Jakob Stoklund Olesen b5af2d943e Specify SubRegIndex components on the index itself.
It is simpler to define a composite index directly:

  def ssub_2 : SubRegIndex<[dsub_1, ssub_0]>;
  def ssub_3 : SubRegIndex<[dsub_1, ssub_1]>;

Than specifying the composite indices on each register:

  CompositeIndices = [(ssub_2 dsub_1, ssub_0),
                      (ssub_3 dsub_1, ssub_1)] in ...

This also makes it clear that SubRegIndex composition is supposed to be
unique.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149556 91177308-0d34-0410-b5e6-96231b3b80d8
2012-02-01 23:16:41 +00:00

929 lines
37 KiB
TableGen

//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces which should be
// implemented by each target which is using a TableGen based code generator.
//
//===----------------------------------------------------------------------===//
// Include all information about LLVM intrinsics.
include "llvm/Intrinsics.td"
//===----------------------------------------------------------------------===//
// Register file description - These classes are used to fill in the target
// description classes.
class RegisterClass; // Forward def
// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
class SubRegIndex<list<SubRegIndex> comps = []> {
string Namespace = "";
// ComposedOf - A list of two SubRegIndex instances, [A, B].
// This indicates that this SubRegIndex is the result of composing A and B.
list<SubRegIndex> ComposedOf = comps;
}
// RegAltNameIndex - The alternate name set to use for register operands of
// this register class when printing.
class RegAltNameIndex {
string Namespace = "";
}
def NoRegAltName : RegAltNameIndex;
// Register - You should define one instance of this class for each register
// in the target machine. String n will become the "name" of the register.
class Register<string n, list<string> altNames = []> {
string Namespace = "";
string AsmName = n;
list<string> AltNames = altNames;
// Aliases - A list of registers that this register overlaps with. A read or
// modification of this register can potentially read or modify the aliased
// registers.
list<Register> Aliases = [];
// SubRegs - A list of registers that are parts of this register. Note these
// are "immediate" sub-registers and the registers within the list do not
// themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
// not [AX, AH, AL].
list<Register> SubRegs = [];
// SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
// to address it. Sub-sub-register indices are automatically inherited from
// SubRegs.
list<SubRegIndex> SubRegIndices = [];
// RegAltNameIndices - The alternate name indices which are valid for this
// register.
list<RegAltNameIndex> RegAltNameIndices = [];
// CompositeIndices - Specify subreg indices that don't correspond directly to
// a register in SubRegs and are not inherited. The following formats are
// supported:
//
// (a) Identity - Reg:a == Reg
// (a b) Alias - Reg:a == Reg:b
// (a b,c) Composite - Reg:a == (Reg:b):c
//
// This can be used to disambiguate a sub-sub-register that exists in more
// than one subregister and other weird stuff.
list<dag> CompositeIndices = [];
// DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
// These values can be determined by locating the <target>.h file in the
// directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
// order of these names correspond to the enumeration used by gcc. A value of
// -1 indicates that the gcc number is undefined and -2 that register number
// is invalid for this mode/flavour.
list<int> DwarfNumbers = [];
// CostPerUse - Additional cost of instructions using this register compared
// to other registers in its class. The register allocator will try to
// minimize the number of instructions using a register with a CostPerUse.
// This is used by the x86-64 and ARM Thumb targets where some registers
// require larger instruction encodings.
int CostPerUse = 0;
// CoveredBySubRegs - When this bit is set, the value of this register is
// completely determined by the value of its sub-registers. For example, the
// x86 register AX is covered by its sub-registers AL and AH, but EAX is not
// covered by its sub-register AX.
bit CoveredBySubRegs = 0;
}
// RegisterWithSubRegs - This can be used to define instances of Register which
// need to specify sub-registers.
// List "subregs" specifies which registers are sub-registers to this one. This
// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
// This allows the code generator to be careful not to put two values with
// overlapping live ranges into registers which alias.
class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
let SubRegs = subregs;
}
// RegisterClass - Now that all of the registers are defined, and aliases
// between registers are defined, specify which registers belong to which
// register classes. This also defines the default allocation order of
// registers by register allocators.
