mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160791 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			8723 lines
		
	
	
		
			331 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			8723 lines
		
	
	
		
			331 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| <html>
 | |
| <head>
 | |
|   <title>LLVM Assembly Language Reference Manual</title>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <meta name="author" content="Chris Lattner">
 | |
|   <meta name="description"
 | |
|   content="LLVM Assembly Language Reference Manual.">
 | |
|   <link rel="stylesheet" href="_static/llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <h1>LLVM Language Reference Manual</h1>
 | |
| <ol>
 | |
|   <li><a href="#abstract">Abstract</a></li>
 | |
|   <li><a href="#introduction">Introduction</a></li>
 | |
|   <li><a href="#identifiers">Identifiers</a></li>
 | |
|   <li><a href="#highlevel">High Level Structure</a>
 | |
|     <ol>
 | |
|       <li><a href="#modulestructure">Module Structure</a></li>
 | |
|       <li><a href="#linkage">Linkage Types</a>
 | |
|         <ol>
 | |
|           <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
 | |
|           <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#callingconv">Calling Conventions</a></li>
 | |
|       <li><a href="#namedtypes">Named Types</a></li>
 | |
|       <li><a href="#globalvars">Global Variables</a></li>
 | |
|       <li><a href="#functionstructure">Functions</a></li>
 | |
|       <li><a href="#aliasstructure">Aliases</a></li>
 | |
|       <li><a href="#namedmetadatastructure">Named Metadata</a></li>
 | |
|       <li><a href="#paramattrs">Parameter Attributes</a></li>
 | |
|       <li><a href="#fnattrs">Function Attributes</a></li>
 | |
|       <li><a href="#gc">Garbage Collector Names</a></li>
 | |
|       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
 | |
|       <li><a href="#datalayout">Data Layout</a></li>
 | |
|       <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
 | |
|       <li><a href="#volatile">Volatile Memory Accesses</a></li>
 | |
|       <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
 | |
|       <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#typesystem">Type System</a>
 | |
|     <ol>
 | |
|       <li><a href="#t_classifications">Type Classifications</a></li>
 | |
|       <li><a href="#t_primitive">Primitive Types</a>
 | |
|         <ol>
 | |
|           <li><a href="#t_integer">Integer Type</a></li>
 | |
|           <li><a href="#t_floating">Floating Point Types</a></li>
 | |
|           <li><a href="#t_x86mmx">X86mmx Type</a></li>
 | |
|           <li><a href="#t_void">Void Type</a></li>
 | |
|           <li><a href="#t_label">Label Type</a></li>
 | |
|           <li><a href="#t_metadata">Metadata Type</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#t_derived">Derived Types</a>
 | |
|         <ol>
 | |
|           <li><a href="#t_aggregate">Aggregate Types</a>
 | |
|             <ol>
 | |
|               <li><a href="#t_array">Array Type</a></li>
 | |
|               <li><a href="#t_struct">Structure Type</a></li>
 | |
|               <li><a href="#t_opaque">Opaque Structure Types</a></li>
 | |
|               <li><a href="#t_vector">Vector Type</a></li>
 | |
|             </ol>
 | |
|           </li>
 | |
|           <li><a href="#t_function">Function Type</a></li>
 | |
|           <li><a href="#t_pointer">Pointer Type</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#constants">Constants</a>
 | |
|     <ol>
 | |
|       <li><a href="#simpleconstants">Simple Constants</a></li>
 | |
|       <li><a href="#complexconstants">Complex Constants</a></li>
 | |
|       <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
 | |
|       <li><a href="#undefvalues">Undefined Values</a></li>
 | |
|       <li><a href="#poisonvalues">Poison Values</a></li>
 | |
|       <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
 | |
|       <li><a href="#constantexprs">Constant Expressions</a></li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#othervalues">Other Values</a>
 | |
|     <ol>
 | |
|       <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
 | |
|       <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
 | |
|         <ol>
 | |
|           <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
 | |
|           <li><a href="#fpmath">'<tt>fpmath</tt>' Metadata</a></li>
 | |
|           <li><a href="#range">'<tt>range</tt>' Metadata</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#module_flags">Module Flags Metadata</a>
 | |
|     <ol>
 | |
|       <li><a href="#objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a></li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
 | |
|     <ol>
 | |
|       <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
 | |
|       <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
 | |
|           Global Variable</a></li>
 | |
|       <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
 | |
|          Global Variable</a></li>
 | |
|       <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
 | |
|          Global Variable</a></li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#instref">Instruction Reference</a>
 | |
|     <ol>
 | |
|       <li><a href="#terminators">Terminator Instructions</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_resume">'<tt>resume</tt>'  Instruction</a></li>
 | |
|           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#binaryops">Binary Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
 | |
|           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#vectorops">Vector Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#aggregateops">Aggregate Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
 | |
|          <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
 | |
|          <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
 | |
|          <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
 | |
|          <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
 | |
|          <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
 | |
|          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#convertops">Conversion Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#otherops">Other Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
 | |
|           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
 | |
|           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
 | |
|           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
 | |
|           <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|     </ol>
 | |
|   </li>
 | |
|   <li><a href="#intrinsics">Intrinsic Functions</a>
 | |
|     <ol>
 | |
|       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
 | |
|           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_codegen">Code Generator Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
 | |
|           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_libc">Standard C Library Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_fabs">'<tt>llvm.fabs.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_floor">'<tt>llvm.floor.*</tt>' Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
 | |
|           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
 | |
|           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
 | |
|           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
 | |
|           <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
 | |
|           <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
 | |
|           <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
 | |
|           <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
 | |
|           <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#spec_arithmetic">Specialised Arithmetic Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#fmuladd">'<tt>llvm.fmuladd</tt> Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_debugger">Debugger intrinsics</a></li>
 | |
|       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
 | |
|       <li><a href="#int_trampoline">Trampoline Intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_memorymarkers">Memory Use Markers</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|       <li><a href="#int_general">General intrinsics</a>
 | |
|         <ol>
 | |
|           <li><a href="#int_var_annotation">
 | |
|             '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_annotation">
 | |
|             '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_trap">
 | |
|             '<tt>llvm.trap</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_debugtrap">
 | |
|             '<tt>llvm.debugtrap</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_stackprotector">
 | |
|             '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_objectsize">
 | |
|             '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_expect">
 | |
|             '<tt>llvm.expect</tt>' Intrinsic</a></li>
 | |
|           <li><a href="#int_donothing">
 | |
|             '<tt>llvm.donothing</tt>' Intrinsic</a></li>
 | |
|         </ol>
 | |
|       </li>
 | |
|     </ol>
 | |
|   </li>
 | |
| </ol>
 | |
| 
 | |
| <div class="doc_author">
 | |
|   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
 | |
|             and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="abstract">Abstract</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>This document is a reference manual for the LLVM assembly language. LLVM is
 | |
|    a Static Single Assignment (SSA) based representation that provides type
 | |
|    safety, low-level operations, flexibility, and the capability of representing
 | |
|    'all' high-level languages cleanly.  It is the common code representation
 | |
|    used throughout all phases of the LLVM compilation strategy.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="introduction">Introduction</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The LLVM code representation is designed to be used in three different forms:
 | |
|    as an in-memory compiler IR, as an on-disk bitcode representation (suitable
 | |
|    for fast loading by a Just-In-Time compiler), and as a human readable
 | |
|    assembly language representation.  This allows LLVM to provide a powerful
 | |
|    intermediate representation for efficient compiler transformations and
 | |
|    analysis, while providing a natural means to debug and visualize the
 | |
|    transformations.  The three different forms of LLVM are all equivalent.  This
 | |
|    document describes the human readable representation and notation.</p>
 | |
| 
 | |
| <p>The LLVM representation aims to be light-weight and low-level while being
 | |
|    expressive, typed, and extensible at the same time.  It aims to be a
 | |
|    "universal IR" of sorts, by being at a low enough level that high-level ideas
 | |
|    may be cleanly mapped to it (similar to how microprocessors are "universal
 | |
|    IR's", allowing many source languages to be mapped to them).  By providing
 | |
|    type information, LLVM can be used as the target of optimizations: for
 | |
|    example, through pointer analysis, it can be proven that a C automatic
 | |
|    variable is never accessed outside of the current function, allowing it to
 | |
|    be promoted to a simple SSA value instead of a memory location.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="wellformed">Well-Formedness</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>It is important to note that this document describes 'well formed' LLVM
 | |
|    assembly language.  There is a difference between what the parser accepts and
 | |
|    what is considered 'well formed'.  For example, the following instruction is
 | |
|    syntactically okay, but not well formed:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| %x = <a href="#i_add">add</a> i32 1, %x
 | |
| </pre>
 | |
| 
 | |
| <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
 | |
|    LLVM infrastructure provides a verification pass that may be used to verify
 | |
|    that an LLVM module is well formed.  This pass is automatically run by the
 | |
|    parser after parsing input assembly and by the optimizer before it outputs
 | |
|    bitcode.  The violations pointed out by the verifier pass indicate bugs in
 | |
|    transformation passes or input to the parser.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- Describe the typesetting conventions here. -->
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="identifiers">Identifiers</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM identifiers come in two basic types: global and local. Global
 | |
|    identifiers (functions, global variables) begin with the <tt>'@'</tt>
 | |
|    character. Local identifiers (register names, types) begin with
 | |
|    the <tt>'%'</tt> character. Additionally, there are three different formats
 | |
|    for identifiers, for different purposes:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li>Named values are represented as a string of characters with their prefix.
 | |
|       For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
 | |
|       <tt>%a.really.long.identifier</tt>. The actual regular expression used is
 | |
|       '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
 | |
|       other characters in their names can be surrounded with quotes. Special
 | |
|       characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
 | |
|       ASCII code for the character in hexadecimal.  In this way, any character
 | |
|       can be used in a name value, even quotes themselves.</li>
 | |
| 
 | |
|   <li>Unnamed values are represented as an unsigned numeric value with their
 | |
|       prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
 | |
| 
 | |
|   <li>Constants, which are described in a <a href="#constants">section about
 | |
|       constants</a>, below.</li>
 | |
| </ol>
 | |
| 
 | |
| <p>LLVM requires that values start with a prefix for two reasons: Compilers
 | |
|    don't need to worry about name clashes with reserved words, and the set of
 | |
|    reserved words may be expanded in the future without penalty.  Additionally,
 | |
|    unnamed identifiers allow a compiler to quickly come up with a temporary
 | |
|    variable without having to avoid symbol table conflicts.</p>
 | |
| 
 | |
| <p>Reserved words in LLVM are very similar to reserved words in other
 | |
|    languages. There are keywords for different opcodes
 | |
|    ('<tt><a href="#i_add">add</a></tt>',
 | |
|    '<tt><a href="#i_bitcast">bitcast</a></tt>',
 | |
|    '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
 | |
|    ('<tt><a href="#t_void">void</a></tt>',
 | |
|    '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
 | |
|    reserved words cannot conflict with variable names, because none of them
 | |
|    start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
 | |
| 
 | |
| <p>Here is an example of LLVM code to multiply the integer variable
 | |
|    '<tt>%X</tt>' by 8:</p>
 | |
| 
 | |
| <p>The easy way:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| %result = <a href="#i_mul">mul</a> i32 %X, 8
 | |
| </pre>
 | |
| 
 | |
| <p>After strength reduction:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| %result = <a href="#i_shl">shl</a> i32 %X, i8 3
 | |
| </pre>
 | |
| 
 | |
| <p>And the hard way:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| %0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
 | |
| %1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
 | |
| %result = <a href="#i_add">add</a> i32 %1, %1
 | |
| </pre>
 | |
| 
 | |
| <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
 | |
|    lexical features of LLVM:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
 | |
|       line.</li>
 | |
| 
 | |
|   <li>Unnamed temporaries are created when the result of a computation is not
 | |
|       assigned to a named value.</li>
 | |
| 
 | |
|   <li>Unnamed temporaries are numbered sequentially</li>
 | |
| </ol>
 | |
| 
 | |
| <p>It also shows a convention that we follow in this document.  When
 | |
|    demonstrating instructions, we will follow an instruction with a comment that
 | |
|    defines the type and name of value produced.  Comments are shown in italic
 | |
|    text.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="highlevel">High Level Structure</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| <div>
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="modulestructure">Module Structure</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM programs are composed of <tt>Module</tt>s, each of which is a
 | |
|    translation unit of the input programs.  Each module consists of functions,
 | |
|    global variables, and symbol table entries.  Modules may be combined together
 | |
|    with the LLVM linker, which merges function (and global variable)
 | |
|    definitions, resolves forward declarations, and merges symbol table
 | |
|    entries. Here is an example of the "hello world" module:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| <i>; Declare the string constant as a global constant.</i> 
 | |
| <a href="#identifiers">@.str</a> = <a href="#linkage_private">private</a> <a href="#globalvars">unnamed_addr</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" 
 | |
| 
 | |
| <i>; External declaration of the puts function</i> 
 | |
| <a href="#functionstructure">declare</a> i32 @puts(i8* <a href="#nocapture">nocapture</a>) <a href="#fnattrs">nounwind</a> 
 | |
| 
 | |
| <i>; Definition of main function</i>
 | |
| define i32 @main() {   <i>; i32()* </i> 
 | |
|   <i>; Convert [13 x i8]* to i8  *...</i> 
 | |
|   %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.str, i64 0, i64 0
 | |
| 
 | |
|   <i>; Call puts function to write out the string to stdout.</i> 
 | |
|   <a href="#i_call">call</a> i32 @puts(i8* %cast210)
 | |
|   <a href="#i_ret">ret</a> i32 0 
 | |
| }
 | |
| 
 | |
| <i>; Named metadata</i>
 | |
| !1 = metadata !{i32 42}
 | |
| !foo = !{!1, null}
 | |
| </pre>
 | |
| 
 | |
| <p>This example is made up of a <a href="#globalvars">global variable</a> named
 | |
|    "<tt>.str</tt>", an external declaration of the "<tt>puts</tt>" function,
 | |
|    a <a href="#functionstructure">function definition</a> for
 | |
|    "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> 
 | |
|    "<tt>foo</tt>".</p>
 | |
| 
 | |
| <p>In general, a module is made up of a list of global values (where both
 | |
|    functions and global variables are global values). Global values are
 | |
|    represented by a pointer to a memory location (in this case, a pointer to an
 | |
|    array of char, and a pointer to a function), and have one of the
 | |
|    following <a href="#linkage">linkage types</a>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="linkage">Linkage Types</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>All Global Variables and Functions have one of the following types of
 | |
|    linkage:</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
 | |
|   <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
 | |
|       by objects in the current module. In particular, linking code into a
 | |
|       module with an private global value may cause the private to be renamed as
 | |
|       necessary to avoid collisions.  Because the symbol is private to the
 | |
|       module, all references can be updated. This doesn't show up in any symbol
 | |
|       table in the object file.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
 | |
|   <dd>Similar to <tt>private</tt>, but the symbol is passed through the
 | |
|       assembler and evaluated by the linker. Unlike normal strong symbols, they
 | |
|       are removed by the linker from the final linked image (executable or
 | |
|       dynamic library).</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
 | |
|   <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
 | |
|       <tt>linker_private_weak</tt> symbols are subject to coalescing by the
 | |
|       linker. The symbols are removed by the linker from the final linked image
 | |
|       (executable or dynamic library).</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
 | |
|   <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
 | |
|       of the object is not taken. For instance, functions that had an inline
 | |
|       definition, but the compiler decided not to inline it. Note,
 | |
|       unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
 | |
|       <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
 | |
|       visibility.  The symbols are removed by the linker from the final linked
 | |
|       image (executable or dynamic library).</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
 | |
|   <dd>Similar to private, but the value shows as a local symbol
 | |
|       (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
 | |
|       corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
 | |
|   <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
 | |
|       into the object file corresponding to the LLVM module.  They exist to
 | |
|       allow inlining and other optimizations to take place given knowledge of
 | |
|       the definition of the global, which is known to be somewhere outside the
 | |
|       module.  Globals with <tt>available_externally</tt> linkage are allowed to
 | |
|       be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
 | |
|       This linkage type is only allowed on definitions, not declarations.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
 | |
|   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
 | |
|       the same name when linkage occurs.  This can be used to implement
 | |
|       some forms of inline functions, templates, or other code which must be
 | |
|       generated in each translation unit that uses it, but where the body may
 | |
|       be overridden with a more definitive definition later.  Unreferenced
 | |
|       <tt>linkonce</tt> globals are allowed to be discarded.  Note that
 | |
|       <tt>linkonce</tt> linkage does not actually allow the optimizer to
 | |
|       inline the body of this function into callers because it doesn't know if
 | |
|       this definition of the function is the definitive definition within the
 | |
|       program or whether it will be overridden by a stronger definition.
