mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163225 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			640 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			640 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
 | 
						|
// register allocator for LLVM. This allocator works by constructing a PBQP
 | 
						|
// problem representing the register allocation problem under consideration,
 | 
						|
// solving this using a PBQP solver, and mapping the solution back to a
 | 
						|
// register assignment. If any variables are selected for spilling then spill
 | 
						|
// code is inserted and the process repeated.
 | 
						|
//
 | 
						|
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
 | 
						|
// for register allocation. For more information on PBQP for register
 | 
						|
// allocation, see the following papers:
 | 
						|
//
 | 
						|
//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
 | 
						|
//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
 | 
						|
//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
 | 
						|
//
 | 
						|
//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
 | 
						|
//   architectures. In Proceedings of the Joint Conference on Languages,
 | 
						|
//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
 | 
						|
//   NY, USA, 139-148.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
 | 
						|
#include "Spiller.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "RegisterCoalescer.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/CalcSpillWeights.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveRangeEdit.h"
 | 
						|
#include "llvm/CodeGen/LiveStackAnalysis.h"
 | 
						|
#include "llvm/CodeGen/RegAllocPBQP.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PBQP/HeuristicSolver.h"
 | 
						|
#include "llvm/CodeGen/PBQP/Graph.h"
 | 
						|
#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
 | 
						|
#include "llvm/CodeGen/RegAllocRegistry.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include <limits>
 | 
						|
#include <memory>
 | 
						|
#include <set>
 | 
						|
#include <sstream>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static RegisterRegAlloc
 | 
						|
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
 | 
						|
                       createDefaultPBQPRegisterAllocator);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
pbqpCoalescing("pbqp-coalescing",
 | 
						|
                cl::desc("Attempt coalescing during PBQP register allocation."),
 | 
						|
                cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool>
 | 
						|
pbqpDumpGraphs("pbqp-dump-graphs",
 | 
						|
               cl::desc("Dump graphs for each function/round in the compilation unit."),
 | 
						|
               cl::init(false), cl::Hidden);
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
///
 | 
						|
/// PBQP based allocators solve the register allocation problem by mapping
 | 
						|
/// register allocation problems to Partitioned Boolean Quadratic
 | 
						|
/// Programming problems.
 | 
						|
class RegAllocPBQP : public MachineFunctionPass {
 | 
						|
public:
 | 
						|
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  /// Construct a PBQP register allocator.
 | 
						|
  RegAllocPBQP(std::auto_ptr<PBQPBuilder> b, char *cPassID=0)
 | 
						|
      : MachineFunctionPass(ID), builder(b), customPassID(cPassID) {
 | 
						|
    initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | 
						|
    initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | 
						|
    initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
 | 
						|
    initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | 
						|
    initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
 | 
						|
    initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the pass name.
 | 
						|
  virtual const char* getPassName() const {
 | 
						|
    return "PBQP Register Allocator";
 | 
						|
  }
 | 
						|
 | 
						|
  /// PBQP analysis usage.
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &au) const;
 | 
						|
 | 
						|
  /// Perform register allocation
 | 
						|
  virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
 | 
						|
  typedef std::vector<const LiveInterval*> Node2LIMap;
 | 
						|
  typedef std::vector<unsigned> AllowedSet;
 | 
						|
  typedef std::vector<AllowedSet> AllowedSetMap;
 | 
						|
  typedef std::pair<unsigned, unsigned> RegPair;
 | 
						|
  typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
 | 
						|
  typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
 | 
						|
  typedef std::set<unsigned> RegSet;
 | 
						|
 | 
						|
 | 
						|
  std::auto_ptr<PBQPBuilder> builder;
 | 
						|
 | 
						|
  char *customPassID;
 | 
						|
 | 
						|
  MachineFunction *mf;
 | 
						|
  const TargetMachine *tm;
 | 
						|
  const TargetRegisterInfo *tri;
 | 
						|
  const TargetInstrInfo *tii;
 | 
						|
  const MachineLoopInfo *loopInfo;
 | 
						|
  MachineRegisterInfo *mri;
 | 
						|
 | 
						|
  std::auto_ptr<Spiller> spiller;
 | 
						|
  LiveIntervals *lis;
 | 
						|
  LiveStacks *lss;
 | 
						|
  VirtRegMap *vrm;
 | 
						|
 | 
						|
  RegSet vregsToAlloc, emptyIntervalVRegs;
 | 
						|
 | 
						|
  /// \brief Finds the initial set of vreg intervals to allocate.