//
class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
dag regList, RegAltNameIndex idx = NoRegAltName> {
string Namespace = namespace;
// RegType - Specify the list ValueType of the registers in this register
// class. Note that all registers in a register class must have the same
// ValueTypes. This is a list because some targets permit storing different
// types in same register, for example vector values with 128-bit total size,
// but different count/size of items, like SSE on x86.
//
list<ValueType> RegTypes = regTypes;
// Size - Specify the spill size in bits of the registers. A default value of
// zero lets tablgen pick an appropriate size.
int Size = 0;
// Alignment - Specify the alignment required of the registers when they are
// stored or loaded to memory.
//
int Alignment = alignment;
// CopyCost - This value is used to specify the cost of copying a value
// between two registers in this register class. The default value is one
// meaning it takes a single instruction to perform the copying. A negative
// value means copying is extremely expensive or impossible.
int CopyCost = 1;
// MemberList - Specify which registers are in this class. If the
// allocation_order_* method are not specified, this also defines the order of
// allocation used by the register allocator.
//
dag MemberList = regList;
// AltNameIndex - The alternate register name to use when printing operands
// of this register class. Every register in the register class must have
// a valid alternate name for the given index.
RegAltNameIndex altNameIndex = idx;
// SubRegClasses - Specify the register class of subregisters as a list of
// dags: (RegClass SubRegIndex, SubRegindex, ...)
list<dag> SubRegClasses = [];
// isAllocatable - Specify that the register class can be used for virtual
// registers and register allocation. Some register classes are only used to
// model instruction operand constraints, and should have isAllocatable = 0.
bit isAllocatable = 1;
// AltOrders - List of alternative allocation orders. The default order is
// MemberList itself, and that is good enough for most targets since the
// register allocators automatically remove reserved registers and move
// callee-saved registers to the end.
list<dag> AltOrders = [];
// AltOrderSelect - The body of a function that selects the allocation order
// to use in a given machine function. The code will be inserted in a
// function like this:
//
// static inline unsigned f(const MachineFunction &MF) { ... }
//
// The function should return 0 to select the default order defined by
// MemberList, 1 to select the first AltOrders entry and so on.
code AltOrderSelect = [{}];
}
// The memberList in a RegisterClass is a dag of set operations. TableGen
// evaluates these set operations and expand them into register lists. These
// are the most common operation, see test/TableGen/SetTheory.td for more
// examples of what is possible:
//
// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
// register class, or a sub-expression. This is also the way to simply list
// registers.
//
// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
//
// (and GPR, CSR) - Set intersection. All registers from the first set that are
// also in the second set.
//
// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
// numbered registers.
//
// (shl GPR, 4) - Remove the first N elements.
//
// (trunc GPR, 4) - Truncate after the first N elements.
//
// (rotl GPR, 1) - Rotate N places to the left.
//
// (rotr GPR, 1) - Rotate N places to the right.
//
// (decimate GPR, 2) - Pick every N'th element, starting with the first.
//
// (interleave A, B, ...) - Interleave the elements from each argument list.
//
// All of these operators work on ordered sets, not lists. That means
// duplicates are removed from sub-expressions.
// Set operators. The rest is defined in TargetSelectionDAG.td.
def sequence;
def decimate;
def interleave;
// RegisterTuples - Automatically generate super-registers by forming tuples of
// sub-registers. This is useful for modeling register sequence constraints
// with pseudo-registers that are larger than the architectural registers.
//
// The sub-register lists are zipped together:
//
// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
//
// Generates the same registers as:
//
// let SubRegIndices = [sube, subo] in {
// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
// }
//
// The generated pseudo-registers inherit super-classes and fields from their
// first sub-register. Most fields from the Register class are inferred, and
// the AsmName and Dwarf numbers are cleared.