 | |
|       To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
 | |
|       linkage.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
 | |
|   <dd>"<tt>weak</tt>" linkage has the same merging semantics as
 | |
|       <tt>linkonce</tt> linkage, except that unreferenced globals with
 | |
|       <tt>weak</tt> linkage may not be discarded.  This is used for globals that
 | |
|       are declared "weak" in C source code.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
 | |
|   <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
 | |
|       they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
 | |
|       global scope.
 | |
|       Symbols with "<tt>common</tt>" linkage are merged in the same way as
 | |
|       <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
 | |
|       <tt>common</tt> symbols may not have an explicit section,
 | |
|       must have a zero initializer, and may not be marked '<a
 | |
|       href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
 | |
|       have common linkage.</dd>
 | |
| 
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
 | |
|   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
 | |
|       pointer to array type.  When two global variables with appending linkage
 | |
|       are linked together, the two global arrays are appended together.  This is
 | |
|       the LLVM, typesafe, equivalent of having the system linker append together
 | |
|       "sections" with identical names when .o files are linked.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
 | |
|   <dd>The semantics of this linkage follow the ELF object file model: the symbol
 | |
|       is weak until linked, if not linked, the symbol becomes null instead of
 | |
|       being an undefined reference.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
 | |
|   <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
 | |
|   <dd>Some languages allow differing globals to be merged, such as two functions
 | |
|       with different semantics.  Other languages, such as <tt>C++</tt>, ensure
 | |
|       that only equivalent globals are ever merged (the "one definition rule"
 | |
|       — "ODR").  Such languages can use the <tt>linkonce_odr</tt>
 | |
|       and <tt>weak_odr</tt> linkage types to indicate that the global will only
 | |
|       be merged with equivalent globals.  These linkage types are otherwise the
 | |
|       same as their non-<tt>odr</tt> versions.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
 | |
|   <dd>If none of the above identifiers are used, the global is externally
 | |
|       visible, meaning that it participates in linkage and can be used to
 | |
|       resolve external symbol references.</dd>
 | |
| </dl>
 | |
| 
 | |
| <p>The next two types of linkage are targeted for Microsoft Windows platform
 | |
|    only. They are designed to support importing (exporting) symbols from (to)
 | |
|    DLLs (Dynamic Link Libraries).</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
 | |
|   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
 | |
|       or variable via a global pointer to a pointer that is set up by the DLL
 | |
|       exporting the symbol. On Microsoft Windows targets, the pointer name is
 | |
|       formed by combining <code>__imp_</code> and the function or variable
 | |
|       name.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
 | |
|   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
 | |
|       pointer to a pointer in a DLL, so that it can be referenced with the
 | |
|       <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
 | |
|       name is formed by combining <code>__imp_</code> and the function or
 | |
|       variable name.</dd>
 | |
| </dl>
 | |
| 
 | |
| <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
 | |
|    another module defined a "<tt>.LC0</tt>" variable and was linked with this
 | |
|    one, one of the two would be renamed, preventing a collision.  Since
 | |
|    "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
 | |
|    declarations), they are accessible outside of the current module.</p>
 | |
| 
 | |
| <p>It is illegal for a function <i>declaration</i> to have any linkage type
 | |
|    other than <tt>external</tt>, <tt>dllimport</tt>
 | |
|   or <tt>extern_weak</tt>.</p>
 | |
| 
 | |
| <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
 | |
|    or <tt>weak_odr</tt> linkages.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="callingconv">Calling Conventions</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
 | |
|    and <a href="#i_invoke">invokes</a> can all have an optional calling
 | |
|    convention specified for the call.  The calling convention of any pair of
 | |
|    dynamic caller/callee must match, or the behavior of the program is
 | |
|    undefined.  The following calling conventions are supported by LLVM, and more
 | |
|    may be added in the future:</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
 | |
|   <dd>This calling convention (the default if no other calling convention is
 | |
|       specified) matches the target C calling conventions.  This calling
 | |
|       convention supports varargs function calls and tolerates some mismatch in
 | |
|       the declared prototype and implemented declaration of the function (as
 | |
|       does normal C).</dd>
 | |
| 
 | |
|   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
 | |
|   <dd>This calling convention attempts to make calls as fast as possible
 | |
|       (e.g. by passing things in registers).  This calling convention allows the
 | |
|       target to use whatever tricks it wants to produce fast code for the
 | |
|       target, without having to conform to an externally specified ABI
 | |
|       (Application Binary Interface).
 | |
|       <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
 | |
|       when this or the GHC convention is used.</a>  This calling convention
 | |
|       does not support varargs and requires the prototype of all callees to
 | |
|       exactly match the prototype of the function definition.</dd>
 | |
| 
 | |
|   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
 | |
|   <dd>This calling convention attempts to make code in the caller as efficient
 | |
|       as possible under the assumption that the call is not commonly executed.
 | |
|       As such, these calls often preserve all registers so that the call does
 | |
|       not break any live ranges in the caller side.  This calling convention
 | |
|       does not support varargs and requires the prototype of all callees to
 | |
|       exactly match the prototype of the function definition.</dd>
 | |
| 
 | |
|   <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
 | |
|   <dd>This calling convention has been implemented specifically for use by the
 | |
|       <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
 | |
|       It passes everything in registers, going to extremes to achieve this by
 | |
|       disabling callee save registers. This calling convention should not be
 | |
|       used lightly but only for specific situations such as an alternative to
 | |
|       the <em>register pinning</em> performance technique often used when
 | |
|       implementing functional programming languages.At the moment only X86
 | |
|       supports this convention and it has the following limitations:
 | |
|       <ul>
 | |
|         <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
 | |
|             floating point types are supported.</li>
 | |
|         <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
 | |
|             6 floating point parameters.</li>
 | |
|       </ul>
 | |
|       This calling convention supports
 | |
|       <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
 | |
|       requires both the caller and callee are using it.
 | |
|   </dd>
 | |
| 
 | |
|   <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt>
 | |
|   <dd>Any calling convention may be specified by number, allowing
 | |
|       target-specific calling conventions to be used.  Target specific calling
 | |
|       conventions start at 64.</dd>
 | |
| </dl>
 | |
| 
 | |
| <p>More calling conventions can be added/defined on an as-needed basis, to
 | |
|    support Pascal conventions or any other well-known target-independent
 | |
|    convention.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="visibility">Visibility Styles</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>All Global Variables and Functions have one of the following visibility
 | |
|    styles:</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
 | |
|   <dd>On targets that use the ELF object file format, default visibility means
 | |
|       that the declaration is visible to other modules and, in shared libraries,
 | |
|       means that the declared entity may be overridden. On Darwin, default
 | |
|       visibility means that the declaration is visible to other modules. Default
 | |
|       visibility corresponds to "external linkage" in the language.</dd>
 | |
| 
 | |
|   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
 | |
|   <dd>Two declarations of an object with hidden visibility refer to the same
 | |
|       object if they are in the same shared object. Usually, hidden visibility
 | |
|       indicates that the symbol will not be placed into the dynamic symbol
 | |
|       table, so no other module (executable or shared library) can reference it
 | |
|       directly.</dd>
 | |
| 
 | |
|   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
 | |
|   <dd>On ELF, protected visibility indicates that the symbol will be placed in
 | |
|       the dynamic symbol table, but that references within the defining module
 | |
|       will bind to the local symbol. That is, the symbol cannot be overridden by
 | |
|       another module.</dd>
 | |
| </dl>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="namedtypes">Named Types</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM IR allows you to specify name aliases for certain types.  This can make
 | |
|    it easier to read the IR and make the IR more condensed (particularly when
 | |
|    recursive types are involved).  An example of a name specification is:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| %mytype = type { %mytype*, i32 }
 | |
| </pre>
 | |
| 
 | |
| <p>You may give a name to any <a href="#typesystem">type</a> except
 | |
|    "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
 | |
|    is expected with the syntax "%mytype".</p>
 | |
| 
 | |
| <p>Note that type names are aliases for the structural type that they indicate,
 | |
|    and that you can therefore specify multiple names for the same type.  This
 | |
|    often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
 | |
|    uses structural typing, the name is not part of the type.  When printing out
 | |
|    LLVM IR, the printer will pick <em>one name</em> to render all types of a
 | |
|    particular shape.  This means that if you have code where two different
 | |
|    source types end up having the same LLVM type, that the dumper will sometimes
 | |
|    print the "wrong" or unexpected type.  This is an important design point and
 | |
|    isn't going to change.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="globalvars">Global Variables</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Global variables define regions of memory allocated at compilation time
 | |
|    instead of run-time.  Global variables may optionally be initialized, may
 | |
|    have an explicit section to be placed in, and may have an optional explicit
 | |
|    alignment specified.</p>
 | |
| 
 | |
| <p>A variable may be defined as <tt>thread_local</tt>, which
 | |
|    means that it will not be shared by threads (each thread will have a
 | |
|    separated copy of the variable).  Not all targets support thread-local
 | |
|    variables.  Optionally, a TLS model may be specified:</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><b><tt>localdynamic</tt></b>:</dt>
 | |
|   <dd>For variables that are only used within the current shared library.</dd>
 | |
| 
 | |
|   <dt><b><tt>initialexec</tt></b>:</dt>
 | |
|   <dd>For variables in modules that will not be loaded dynamically.</dd>
 | |
| 
 | |
|   <dt><b><tt>localexec</tt></b>:</dt>
 | |
|   <dd>For variables defined in the executable and only used within it.</dd>
 | |
| </dl>
 | |
| 
 | |
| <p>The models correspond to the ELF TLS models; see
 | |
|    <a href="http://people.redhat.com/drepper/tls.pdf">ELF
 | |
|    Handling For Thread-Local Storage</a> for more information on under which
 | |
|    circumstances the different models may be used.  The target may choose a
 | |
|    different TLS model if the specified model is not supported, or if a better
 | |
|    choice of model can be made.</p>
 | |
| 
 | |
| <p>A variable may be defined as a global
 | |
|    "constant," which indicates that the contents of the variable
 | |
|    will <b>never</b> be modified (enabling better optimization, allowing the
 | |
|    global data to be placed in the read-only section of an executable, etc).