 | 
						|
  void findVRegIntervalsToAlloc();
 | 
						|
 | 
						|
  /// \brief Given a solved PBQP problem maps this solution back to a register
 | 
						|
  /// assignment.
 | 
						|
  bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
 | 
						|
                         const PBQP::Solution &solution);
 | 
						|
 | 
						|
  /// \brief Postprocessing before final spilling. Sets basic block "live in"
 | 
						|
  /// variables.
 | 
						|
  void finalizeAlloc() const;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
char RegAllocPBQP::ID = 0;
 | 
						|
 | 
						|
} // End anonymous namespace.
 | 
						|
 | 
						|
unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
 | 
						|
  Node2VReg::const_iterator vregItr = node2VReg.find(node);
 | 
						|
  assert(vregItr != node2VReg.end() && "No vreg for node.");
 | 
						|
  return vregItr->second;
 | 
						|
}
 | 
						|
 | 
						|
PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
 | 
						|
  VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
 | 
						|
  assert(nodeItr != vreg2Node.end() && "No node for vreg.");
 | 
						|
  return nodeItr->second;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
const PBQPRAProblem::AllowedSet&
 | 
						|
  PBQPRAProblem::getAllowedSet(unsigned vreg) const {
 | 
						|
  AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
 | 
						|
  assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
 | 
						|
  const AllowedSet &allowedSet = allowedSetItr->second;
 | 
						|
  return allowedSet;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
 | 
						|
  assert(isPRegOption(vreg, option) && "Not a preg option.");
 | 
						|
 | 
						|
  const AllowedSet& allowedSet = getAllowedSet(vreg);
 | 
						|
  assert(option <= allowedSet.size() && "Option outside allowed set.");
 | 
						|
  return allowedSet[option - 1];
 | 
						|
}
 | 
						|
 | 
						|
std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf,
 | 
						|
                                                const LiveIntervals *lis,
 | 
						|
                                                const MachineLoopInfo *loopInfo,
 | 
						|
                                                const RegSet &vregs) {
 | 
						|
 | 
						|
  LiveIntervals *LIS = const_cast<LiveIntervals*>(lis);
 | 
						|
  MachineRegisterInfo *mri = &mf->getRegInfo();
 | 
						|
  const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
 | 
						|
 | 
						|
  std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem());
 | 
						|
  PBQP::Graph &g = p->getGraph();
 | 
						|
  RegSet pregs;
 | 
						|
 | 
						|
  // Collect the set of preg intervals, record that they're used in the MF.
 | 
						|
  for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) {
 | 
						|
    if (mri->def_empty(Reg))
 | 
						|
      continue;
 | 
						|
    pregs.insert(Reg);
 | 
						|
    mri->setPhysRegUsed(Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  BitVector reservedRegs = tri->getReservedRegs(*mf);
 | 
						|
 | 
						|
  // Iterate over vregs.
 | 
						|
  for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
 | 
						|
       vregItr != vregEnd; ++vregItr) {
 | 
						|
    unsigned vreg = *vregItr;
 | 
						|
    const TargetRegisterClass *trc = mri->getRegClass(vreg);
 | 
						|
    LiveInterval *vregLI = &LIS->getInterval(vreg);
 | 
						|
 | 
						|
    // Record any overlaps with regmask operands.
 | 
						|
    BitVector regMaskOverlaps(tri->getNumRegs());
 | 
						|
    LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps);
 | 
						|
 | 
						|
    // Compute an initial allowed set for the current vreg.
