>(Val.Val);
 | 
						|
  }
 | 
						|
};
 | 
						|
template<> struct simplify_type<const SDOperand> {
 | 
						|
  typedef SDNode* SimpleType;
 | 
						|
  static SimpleType getSimplifiedValue(const SDOperand &Val) {
 | 
						|
    return static_cast<SimpleType>(Val.Val);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// SDNode - Represents one node in the SelectionDAG.
 | 
						|
///
 | 
						|
class SDNode {
 | 
						|
  /// NodeType - The operation that this node performs.
 | 
						|
  ///
 | 
						|
  unsigned short NodeType;
 | 
						|
 | 
						|
  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
 | 
						|
  /// means that leaves have a depth of 1, things that use only leaves have a
 | 
						|
  /// depth of 2, etc.
 | 
						|
  unsigned short NodeDepth;
 | 
						|
 | 
						|
  /// OperandList - The values that are used by this operation.
 | 
						|
  ///
 | 
						|
  SDOperand *OperandList;
 | 
						|
  
 | 
						|
  /// ValueList - The types of the values this node defines.  SDNode's may
 | 
						|
  /// define multiple values simultaneously.
 | 
						|
  MVT::ValueType *ValueList;
 | 
						|
 | 
						|
  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
 | 
						|
  unsigned short NumOperands, NumValues;
 | 
						|
  
 | 
						|
  /// Prev/Next pointers - These pointers form the linked list of of the
 | 
						|
  /// AllNodes list in the current DAG.
 | 
						|
  SDNode *Prev, *Next;
 | 
						|
  friend struct ilist_traits<SDNode>;
 | 
						|
 | 
						|
  /// Uses - These are all of the SDNode's that use a value produced by this
 | 
						|
  /// node.
 | 
						|
  std::vector<SDNode*> Uses;
 | 
						|
public:
 | 
						|
  virtual ~SDNode() {
 | 
						|
    assert(NumOperands == 0 && "Operand list not cleared before deletion");
 | 
						|
  }
 | 
						|
  