 | |
|    Note that variables that need runtime initialization cannot be marked
 | |
|    "constant" as there is a store to the variable.</p>
 | |
| 
 | |
| <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
 | |
|    constant, even if the final definition of the global is not.  This capability
 | |
|    can be used to enable slightly better optimization of the program, but
 | |
|    requires the language definition to guarantee that optimizations based on the
 | |
|    'constantness' are valid for the translation units that do not include the
 | |
|    definition.</p>
 | |
| 
 | |
| <p>As SSA values, global variables define pointer values that are in scope
 | |
|    (i.e. they dominate) all basic blocks in the program.  Global variables
 | |
|    always define a pointer to their "content" type because they describe a
 | |
|    region of memory, and all memory objects in LLVM are accessed through
 | |
|    pointers.</p>
 | |
| 
 | |
| <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
 | |
|   that the address is not significant, only the content. Constants marked
 | |
|   like this can be merged with other constants if they have the same
 | |
|   initializer. Note that a constant with significant address <em>can</em>
 | |
|   be merged with a <tt>unnamed_addr</tt> constant, the result being a
 | |
|   constant whose address is significant.</p>
 | |
| 
 | |
| <p>A global variable may be declared to reside in a target-specific numbered
 | |
|    address space. For targets that support them, address spaces may affect how
 | |
|    optimizations are performed and/or what target instructions are used to
 | |
|    access the variable. The default address space is zero. The address space
 | |
|    qualifier must precede any other attributes.</p>
 | |
| 
 | |
| <p>LLVM allows an explicit section to be specified for globals.  If the target
 | |
|    supports it, it will emit globals to the section specified.</p>
 | |
| 
 | |
| <p>An explicit alignment may be specified for a global, which must be a power
 | |
|    of 2.  If not present, or if the alignment is set to zero, the alignment of
 | |
|    the global is set by the target to whatever it feels convenient.  If an
 | |
|    explicit alignment is specified, the global is forced to have exactly that
 | |
|    alignment.  Targets and optimizers are not allowed to over-align the global
 | |
|    if the global has an assigned section.  In this case, the extra alignment
 | |
|    could be observable: for example, code could assume that the globals are
 | |
|    densely packed in their section and try to iterate over them as an array,
 | |
|    alignment padding would break this iteration.</p>
 | |
| 
 | |
| <p>For example, the following defines a global in a numbered address space with
 | |
|    an initializer, section, and alignment:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| @G = addrspace(5) constant float 1.0, section "foo", align 4
 | |
| </pre>
 | |
| 
 | |
| <p>The following example defines a thread-local global with
 | |
|    the <tt>initialexec</tt> TLS model:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| @G = thread_local(initialexec) global i32 0, align 4
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="functionstructure">Functions</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
 | |
|    optional <a href="#linkage">linkage type</a>, an optional
 | |
|    <a href="#visibility">visibility style</a>, an optional
 | |
|    <a href="#callingconv">calling convention</a>,
 | |
|    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
 | |
|    <a href="#paramattrs">parameter attribute</a> for the return type, a function
 | |
|    name, a (possibly empty) argument list (each with optional
 | |
|    <a href="#paramattrs">parameter attributes</a>), optional
 | |
|    <a href="#fnattrs">function attributes</a>, an optional section, an optional
 | |
|    alignment, an optional <a href="#gc">garbage collector name</a>, an opening
 | |
|    curly brace, a list of basic blocks, and a closing curly brace.</p>
 | |
| 
 | |
| <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
 | |
|    optional <a href="#linkage">linkage type</a>, an optional
 | |
|    <a href="#visibility">visibility style</a>, an optional
 | |
|    <a href="#callingconv">calling convention</a>,
 | |
|    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
 | |
|    <a href="#paramattrs">parameter attribute</a> for the return type, a function
 | |
|    name, a possibly empty list of arguments, an optional alignment, and an
 | |
|    optional <a href="#gc">garbage collector name</a>.</p>
 | |
| 
 | |
| <p>A function definition contains a list of basic blocks, forming the CFG
 | |
|    (Control Flow Graph) for the function.  Each basic block may optionally start
 | |
|    with a label (giving the basic block a symbol table entry), contains a list
 | |
|    of instructions, and ends with a <a href="#terminators">terminator</a>
 | |
|    instruction (such as a branch or function return).</p>
 | |
| 
 | |
| <p>The first basic block in a function is special in two ways: it is immediately
 | |
|    executed on entrance to the function, and it is not allowed to have
 | |
|    predecessor basic blocks (i.e. there can not be any branches to the entry
 | |
|    block of a function).  Because the block can have no predecessors, it also
 | |
|    cannot have any <a href="#i_phi">PHI nodes</a>.</p>
 | |
| 
 | |
| <p>LLVM allows an explicit section to be specified for functions.  If the target
 | |
|    supports it, it will emit functions to the section specified.</p>
 | |
| 
 | |
| <p>An explicit alignment may be specified for a function.  If not present, or if
 | |
|    the alignment is set to zero, the alignment of the function is set by the
 | |
|    target to whatever it feels convenient.  If an explicit alignment is
 | |
|    specified, the function is forced to have at least that much alignment.  All
 | |
|    alignments must be a power of 2.</p>
 | |
| 
 | |
| <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
 | |
|    be significant and two identical functions can be merged.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre class="doc_code">
 | |
| define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
 | |
|        [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
 | |
|        <ResultType> @<FunctionName> ([argument list])
 | |
|        [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
 | |
|        [<a href="#gc">gc</a>] { ... }
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="aliasstructure">Aliases</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Aliases act as "second name" for the aliasee value (which can be either
 | |
|    function, global variable, another alias or bitcast of global value). Aliases
 | |
|    may have an optional <a href="#linkage">linkage type</a>, and an
 | |
|    optional <a href="#visibility">visibility style</a>.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre class="doc_code">
 | |
| @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="namedmetadatastructure">Named Metadata</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
 | |
|    nodes</a> (but not metadata strings) are the only valid operands for
 | |
|    a named metadata.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre class="doc_code">
 | |
| ; Some unnamed metadata nodes, which are referenced by the named metadata.
 | |
| !0 = metadata !{metadata !"zero"}
 | |
| !1 = metadata !{metadata !"one"}
 | |
| !2 = metadata !{metadata !"two"}
 | |
| ; A named metadata.
 | |
| !name = !{!0, !1, !2}
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="paramattrs">Parameter Attributes</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The return type and each parameter of a function type may have a set of
 | |
|    <i>parameter attributes</i> associated with them. Parameter attributes are
 | |
|    used to communicate additional information about the result or parameters of
 | |
|    a function. Parameter attributes are considered to be part of the function,
 | |
|    not of the function type, so functions with different parameter attributes
 | |
|    can have the same function type.</p>
 | |
| 
 | |
| <p>Parameter attributes are simple keywords that follow the type specified. If
 | |
|    multiple parameter attributes are needed, they are space separated. For
 | |
|    example:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| declare i32 @printf(i8* noalias nocapture, ...)
 | |
| declare i32 @atoi(i8 zeroext)
 | |
| declare signext i8 @returns_signed_char()
 | |
| </pre>
 | |
| 
 | |
| <p>Note that any attributes for the function result (<tt>nounwind</tt>,
 | |
|    <tt>readonly</tt>) come immediately after the argument list.</p>
 | |
| 
 | |
| <p>Currently, only the following parameter attributes are defined:</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><tt><b>zeroext</b></tt></dt>
 | |
|   <dd>This indicates to the code generator that the parameter or return value
 | |
|       should be zero-extended to the extent required by the target's ABI (which
 | |
|       is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
 | |
|       parameter) or the callee (for a return value).</dd>
 | |
| 
 | |
|   <dt><tt><b>signext</b></tt></dt>
 | |
|   <dd>This indicates to the code generator that the parameter or return value
 | |
|       should be sign-extended to the extent required by the target's ABI (which
 | |
|       is usually 32-bits) by the caller (for a parameter) or the callee (for a
 | |
|       return value).</dd>
 | |
| 
 | |
|   <dt><tt><b>inreg</b></tt></dt>
 | |
|   <dd>This indicates that this parameter or return value should be treated in a
 | |
|       special target-dependent fashion during while emitting code for a function
 | |
|       call or return (usually, by putting it in a register as opposed to memory,
 | |
|       though some targets use it to distinguish between two different kinds of
 | |
|       registers).  Use of this attribute is target-specific.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="byval">byval</a></b></tt></dt>
 | |
|   <dd><p>This indicates that the pointer parameter should really be passed by
 | |
|       value to the function.  The attribute implies that a hidden copy of the
 | |
|       pointee
 | |
|       is made between the caller and the callee, so the callee is unable to
 | |
|       modify the value in the caller.  This attribute is only valid on LLVM
 | |
|       pointer arguments.  It is generally used to pass structs and arrays by
 | |
|       value, but is also valid on pointers to scalars.  The copy is considered
 | |
|       to belong to the caller not the callee (for example,
 | |
|       <tt><a href="#readonly">readonly</a></tt> functions should not write to
 | |
|       <tt>byval</tt> parameters). This is not a valid attribute for return
 | |
|       values.</p>
 | |
|       
 | |
|       <p>The byval attribute also supports specifying an alignment with
 | |
|       the align attribute.  It indicates the alignment of the stack slot to
 | |
|       form and the known alignment of the pointer specified to the call site. If
 | |
|       the alignment is not specified, then the code generator makes a
 | |
|       target-specific assumption.</p></dd>
 | |
| 
 | |
|   <dt><tt><b><a name="sret">sret</a></b></tt></dt>
 | |
|   <dd>This indicates that the pointer parameter specifies the address of a
 | |
|       structure that is the return value of the function in the source program.
 | |
|       This pointer must be guaranteed by the caller to be valid: loads and
 | |
|       stores to the structure may be assumed by the callee to not to trap.  This
 | |
|       may only be applied to the first parameter. This is not a valid attribute
 | |
|       for return values. </dd>
 | |
| 
 | |
|   <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
 | |
|   <dd>This indicates that pointer values
 | |
|       <a href="#pointeraliasing"><i>based</i></a> on the argument or return
 | |
|       value do not alias pointer values which are not <i>based</i> on it,
 | |
|       ignoring certain "irrelevant" dependencies.
 | |
|       For a call to the parent function, dependencies between memory
 | |
|       references from before or after the call and from those during the call
 | |
|       are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
 | |
|       return value used in that call.
 | |
|       The caller shares the responsibility with the callee for ensuring that
 | |
|       these requirements are met.
 | |
|       For further details, please see the discussion of the NoAlias response in
 | |
|       <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
 | |
| <br>
 | |
|       Note that this definition of <tt>noalias</tt> is intentionally
 | |
|       similar to the definition of <tt>restrict</tt> in C99 for function
 | |
|       arguments, though it is slightly weaker.
 | |
| <br>
 | |
|       For function return values, C99's <tt>restrict</tt> is not meaningful,
 | |
|       while LLVM's <tt>noalias</tt> is.
 | |
|       </dd>
 | |
| 
 | |
|   <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
 | |
|   <dd>This indicates that the callee does not make any copies of the pointer
 | |
|       that outlive the callee itself. This is not a valid attribute for return
 | |
|       values.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="nest">nest</a></b></tt></dt>
 | |
|   <dd>This indicates that the pointer parameter can be excised using the
 | |
|       <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
 | |
|       attribute for return values.</dd>
 | |
| </dl>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="gc">Garbage Collector Names</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Each function may specify a garbage collector name, which is simply a
 | |
|    string:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| define void @f() gc "name" { ... }
 | |
| </pre>
 | |
| 
 | |
| <p>The compiler declares the supported values of <i>name</i>. Specifying a
 | |
|    collector which will cause the compiler to alter its output in order to
 | |
|    support the named garbage collection algorithm.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="fnattrs">Function Attributes</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Function attributes are set to communicate additional information about a
 | |
|    function. Function attributes are considered to be part of the function, not
 | |
|    of the function type, so functions with different parameter attributes can
 | |
|    have the same function type.</p>
 | |
| 
 | |
| <p>Function attributes are simple keywords that follow the type specified. If
 | |
|    multiple attributes are needed, they are space separated. For example:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| define void @f() noinline { ... }
 | |
| define void @f() alwaysinline { ... }
 | |
| define void @f() alwaysinline optsize { ... }
 | |
| define void @f() optsize { ... }
 | |
| </pre>
 | |
| 
 | |
| <dl>
 | |
|   <dt><tt><b>address_safety</b></tt></dt>
 | |
|   <dd>This attribute indicates that the address safety analysis
 | |
|   is enabled for this function.  </dd>
 | |
| 
 | |
|   <dt><tt><b>alignstack(<<em>n</em>>)</b></tt></dt>
 | |
|   <dd>This attribute indicates that, when emitting the prologue and epilogue,
 | |
|       the backend should forcibly align the stack pointer. Specify the
 | |
|       desired alignment, which must be a power of two, in parentheses.
 | |
| 
 | |
|   <dt><tt><b>alwaysinline</b></tt></dt>
 | |
|   <dd>This attribute indicates that the inliner should attempt to inline this
 | |
|       function into callers whenever possible, ignoring any active inlining size
 | |
|       threshold for this caller.</dd>
 | |
| 
 | |
|   <dt><tt><b>nonlazybind</b></tt></dt>
 | |
|   <dd>This attribute suppresses lazy symbol binding for the function. This
 | |
|       may make calls to the function faster, at the cost of extra program
 | |
|       startup time if the function is not called during program startup.</dd>
 | |
| 
 | |
|   <dt><tt><b>inlinehint</b></tt></dt>
 | |
|   <dd>This attribute indicates that the source code contained a hint that inlining
 | |
|       this function is desirable (such as the "inline" keyword in C/C++).  It
 | |
|       is just a hint; it imposes no requirements on the inliner.</dd>
 | |
| 
 | |
|   <dt><tt><b>naked</b></tt></dt>
 | |
|   <dd>This attribute disables prologue / epilogue emission for the function.
 | |
|       This can have very system-specific consequences.</dd>
 | |
| 
 | |
|   <dt><tt><b>noimplicitfloat</b></tt></dt>
 | |
|   <dd>This attributes disables implicit floating point instructions.</dd>
 | |
| 
 | |
|   <dt><tt><b>noinline</b></tt></dt>
 | |
|   <dd>This attribute indicates that the inliner should never inline this
 | |
|       function in any situation. This attribute may not be used together with
 | |
|       the <tt>alwaysinline</tt> attribute.</dd>
 | |
| 
 | |
|   <dt><tt><b>noredzone</b></tt></dt>
 | |
|   <dd>This attribute indicates that the code generator should not use a red
 | |
|       zone, even if the target-specific ABI normally permits it.</dd>
 | |
| 
 | |
|   <dt><tt><b>noreturn</b></tt></dt>
 | |
|   <dd>This function attribute indicates that the function never returns
 | |
|       normally.  This produces undefined behavior at runtime if the function
 | |
|       ever does dynamically return.</dd>
 | |
| 
 | |
|   <dt><tt><b>nounwind</b></tt></dt>
 | |
|   <dd>This function attribute indicates that the function never returns with an
 | |
|       unwind or exceptional control flow.  If the function does unwind, its
 | |
|       runtime behavior is undefined.</dd>
 | |
| 
 | |
|   <dt><tt><b>optsize</b></tt></dt>
 | |
|   <dd>This attribute suggests that optimization passes and code generator passes
 | |
|       make choices that keep the code size of this function low, and otherwise
 | |
|       do optimizations specifically to reduce code size.</dd>
 | |
| 
 | |
|   <dt><tt><b>readnone</b></tt></dt>
 | |
|   <dd>This attribute indicates that the function computes its result (or decides
 | |
|       to unwind an exception) based strictly on its arguments, without
 | |
|       dereferencing any pointer arguments or otherwise accessing any mutable
 | |
|       state (e.g. memory, control registers, etc) visible to caller functions.