//
// RegisterTuples instances can be used in other set operations to form
// register classes and so on. This is the only way of using the generated
// registers.
class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
// SubRegs - N lists of registers to be zipped up. Super-registers are
// synthesized from the first element of each SubRegs list, the second
// element and so on.
list<dag> SubRegs = Regs;
// SubRegIndices - N SubRegIndex instances. This provides the names of the
// sub-registers in the synthesized super-registers.
list<SubRegIndex> SubRegIndices = Indices;
// Compose sub-register indices like in a normal Register.
list<dag> CompositeIndices = [];
}
//===----------------------------------------------------------------------===//
// DwarfRegNum - This class provides a mapping of the llvm register enumeration
// to the register numbering used by gcc and gdb. These values are used by a
// debug information writer to describe where values may be located during
// execution.
class DwarfRegNum<list<int> Numbers> {
// DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
// These values can be determined by locating the <target>.h file in the
// directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
// order of these names correspond to the enumeration used by gcc. A value of
// -1 indicates that the gcc number is undefined and -2 that register number
// is invalid for this mode/flavour.
list<int> DwarfNumbers = Numbers;
}
// DwarfRegAlias - This class declares that a given register uses the same dwarf
// numbers as another one. This is useful for making it clear that the two
// registers do have the same number. It also lets us build a mapping
// from dwarf register number to llvm register.
class DwarfRegAlias<Register reg> {
Register DwarfAlias = reg;
}
//===----------------------------------------------------------------------===//
// Pull in the common support for scheduling
//
include "llvm/Target/TargetSchedule.td"
class Predicate; // Forward def
//===----------------------------------------------------------------------===//
// Instruction set description - These classes correspond to the C++ classes in
// the Target/TargetInstrInfo.h file.
//
class Instruction {
string Namespace = "";
dag OutOperandList; // An dag containing the MI def operand list.
dag InOperandList; // An dag containing the MI use operand list.
string AsmString = ""; // The .s format to print the instruction with.
// Pattern - Set to the DAG pattern for this instruction, if we know of one,
// otherwise, uninitialized.
list<dag> Pattern;
// The follow state will eventually be inferred automatically from the
// instruction pattern.
list<Register> Uses = []; // Default to using no non-operand registers
list<Register> Defs = []; // Default to modifying no non-operand registers
// Predicates - List of predicates which will be turned into isel matching
// code.
list<Predicate> Predicates = [];
// Size - Size of encoded instruction, or zero if the size cannot be determined
// from the opcode.
int Size = 0;
// DecoderNamespace - The "namespace" in which this instruction exists, on
// targets like ARM which multiple ISA namespaces exist.
string DecoderNamespace = "";
// Code size, for instruction selection.
// FIXME: What does this actually mean?
int CodeSize = 0;
// Added complexity passed onto matching pattern.
int AddedComplexity = 0;
// These bits capture information about the high-level semantics of the
// instruction.
bit isReturn = 0; // Is this instruction a return instruction?
bit isBranch = 0; // Is this instruction a branch instruction?
bit isIndirectBranch = 0; // Is this instruction an indirect branch?
bit isCompare = 0; // Is this instruction a comparison instruction?
bit isMoveImm = 0; // Is this instruction a move immediate instruction?
bit isBitcast = 0; // Is this instruction a bitcast instruction?
bit isBarrier = 0; // Can control flow fall through this instruction?
bit isCall = 0; // Is this instruction a call instruction?
bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand?
bit mayLoad = 0; // Is it possible for this inst to read memory?
bit mayStore = 0; // Is it possible for this inst to write memory?
bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
bit isCommutable = 0; // Is this 3 operand instruction commutable?
bit isTerminator = 0; // Is this part of the terminator for a basic block?
bit isReMaterializable = 0; // Is this instruction re-materializable?
bit isPredicable = 0; // Is this instruction predicable?
bit hasDelaySlot = 0; // Does this instruction have an delay slot?
bit usesCustomInserter = 0; // Pseudo instr needing special help.
bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook.
bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
bit isPseudo = 0; // Is this instruction a pseudo-instruction?
// If so, won't have encoding information for
// the [MC]CodeEmitter stuff.
// Side effect flags - When set, the flags have these meanings:
//
// hasSideEffects - The instruction has side effects that are not
// captured by any operands of the instruction or other flags.
//
// neverHasSideEffects - Set on an instruction with no pattern if it has no
// side effects.
bit hasSideEffects = 0;
bit neverHasSideEffects = 0;
// Is this instruction a "real" instruction (with a distinct machine
// encoding), or is it a pseudo instruction used for codegen modeling
// purposes.