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //  Accessors
 | 
						|
  //
 | 
						|
  unsigned getOpcode()  const { return NodeType; }
 | 
						|
  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
 | 
						|
  unsigned getTargetOpcode() const {
 | 
						|
    assert(isTargetOpcode() && "Not a target opcode!");
 | 
						|
    return NodeType - ISD::BUILTIN_OP_END;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t use_size() const { return Uses.size(); }
 | 
						|
  bool use_empty() const { return Uses.empty(); }
 | 
						|
  bool hasOneUse() const { return Uses.size() == 1; }
 | 
						|
 | 
						|
  /// getNodeDepth - Return the distance from this node to the leaves in the
 | 
						|
  /// graph.  The leaves have a depth of 1.
 | 
						|
  unsigned getNodeDepth() const { return NodeDepth; }
 | 
						|
 | 
						|
  typedef std::vector<SDNode*>::const_iterator use_iterator;
 | 
						|
  use_iterator use_begin() const { return Uses.begin(); }
 | 
						|
  use_iterator use_end() const { return Uses.end(); }
 | 
						|
 | 
						|
  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
 | 
						|
  /// indicated value.  This method ignores uses of other values defined by this
 | 
						|
  /// operation.
 | 
						|
  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
 | 
						|
 | 
						|
  // isOnlyUse - Return true if this node is the only use of N.
 | 
						|
  bool isOnlyUse(SDNode *N) const;
 | 
						|
 | 
						|
  // isOperand - Return true if this node is an operand of N.
 | 
						|
  bool isOperand(SDNode *N) const;
 | 
						|
 | 
						|
  /// getNumOperands - Return the number of values used by this operation.
 | 
						|
  ///
 | 
						|
  unsigned getNumOperands() const { return NumOperands; }
 | 
						|
 | 
						|
  const SDOperand &getOperand(unsigned Num) const {
 | 
						|
    assert(Num < NumOperands && "Invalid child # of SDNode!");
 | 
						|
    return OperandList[Num];
 | 
						|
  }
 | 
						|
  typedef const SDOperand* op_iterator;
 | 
						|
  op_iterator op_begin() const { return OperandList; }
 | 
						|
  op_iterator op_end() const { return OperandList+NumOperands; }
 | 
						|
 | 
						|
 | 
						|
  /// getNumValues - Return the number of values defined/returned by this
 | 
						|
  /// operator.
 | 
						|
  ///
 | 
						|
  unsigned getNumValues() const { return NumValues; }
 | 
						|
 | 
						|
  /// getValueType - Return the type of a specified result.
 | 
						|
  ///
 | 
						|
  MVT::ValueType getValueType(unsigned ResNo) const {
 | 
						|
    assert(ResNo < NumValues && "Illegal result number!");
 | 
						|
    return ValueList[ResNo];
 | 
						|
  }
 | 
						|
 | 
						|
  typedef const MVT::ValueType* value_iterator;
 | 
						|
  value_iterator value_begin() const { return ValueList; }
 | 
						|
  value_iterator value_end() const { return ValueList+NumValues; }
 | 
						|
 | 
						|
  /// getOperationName - Return the opcode of this operation for printing.
 | 
						|
  ///
 | 
						|
  const char* getOperationName(const SelectionDAG *G = 0) const;
 | 
						|
  void dump() const;
 | 
						|
  void dump(const SelectionDAG *G) const;
 | 
						|
 | 
						|
  static bool classof(const SDNode *) { return true; }
 | 
						|
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  
 | 
						|
  /// getValueTypeList - Return a pointer to the specified value type.
 | 
						|
  ///
 | 
						|
  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
 | 
						|
 | 
						|
  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
 | 
						|
    OperandList = 0; NumOperands = 0;
 | 
						|
    ValueList = getValueTypeList(VT);
 | 
						|
    NumValues = 1;
 | 
						|
    Prev = 0; Next = 0;
 | 
						|
  }
 | 
						|
  SDNode(unsigned NT, SDOperand Op)
 | 
						|
    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
 | 
						|
    OperandList = new SDOperand[1];
 | 
						|
    OperandList[0] = Op;
 | 
						|
    NumOperands = 1;
 | 
						|
    Op.Val->Uses.push_back(this);
 | 
						|
    ValueList = 0;
 | 
						|
    NumValues = 0;
 | 
						|
    Prev = 0; Next = 0;
 | 
						|
  }
 | 
						|
  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
 | 
						|
    : NodeType(NT) {
 | 
						|
    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
 | 
						|
      NodeDepth = N1.Val->getNodeDepth()+1;
 | 
						|
    else
 | 
						|
      NodeDepth = N2.Val->getNodeDepth()+1;
 | 
						|
    OperandList = new SDOperand[2];
 | 
						|
    OperandList[0] = N1;
 | 
						|
    OperandList[1] = N2;
 | 
						|
    NumOperands = 2;
 | 
						|
    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
 | 
						|
    ValueList = 0;
 | 
						|
    NumValues = 0;
 | 
						|
    Prev = 0; Next = 0;
 | 
						|
  }
 | 
						|
  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
 | 
						|
    : NodeType(NT) {
 | 
						|
    unsigned ND = N1.Val->getNodeDepth();
 | 
						|
    if (ND < N2.Val->getNodeDepth())
 | 
						|
      ND = N2.Val->getNodeDepth();
 | 
						|
    if (ND < N3.Val->getNodeDepth())
 | 
						|
      ND = N3.Val->getNodeDepth();
 | 
						|
    NodeDepth = ND+1;
 | 
						|
 | 
						|
    OperandList = new SDOperand[3];
 | 
						|
    OperandList[0] = N1;
 | 
						|
    OperandList[1] = N2;
 | 
						|
    OperandList[2] = N3;
 | 
						|
    NumOperands = 3;
 | 
						|
    