 | |
|       It does not write through any pointer arguments
 | |
|       (including <tt><a href="#byval">byval</a></tt> arguments) and never
 | |
|       changes any state visible to callers.  This means that it cannot unwind
 | |
|       exceptions by calling the <tt>C++</tt> exception throwing methods.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
 | |
|   <dd>This attribute indicates that the function does not write through any
 | |
|       pointer arguments (including <tt><a href="#byval">byval</a></tt>
 | |
|       arguments) or otherwise modify any state (e.g. memory, control registers,
 | |
|       etc) visible to caller functions.  It may dereference pointer arguments
 | |
|       and read state that may be set in the caller.  A readonly function always
 | |
|       returns the same value (or unwinds an exception identically) when called
 | |
|       with the same set of arguments and global state.  It cannot unwind an
 | |
|       exception by calling the <tt>C++</tt> exception throwing methods.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
 | |
|   <dd>This attribute indicates that this function can return twice. The
 | |
|       C <code>setjmp</code> is an example of such a function.  The compiler
 | |
|       disables some optimizations (like tail calls) in the caller of these
 | |
|       functions.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
 | |
|   <dd>This attribute indicates that the function should emit a stack smashing
 | |
|       protector. It is in the form of a "canary"—a random value placed on
 | |
|       the stack before the local variables that's checked upon return from the
 | |
|       function to see if it has been overwritten. A heuristic is used to
 | |
|       determine if a function needs stack protectors or not.<br>
 | |
| <br>
 | |
|       If a function that has an <tt>ssp</tt> attribute is inlined into a
 | |
|       function that doesn't have an <tt>ssp</tt> attribute, then the resulting
 | |
|       function will have an <tt>ssp</tt> attribute.</dd>
 | |
| 
 | |
|   <dt><tt><b>sspreq</b></tt></dt>
 | |
|   <dd>This attribute indicates that the function should <em>always</em> emit a
 | |
|       stack smashing protector. This overrides
 | |
|       the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
 | |
| <br>
 | |
|       If a function that has an <tt>sspreq</tt> attribute is inlined into a
 | |
|       function that doesn't have an <tt>sspreq</tt> attribute or which has
 | |
|       an <tt>ssp</tt> attribute, then the resulting function will have
 | |
|       an <tt>sspreq</tt> attribute.</dd>
 | |
| 
 | |
|   <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
 | |
|   <dd>This attribute indicates that the ABI being targeted requires that
 | |
|       an unwind table entry be produce for this function even if we can
 | |
|       show that no exceptions passes by it. This is normally the case for
 | |
|       the ELF x86-64 abi, but it can be disabled for some compilation
 | |
|       units.</dd>
 | |
| </dl>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="moduleasm">Module-Level Inline Assembly</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Modules may contain "module-level inline asm" blocks, which corresponds to
 | |
|    the GCC "file scope inline asm" blocks.  These blocks are internally
 | |
|    concatenated by LLVM and treated as a single unit, but may be separated in
 | |
|    the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| module asm "inline asm code goes here"
 | |
| module asm "more can go here"
 | |
| </pre>
 | |
| 
 | |
| <p>The strings can contain any character by escaping non-printable characters.
 | |
|    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
 | |
|    for the number.</p>
 | |
| 
 | |
| <p>The inline asm code is simply printed to the machine code .s file when
 | |
|    assembly code is generated.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="datalayout">Data Layout</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>A module may specify a target specific data layout string that specifies how
 | |
|    data is to be laid out in memory. The syntax for the data layout is
 | |
|    simply:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| target datalayout = "<i>layout specification</i>"
 | |
| </pre>
 | |
| 
 | |
| <p>The <i>layout specification</i> consists of a list of specifications
 | |
|    separated by the minus sign character ('-').  Each specification starts with
 | |
|    a letter and may include other information after the letter to define some
 | |
|    aspect of the data layout.  The specifications accepted are as follows:</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><tt>E</tt></dt>
 | |
|   <dd>Specifies that the target lays out data in big-endian form. That is, the
 | |
|       bits with the most significance have the lowest address location.</dd>
 | |
| 
 | |
|   <dt><tt>e</tt></dt>
 | |
|   <dd>Specifies that the target lays out data in little-endian form. That is,
 | |
|       the bits with the least significance have the lowest address
 | |
|       location.</dd>
 | |
| 
 | |
|   <dt><tt>S<i>size</i></tt></dt>
 | |
|   <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
 | |
|       of stack variables is limited to the natural stack alignment to avoid
 | |
|       dynamic stack realignment. The stack alignment must be a multiple of
 | |
|       8-bits. If omitted, the natural stack alignment defaults to "unspecified",
 | |
|       which does not prevent any alignment promotions.</dd>
 | |
| 
 | |
|   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
 | |
|   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
 | |
|       <i>preferred</i> alignments. All sizes are in bits. Specifying
 | |
|       the <i>pref</i> alignment is optional. If omitted, the
 | |
|       preceding <tt>:</tt> should be omitted too.</dd>
 | |
| 
 | |
|   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
 | |
|   <dd>This specifies the alignment for an integer type of a given bit
 | |
|       <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
 | |
| 
 | |
|   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
 | |
|   <dd>This specifies the alignment for a vector type of a given bit
 | |
|       <i>size</i>.</dd>
 | |
| 
 | |
|   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
 | |
|   <dd>This specifies the alignment for a floating point type of a given bit
 | |
|       <i>size</i>. Only values of <i>size</i> that are supported by the target
 | |
|       will work.  32 (float) and 64 (double) are supported on all targets;
 | |
|       80 or 128 (different flavors of long double) are also supported on some
 | |
|       targets.
 | |
| 
 | |
|   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
 | |
|   <dd>This specifies the alignment for an aggregate type of a given bit
 | |
|       <i>size</i>.</dd>
 | |
| 
 | |
|   <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
 | |
|   <dd>This specifies the alignment for a stack object of a given bit
 | |
|       <i>size</i>.</dd>
 | |
| 
 | |
|   <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
 | |
|   <dd>This specifies a set of native integer widths for the target CPU
 | |
|       in bits.  For example, it might contain "n32" for 32-bit PowerPC,
 | |
|       "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
 | |
|       this set are considered to support most general arithmetic
 | |
|       operations efficiently.</dd>
 | |
| </dl>
 | |
| 
 | |
| <p>When constructing the data layout for a given target, LLVM starts with a
 | |
|    default set of specifications which are then (possibly) overridden by the
 | |
|    specifications in the <tt>datalayout</tt> keyword. The default specifications
 | |
|    are given in this list:</p>
 | |
| 
 | |
| <ul>
 | |
|   <li><tt>E</tt> - big endian</li>
 | |
|   <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
 | |
|   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
 | |
|   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
 | |
|   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
 | |
|   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
 | |
|   <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
 | |
|   alignment of 64-bits</li>
 | |
|   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
 | |
|   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
 | |
|   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
 | |
|   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
 | |
|   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
 | |
|   <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
 | |
| </ul>
 | |
| 
 | |
| <p>When LLVM is determining the alignment for a given type, it uses the
 | |
|    following rules:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li>If the type sought is an exact match for one of the specifications, that
 | |
|       specification is used.</li>
 | |
| 
 | |
|   <li>If no match is found, and the type sought is an integer type, then the
 | |
|       smallest integer type that is larger than the bitwidth of the sought type
 | |
|       is used. If none of the specifications are larger than the bitwidth then
 | |
|       the largest integer type is used. For example, given the default
 | |
|       specifications above, the i7 type will use the alignment of i8 (next
 | |
|       largest) while both i65 and i256 will use the alignment of i64 (largest
 | |
|       specified).</li>
 | |
| 
 | |
|   <li>If no match is found, and the type sought is a vector type, then the
 | |
|       largest vector type that is smaller than the sought vector type will be
 | |
|       used as a fall back.  This happens because <128 x double> can be
 | |
|       implemented in terms of 64 <2 x double>, for example.</li>
 | |
| </ol>
 | |
| 
 | |
| <p>The function of the data layout string may not be what you expect.  Notably,
 | |
|    this is not a specification from the frontend of what alignment the code
 | |
|    generator should use.</p>
 | |
| 
 | |
| <p>Instead, if specified, the target data layout is required to match what the 
 | |
|    ultimate <em>code generator</em> expects.  This string is used by the 
 | |
|    mid-level optimizers to
 | |
|    improve code, and this only works if it matches what the ultimate code 
 | |
|    generator uses.  If you would like to generate IR that does not embed this
 | |
|    target-specific detail into the IR, then you don't have to specify the 
 | |
|    string.  This will disable some optimizations that require precise layout
 | |
|    information, but this also prevents those optimizations from introducing
 | |
|    target specificity into the IR.</p>
 | |
| 
 | |
| 
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="pointeraliasing">Pointer Aliasing Rules</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Any memory access must be done through a pointer value associated
 | |
| with an address range of the memory access, otherwise the behavior
 | |
| is undefined. Pointer values are associated with address ranges
 | |
| according to the following rules:</p>
 | |
| 
 | |
| <ul>
 | |
|   <li>A pointer value is associated with the addresses associated with
 | |
|       any value it is <i>based</i> on.
 | |
|   <li>An address of a global variable is associated with the address
 | |
|       range of the variable's storage.</li>
 | |
|   <li>The result value of an allocation instruction is associated with
 | |
|       the address range of the allocated storage.</li>
 | |
|   <li>A null pointer in the default address-space is associated with
 | |
|       no address.</li>
 | |
|   <li>An integer constant other than zero or a pointer value returned
 | |
|       from a function not defined within LLVM may be associated with address
 | |
|       ranges allocated through mechanisms other than those provided by
 | |
|       LLVM. Such ranges shall not overlap with any ranges of addresses
 | |
|       allocated by mechanisms provided by LLVM.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>A pointer value is <i>based</i> on another pointer value according
 | |
|    to the following rules:</p>
 | |
| 
 | |
| <ul>
 | |
|   <li>A pointer value formed from a
 | |
|       <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
 | |
|       is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
 | |
|   <li>The result value of a
 | |
|       <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
 | |
|       of the <tt>bitcast</tt>.</li>
 | |
|   <li>A pointer value formed by an
 | |
|       <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
 | |
|       pointer values that contribute (directly or indirectly) to the
 | |
|       computation of the pointer's value.</li>
 | |
|   <li>The "<i>based</i> on" relationship is transitive.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>Note that this definition of <i>"based"</i> is intentionally
 | |
|    similar to the definition of <i>"based"</i> in C99, though it is
 | |
|    slightly weaker.</p>
 | |
| 
 | |
| <p>LLVM IR does not associate types with memory. The result type of a
 | |
| <tt><a href="#i_load">load</a></tt> merely indicates the size and
 | |
| alignment of the memory from which to load, as well as the
 | |
| interpretation of the value. The first operand type of a
 | |
| <tt><a href="#i_store">store</a></tt> similarly only indicates the size
 | |
| and alignment of the store.</p>
 | |
| 
 | |
| <p>Consequently, type-based alias analysis, aka TBAA, aka
 | |
| <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
 | |
| LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
 | |
| additional information which specialized optimization passes may use
 | |
| to implement type-based alias analysis.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="volatile">Volatile Memory Accesses</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
 | |
| href="#i_store"><tt>store</tt></a>s, and <a
 | |
| href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
 | |
| The optimizers must not change the number of volatile operations or change their
 | |
| order of execution relative to other volatile operations.  The optimizers
 | |
| <i>may</i> change the order of volatile operations relative to non-volatile
 | |
| operations.  This is not Java's "volatile" and has no cross-thread
 | |
| synchronization behavior.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="memmodel">Memory Model for Concurrent Operations</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The LLVM IR does not define any way to start parallel threads of execution
 | |
| or to register signal handlers. Nonetheless, there are platform-specific
 | |
| ways to create them, and we define LLVM IR's behavior in their presence. This
 | |
| model is inspired by the C++0x memory model.</p>
 | |
| 
 | |
| <p>For a more informal introduction to this model, see the
 | |
| <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
 | |
| 
 | |
| <p>We define a <i>happens-before</i> partial order as the least partial order
 | |
| that</p>
 | |
| <ul>
 | |
|   <li>Is a superset of single-thread program order, and</li>
 | |
|   <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
 | |
|       <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
 | |
|       by platform-specific techniques, like pthread locks, thread
 | |
|       creation, thread joining, etc., and by atomic instructions.
 | |
|       (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
 | |
|       </li>
 | |
| </ul>
 | |
| 
 | |
| <p>Note that program order does not introduce <i>happens-before</i> edges
 | |
| between a thread and signals executing inside that thread.</p>
 | |
| 
 | |
| <p>Every (defined) read operation (load instructions, memcpy, atomic
 | |
| loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
 | |
| (defined) write operations (store instructions, atomic
 | |
| stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
 | |
| initialized globals are considered to have a write of the initializer which is
 | |
| atomic and happens before any other read or write of the memory in question.
 | |
| For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
 | |
| any write to the same byte, except:</p>
 | |
| 
 | |
| <ul>
 | |
|   <li>If <var>write<sub>1</sub></var> happens before
 | |
|       <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
 | |
|       before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
 | |
|       does not see <var>write<sub>1</sub></var>.
 | |
|   <li>If <var>R<sub>byte</sub></var> happens before
 | |
|       <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
 | |
|       see <var>write<sub>3</sub></var>.
 | |
| </ul>
 | |
| 
 | |
| <p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
 | |
| <ul>
 | |
|   <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
 | |
|       is supposed to give guarantees which can support
 | |
|       <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
 | |
|       addresses which do not behave like normal memory.  It does not generally
 | |
|       provide cross-thread synchronization.)
 | |
|   <li>Otherwise, if there is no write to the same byte that happens before
 | |
|     <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns 
 | |
|     <tt>undef</tt> for that byte.