// FIXME: For now this is distinct from isPseudo, above, as code-gen-only
// instructions can (and often do) still have encoding information
// associated with them. Once we've migrated all of them over to true
// pseudo-instructions that are lowered to real instructions prior to
// the printer/emitter, we can remove this attribute and just use isPseudo.
//
// The intended use is:
// isPseudo: Does not have encoding information and should be expanded,
// at the latest, during lowering to MCInst.
//
// isCodeGenOnly: Does have encoding information and can go through to the
// CodeEmitter unchanged, but duplicates a canonical instruction
// definition's encoding and should be ignored when constructing the
// assembler match tables.
bit isCodeGenOnly = 0;
// Is this instruction a pseudo instruction for use by the assembler parser.
bit isAsmParserOnly = 0;
InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
/// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
/// be encoded into the output machineinstr.
string DisableEncoding = "";
string PostEncoderMethod = "";
string DecoderMethod = "";
/// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
bits<64> TSFlags = 0;
///@name Assembler Parser Support
///@{
string AsmMatchConverter = "";
///@}
}
/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
/// Which instruction it expands to and how the operands map from the
/// pseudo.
class PseudoInstExpansion<dag Result> {
dag ResultInst = Result; // The instruction to generate.
bit isPseudo = 1;
}
/// Predicates - These are extra conditionals which are turned into instruction
/// selector matching code. Currently each predicate is just a string.
class Predicate<string cond> {
string CondString = cond;
/// AssemblerMatcherPredicate - If this feature can be used by the assembler
/// matcher, this is true. Targets should set this by inheriting their
/// feature from the AssemblerPredicate class in addition to Predicate.
bit AssemblerMatcherPredicate = 0;
/// AssemblerCondString - Name of the subtarget feature being tested used
/// as alternative condition string used for assembler matcher.
/// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
/// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
/// It can also list multiple features separated by ",".
/// e.g. "ModeThumb,FeatureThumb2" is translated to
/// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
string AssemblerCondString = "";
}
/// NoHonorSignDependentRounding - This predicate is true if support for
/// sign-dependent-rounding is not enabled.
def NoHonorSignDependentRounding
: Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
class Requires<list<Predicate> preds> {
list<Predicate> Predicates = preds;
}
/// ops definition - This is just a simple marker used to identify the operand
/// list for an instruction. outs and ins are identical both syntactically and
/// semanticallyr; they are used to define def operands and use operands to
/// improve readibility. This should be used like this:
/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
def ops;
def outs;
def ins;
/// variable_ops definition - Mark this instruction as taking a variable number
/// of operands.
def variable_ops;
/// PointerLikeRegClass - Values that are designed to have pointer width are
/// derived from this. TableGen treats the register class as having a symbolic
/// type that it doesn't know, and resolves the actual regclass to use by using
/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
class PointerLikeRegClass<int Kind> {
int RegClassKind = Kind;
}
/// ptr_rc definition - Mark this operand as being a pointer value whose
/// register class is resolved dynamically via a callback to TargetInstrInfo.
/// FIXME: We should probably change this to a class which contain a list of
/// flags. But currently we have but one flag.
def ptr_rc : PointerLikeRegClass<0>;
/// unknown definition - Mark this operand as being of unknown type, causing
/// it to be resolved by inference in the context it is used.
def unknown;
/// AsmOperandClass - Representation for the kinds of operands which the target
/// specific parser can create and the assembly matcher may need to distinguish.
///
/// Operand classes are used to define the order in which instructions are
/// matched, to ensure that the instruction which gets matched for any
/// particular list of operands is deterministic.
///
/// The target specific parser must be able to classify a parsed operand into a
/// unique class which does not partially overlap with any other classes. It can
/// match a subset of some other class, in which case the super class field
/// should be defined.
class AsmOperandClass {
/// The name to use for this class, which should be usable as an enum value.
string Name = ?;
/// The super classes of this operand.