 | 
						|
    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
 | 
						|
    N3.Val->Uses.push_back(this);
 | 
						|
    ValueList = 0;
 | 
						|
    NumValues = 0;
 | 
						|
    Prev = 0; Next = 0;
 | 
						|
  }
 | 
						|
  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
 | 
						|
    : NodeType(NT) {
 | 
						|
    unsigned ND = N1.Val->getNodeDepth();
 | 
						|
    if (ND < N2.Val->getNodeDepth())
 | 
						|
      ND = N2.Val->getNodeDepth();
 | 
						|
    if (ND < N3.Val->getNodeDepth())
 | 
						|
      ND = N3.Val->getNodeDepth();
 | 
						|
    if (ND < N4.Val->getNodeDepth())
 | 
						|
      ND = N4.Val->getNodeDepth();
 | 
						|
    NodeDepth = ND+1;
 | 
						|
 | 
						|
    OperandList = new SDOperand[4];
 | 
						|
    OperandList[0] = N1;
 | 
						|
    OperandList[1] = N2;
 | 
						|
    OperandList[2] = N3;
 | 
						|
    OperandList[3] = N4;
 | 
						|
    NumOperands = 4;
 | 
						|
    
 | 
						|
    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
 | 
						|
    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
 | 
						|
    ValueList = 0;
 | 
						|
    NumValues = 0;
 | 
						|
    Prev = 0; Next = 0;
 | 
						|
  }
 | 
						|
  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
 | 
						|
    NumOperands = Nodes.size();
 | 
						|
    OperandList = new SDOperand[NumOperands];
 | 
						|
    
 | 
						|
    unsigned ND = 0;
 | 
						|
    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
 | 
						|
      OperandList[i] = Nodes[i];
 | 
						|
      SDNode *N = OperandList[i].Val;
 | 
						|
      N->Uses.push_back(this);
 | 
						|
      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
 | 
						|
    }
 | 
						|
    NodeDepth = ND+1;
 | 
						|
    ValueList = 0;
 | 
						|
    NumValues = 0;
 | 
						|
    Prev = 0; Next = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// MorphNodeTo - This clears the return value and operands list, and sets the
 | 
						|
  /// opcode of the node to the specified value.  This should only be used by
 | 
						|
  /// the SelectionDAG class.
 | 
						|
  void MorphNodeTo(unsigned Opc) {
 | 
						|
    NodeType = Opc;
 | 
						|
    ValueList = 0;
 | 
						|
    NumValues = 0;
 | 
						|
    
 | 
						|
    // Clear the operands list, updating used nodes to remove this from their
 | 
						|
    // use list.
 | 
						|
    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
 | 
						|
      I->Val->removeUser(this);
 | 
						|
    delete [] OperandList;
 | 
						|
    OperandList = 0;
 | 
						|
    NumOperands = 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  void setValueTypes(MVT::ValueType VT) {
 | 
						|
    assert(NumValues == 0 && "Should not have values yet!");
 | 
						|
    ValueList = getValueTypeList(VT);
 | 
						|
    NumValues = 1;
 | 
						|
  }
 | 
						|
  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
 | 
						|
    assert(NumValues == 0 && "Should not have values yet!");
 | 
						|
    ValueList = List;
 | 
						|
    NumValues = NumVal;
 | 
						|
  }
 | 
						|
  