 | |
|   <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
 | |
|       <var>R<sub>byte</sub></var> returns the value written by that
 | |
|       write.</li>
 | |
|   <li>Otherwise, if <var>R</var> is atomic, and all the writes
 | |
|       <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
 | |
|       values written.  See the <a href="#ordering">Atomic Memory Ordering
 | |
|       Constraints</a> section for additional constraints on how the choice
 | |
|       is made.
 | |
|   <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
 | |
| </ul>
 | |
| 
 | |
| <p><var>R</var> returns the value composed of the series of bytes it read.
 | |
| This implies that some bytes within the value may be <tt>undef</tt>
 | |
| <b>without</b> the entire value being <tt>undef</tt>. Note that this only
 | |
| defines the semantics of the operation; it doesn't mean that targets will
 | |
| emit more than one instruction to read the series of bytes.</p>
 | |
| 
 | |
| <p>Note that in cases where none of the atomic intrinsics are used, this model
 | |
| places only one restriction on IR transformations on top of what is required
 | |
| for single-threaded execution: introducing a store to a byte which might not
 | |
| otherwise be stored is not allowed in general.  (Specifically, in the case
 | |
| where another thread might write to and read from an address, introducing a
 | |
| store can change a load that may see exactly one write into a load that may
 | |
| see multiple writes.)</p>
 | |
| 
 | |
| <!-- FIXME: This model assumes all targets where concurrency is relevant have
 | |
| a byte-size store which doesn't affect adjacent bytes.  As far as I can tell,
 | |
| none of the backends currently in the tree fall into this category; however,
 | |
| there might be targets which care.  If there are, we want a paragraph
 | |
| like the following:
 | |
| 
 | |
| Targets may specify that stores narrower than a certain width are not
 | |
| available; on such a target, for the purposes of this model, treat any
 | |
| non-atomic write with an alignment or width less than the minimum width
 | |
| as if it writes to the relevant surrounding bytes.
 | |
| -->
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|       <a name="ordering">Atomic Memory Ordering Constraints</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
 | |
| <a href="#i_atomicrmw"><code>atomicrmw</code></a>,
 | |
| <a href="#i_fence"><code>fence</code></a>,
 | |
| <a href="#i_load"><code>atomic load</code></a>, and
 | |
| <a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
 | |
| that determines which other atomic instructions on the same address they
 | |
| <i>synchronize with</i>.  These semantics are borrowed from Java and C++0x,
 | |
| but are somewhat more colloquial. If these descriptions aren't precise enough,
 | |
| check those specs (see spec references in the
 | |
| <a href="Atomics.html#introduction">atomics guide</a>).
 | |
| <a href="#i_fence"><code>fence</code></a> instructions
 | |
| treat these orderings somewhat differently since they don't take an address.
 | |
| See that instruction's documentation for details.</p>
 | |
| 
 | |
| <p>For a simpler introduction to the ordering constraints, see the
 | |
| <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
 | |
| 
 | |
| <dl>
 | |
| <dt><code>unordered</code></dt>
 | |
| <dd>The set of values that can be read is governed by the happens-before
 | |
| partial order. A value cannot be read unless some operation wrote it.
 | |
| This is intended to provide a guarantee strong enough to model Java's
 | |
| non-volatile shared variables.  This ordering cannot be specified for
 | |
| read-modify-write operations; it is not strong enough to make them atomic
 | |
| in any interesting way.</dd>
 | |
| <dt><code>monotonic</code></dt>
 | |
| <dd>In addition to the guarantees of <code>unordered</code>, there is a single
 | |
| total order for modifications by <code>monotonic</code> operations on each
 | |
| address. All modification orders must be compatible with the happens-before
 | |
| order. There is no guarantee that the modification orders can be combined to
 | |
| a global total order for the whole program (and this often will not be
 | |
| possible). The read in an atomic read-modify-write operation
 | |
| (<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
 | |
| <a href="#i_atomicrmw"><code>atomicrmw</code></a>)
 | |
| reads the value in the modification order immediately before the value it
 | |
| writes. If one atomic read happens before another atomic read of the same
 | |
| address, the later read must see the same value or a later value in the
 | |
| address's modification order. This disallows reordering of
 | |
| <code>monotonic</code> (or stronger) operations on the same address. If an
 | |
| address is written <code>monotonic</code>ally by one thread, and other threads
 | |
| <code>monotonic</code>ally read that address repeatedly, the other threads must
 | |
| eventually see the write. This corresponds to the C++0x/C1x
 | |
| <code>memory_order_relaxed</code>.</dd>
 | |
| <dt><code>acquire</code></dt>
 | |
| <dd>In addition to the guarantees of <code>monotonic</code>,
 | |
| a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
 | |
| operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
 | |
| <dt><code>release</code></dt>
 | |
| <dd>In addition to the guarantees of <code>monotonic</code>, if this operation
 | |
| writes a value which is subsequently read by an <code>acquire</code> operation,
 | |
| it <i>synchronizes-with</i> that operation.  (This isn't a complete
 | |
| description; see the C++0x definition of a release sequence.) This corresponds
 | |
| to the C++0x/C1x <code>memory_order_release</code>.</dd>
 | |
| <dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
 | |
| <code>acquire</code> and <code>release</code> operation on its address.
 | |
| This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
 | |
| <dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
 | |
| <dd>In addition to the guarantees of <code>acq_rel</code>
 | |
| (<code>acquire</code> for an operation which only reads, <code>release</code>
 | |
| for an operation which only writes), there is a global total order on all
 | |
| sequentially-consistent operations on all addresses, which is consistent with
 | |
| the <i>happens-before</i> partial order and with the modification orders of
 | |
| all the affected addresses. Each sequentially-consistent read sees the last
 | |
| preceding write to the same address in this global order. This corresponds
 | |
| to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
 | |
| </dl>
 | |
| 
 | |
| <p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
 | |
| it only <i>synchronizes with</i> or participates in modification and seq_cst
 | |
| total orderings with other operations running in the same thread (for example,
 | |
| in signal handlers).</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="typesystem">Type System</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The LLVM type system is one of the most important features of the
 | |
|    intermediate representation.  Being typed enables a number of optimizations
 | |
|    to be performed on the intermediate representation directly, without having
 | |
|    to do extra analyses on the side before the transformation.  A strong type
 | |
|    system makes it easier to read the generated code and enables novel analyses
 | |
|    and transformations that are not feasible to perform on normal three address
 | |
|    code representations.</p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="t_classifications">Type Classifications</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The types fall into a few useful classifications:</p>
 | |
| 
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <tbody>
 | |
|     <tr><th>Classification</th><th>Types</th></tr>
 | |
|     <tr>
 | |
|       <td><a href="#t_integer">integer</a></td>
 | |
|       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a href="#t_floating">floating point</a></td>
 | |
|       <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a name="t_firstclass">first class</a></td>
 | |
|       <td><a href="#t_integer">integer</a>,
 | |
|           <a href="#t_floating">floating point</a>,
 | |
|           <a href="#t_pointer">pointer</a>,
 | |
|           <a href="#t_vector">vector</a>,
 | |
|           <a href="#t_struct">structure</a>,
 | |
|           <a href="#t_array">array</a>,
 | |
|           <a href="#t_label">label</a>,
 | |
|           <a href="#t_metadata">metadata</a>.
 | |
|       </td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a href="#t_primitive">primitive</a></td>
 | |
|       <td><a href="#t_label">label</a>,
 | |
|           <a href="#t_void">void</a>,
 | |
|           <a href="#t_integer">integer</a>,
 | |
|           <a href="#t_floating">floating point</a>,
 | |
|           <a href="#t_x86mmx">x86mmx</a>,
 | |
|           <a href="#t_metadata">metadata</a>.</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><a href="#t_derived">derived</a></td>
 | |
|       <td><a href="#t_array">array</a>,
 | |
|           <a href="#t_function">function</a>,
 | |
|           <a href="#t_pointer">pointer</a>,
 | |
|           <a href="#t_struct">structure</a>,
 | |
|           <a href="#t_vector">vector</a>,
 | |
|           <a href="#t_opaque">opaque</a>.
 | |
|       </td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| 
 | |
| <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
 | |
|    important.  Values of these types are the only ones which can be produced by
 | |
|    instructions.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="t_primitive">Primitive Types</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The primitive types are the fundamental building blocks of the LLVM
 | |
|    system.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_integer">Integer Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The integer type is a very simple type that simply specifies an arbitrary
 | |
|    bit width for the integer type desired. Any bit width from 1 bit to
 | |
|    2<sup>23</sup>-1 (about 8 million) can be specified.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   iN
 | |
| </pre>
 | |
| 
 | |
| <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
 | |
|    value.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <table class="layout">
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>i1</tt></td>
 | |
|     <td class="left">a single-bit integer.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>i32</tt></td>
 | |
|     <td class="left">a 32-bit integer.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>i1942652</tt></td>
 | |
|     <td class="left">a really big integer of over 1 million bits.</td>
 | |
|   </tr>
 | |
| </table>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_floating">Floating Point Types</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <table>
 | |
|   <tbody>
 | |
|     <tr><th>Type</th><th>Description</th></tr>
 | |
|     <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr>
 | |
|     <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
 | |
|     <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
 | |
|     <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
 | |
|     <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
 | |
|     <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_x86mmx">X86mmx Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   x86mmx
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_void">Void Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The void type does not represent any value and has no size.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   void
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_label">Label Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The label type represents code labels.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   label
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_metadata">Metadata Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The metadata type represents embedded metadata. No derived types may be
 | |
|    created from metadata except for <a href="#t_function">function</a>
 | |
|    arguments.
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   metadata
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="t_derived">Derived Types</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The real power in LLVM comes from the derived types in the system.  This is
 | |
|    what allows a programmer to represent arrays, functions, pointers, and other
 | |
|    useful types.  Each of these types contain one or more element types which
 | |
|    may be a primitive type, or another derived type.  For example, it is
 | |
|    possible to have a two dimensional array, using an array as the element type
 | |
|    of another array.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_aggregate">Aggregate Types</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Aggregate Types are a subset of derived types that can contain multiple
 | |
|   member types. <a href="#t_array">Arrays</a> and
 | |
|   <a href="#t_struct">structs</a> are aggregate types.
 | |
|   <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_array">Array Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The array type is a very simple derived type that arranges elements
 | |
|    sequentially in memory.  The array type requires a size (number of elements)
 | |
|    and an underlying data type.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   [<# elements> x <elementtype>]
 | |
| </pre>
 | |
| 
 | |
| <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
 | |
|    be any type with a size.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <table class="layout">
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>[40 x i32]</tt></td>
 | |
|     <td class="left">Array of 40 32-bit integer values.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>[41 x i32]</tt></td>
 | |
|     <td class="left">Array of 41 32-bit integer values.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>[4 x i8]</tt></td>
 | |
|     <td class="left">Array of 4 8-bit integer values.</td>
 | |
|   </tr>
 | |
| </table>
 | |
| <p>Here are some examples of multidimensional arrays:</p>
 | |
| <table class="layout">
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>[3 x [4 x i32]]</tt></td>
 | |
|     <td class="left">3x4 array of 32-bit integer values.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>[12 x [10 x float]]</tt></td>
 | |
|     <td class="left">12x10 array of single precision floating point values.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
 | |
|     <td class="left">2x3x4 array of 16-bit integer  values.</td>
 | |
|   </tr>
 | |
| </table>
 | |
| 
 | |
| <p>There is no restriction on indexing beyond the end of the array implied by
 | |
|    a static type (though there are restrictions on indexing beyond the bounds
 | |
|    of an allocated object in some cases). This means that single-dimension
 | |
|    'variable sized array' addressing can be implemented in LLVM with a zero
 | |
|    length array type. An implementation of 'pascal style arrays' in LLVM could
 | |
|    use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_function">Function Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The function type can be thought of as a function signature.  It consists of
 | |
|    a return type and a list of formal parameter types. The return type of a
 | |
|    function type is a first class type or a void type.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <returntype> (<parameter list>)
 | |
| </pre>
 | |
| 
 | |
| <p>...where '<tt><parameter list></tt>' is a comma-separated list of type
 | |
|    specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
 | |
|    which indicates that the function takes a variable number of arguments.
 | |
|    Variable argument functions can access their arguments with
 | |
|    the <a href="#int_varargs">variable argument handling intrinsic</a>
 | |
|    functions.  '<tt><returntype></tt>' is any type except
 | |
|    <a href="#t_label">label</a>.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <table class="layout">
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>i32 (i32)</tt></td>
 | |
|     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
 | |
|     </td>
 | |
|   </tr><tr class="layout">
 | |
|     <td class="left"><tt>float (i16, i32 *) *
 | |
|     </tt></td>
 | |
|     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
 | |
|       an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
 | |
|       returning <tt>float</tt>.
 | |
|     </td>
 | |
|   </tr><tr class="layout">
 | |
|     <td class="left"><tt>i32 (i8*, ...)</tt></td>
 | |
|     <td class="left">A vararg function that takes at least one
 | |
|       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
 | |
|       which returns an integer.  This is the signature for <tt>printf</tt> in
 | |
|       LLVM.
 | |
|     </td>
 | |
|   </tr><tr class="layout">
 | |
|     <td class="left"><tt>{i32, i32} (i32)</tt></td>
 | |
|     <td class="left">A function taking an <tt>i32</tt>, returning a
 | |
|         <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
 | |
|     </td>
 | |
|   </tr>
 | |
| </table>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_struct">Structure Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The structure type is used to represent a collection of data members together
 | |
|   in memory.  The elements of a structure may be any type that has a size.</p>
 | |
| 
 | |
| <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
 | |
|    and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
 | |
|    with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
 | |
|    Structures in registers are accessed using the
 | |
|    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
 | |
|    '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
 | |
|   
 | |
| <p>Structures may optionally be "packed" structures, which indicate that the 
 | |
|   alignment of the struct is one byte, and that there is no padding between
 | |
|   the elements.  In non-packed structs, padding between field types is inserted
 | |
|   as defined by the TargetData string in the module, which is required to match
 | |
|   what the underlying code generator expects.</p>
 | |
| 
 | |
| <p>Structures can either be "literal" or "identified".  A literal structure is
 | |
|   defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
 | |
|   types are always defined at the top level with a name.  Literal types are
 | |
|   uniqued by their contents and can never be recursive or opaque since there is
 | |
|   no way to write one.  Identified types can be recursive, can be opaqued, and are
 | |
|   never uniqued.