list<AsmOperandClass> SuperClasses = [];
/// The name of the method on the target specific operand to call to test
/// whether the operand is an instance of this class. If not set, this will
/// default to "isFoo", where Foo is the AsmOperandClass name. The method
/// signature should be:
/// bool isFoo() const;
string PredicateMethod = ?;
/// The name of the method on the target specific operand to call to add the
/// target specific operand to an MCInst. If not set, this will default to
/// "addFooOperands", where Foo is the AsmOperandClass name. The method
/// signature should be:
/// void addFooOperands(MCInst &Inst, unsigned N) const;
string RenderMethod = ?;
/// The name of the method on the target specific operand to call to custom
/// handle the operand parsing. This is useful when the operands do not relate
/// to immediates or registers and are very instruction specific (as flags to
/// set in a processor register, coprocessor number, ...).
string ParserMethod = ?;
}
def ImmAsmOperand : AsmOperandClass {
let Name = "Imm";
}
/// Operand Types - These provide the built-in operand types that may be used
/// by a target. Targets can optionally provide their own operand types as
/// needed, though this should not be needed for RISC targets.
class Operand<ValueType ty> {
ValueType Type = ty;
string PrintMethod = "printOperand";
string EncoderMethod = "";
string DecoderMethod = "";
string AsmOperandLowerMethod = ?;
string OperandType = "OPERAND_UNKNOWN";
dag MIOperandInfo = (ops);
// ParserMatchClass - The "match class" that operands of this type fit
// in. Match classes are used to define the order in which instructions are
// match, to ensure that which instructions gets matched is deterministic.
//
// The target specific parser must be able to classify an parsed operand into
// a unique class, which does not partially overlap with any other classes. It
// can match a subset of some other class, in which case the AsmOperandClass
// should declare the other operand as one of its super classes.
AsmOperandClass ParserMatchClass = ImmAsmOperand;
}
class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> {
// RegClass - The register class of the operand.
RegisterClass RegClass = regclass;
// PrintMethod - The target method to call to print register operands of
// this type. The method normally will just use an alt-name index to look
// up the name to print. Default to the generic printOperand().
string PrintMethod = pm;
// ParserMatchClass - The "match class" that operands of this type fit
// in. Match classes are used to define the order in which instructions are
// match, to ensure that which instructions gets matched is deterministic.
//
// The target specific parser must be able to classify an parsed operand into
// a unique class, which does not partially overlap with any other classes. It
// can match a subset of some other class, in which case the AsmOperandClass
// should declare the other operand as one of its super classes.
AsmOperandClass ParserMatchClass;
}
let OperandType = "OPERAND_IMMEDIATE" in {
def i1imm : Operand<i1>;
def i8imm : Operand<i8>;
def i16imm : Operand<i16>;
def i32imm : Operand<i32>;
def i64imm : Operand<i64>;
def f32imm : Operand<f32>;
def f64imm : Operand<f64>;
}
/// zero_reg definition - Special node to stand for the zero register.
///
def zero_reg;
/// PredicateOperand - This can be used to define a predicate operand for an
/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
/// AlwaysVal specifies the value of this predicate when set to "always
/// execute".
class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
: Operand<ty> {
let MIOperandInfo = OpTypes;
dag DefaultOps = AlwaysVal;
}
/// OptionalDefOperand - This is used to define a optional definition operand
/// for an instruction. DefaultOps is the register the operand represents if
/// none is supplied, e.g. zero_reg.
class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
: Operand<ty> {
let MIOperandInfo = OpTypes;
dag DefaultOps = defaultops;
}
// InstrInfo - This class should only be instantiated once to provide parameters
// which are global to the target machine.
//
class InstrInfo {
// Target can specify its instructions in either big or little-endian formats.
// For instance, while both Sparc and PowerPC are big-endian platforms, the
// Sparc manual specifies its instructions in the format [31..0] (big), while
// PowerPC specifies them using the format [0..31] (little).
bit isLittleEndianEncoding = 0;
}
// Standard Pseudo Instructions.
// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
// Only these instructions are allowed in the TargetOpcode namespace.
let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
def PHI : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "PHINODE";
}
def INLINEASM : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "";
let neverHasSideEffects = 1; // Note side effect is encoded in an operand.