 | 
						|
  void setOperands(SDOperand Op0) {
 | 
						|
    assert(NumOperands == 0 && "Should not have operands yet!");
 | 
						|
    OperandList = new SDOperand[1];
 | 
						|
    OperandList[0] = Op0;
 | 
						|
    NumOperands = 1;
 | 
						|
    Op0.Val->Uses.push_back(this);
 | 
						|
  }
 | 
						|
  void setOperands(SDOperand Op0, SDOperand Op1) {
 | 
						|
    assert(NumOperands == 0 && "Should not have operands yet!");
 | 
						|
    OperandList = new SDOperand[2];
 | 
						|
    OperandList[0] = Op0;
 | 
						|
    OperandList[1] = Op1;
 | 
						|
    NumOperands = 2;
 | 
						|
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | 
						|
  }
 | 
						|
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
 | 
						|
    assert(NumOperands == 0 && "Should not have operands yet!");
 | 
						|
    OperandList = new SDOperand[3];
 | 
						|
    OperandList[0] = Op0;
 | 
						|
    OperandList[1] = Op1;
 | 
						|
    OperandList[2] = Op2;
 | 
						|
    NumOperands = 3;
 | 
						|
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | 
						|
    Op2.Val->Uses.push_back(this);
 | 
						|
  }
 | 
						|
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
 | 
						|
    assert(NumOperands == 0 && "Should not have operands yet!");
 | 
						|
    OperandList = new SDOperand[4];
 | 
						|
    OperandList[0] = Op0;
 | 
						|
    OperandList[1] = Op1;
 | 
						|
    OperandList[2] = Op2;
 | 
						|
    OperandList[3] = Op3;
 | 
						|
    NumOperands = 4;
 | 
						|
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | 
						|
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
 | 
						|
  }
 | 
						|
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
 | 
						|
                   SDOperand Op4) {
 | 
						|
    assert(NumOperands == 0 && "Should not have operands yet!");
 | 
						|
    OperandList = new SDOperand[5];
 | 
						|
    OperandList[0] = Op0;
 | 
						|
    OperandList[1] = Op1;
 | 
						|
    OperandList[2] = Op2;
 | 
						|
    OperandList[3] = Op3;
 | 
						|
    OperandList[4] = Op4;
 | 
						|
    NumOperands = 5;
 | 
						|
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | 
						|
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
 | 
						|
    Op4.Val->Uses.push_back(this);
 | 
						|
  }
 | 
						|
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
 | 
						|
                   SDOperand Op4, SDOperand Op5) {
 | 
						|
    assert(NumOperands == 0 && "Should not have operands yet!");
 | 
						|
    OperandList = new SDOperand[6];
 | 
						|
    OperandList[0] = Op0;
 | 
						|
    OperandList[1] = Op1;
 | 
						|
    OperandList[2] = Op2;
 | 
						|
    OperandList[3] = Op3;
 | 
						|
    OperandList[4] = Op4;
 | 
						|
    OperandList[5] = Op5;
 | 
						|
    NumOperands = 6;
 | 
						|
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | 
						|
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
 | 
						|
    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
 | 
						|
  }
 | 
						|
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
 | 
						|
                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
 | 
						|
    assert(NumOperands == 0 && "Should not have operands yet!");
 | 
						|
    OperandList = new SDOperand[7];
 | 
						|
    OperandList[0] = Op0;
 | 
						|
    OperandList[1] = Op1;
 | 
						|
    OperandList[2] = Op2;
 | 
						|
    OperandList[3] = Op3;
 | 
						|
    OperandList[4] = Op4;
 | 
						|
    OperandList[5] = Op5;
 | 
						|
    OperandList[6] = Op6;
 | 
						|
    NumOperands = 7;
 | 
						|
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | 
						|
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
 | 
						|
    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
 | 
						|
    Op6.Val->Uses.push_back(this);
 | 
						|
  }
 | 
						|
  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
 | 
						|
                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
 | 
						|
    assert(NumOperands == 0 && "Should not have operands yet!");
 | 
						|
    OperandList = new SDOperand[8];
 | 
						|
    OperandList[0] = Op0;
 | 
						|
    OperandList[1] = Op1;
 | 
						|
    OperandList[2] = Op2;
 | 
						|
    OperandList[3] = Op3;
 | 
						|
    OperandList[4] = Op4;
 | 
						|
    OperandList[5] = Op5;
 | 
						|
    OperandList[6] = Op6;
 | 
						|
    OperandList[7] = Op7;
 | 
						|
    NumOperands = 8;
 | 
						|
    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | 
						|
    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
 | 
						|
    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
 | 
						|
    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
 | 
						|
  }
 | 
						|
 | 
						|
  void addUser(SDNode *User) {
 | 
						|
    Uses.push_back(User);
 | 
						|
  }
 | 
						|
  void removeUser(SDNode *User) {
 | 
						|
    // Remove this user from the operand's use list.
 | 
						|
    for (unsigned i = Uses.size(); ; --i) {
 | 
						|
      assert(i != 0 && "Didn't find user!");
 | 
						|
      if (Uses[i-1] == User) {
 | 
						|
        Uses[i-1] = Uses.back();
 | 
						|
        Uses.pop_back();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Define inline functions from the SDOperand class.
 | 
						|
 | 
						|