 | 
						|
    typedef std::vector<unsigned> VRAllowed;
 | 
						|
    VRAllowed vrAllowed;
 | 
						|
    ArrayRef<uint16_t> rawOrder = trc->getRawAllocationOrder(*mf);
 | 
						|
    for (unsigned i = 0; i != rawOrder.size(); ++i) {
 | 
						|
      unsigned preg = rawOrder[i];
 | 
						|
      if (reservedRegs.test(preg))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // vregLI crosses a regmask operand that clobbers preg.
 | 
						|
      if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // vregLI overlaps fixed regunit interference.
 | 
						|
      bool Interference = false;
 | 
						|
      for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) {
 | 
						|
        if (vregLI->overlaps(LIS->getRegUnit(*Units))) {
 | 
						|
          Interference = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Interference)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // preg is usable for this virtual register.
 | 
						|
      vrAllowed.push_back(preg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Construct the node.
 | 
						|
    PBQP::Graph::NodeItr node =
 | 
						|
      g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
 | 
						|
 | 
						|
    // Record the mapping and allowed set in the problem.
 | 
						|
    p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
 | 
						|
 | 
						|
    PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
 | 
						|
        vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
 | 
						|
 | 
						|
    addSpillCosts(g.getNodeCosts(node), spillCost);
 | 
						|
  }
 | 
						|
 | 
						|
  for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
 | 
						|
         vr1Itr != vrEnd; ++vr1Itr) {
 | 
						|
    unsigned vr1 = *vr1Itr;
 | 
						|
    const LiveInterval &l1 = lis->getInterval(vr1);
 | 
						|
    const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
 | 
						|
 | 
						|
    for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
 | 
						|
         vr2Itr != vrEnd; ++vr2Itr) {
 | 
						|
      unsigned vr2 = *vr2Itr;
 | 
						|
      const LiveInterval &l2 = lis->getInterval(vr2);
 | 
						|
      const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
 | 
						|
 | 
						|
      assert(!l2.empty() && "Empty interval in vreg set?");
 | 
						|
      if (l1.overlaps(l2)) {
 | 
						|
        PBQP::Graph::EdgeItr edge =
 | 
						|
          g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
 | 
						|
                    PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
 | 
						|
 | 
						|
        addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
 | 
						|
                                PBQP::PBQPNum spillCost) {
 | 
						|
  costVec[0] = spillCost;
 | 
						|
}
 | 
						|
 | 
						|
void PBQPBuilder::addInterferenceCosts(
 | 
						|
                                    PBQP::Matrix &costMat,
 | 
						|
                                    const PBQPRAProblem::AllowedSet &vr1Allowed,
 | 
						|
                                    const PBQPRAProblem::AllowedSet &vr2Allowed,
 | 
						|
                                    const TargetRegisterInfo *tri) {
 | 
						|
  assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
 | 
						|
  assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
 | 
						|
 | 
						|
  for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
 | 
						|
    unsigned preg1 = vr1Allowed[i];
 | 
						|
 | 
						|
    for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
 | 
						|
      unsigned preg2 = vr2Allowed[j];
 | 
						|
 | 
						|
      if (tri->regsOverlap(preg1, preg2)) {
 | 
						|
        costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build(
 | 
						|
                                                MachineFunction *mf,
 | 
						|
                                                const LiveIntervals *lis,
 | 
						|
                                                const MachineLoopInfo *loopInfo,
 | 
						|
                                                const RegSet &vregs) {
 | 
						|
 | 
						|
  std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs);
 | 
						|
  PBQP::Graph &g = p->getGraph();
 | 
						|
 | 
						|
  const TargetMachine &tm = mf->getTarget();
 | 
						|
  CoalescerPair cp(*tm.getRegisterInfo());
 | 
						|
 | 
						|
  // Scan the machine function and add a coalescing cost whenever CoalescerPair
 | 
						|
  // gives the Ok.