}
def PROLOG_LABEL : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = 1;
let isNotDuplicable = 1;
}
def EH_LABEL : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = 1;
let isNotDuplicable = 1;
}
def GC_LABEL : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins i32imm:$id);
let AsmString = "";
let hasCtrlDep = 1;
let isNotDuplicable = 1;
}
def KILL : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "";
let neverHasSideEffects = 1;
}
def EXTRACT_SUBREG : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
let AsmString = "";
let neverHasSideEffects = 1;
}
def INSERT_SUBREG : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
let AsmString = "";
let neverHasSideEffects = 1;
let Constraints = "$supersrc = $dst";
}
def IMPLICIT_DEF : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins);
let AsmString = "";
let neverHasSideEffects = 1;
let isReMaterializable = 1;
let isAsCheapAsAMove = 1;
}
def SUBREG_TO_REG : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
let AsmString = "";
let neverHasSideEffects = 1;
}
def COPY_TO_REGCLASS : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$src, i32imm:$regclass);
let AsmString = "";
let neverHasSideEffects = 1;
let isAsCheapAsAMove = 1;
}
def DBG_VALUE : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "DBG_VALUE";
let neverHasSideEffects = 1;
}
def REG_SEQUENCE : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins variable_ops);
let AsmString = "";
let neverHasSideEffects = 1;
let isAsCheapAsAMove = 1;
}
def COPY : Instruction {
let OutOperandList = (outs unknown:$dst);
let InOperandList = (ins unknown:$src);
let AsmString = "";
let neverHasSideEffects = 1;
let isAsCheapAsAMove = 1;
}
def BUNDLE : Instruction {
let OutOperandList = (outs);
let InOperandList = (ins variable_ops);
let AsmString = "BUNDLE";
}
}
//===----------------------------------------------------------------------===//
// AsmParser - This class can be implemented by targets that wish to implement
// .s file parsing.
//
// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
// syntax on X86 for example).
//
class AsmParser {
// AsmParserClassName - This specifies the suffix to use for the asmparser
// class. Generated AsmParser classes are always prefixed with the target
// name.
string AsmParserClassName = "AsmParser";
// AsmParserInstCleanup - If non-empty, this is the name of a custom member
// function of the AsmParser class to call on every matched instruction.
// This can be used to perform target specific instruction post-processing.
string AsmParserInstCleanup = "";
}
def DefaultAsmParser : AsmParser;
//===----------------------------------------------------------------------===//
// AsmParserVariant - Subtargets can have multiple different assembly parsers
// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
// implemented by targets to describe such variants.
//
class AsmParserVariant {
// Variant - AsmParsers can be of multiple different variants. Variants are
// used to support targets that need to parser multiple formats for the
// assembly language.
int Variant = 0;
// CommentDelimiter - If given, the delimiter string used to recognize
// comments which are hard coded in the .td assembler strings for individual
// instructions.
string CommentDelimiter = "";
// RegisterPrefix - If given, the token prefix which indicates a register
// token. This is used by the matcher to automatically recognize hard coded
// register tokens as constrained registers, instead of tokens, for the
// purposes of matching.
string RegisterPrefix = "";
}
def DefaultAsmParserVariant : AsmParserVariant;
/// AssemblerPredicate - This is a Predicate that can be used when the assembler
/// matches instructions and aliases.
class AssemblerPredicate<string cond> {
bit AssemblerMatcherPredicate = 1;
string AssemblerCondString = cond;
}
/// TokenAlias - This class allows targets to define assembler token
/// operand aliases. That is, a token literal operand which is equivalent
/// to another, canonical, token literal. For example, ARM allows:
/// vmov.u32 s4, #0 -> vmov.i32, #0
/// 'u32' is a more specific designator for the 32-bit integer type specifier
/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
/// def : TokenAlias<".u32", ".i32">;
///
/// This works by marking the match class of 'From' as a subclass of the
/// match class of 'To'.
class TokenAlias<string From, string To> {
string FromToken = From;
string ToToken = To;
}
/// MnemonicAlias - This class allows targets to define assembler mnemonic
/// aliases. This should be used when all forms of one mnemonic are accepted
/// with a different mnemonic. For example, X86 allows:
/// sal %al, 1 -> shl %al, 1
/// sal %ax, %cl -> shl %ax, %cl
/// sal %eax, %cl -> shl %eax, %cl
/// etc. Though "sal" is accepted with many forms, all of them are directly
/// translated to a shl, so it can be handled with (in the case of X86, it
/// actually has one for each suffix as well):
/// def : MnemonicAlias<"sal", "shl">;
///
/// Mnemonic aliases are mapped before any other translation in the match phase,
/// and do allow Requires predicates, e.g.:
///
/// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
///
class MnemonicAlias<string From, string To> {
string FromMnemonic = From;
string ToMnemonic = To;
// Predicates - Predicates that must be true for this remapping to happen.