 | |
| </p>
 | |
|   
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   %T1 = type { <type list> }     <i>; Identified normal struct type</i>
 | |
|   %T2 = type <{ <type list> }>   <i>; Identified packed struct type</i>
 | |
| </pre>
 | |
|   
 | |
| <h5>Examples:</h5>
 | |
| <table class="layout">
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
 | |
|     <td class="left">A triple of three <tt>i32</tt> values</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>{ float, i32 (i32) * }</tt></td>
 | |
|     <td class="left">A pair, where the first element is a <tt>float</tt> and the
 | |
|       second element is a <a href="#t_pointer">pointer</a> to a
 | |
|       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
 | |
|       an <tt>i32</tt>.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt><{ i8, i32 }></tt></td>
 | |
|     <td class="left">A packed struct known to be 5 bytes in size.</td>
 | |
|   </tr>
 | |
| </table>
 | |
| 
 | |
| </div>
 | |
|   
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_opaque">Opaque Structure Types</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>Opaque structure types are used to represent named structure types that do
 | |
|    not have a body specified.  This corresponds (for example) to the C notion of
 | |
|    a forward declared structure.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   %X = type opaque
 | |
|   %52 = type opaque
 | |
| </pre>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <table class="layout">
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>opaque</tt></td>
 | |
|     <td class="left">An opaque type.</td>
 | |
|   </tr>
 | |
| </table>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_pointer">Pointer Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The pointer type is used to specify memory locations.
 | |
|    Pointers are commonly used to reference objects in memory.</p>
 | |
|    
 | |
| <p>Pointer types may have an optional address space attribute defining the
 | |
|    numbered address space where the pointed-to object resides. The default
 | |
|    address space is number zero. The semantics of non-zero address
 | |
|    spaces are target-specific.</p>
 | |
| 
 | |
| <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
 | |
|    permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <type> *
 | |
| </pre>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <table class="layout">
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>[4 x i32]*</tt></td>
 | |
|     <td class="left">A <a href="#t_pointer">pointer</a> to <a
 | |
|                     href="#t_array">array</a> of four <tt>i32</tt> values.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>i32 (i32*) *</tt></td>
 | |
|     <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
 | |
|       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
 | |
|       <tt>i32</tt>.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt>i32 addrspace(5)*</tt></td>
 | |
|     <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
 | |
|      that resides in address space #5.</td>
 | |
|   </tr>
 | |
| </table>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="t_vector">Vector Type</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>A vector type is a simple derived type that represents a vector of elements.
 | |
|    Vector types are used when multiple primitive data are operated in parallel
 | |
|    using a single instruction (SIMD).  A vector type requires a size (number of
 | |
|    elements) and an underlying primitive data type.  Vector types are considered
 | |
|    <a href="#t_firstclass">first class</a>.</p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   < <# elements> x <elementtype> >
 | |
| </pre>
 | |
| 
 | |
| <p>The number of elements is a constant integer value larger than 0; elementtype
 | |
|    may be any integer or floating point type, or a pointer to these types.
 | |
|    Vectors of size zero are not allowed. </p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <table class="layout">
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt><4 x i32></tt></td>
 | |
|     <td class="left">Vector of 4 32-bit integer values.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt><8 x float></tt></td>
 | |
|     <td class="left">Vector of 8 32-bit floating-point values.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt><2 x i64></tt></td>
 | |
|     <td class="left">Vector of 2 64-bit integer values.</td>
 | |
|   </tr>
 | |
|   <tr class="layout">
 | |
|     <td class="left"><tt><4 x i64*></tt></td>
 | |
|     <td class="left">Vector of 4 pointers to 64-bit integer values.</td>
 | |
|   </tr>
 | |
| </table>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="constants">Constants</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM has several different basic types of constants.  This section describes
 | |
|    them all and their syntax.</p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="simpleconstants">Simple Constants</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <dl>
 | |
|   <dt><b>Boolean constants</b></dt>
 | |
|   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
 | |
|       constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
 | |
| 
 | |
|   <dt><b>Integer constants</b></dt>
 | |
|   <dd>Standard integers (such as '4') are constants of
 | |
|       the <a href="#t_integer">integer</a> type.  Negative numbers may be used
 | |
|       with integer types.</dd>
 | |
| 
 | |
|   <dt><b>Floating point constants</b></dt>
 | |
|   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
 | |
|       exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
 | |
|       notation (see below).  The assembler requires the exact decimal value of a
 | |
|       floating-point constant.  For example, the assembler accepts 1.25 but
 | |
|       rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
 | |
|       constants must have a <a href="#t_floating">floating point</a> type. </dd>
 | |
| 
 | |
|   <dt><b>Null pointer constants</b></dt>
 | |
|   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
 | |
|       and must be of <a href="#t_pointer">pointer type</a>.</dd>
 | |
| </dl>
 | |
| 
 | |
| <p>The one non-intuitive notation for constants is the hexadecimal form of
 | |
|    floating point constants.  For example, the form '<tt>double
 | |
|    0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
 | |
|    '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
 | |
|    constants are required (and the only time that they are generated by the
 | |
|    disassembler) is when a floating point constant must be emitted but it cannot
 | |
|    be represented as a decimal floating point number in a reasonable number of
 | |
|    digits.  For example, NaN's, infinities, and other special values are
 | |
|    represented in their IEEE hexadecimal format so that assembly and disassembly
 | |
|    do not cause any bits to change in the constants.</p>
 | |
| 
 | |
| <p>When using the hexadecimal form, constants of types half, float, and double are
 | |
|    represented using the 16-digit form shown above (which matches the IEEE754
 | |
|    representation for double); half and float values must, however, be exactly
 | |
|    representable as IEE754 half and single precision, respectively.
 | |
|    Hexadecimal format is always used
 | |
|    for long double, and there are three forms of long double.  The 80-bit format
 | |
|    used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
 | |
|    The 128-bit format used by PowerPC (two adjacent doubles) is represented
 | |
|    by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
 | |
|    is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
 | |
|    currently supported target uses this format.  Long doubles will only work if
 | |
|    they match the long double format on your target. The IEEE 16-bit format
 | |
|    (half precision) is represented by <tt>0xH</tt> followed by 4 hexadecimal
 | |
|    digits. All hexadecimal formats are big-endian (sign bit at the left).</p>
 | |
| 
 | |
| <p>There are no constants of type x86mmx.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
| <a name="aggregateconstants"></a> <!-- old anchor -->
 | |
| <a name="complexconstants">Complex Constants</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Complex constants are a (potentially recursive) combination of simple
 | |
|    constants and smaller complex constants.</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><b>Structure constants</b></dt>
 | |
|   <dd>Structure constants are represented with notation similar to structure
 | |
|       type definitions (a comma separated list of elements, surrounded by braces
 | |
|       (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
 | |
|       where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
 | |
|       Structure constants must have <a href="#t_struct">structure type</a>, and
 | |
|       the number and types of elements must match those specified by the
 | |
|       type.</dd>
 | |
| 
 | |
|   <dt><b>Array constants</b></dt>
 | |
|   <dd>Array constants are represented with notation similar to array type
 | |
|      definitions (a comma separated list of elements, surrounded by square
 | |
|      brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
 | |
|      ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
 | |
|      the number and types of elements must match those specified by the
 | |
|      type.</dd>
 | |
| 
 | |
|   <dt><b>Vector constants</b></dt>
 | |
|   <dd>Vector constants are represented with notation similar to vector type
 | |
|       definitions (a comma separated list of elements, surrounded by
 | |
|       less-than/greater-than's (<tt><></tt>)).  For example: "<tt>< i32
 | |
|       42, i32 11, i32 74, i32 100 ></tt>".  Vector constants must
 | |
|       have <a href="#t_vector">vector type</a>, and the number and types of
 | |
|       elements must match those specified by the type.</dd>
 | |
| 
 | |
|   <dt><b>Zero initialization</b></dt>
 | |
|   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
 | |
|       value to zero of <em>any</em> type, including scalar and
 | |
|       <a href="#t_aggregate">aggregate</a> types.
 | |
|       This is often used to avoid having to print large zero initializers
 | |
|       (e.g. for large arrays) and is always exactly equivalent to using explicit
 | |
|       zero initializers.</dd>
 | |
| 
 | |
|   <dt><b>Metadata node</b></dt>
 | |
|   <dd>A metadata node is a structure-like constant with
 | |
|       <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
 | |
|       i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
 | |
|       be interpreted as part of the instruction stream, metadata is a place to
 | |
|       attach additional information such as debug info.</dd>
 | |
| </dl>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="globalconstants">Global Variable and Function Addresses</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The addresses of <a href="#globalvars">global variables</a>
 | |
|    and <a href="#functionstructure">functions</a> are always implicitly valid
 | |
|    (link-time) constants.  These constants are explicitly referenced when
 | |
|    the <a href="#identifiers">identifier for the global</a> is used and always
 | |
|    have <a href="#t_pointer">pointer</a> type. For example, the following is a
 | |
|    legal LLVM file:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| @X = global i32 17
 | |
| @Y = global i32 42
 | |
| @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="undefvalues">Undefined Values</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
 | |
|    indicates that the user of the value may receive an unspecified bit-pattern.
 | |
|    Undefined values may be of any type (other than '<tt>label</tt>'
 | |
|    or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
 | |
| 
 | |
| <p>Undefined values are useful because they indicate to the compiler that the
 | |
|    program is well defined no matter what value is used.  This gives the
 | |
|    compiler more freedom to optimize.  Here are some examples of (potentially
 | |
|    surprising) transformations that are valid (in pseudo IR):</p>
 | |
| 
 | |
| 
 | |
| <pre class="doc_code">
 | |
|   %A = add %X, undef
 | |
|   %B = sub %X, undef
 | |
|   %C = xor %X, undef
 | |
| Safe:
 | |
|   %A = undef
 | |
|   %B = undef
 | |
|   %C = undef
 | |
| </pre>
 | |
| 
 | |
| <p>This is safe because all of the output bits are affected by the undef bits.
 | |
|    Any output bit can have a zero or one depending on the input bits.</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
|   %A = or %X, undef
 | |
|   %B = and %X, undef
 | |
| Safe:
 | |
|   %A = -1
 | |
|   %B = 0
 | |
| Unsafe:
 | |
|   %A = undef
 | |
|   %B = undef
 | |
| </pre>
 | |
| 
 | |
| <p>These logical operations have bits that are not always affected by the input.
 | |
|    For example, if <tt>%X</tt> has a zero bit, then the output of the
 | |
|    '<tt>and</tt>' operation will always be a zero for that bit, no matter what
 | |
|    the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
 | |
|    optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
 | |
|    However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
 | |
|    0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
 | |
|    all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
 | |
|    set, allowing the '<tt>or</tt>' to be folded to -1.</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
|   %A = select undef, %X, %Y
 | |
|   %B = select undef, 42, %Y
 | |
|   %C = select %X, %Y, undef
 | |
| Safe:
 | |
|   %A = %X     (or %Y)
 | |
|   %B = 42     (or %Y)
 | |
|   %C = %Y
 | |
| Unsafe:
 | |
|   %A = undef
 | |
|   %B = undef
 | |
|   %C = undef
 | |
| </pre>
 | |
| 
 | |
| <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
 | |
|    branch) conditions can go <em>either way</em>, but they have to come from one
 | |
|    of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
 | |
|    <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
 | |
|    have to have a cleared low bit. However, in the <tt>%C</tt> example, the
 | |
|    optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
 | |
|    same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
 | |
|    eliminated.</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
|   %A = xor undef, undef
 | |
| 
 | |
|   %B = undef
 | |
|   %C = xor %B, %B
 | |
| 
 | |
|   %D = undef
 | |
|   %E = icmp lt %D, 4
 | |
|   %F = icmp gte %D, 4
 | |
| 
 | |
| Safe:
 | |
|   %A = undef
 | |
|   %B = undef
 | |
|   %C = undef
 | |
|   %D = undef
 | |
|   %E = undef
 | |
|   %F = undef
 | |
| </pre>
 | |
| 
 | |
| <p>This example points out that two '<tt>undef</tt>' operands are not
 | |
|    necessarily the same. This can be surprising to people (and also matches C
 | |
|    semantics) where they assume that "<tt>X^X</tt>" is always zero, even
 | |
|    if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
 | |
|    short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
 | |
|    its value over its "live range".  This is true because the variable doesn't
 | |
|    actually <em>have a live range</em>. Instead, the value is logically read
 | |
|    from arbitrary registers that happen to be around when needed, so the value
 | |
|    is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
 | |
|    need to have the same semantics or the core LLVM "replace all uses with"
 | |
|    concept would not hold.</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
|   %A = fdiv undef, %X
 | |
|   %B = fdiv %X, undef
 | |
| Safe:
 | |
|   %A = undef
 | |
| b: unreachable
 | |
| </pre>
 | |
| 
 | |
| <p>These examples show the crucial difference between an <em>undefined
 | |
|   value</em> and <em>undefined behavior</em>. An undefined value (like
 | |
|   '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
 | |
|   the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
 | |
|   the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
 | |
|   defined on SNaN's. However, in the second example, we can make a more
 | |
|   aggressive assumption: because the <tt>undef</tt> is allowed to be an
 | |
|   arbitrary value, we are allowed to assume that it could be zero. Since a
 | |
|   divide by zero has <em>undefined behavior</em>, we are allowed to assume that
 | |
|   the operation does not execute at all. This allows us to delete the divide and
 | |
|   all code after it. Because the undefined operation "can't happen", the
 | |
|   optimizer can assume that it occurs in dead code.</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| a:  store undef -> %X
 | |
| b:  store %X -> undef
 | |
| Safe:
 | |
| a: <deleted>
 | |
| b: unreachable
 | |
| </pre>
 | |
| 
 | |
| <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
 | |
|    undefined value can be assumed to not have any effect; we can assume that the
 | |
|    value is overwritten with bits that happen to match what was already there.