inline unsigned SDOperand::getOpcode() const {
 | 
						|
  return Val->getOpcode();
 | 
						|
}
 | 
						|
inline unsigned SDOperand::getNodeDepth() const {
 | 
						|
  return Val->getNodeDepth();
 | 
						|
}
 | 
						|
inline MVT::ValueType SDOperand::getValueType() const {
 | 
						|
  return Val->getValueType(ResNo);
 | 
						|
}
 | 
						|
inline unsigned SDOperand::getNumOperands() const {
 | 
						|
  return Val->getNumOperands();
 | 
						|
}
 | 
						|
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
 | 
						|
  return Val->getOperand(i);
 | 
						|
}
 | 
						|
inline bool SDOperand::isTargetOpcode() const {
 | 
						|
  return Val->isTargetOpcode();
 | 
						|
}
 | 
						|
inline unsigned SDOperand::getTargetOpcode() const {
 | 
						|
  return Val->getTargetOpcode();
 | 
						|
}
 | 
						|
inline bool SDOperand::hasOneUse() const {
 | 
						|
  return Val->hasNUsesOfValue(1, ResNo);
 | 
						|
}
 | 
						|
 | 
						|
/// HandleSDNode - This class is used to form a handle around another node that
 | 
						|
/// is persistant and is updated across invocations of replaceAllUsesWith on its
 | 
						|
/// operand.  This node should be directly created by end-users and not added to
 | 
						|
/// the AllNodes list.
 | 
						|
class HandleSDNode : public SDNode {
 | 
						|
public:
 | 
						|
  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
 | 
						|
  ~HandleSDNode() {
 | 
						|
    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand getValue() const { return getOperand(0); }
 | 
						|
};
 | 
						|
 | 
						|
class StringSDNode : public SDNode {
 | 
						|
  std::string Value;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  StringSDNode(const std::string &val)
 | 
						|
    : SDNode(ISD::STRING, MVT::Other), Value(val) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
  const std::string &getValue() const { return Value; }
 | 
						|
  static bool classof(const StringSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::STRING;
 | 
						|
  }
 | 
						|
};  
 | 
						|
 | 
						|
class ConstantSDNode : public SDNode {
 | 
						|
  uint64_t Value;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
 | 
						|
    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  uint64_t getValue() const { return Value; }
 | 
						|
 | 
						|
  int64_t getSignExtended() const {
 | 
						|
    unsigned Bits = MVT::getSizeInBits(getValueType(0));
 | 
						|
    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isNullValue() const { return Value == 0; }
 | 
						|
  bool isAllOnesValue() const {
 | 
						|
    return Value == MVT::getIntVTBitMask(getValueType(0));
 | 
						|
  }
 | 
						|
 | 
						|
  static bool classof(const ConstantSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::Constant ||
 | 
						|
           N->getOpcode() == ISD::TargetConstant;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ConstantFPSDNode : public SDNode {
 | 
						|
  double Value;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
 | 
						|
    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT), 
 | 
						|
      Value(val) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  double getValue() const { return Value; }
 | 
						|
 | 
						|
  /// isExactlyValue - We don't rely on operator== working on double values, as
 | 
						|
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | 
						|
  /// As such, this method can be used to do an exact bit-for-bit comparison of
 | 
						|
  /// two floating point values.
 | 
						|
  bool isExactlyValue(double V) const;
 | 
						|
 | 
						|
  static bool classof(const ConstantFPSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::ConstantFP || 
 | 
						|
           N->getOpcode() == ISD::TargetConstantFP;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class GlobalAddressSDNode : public SDNode {
 | 
						|
  GlobalValue *TheGlobal;
 | 
						|
  int Offset;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
 | 
						|
                      int o=0)
 | 
						|
    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
 | 
						|
      Offset(o) {
 | 
						|
    TheGlobal = const_cast<GlobalValue*>(GA);
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  GlobalValue *getGlobal() const { return TheGlobal; }
 | 
						|
  int getOffset() const { return Offset; }
 | 
						|
 | 
						|
  static bool classof(const GlobalAddressSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::GlobalAddress ||
 | 
						|
           N->getOpcode() == ISD::TargetGlobalAddress;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class FrameIndexSDNode : public SDNode {
 | 
						|
  int FI;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
 | 
						|
    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
 | 
						|
public:
 | 
						|
 | 
						|
  int getIndex() const { return FI; }
 | 
						|
 | 
						|
  static bool classof(const FrameIndexSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::FrameIndex ||
 | 
						|
           N->getOpcode() == ISD::TargetFrameIndex;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class JumpTableSDNode : public SDNode {
 | 
						|
  int JTI;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
 | 
						|
    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT), 
 | 
						|
    JTI(jti) {}
 | 
						|
public:
 | 
						|
    