 | 
						|
  for (MachineFunction::const_iterator mbbItr = mf->begin(),
 | 
						|
                                       mbbEnd = mf->end();
 | 
						|
       mbbItr != mbbEnd; ++mbbItr) {
 | 
						|
    const MachineBasicBlock *mbb = &*mbbItr;
 | 
						|
 | 
						|
    for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
 | 
						|
                                           miEnd = mbb->end();
 | 
						|
         miItr != miEnd; ++miItr) {
 | 
						|
      const MachineInstr *mi = &*miItr;
 | 
						|
 | 
						|
      if (!cp.setRegisters(mi)) {
 | 
						|
        continue; // Not coalescable.
 | 
						|
      }
 | 
						|
 | 
						|
      if (cp.getSrcReg() == cp.getDstReg()) {
 | 
						|
        continue; // Already coalesced.
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned dst = cp.getDstReg(),
 | 
						|
               src = cp.getSrcReg();
 | 
						|
 | 
						|
      const float copyFactor = 0.5; // Cost of copy relative to load. Current
 | 
						|
      // value plucked randomly out of the air.
 | 
						|
 | 
						|
      PBQP::PBQPNum cBenefit =
 | 
						|
        copyFactor * LiveIntervals::getSpillWeight(false, true,
 | 
						|
                                                   loopInfo->getLoopDepth(mbb));
 | 
						|
 | 
						|
      if (cp.isPhys()) {
 | 
						|
        if (!lis->isAllocatable(dst)) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
 | 
						|
        unsigned pregOpt = 0;
 | 
						|
        while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
 | 
						|
          ++pregOpt;
 | 
						|
        }
 | 
						|
        if (pregOpt < allowed.size()) {
 | 
						|
          ++pregOpt; // +1 to account for spill option.
 | 
						|
          PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
 | 
						|
          addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
 | 
						|
        const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
 | 
						|
        PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
 | 
						|
        PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
 | 
						|
        PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
 | 
						|
        if (edge == g.edgesEnd()) {
 | 
						|
          edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
 | 
						|
                                                      allowed2->size() + 1,
 | 
						|
                                                      0));
 | 
						|
        } else {
 | 
						|
          if (g.getEdgeNode1(edge) == node2) {
 | 
						|
            std::swap(node1, node2);
 | 
						|
            std::swap(allowed1, allowed2);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
 | 
						|
                           cBenefit);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
 | 
						|
                                                   unsigned pregOption,
 | 
						|
                                                   PBQP::PBQPNum benefit) {
 | 
						|
  costVec[pregOption] += -benefit;
 | 
						|
}
 | 
						|
 | 
						|
void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
 | 
						|
                                    PBQP::Matrix &costMat,
 | 
						|
                                    const PBQPRAProblem::AllowedSet &vr1Allowed,
 | 
						|
                                    const PBQPRAProblem::AllowedSet &vr2Allowed,
 | 
						|
                                    PBQP::PBQPNum benefit) {
 | 
						|
 | 
						|
  assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
 | 
						|
  assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
 | 
						|
 | 
						|
  for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
 | 
						|
    unsigned preg1 = vr1Allowed[i];
 | 
						|
    for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
 | 
						|
      unsigned preg2 = vr2Allowed[j];
 | 
						|
 | 
						|
      if (preg1 == preg2) {
 | 
						|
        costMat[i + 1][j + 1] += -benefit;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
 | 
						|
  au.setPreservesCFG();
 | 
						|
  au.addRequired<AliasAnalysis>();
 | 
						|
  au.addPreserved<AliasAnalysis>();
 | 
						|
  au.addRequired<SlotIndexes>();
 | 
						|
  au.addPreserved<SlotIndexes>();
 | 
						|
  au.addRequired<LiveIntervals>();
 | 
						|
  //au.addRequiredID(SplitCriticalEdgesID);
 | 
						|
  if (customPassID)
 | 
						|
    au.addRequiredID(*customPassID);
 | 
						|
  au.addRequired<CalculateSpillWeights>();
 | 
						|
  au.addRequired<LiveStacks>();
 | 
						|
  au.addPreserved<LiveStacks>();
 | 
						|
  au.addRequired<MachineDominatorTree>();
 | 
						|
  au.addPreserved<MachineDominatorTree>();
 | 
						|
  au.addRequired<MachineLoopInfo>();
 | 
						|
  au.addPreserved<MachineLoopInfo>();
 | 
						|
  au.addRequired<VirtRegMap>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(au);
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocPBQP::findVRegIntervalsToAlloc() {
 | 
						|
 | 
						|
  // Iterate over all live ranges.