 | |
|    However, a store <em>to</em> an undefined location could clobber arbitrary
 | |
|    memory, therefore, it has undefined behavior.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="poisonvalues">Poison Values</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Poison values are similar to <a href="#undefvalues">undef values</a>, however
 | |
|    they also represent the fact that an instruction or constant expression which
 | |
|    cannot evoke side effects has nevertheless detected a condition which results
 | |
|    in undefined behavior.</p>
 | |
| 
 | |
| <p>There is currently no way of representing a poison value in the IR; they
 | |
|    only exist when produced by operations such as
 | |
|    <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
 | |
| 
 | |
| <p>Poison value behavior is defined in terms of value <i>dependence</i>:</p>
 | |
| 
 | |
| <ul>
 | |
| <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
 | |
|     their operands.</li>
 | |
| 
 | |
| <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
 | |
|     to their dynamic predecessor basic block.</li>
 | |
| 
 | |
| <li>Function arguments depend on the corresponding actual argument values in
 | |
|     the dynamic callers of their functions.</li>
 | |
| 
 | |
| <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
 | |
|     <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
 | |
|     control back to them.</li>
 | |
| 
 | |
| <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
 | |
|     <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_resume"><tt>resume</tt></a>,
 | |
|     or exception-throwing call instructions that dynamically transfer control
 | |
|     back to them.</li>
 | |
| 
 | |
| <li>Non-volatile loads and stores depend on the most recent stores to all of the
 | |
|     referenced memory addresses, following the order in the IR
 | |
|     (including loads and stores implied by intrinsics such as
 | |
|     <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
 | |
| 
 | |
| <!-- TODO: In the case of multiple threads, this only applies if the store
 | |
|      "happens-before" the load or store. -->
 | |
| 
 | |
| <!-- TODO: floating-point exception state -->
 | |
| 
 | |
| <li>An instruction with externally visible side effects depends on the most
 | |
|     recent preceding instruction with externally visible side effects, following
 | |
|     the order in the IR. (This includes
 | |
|     <a href="#volatile">volatile operations</a>.)</li>
 | |
| 
 | |
| <li>An instruction <i>control-depends</i> on a
 | |
|     <a href="#terminators">terminator instruction</a>
 | |
|     if the terminator instruction has multiple successors and the instruction
 | |
|     is always executed when control transfers to one of the successors, and
 | |
|     may not be executed when control is transferred to another.</li>
 | |
| 
 | |
| <li>Additionally, an instruction also <i>control-depends</i> on a terminator
 | |
|     instruction if the set of instructions it otherwise depends on would be
 | |
|     different if the terminator had transferred control to a different
 | |
|     successor.</li>
 | |
| 
 | |
| <li>Dependence is transitive.</li>
 | |
| 
 | |
| </ul>
 | |
| 
 | |
| <p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>,
 | |
|    with the additional affect that any instruction which has a <i>dependence</i>
 | |
|    on a poison value has undefined behavior.</p>
 | |
| 
 | |
| <p>Here are some examples:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| entry:
 | |
|   %poison = sub nuw i32 0, 1           ; Results in a poison value.
 | |
|   %still_poison = and i32 %poison, 0   ; 0, but also poison.
 | |
|   %poison_yet_again = getelementptr i32* @h, i32 %still_poison
 | |
|   store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
 | |
| 
 | |
|   store i32 %poison, i32* @g           ; Poison value stored to memory.
 | |
|   %poison2 = load i32* @g              ; Poison value loaded back from memory.
 | |
| 
 | |
|   store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
 | |
| 
 | |
|   %narrowaddr = bitcast i32* @g to i16*
 | |
|   %wideaddr = bitcast i32* @g to i64*
 | |
|   %poison3 = load i16* %narrowaddr     ; Returns a poison value.
 | |
|   %poison4 = load i64* %wideaddr       ; Returns a poison value.
 | |
| 
 | |
|   %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
 | |
|   br i1 %cmp, label %true, label %end  ; Branch to either destination.
 | |
| 
 | |
| true:
 | |
|   store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
 | |
|                                        ; it has undefined behavior.
 | |
|   br label %end
 | |
| 
 | |
| end:
 | |
|   %p = phi i32 [ 0, %entry ], [ 1, %true ]
 | |
|                                        ; Both edges into this PHI are
 | |
|                                        ; control-dependent on %cmp, so this
 | |
|                                        ; always results in a poison value.
 | |
| 
 | |
|   store volatile i32 0, i32* @g        ; This would depend on the store in %true
 | |
|                                        ; if %cmp is true, or the store in %entry
 | |
|                                        ; otherwise, so this is undefined behavior.
 | |
| 
 | |
|   br i1 %cmp, label %second_true, label %second_end
 | |
|                                        ; The same branch again, but this time the
 | |
|                                        ; true block doesn't have side effects.
 | |
| 
 | |
| second_true:
 | |
|   ; No side effects!
 | |
|   ret void
 | |
| 
 | |
| second_end:
 | |
|   store volatile i32 0, i32* @g        ; This time, the instruction always depends
 | |
|                                        ; on the store in %end. Also, it is
 | |
|                                        ; control-equivalent to %end, so this is
 | |
|                                        ; well-defined (ignoring earlier undefined
 | |
|                                        ; behavior in this example).
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="blockaddress">Addresses of Basic Blocks</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p><b><tt>blockaddress(@function, %block)</tt></b></p>
 | |
| 
 | |
| <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
 | |
|    basic block in the specified function, and always has an i8* type.  Taking
 | |
|    the address of the entry block is illegal.</p>
 | |
| 
 | |
| <p>This value only has defined behavior when used as an operand to the
 | |
|    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
 | |
|    comparisons against null. Pointer equality tests between labels addresses
 | |
|    results in undefined behavior — though, again, comparison against null
 | |
|    is ok, and no label is equal to the null pointer. This may be passed around
 | |
|    as an opaque pointer sized value as long as the bits are not inspected. This
 | |
|    allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
 | |
|    long as the original value is reconstituted before the <tt>indirectbr</tt>
 | |
|    instruction.</p>
 | |
| 
 | |
| <p>Finally, some targets may provide defined semantics when using the value as
 | |
|    the operand to an inline assembly, but that is target specific.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="constantexprs">Constant Expressions</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Constant expressions are used to allow expressions involving other constants
 | |
|    to be used as constants.  Constant expressions may be of
 | |
|    any <a href="#t_firstclass">first class</a> type and may involve any LLVM
 | |
|    operation that does not have side effects (e.g. load and call are not
 | |
|    supported). The following is the syntax for constant expressions:</p>
 | |
| 
 | |
| <dl>
 | |
|   <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Truncate a constant to another type. The bit size of CST must be larger
 | |
|       than the bit size of TYPE. Both types must be integers.</dd>
 | |
| 
 | |
|   <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Zero extend a constant to another type. The bit size of CST must be
 | |
|       smaller than the bit size of TYPE.  Both types must be integers.</dd>
 | |
| 
 | |
|   <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Sign extend a constant to another type. The bit size of CST must be
 | |
|       smaller than the bit size of TYPE.  Both types must be integers.</dd>
 | |
| 
 | |
|   <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Truncate a floating point constant to another floating point type. The
 | |
|       size of CST must be larger than the size of TYPE. Both types must be
 | |
|       floating point.</dd>
 | |
| 
 | |
|   <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Floating point extend a constant to another type. The size of CST must be
 | |
|       smaller or equal to the size of TYPE. Both types must be floating
 | |
|       point.</dd>
 | |
| 
 | |
|   <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Convert a floating point constant to the corresponding unsigned integer
 | |
|       constant. TYPE must be a scalar or vector integer type. CST must be of
 | |
|       scalar or vector floating point type. Both CST and TYPE must be scalars,
 | |
|       or vectors of the same number of elements. If the value won't fit in the
 | |
|       integer type, the results are undefined.</dd>
 | |
| 
 | |
|   <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Convert a floating point constant to the corresponding signed integer
 | |
|       constant.  TYPE must be a scalar or vector integer type. CST must be of
 | |
|       scalar or vector floating point type. Both CST and TYPE must be scalars,
 | |
|       or vectors of the same number of elements. If the value won't fit in the
 | |
|       integer type, the results are undefined.</dd>
 | |
| 
 | |
|   <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Convert an unsigned integer constant to the corresponding floating point
 | |
|       constant. TYPE must be a scalar or vector floating point type. CST must be
 | |
|       of scalar or vector integer type. Both CST and TYPE must be scalars, or
 | |
|       vectors of the same number of elements. If the value won't fit in the
 | |
|       floating point type, the results are undefined.</dd>
 | |
| 
 | |
|   <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Convert a signed integer constant to the corresponding floating point
 | |
|       constant. TYPE must be a scalar or vector floating point type. CST must be
 | |
|       of scalar or vector integer type. Both CST and TYPE must be scalars, or
 | |
|       vectors of the same number of elements. If the value won't fit in the
 | |
|       floating point type, the results are undefined.</dd>
 | |
| 
 | |
|   <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Convert a pointer typed constant to the corresponding integer constant
 | |
|       <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
 | |
|       type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
 | |
|       make it fit in <tt>TYPE</tt>.</dd>
 | |
| 
 | |
|   <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Convert an integer constant to a pointer constant.  TYPE must be a pointer
 | |
|       type.  CST must be of integer type. The CST value is zero extended,
 | |
|       truncated, or unchanged to make it fit in a pointer size. This one is
 | |
|       <i>really</i> dangerous!</dd>
 | |
| 
 | |
|   <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
 | |
|   <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
 | |
|       are the same as those for the <a href="#i_bitcast">bitcast
 | |
|       instruction</a>.</dd>
 | |
| 
 | |
|   <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
 | |
|   <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
 | |
|   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
 | |
|       constants.  As with the <a href="#i_getelementptr">getelementptr</a>
 | |
|       instruction, the index list may have zero or more indexes, which are
 | |
|       required to make sense for the type of "CSTPTR".</dd>
 | |
| 
 | |
|   <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
 | |
|   <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
 | |
| 
 | |
|   <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
 | |
|   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
 | |
| 
 | |
|   <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
 | |
|   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
 | |
| 
 | |
|   <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
 | |
|   <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
 | |
|       constants.</dd>
 | |
| 
 | |
|   <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
 | |
|   <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
 | |
|     constants.</dd>
 | |
| 
 | |
|   <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
 | |
|   <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
 | |
|       constants.</dd>
 | |
| 
 | |
|   <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
 | |
|   <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
 | |
|     constants. The index list is interpreted in a similar manner as indices in
 | |
|     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
 | |
|     index value must be specified.</dd>
 | |
| 
 | |
|   <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
 | |
|   <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
 | |
|     constants. The index list is interpreted in a similar manner as indices in
 | |
|     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
 | |
|     index value must be specified.</dd>
 | |
| 
 | |
|   <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
 | |
|   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
 | |
|       be any of the <a href="#binaryops">binary</a>
 | |
|       or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
 | |
|       on operands are the same as those for the corresponding instruction
 | |
|       (e.g. no bitwise operations on floating point values are allowed).</dd>
 | |
| </dl>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="othervalues">Other Values</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| <div>
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
| <a name="inlineasm">Inline Assembler Expressions</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM supports inline assembler expressions (as opposed
 | |
|    to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of
 | |
|    a special value.  This value represents the inline assembler as a string
 | |
|    (containing the instructions to emit), a list of operand constraints (stored
 | |
|    as a string), a flag that indicates whether or not the inline asm
 | |
|    expression has side effects, and a flag indicating whether the function
 | |
|    containing the asm needs to align its stack conservatively.  An example
 | |
|    inline assembler expression is:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| i32 (i32) asm "bswap $0", "=r,r"
 | |
| </pre>
 | |
| 
 | |
| <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
 | |
|    a <a href="#i_call"><tt>call</tt></a> or an
 | |
|    <a href="#i_invoke"><tt>invoke</tt></a> instruction.
 | |
|    Thus, typically we have:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
 | |
| </pre>
 | |
| 
 | |
| <p>Inline asms with side effects not visible in the constraint list must be
 | |
|    marked as having side effects.  This is done through the use of the
 | |
|    '<tt>sideeffect</tt>' keyword, like so:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| call void asm sideeffect "eieio", ""()
 | |
| </pre>
 | |
| 
 | |
| <p>In some cases inline asms will contain code that will not work unless the
 | |
|    stack is aligned in some way, such as calls or SSE instructions on x86,
 | |
|    yet will not contain code that does that alignment within the asm.
 | |
|    The compiler should make conservative assumptions about what the asm might
 | |
|    contain and should generate its usual stack alignment code in the prologue
 | |
|    if the '<tt>alignstack</tt>' keyword is present:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| call void asm alignstack "eieio", ""()
 | |
| </pre>
 | |
| 
 | |
| <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
 | |
|    first.</p>
 | |
| 
 | |
| <!--
 | |
| <p>TODO: The format of the asm and constraints string still need to be
 | |
|    documented here.  Constraints on what can be done (e.g. duplication, moving,
 | |
|    etc need to be documented).  This is probably best done by reference to
 | |
|    another document that covers inline asm from a holistic perspective.</p>
 | |
|   -->
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="inlineasm_md">Inline Asm Metadata</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The call instructions that wrap inline asm nodes may have a
 | |
|    "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant
 | |
|    integers.  If present, the code generator will use the integer as the
 | |
|    location cookie value when report errors through the <tt>LLVMContext</tt>
 | |
|    error reporting mechanisms.  This allows a front-end to correlate backend
 | |
|    errors that occur with inline asm back to the source code that produced it.
 | |
|    For example:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
 | |
| ...