 | 
						|
    int getIndex() const { return JTI; }
 | 
						|
  
 | 
						|
  static bool classof(const JumpTableSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::JumpTable ||
 | 
						|
           N->getOpcode() == ISD::TargetJumpTable;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ConstantPoolSDNode : public SDNode {
 | 
						|
  Constant *C;
 | 
						|
  int Offset;
 | 
						|
  unsigned Alignment;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
 | 
						|
                     int o=0)
 | 
						|
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
 | 
						|
      C(c), Offset(o), Alignment(0) {}
 | 
						|
  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
 | 
						|
                     unsigned Align)
 | 
						|
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
 | 
						|
      C(c), Offset(o), Alignment(Align) {}
 | 
						|
public:
 | 
						|
 | 
						|
  Constant *get() const { return C; }
 | 
						|
  int getOffset() const { return Offset; }
 | 
						|
  
 | 
						|
  // Return the alignment of this constant pool object, which is either 0 (for
 | 
						|
  // default alignment) or log2 of the desired value.
 | 
						|
  unsigned getAlignment() const { return Alignment; }
 | 
						|
 | 
						|
  static bool classof(const ConstantPoolSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::ConstantPool ||
 | 
						|
           N->getOpcode() == ISD::TargetConstantPool;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class BasicBlockSDNode : public SDNode {
 | 
						|
  MachineBasicBlock *MBB;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  BasicBlockSDNode(MachineBasicBlock *mbb)
 | 
						|
    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
 | 
						|
public:
 | 
						|
 | 
						|
  MachineBasicBlock *getBasicBlock() const { return MBB; }
 | 
						|
 | 
						|
  static bool classof(const BasicBlockSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::BasicBlock;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SrcValueSDNode : public SDNode {
 | 
						|
  const Value *V;
 | 
						|
  int offset;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  SrcValueSDNode(const Value* v, int o)
 | 
						|
    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
 | 
						|
 | 
						|
public:
 | 
						|
  const Value *getValue() const { return V; }
 | 
						|
  int getOffset() const { return offset; }
 | 
						|
 | 
						|
  static bool classof(const SrcValueSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::SRCVALUE;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class RegisterSDNode : public SDNode {
 | 
						|
  unsigned Reg;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  RegisterSDNode(unsigned reg, MVT::ValueType VT)
 | 
						|
    : SDNode(ISD::Register, VT), Reg(reg) {}
 | 
						|
public:
 | 
						|
 | 
						|
  unsigned getReg() const { return Reg; }
 | 
						|
 | 
						|
  static bool classof(const RegisterSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::Register;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ExternalSymbolSDNode : public SDNode {
 | 
						|
  const char *Symbol;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
 | 
						|
    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
 | 
						|
      Symbol(Sym) {
 | 
						|
    }
 | 
						|
public:
 | 
						|
 | 
						|
  const char *getSymbol() const { return Symbol; }
 | 
						|
 | 
						|
  static bool classof(const ExternalSymbolSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::ExternalSymbol ||
 | 
						|
           N->getOpcode() == ISD::TargetExternalSymbol;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class CondCodeSDNode : public SDNode {
 | 
						|