 | 
						|
  for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
    if (mri->reg_nodbg_empty(Reg))
 | 
						|
      continue;
 | 
						|
    LiveInterval *li = &lis->getInterval(Reg);
 | 
						|
 | 
						|
    // If this live interval is non-empty we will use pbqp to allocate it.
 | 
						|
    // Empty intervals we allocate in a simple post-processing stage in
 | 
						|
    // finalizeAlloc.
 | 
						|
    if (!li->empty()) {
 | 
						|
      vregsToAlloc.insert(li->reg);
 | 
						|
    } else {
 | 
						|
      emptyIntervalVRegs.insert(li->reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
 | 
						|
                                     const PBQP::Solution &solution) {
 | 
						|
  // Set to true if we have any spills
 | 
						|
  bool anotherRoundNeeded = false;
 | 
						|
 | 
						|
  // Clear the existing allocation.
 | 
						|
  vrm->clearAllVirt();
 | 
						|
 | 
						|
  const PBQP::Graph &g = problem.getGraph();
 | 
						|
  // Iterate over the nodes mapping the PBQP solution to a register
 | 
						|
  // assignment.
 | 
						|
  for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
 | 
						|
                                 nodeEnd = g.nodesEnd();
 | 
						|
       node != nodeEnd; ++node) {
 | 
						|
    unsigned vreg = problem.getVRegForNode(node);
 | 
						|
    unsigned alloc = solution.getSelection(node);
 | 
						|
 | 
						|
    if (problem.isPRegOption(vreg, alloc)) {
 | 
						|
      unsigned preg = problem.getPRegForOption(vreg, alloc);
 | 
						|
      DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> "
 | 
						|
            << tri->getName(preg) << "\n");
 | 
						|
      assert(preg != 0 && "Invalid preg selected.");
 | 
						|
      vrm->assignVirt2Phys(vreg, preg);
 | 
						|
    } else if (problem.isSpillOption(vreg, alloc)) {
 | 
						|
      vregsToAlloc.erase(vreg);
 | 
						|
      SmallVector<LiveInterval*, 8> newSpills;
 | 
						|
      LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
 | 
						|
      spiller->spill(LRE);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: "
 | 
						|
                   << LRE.getParent().weight << ", New vregs: ");
 | 
						|
 | 
						|
      // Copy any newly inserted live intervals into the list of regs to
 | 
						|
      // allocate.
 | 
						|
      for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
 | 
						|
           itr != end; ++itr) {
 | 
						|
        assert(!(*itr)->empty() && "Empty spill range.");
 | 
						|
        DEBUG(dbgs() << PrintReg((*itr)->reg, tri) << " ");
 | 
						|
        vregsToAlloc.insert((*itr)->reg);
 | 
						|
      }
 | 
						|
 | 
						|
      DEBUG(dbgs() << ")\n");
 | 
						|
 | 
						|
      // We need another round if spill intervals were added.
 | 
						|
      anotherRoundNeeded |= !LRE.empty();
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Unknown allocation option.");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return !anotherRoundNeeded;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void RegAllocPBQP::finalizeAlloc() const {
 | 
						|
  // First allocate registers for the empty intervals.