list<Predicate> Predicates = [];
}
/// InstAlias - This defines an alternate assembly syntax that is allowed to
/// match an instruction that has a different (more canonical) assembly
/// representation.
class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
string AsmString = Asm; // The .s format to match the instruction with.
dag ResultInst = Result; // The MCInst to generate.
bit EmitAlias = Emit; // Emit the alias instead of what's aliased.
// Predicates - Predicates that must be true for this to match.
list<Predicate> Predicates = [];
}
//===----------------------------------------------------------------------===//
// AsmWriter - This class can be implemented by targets that need to customize
// the format of the .s file writer.
//
// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
// on X86 for example).
//
class AsmWriter {
// AsmWriterClassName - This specifies the suffix to use for the asmwriter
// class. Generated AsmWriter classes are always prefixed with the target
// name.
string AsmWriterClassName = "AsmPrinter";
// Variant - AsmWriters can be of multiple different variants. Variants are
// used to support targets that need to emit assembly code in ways that are
// mostly the same for different targets, but have minor differences in
// syntax. If the asmstring contains {|} characters in them, this integer
// will specify which alternative to use. For example "{x|y|z}" with Variant
// == 1, will expand to "y".
int Variant = 0;
// FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
// layout, the asmwriter can actually generate output in this columns (in
// verbose-asm mode). These two values indicate the width of the first column
// (the "opcode" area) and the width to reserve for subsequent operands. When
// verbose asm mode is enabled, operands will be indented to respect this.
int FirstOperandColumn = -1;
// OperandSpacing - Space between operand columns.
int OperandSpacing = -1;
// isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
// generation of the printInstruction() method. For MC printers, it takes
// an MCInstr* operand, otherwise it takes a MachineInstr*.
bit isMCAsmWriter = 0;
}
def DefaultAsmWriter : AsmWriter;
//===----------------------------------------------------------------------===//
// Target - This class contains the "global" target information
//
class Target {
// InstructionSet - Instruction set description for this target.
InstrInfo InstructionSet;
// AssemblyParsers - The AsmParser instances available for this target.
list<AsmParser> AssemblyParsers = [DefaultAsmParser];
/// AssemblyParserVariants - The AsmParserVariant instances available for
/// this target.
list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
// AssemblyWriters - The AsmWriter instances available for this target.
list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
}
//===----------------------------------------------------------------------===//
// SubtargetFeature - A characteristic of the chip set.
//
class SubtargetFeature<string n, string a, string v, string d,
list<SubtargetFeature> i = []> {
// Name - Feature name. Used by command line (-mattr=) to determine the
// appropriate target chip.
//
string Name = n;
// Attribute - Attribute to be set by feature.
//
string Attribute = a;
// Value - Value the attribute to be set to by feature.
//
string Value = v;
// Desc - Feature description. Used by command line (-mattr=) to display help
// information.
//
string Desc = d;
// Implies - Features that this feature implies are present. If one of those
// features isn't set, then this one shouldn't be set either.
//
list<SubtargetFeature> Implies = i;
}
//===----------------------------------------------------------------------===//
// Processor chip sets - These values represent each of the chip sets supported
// by the scheduler. Each Processor definition requires corresponding
// instruction itineraries.
//
class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
// Name - Chip set name. Used by command line (-mcpu=) to determine the
// appropriate target chip.
//
string Name = n;
// ProcItin - The scheduling information for the target processor.
//
ProcessorItineraries ProcItin = pi;
// Features - list of
list<SubtargetFeature> Features = f;
}
//===----------------------------------------------------------------------===//
// Pull in the common support for calling conventions.
//
include "llvm/Target/TargetCallingConv.td"
//===----------------------------------------------------------------------===//
// Pull in the common support for DAG isel generation.
//
include "llvm/Target/TargetSelectionDAG.td"