  ISD::CondCode Condition;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  CondCodeSDNode(ISD::CondCode Cond)
 | 
						|
    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  ISD::CondCode get() const { return Condition; }
 | 
						|
 | 
						|
  static bool classof(const CondCodeSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::CONDCODE;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
 | 
						|
/// to parameterize some operations.
 | 
						|
class VTSDNode : public SDNode {
 | 
						|
  MVT::ValueType ValueType;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  VTSDNode(MVT::ValueType VT)
 | 
						|
    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
 | 
						|
public:
 | 
						|
 | 
						|
  MVT::ValueType getVT() const { return ValueType; }
 | 
						|
 | 
						|
  static bool classof(const VTSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::VALUETYPE;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
 | 
						|
  SDNode *Node;
 | 
						|
  unsigned Operand;
 | 
						|
 | 
						|
  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
 | 
						|
public:
 | 
						|
  bool operator==(const SDNodeIterator& x) const {
 | 
						|
    return Operand == x.Operand;
 | 
						|
  }
 | 
						|
  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
 | 
						|
 | 
						|
  const SDNodeIterator &operator=(const SDNodeIterator &I) {
 | 
						|
    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
 | 
						|
    Operand = I.Operand;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  pointer operator*() const {
 | 
						|
    return Node->getOperand(Operand).Val;
 | 
						|
  }
 | 
						|
  pointer operator->() const { return operator*(); }
 | 
						|
 | 
						|
  SDNodeIterator& operator++() {                // Preincrement
 | 
						|
    ++Operand;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  SDNodeIterator operator++(int) { // Postincrement
 | 
						|
    SDNodeIterator tmp = *this; ++*this; return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
 | 
						|
  static SDNodeIterator end  (SDNode *N) {
 | 
						|
    return SDNodeIterator(N, N->getNumOperands());
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getOperand() const { return Operand; }
 | 
						|
  const SDNode *getNode() const { return Node; }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct GraphTraits<SDNode*> {
 | 
						|
  typedef SDNode NodeType;
 | 
						|
  typedef SDNodeIterator ChildIteratorType;
 | 
						|
  static inline NodeType *getEntryNode(SDNode *N) { return N; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return SDNodeIterator::begin(N);
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return SDNodeIterator::end(N);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ilist_traits<SDNode> {
 | 
						|
  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
 | 
						|
  static SDNode *getNext(const SDNode *N) { return N->Next; }
 | 
						|
  
 | 
						|
  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
 | 
						|
  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
 | 
						|
  
 | 
						|
  static SDNode *createSentinel() {
 | 
						|
    return new SDNode(ISD::EntryToken, MVT::Other);
 | 
						|
  }
 | 
						|
  static void destroySentinel(SDNode *N) { delete N; }
 | 
						|
  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
 | 
						|
  
 | 
						|
  
 | 
						|
  void addNodeToList(SDNode *NTy) {}
 | 
						|
  void removeNodeFromList(SDNode *NTy) {}
 | 
						|
  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
 | 
						|
                             const ilist_iterator<SDNode> &X,
 | 
						|
                             const ilist_iterator<SDNode> &Y) {}
 | 
						|
};
 | 
						|
 | 
						|
} // end llvm namespace
 | 
						|
 | 
						|
#endif
 |