 | 
						|
  for (RegSet::const_iterator
 | 
						|
         itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
 | 
						|
         itr != end; ++itr) {
 | 
						|
    LiveInterval *li = &lis->getInterval(*itr);
 | 
						|
 | 
						|
    unsigned physReg = vrm->getRegAllocPref(li->reg);
 | 
						|
 | 
						|
    if (physReg == 0) {
 | 
						|
      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
 | 
						|
      physReg = liRC->getRawAllocationOrder(*mf).front();
 | 
						|
    }
 | 
						|
 | 
						|
    vrm->assignVirt2Phys(li->reg, physReg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
 | 
						|
  mf = &MF;
 | 
						|
  tm = &mf->getTarget();
 | 
						|
  tri = tm->getRegisterInfo();
 | 
						|
  tii = tm->getInstrInfo();
 | 
						|
  mri = &mf->getRegInfo();
 | 
						|
 | 
						|
  lis = &getAnalysis<LiveIntervals>();
 | 
						|
  lss = &getAnalysis<LiveStacks>();
 | 
						|
  loopInfo = &getAnalysis<MachineLoopInfo>();
 | 
						|
 | 
						|
  vrm = &getAnalysis<VirtRegMap>();
 | 
						|
  spiller.reset(createInlineSpiller(*this, MF, *vrm));
 | 
						|
 | 
						|
  mri->freezeReservedRegs(MF);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n");
 | 
						|
 | 
						|
  // Allocator main loop:
 | 
						|
  //
 | 
						|
  // * Map current regalloc problem to a PBQP problem
 | 
						|
  // * Solve the PBQP problem
 | 
						|
  // * Map the solution back to a register allocation
 | 
						|
  // * Spill if necessary
 | 
						|
  //
 | 
						|
  // This process is continued till no more spills are generated.
 | 
						|
 | 
						|
  // Find the vreg intervals in need of allocation.
 | 
						|
  findVRegIntervalsToAlloc();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  const Function* func = mf->getFunction();
 | 
						|
  std::string fqn =
 | 
						|
    func->getParent()->getModuleIdentifier() + "." +
 | 
						|
    func->getName().str();
 | 
						|
#endif
 | 
						|
 | 
						|
  // If there are non-empty intervals allocate them using pbqp.
 | 
						|
  if (!vregsToAlloc.empty()) {
 | 
						|
 | 
						|
    bool pbqpAllocComplete = false;
 | 
						|
    unsigned round = 0;
 | 
						|
 | 
						|
    while (!pbqpAllocComplete) {
 | 
						|
      DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
 | 
						|
 | 
						|
      std::auto_ptr<PBQPRAProblem> problem =
 | 
						|
        builder->build(mf, lis, loopInfo, vregsToAlloc);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
      if (pbqpDumpGraphs) {
 | 
						|
        std::ostringstream rs;
 | 
						|
        rs << round;
 | 
						|
        std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph");
 | 
						|
        std::string tmp;
 | 
						|
        raw_fd_ostream os(graphFileName.c_str(), tmp);
 | 
						|
        DEBUG(dbgs() << "Dumping graph for round " << round << " to \""
 | 
						|
              << graphFileName << "\"\n");
 | 
						|
        problem->getGraph().dump(os);
 | 
						|
      }
 | 
						|
#endif
 | 
						|
 | 
						|
      PBQP::Solution solution =
 | 
						|
        PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
 | 
						|
          problem->getGraph());
 | 
						|
 | 
						|
      pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
 | 
						|
 | 
						|
      ++round;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finalise allocation, allocate empty ranges.
 | 
						|
  finalizeAlloc();
 | 
						|
  vregsToAlloc.clear();
 | 
						|
  emptyIntervalVRegs.clear();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass* llvm::createPBQPRegisterAllocator(
 | 
						|
                                           std::auto_ptr<PBQPBuilder> builder,
 | 
						|
                                           char *customPassID) {
 | 
						|
  return new RegAllocPBQP(builder, customPassID);
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
 | 
						|
  if (pbqpCoalescing) {
 | 
						|
    return createPBQPRegisterAllocator(
 | 
						|
             std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing()));
 | 
						|
  } // else
 | 
						|
  return createPBQPRegisterAllocator(
 | 
						|
           std::auto_ptr<PBQPBuilder>(new PBQPBuilder()));
 | 
						|
}
 | 
						|
 | 
						|
#undef DEBUG_TYPE
 |