 | |
| !42 = !{ i32 1234567 }
 | |
| </pre>
 | |
| 
 | |
| <p>It is up to the front-end to make sense of the magic numbers it places in the
 | |
|    IR. If the MDNode contains multiple constants, the code generator will use
 | |
|    the one that corresponds to the line of the asm that the error occurs on.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="metadata">Metadata Nodes and Metadata Strings</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM IR allows metadata to be attached to instructions in the program that
 | |
|    can convey extra information about the code to the optimizers and code
 | |
|    generator.  One example application of metadata is source-level debug
 | |
|    information.  There are two metadata primitives: strings and nodes. All
 | |
|    metadata has the <tt>metadata</tt> type and is identified in syntax by a
 | |
|    preceding exclamation point ('<tt>!</tt>').</p>
 | |
| 
 | |
| <p>A metadata string is a string surrounded by double quotes.  It can contain
 | |
|    any character by escaping non-printable characters with "<tt>\xx</tt>" where
 | |
|    "<tt>xx</tt>" is the two digit hex code.  For example:
 | |
|    "<tt>!"test\00"</tt>".</p>
 | |
| 
 | |
| <p>Metadata nodes are represented with notation similar to structure constants
 | |
|    (a comma separated list of elements, surrounded by braces and preceded by an
 | |
|    exclamation point). Metadata nodes can have any values as their operand. For
 | |
|    example:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| !{ metadata !"test\00", i32 10}
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of 
 | |
|    metadata nodes, which can be looked up in the module symbol table. For
 | |
|    example:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| !foo =  metadata !{!4, !3}
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt> 
 | |
|    function is using two metadata arguments:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
 | |
|    attached to the <tt>add</tt> instruction using the <tt>!dbg</tt>
 | |
|    identifier:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| %indvar.next = add i64 %indvar, 1, !dbg !21
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>More information about specific metadata nodes recognized by the optimizers
 | |
|    and code generator is found below.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>In LLVM IR, memory does not have types, so LLVM's own type system is not
 | |
|    suitable for doing TBAA. Instead, metadata is added to the IR to describe
 | |
|    a type system of a higher level language. This can be used to implement
 | |
|    typical C/C++ TBAA, but it can also be used to implement custom alias
 | |
|    analysis behavior for other languages.</p>
 | |
| 
 | |
| <p>The current metadata format is very simple. TBAA metadata nodes have up to
 | |
|    three fields, e.g.:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| !0 = metadata !{ metadata !"an example type tree" }
 | |
| !1 = metadata !{ metadata !"int", metadata !0 }
 | |
| !2 = metadata !{ metadata !"float", metadata !0 }
 | |
| !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The first field is an identity field. It can be any value, usually
 | |
|    a metadata string, which uniquely identifies the type. The most important
 | |
|    name in the tree is the name of the root node. Two trees with
 | |
|    different root node names are entirely disjoint, even if they
 | |
|    have leaves with common names.</p>
 | |
| 
 | |
| <p>The second field identifies the type's parent node in the tree, or
 | |
|    is null or omitted for a root node. A type is considered to alias
 | |
|    all of its descendants and all of its ancestors in the tree. Also,
 | |
|    a type is considered to alias all types in other trees, so that
 | |
|    bitcode produced from multiple front-ends is handled conservatively.</p>
 | |
| 
 | |
| <p>If the third field is present, it's an integer which if equal to 1
 | |
|    indicates that the type is "constant" (meaning
 | |
|    <tt>pointsToConstantMemory</tt> should return true; see
 | |
|    <a href="AliasAnalysis.html#OtherItfs">other useful
 | |
|    <tt>AliasAnalysis</tt> methods</a>).</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="fpmath">'<tt>fpmath</tt>' Metadata</a>
 | |
| </h4>
 | |
|  
 | |
| <div>
 | |
| 
 | |
| <p><tt>fpmath</tt> metadata may be attached to any instruction of floating point
 | |
|   type.  It can be used to express the maximum acceptable error in the result of
 | |
|   that instruction, in ULPs, thus potentially allowing the compiler to use a
 | |
|   more efficient but less accurate method of computing it.  ULP is defined as
 | |
|   follows:</p>
 | |
| 
 | |
| <blockquote>
 | |
| 
 | |
| <p>If <tt>x</tt> is a real number that lies between two finite consecutive
 | |
|    floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
 | |
|    of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
 | |
|    distance between the two non-equal finite floating-point numbers nearest
 | |
|    <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
 | |
| 
 | |
| </blockquote>
 | |
| 
 | |
| <p>The metadata node shall consist of a single positive floating point number
 | |
|    representing the maximum relative error, for example:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="range">'<tt>range</tt>' Metadata</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| <p><tt>range</tt> metadata may be attached only to loads of integer types. It
 | |
|    expresses the possible ranges the loaded value is in. The ranges are
 | |
|    represented with a flattened list of integers. The loaded value is known to
 | |
|    be in the union of the ranges defined by each consecutive pair. Each pair
 | |
|    has the following properties:</p>
 | |
| <ul>
 | |
|    <li>The type must match the type loaded by the instruction.</li>
 | |
|    <li>The pair <tt>a,b</tt> represents the range <tt>[a,b)</tt>.</li>
 | |
|    <li>Both <tt>a</tt> and <tt>b</tt> are constants.</li>
 | |
|    <li>The range is allowed to wrap.</li>
 | |
|    <li>The range should not represent the full or empty set. That is,
 | |
|        <tt>a!=b</tt>. </li>
 | |
| </ul>
 | |
| <p> In addition, the pairs must be in signed order of the lower bound and
 | |
|   they must be non-contiguous.</p>
 | |
| 
 | |
| <p>Examples:</p>
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
 | |
|   %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
 | |
|   %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
 | |
|   %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
 | |
| ...
 | |
| !0 = metadata !{ i8 0, i8 2 }
 | |
| !1 = metadata !{ i8 255, i8 2 }
 | |
| !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
 | |
| !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
 | |
| </pre>
 | |
| </div>
 | |
| </div>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="module_flags">Module Flags Metadata</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Information about the module as a whole is difficult to convey to LLVM's
 | |
|    subsystems. The LLVM IR isn't sufficient to transmit this
 | |
|    information. The <tt>llvm.module.flags</tt> named metadata exists in order to
 | |
|    facilitate this. These flags are in the form of key / value pairs —
 | |
|    much like a dictionary — making it easy for any subsystem who cares
 | |
|    about a flag to look it up.</p>
 | |
| 
 | |
| <p>The <tt>llvm.module.flags</tt> metadata contains a list of metadata
 | |
|    triplets. Each triplet has the following form:</p>
 | |
| 
 | |
| <ul>
 | |
|   <li>The first element is a <i>behavior</i> flag, which specifies the behavior
 | |
|       when two (or more) modules are merged together, and it encounters two (or
 | |
|       more) metadata with the same ID. The supported behaviors are described
 | |
|       below.</li>
 | |
| 
 | |
|   <li>The second element is a metadata string that is a unique ID for the
 | |
|       metadata. How each ID is interpreted is documented below.</li>
 | |
| 
 | |
|   <li>The third element is the value of the flag.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>When two (or more) modules are merged together, the resulting
 | |
|    <tt>llvm.module.flags</tt> metadata is the union of the
 | |
|    modules' <tt>llvm.module.flags</tt> metadata. The only exception being a flag
 | |
|    with the <i>Override</i> behavior, which may override another flag's value
 | |
|    (see below).</p>
 | |
| 
 | |
| <p>The following behaviors are supported:</p>
 | |
| 
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <th>Value</th>
 | |
|       <th>Behavior</th>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td align="left">
 | |
|         <dl>
 | |
|           <dt><b>Error</b></dt>
 | |
|           <dd>Emits an error if two values disagree. It is an error to have an ID
 | |
|               with both an Error and a Warning behavior.</dd>
 | |
|         </dl>
 | |
|       </td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>2</td>
 | |
|       <td align="left">
 | |
|         <dl>
 | |
|           <dt><b>Warning</b></dt>
 | |
|           <dd>Emits a warning if two values disagree.</dd>
 | |
|         </dl>
 | |
|       </td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>3</td>
 | |
|       <td align="left">
 | |
|         <dl>
 | |
|           <dt><b>Require</b></dt>
 | |
|           <dd>Emits an error when the specified value is not present or doesn't
 | |
|               have the specified value. It is an error for two (or more)
 | |
|               <tt>llvm.module.flags</tt> with the same ID to have the Require
 | |
|               behavior but different values. There may be multiple Require flags
 | |
|               per ID.</dd>
 | |
|         </dl>
 | |
|       </td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>4</td>
 | |
|       <td align="left">
 | |
|         <dl>
 | |
|           <dt><b>Override</b></dt>
 | |
|           <dd>Uses the specified value if the two values disagree. It is an
 | |
|               error for two (or more) <tt>llvm.module.flags</tt> with the same
 | |
|               ID to have the Override behavior but different values.</dd>
 | |
|         </dl>
 | |
|       </td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| 
 | |
| <p>An example of module flags:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
 | |
| !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
 | |
| !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
 | |
| !3 = metadata !{ i32 3, metadata !"qux",
 | |
|   metadata !{
 | |
|     metadata !"foo", i32 1
 | |
|   }
 | |
| }
 | |
| !llvm.module.flags = !{ !0, !1, !2, !3 }
 | |
| </pre>
 | |
| 
 | |
| <ul>
 | |
|   <li><p>Metadata <tt>!0</tt> has the ID <tt>!"foo"</tt> and the value '1'. The
 | |
|          behavior if two or more <tt>!"foo"</tt> flags are seen is to emit an
 | |
|          error if their values are not equal.</p></li>
 | |
| 
 | |
|   <li><p>Metadata <tt>!1</tt> has the ID <tt>!"bar"</tt> and the value '37'. The
 | |
|          behavior if two or more <tt>!"bar"</tt> flags are seen is to use the
 | |
|          value '37' if their values are not equal.</p></li>
 | |
| 
 | |
|   <li><p>Metadata <tt>!2</tt> has the ID <tt>!"qux"</tt> and the value '42'. The
 | |
|          behavior if two or more <tt>!"qux"</tt> flags are seen is to emit a
 | |
|          warning if their values are not equal.</p></li>
 | |
| 
 | |
|   <li><p>Metadata <tt>!3</tt> has the ID <tt>!"qux"</tt> and the value:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| metadata !{ metadata !"foo", i32 1 }
 | |
| </pre>
 | |
| 
 | |
|       <p>The behavior is to emit an error if the <tt>llvm.module.flags</tt> does
 | |
|          not contain a flag with the ID <tt>!"foo"</tt> that has the value
 | |
|          '1'. If two or more <tt>!"qux"</tt> flags exist, then they must have
 | |
|          the same value or an error will be issued.</p></li>
 | |
| </ul>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
| <a name="objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>On the Mach-O platform, Objective-C stores metadata about garbage collection
 | |
|    in a special section called "image info". The metadata consists of a version
 | |
|    number and a bitmask specifying what types of garbage collection are
 | |
|    supported (if any) by the file. If two or more modules are linked together
 | |
|    their garbage collection metadata needs to be merged rather than appended
 | |
|    together.</p>
 | |
| 
 | |
| <p>The Objective-C garbage collection module flags metadata consists of the
 | |
|    following key-value pairs:</p>
 | |
| 
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <col width="30%">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <th>Key</th>
 | |
|       <th>Value</th>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>Objective-C Version</tt></td>
 | |
|       <td align="left"><b>[Required]</b> — The Objective-C ABI
 | |
|          version. Valid values are 1 and 2.</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>Objective-C Image Info Version</tt></td>
 | |
|       <td align="left"><b>[Required]</b> — The version of the image info
 | |
|          section. Currently always 0.</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>Objective-C Image Info Section</tt></td>
 | |
|       <td align="left"><b>[Required]</b> — The section to place the
 | |
|          metadata. Valid values are <tt>"__OBJC, __image_info, regular"</tt> for
 | |
|          Objective-C ABI version 1, and <tt>"__DATA,__objc_imageinfo, regular,
 | |
|          no_dead_strip"</tt> for Objective-C ABI version 2.</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>Objective-C Garbage Collection</tt></td>
 | |
|       <td align="left"><b>[Required]</b> — Specifies whether garbage
 | |
|           collection is supported or not. Valid values are 0, for no garbage
 | |
|           collection, and 2, for garbage collection supported.</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td><tt>Objective-C GC Only</tt></td>
 | |
|       <td align="left"><b>[Optional]</b> — Specifies that only garbage
 | |
|          collection is supported. If present, its value must be 6. This flag
 | |
|          requires that the <tt>Objective-C Garbage Collection</tt> flag have the
 | |
|          value 2.</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| 
 | |
| <p>Some important flag interactions:</p>
 | |
| 
 | |
| <ul>
 | |
|   <li>If a module with <tt>Objective-C Garbage Collection</tt> set to 0 is
 | |
|       merged with a module with <tt>Objective-C Garbage Collection</tt> set to
 | |
|       2, then the resulting module has the <tt>Objective-C Garbage
 | |
|       Collection</tt> flag set to 0.</li>
 | |
| 
 | |
|   <li>A module with <tt>Objective-C Garbage Collection</tt> set to 0 cannot be
 | |
|       merged with a module with <tt>Objective-C GC Only</tt> set to 6.</li>
 | |
| </ul>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="intrinsic_globals">Intrinsic Global Variables</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| <div>
 | |
| <p>LLVM has a number of "magic" global variables that contain data that affect
 | |
| code generation or other IR semantics.  These are documented here.  All globals
 | |
| of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
 | |
| section and all globals that start with "<tt>llvm.</tt>" are reserved for use
 | |
| by LLVM.</p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
| <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
 | |
| href="#linkage_appending">appending linkage</a>.  This array contains a list of
 | |
| pointers to global variables and functions which may optionally have a pointer
 | |
| cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| @X = global i8 4
 | |
| @Y = global i32 123
 | |
| 
 | |
| @llvm.used = appending global [2 x i8*] [
 | |
|    i8* @X,
 | |
|    i8* bitcast (i32* @Y to i8*)
 | |
| ], section "llvm.metadata"
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
 | |
|    compiler, assembler, and linker are required to treat the symbol as if there
 | |
|    is a reference to the global that it cannot see.  For example, if a variable
 | |
|    has internal linkage and no references other than that from
 | |
|    the <tt>@llvm.used</tt> list, it cannot be deleted.  This is commonly used to
 | |
|    represent references from inline asms and other things the compiler cannot
 | |
|    "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
 | |
| 
 | |
| <p>On some targets, the code generator must emit a directive to the assembler or
 | |
|    object file to prevent the assembler and linker from molesting the
 | |
|    symbol.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="intg_compiler_used">
 | |
|     The '<tt>llvm.compiler.used</tt>' Global Variable
 | |
|   </a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
 | |
|    <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
 | |
|    touching the symbol.  On targets that support it, this allows an intelligent
 | |
|    linker to optimize references to the symbol without being impeded as it would
 | |
|    be by <tt>@llvm.used</tt>.</p>
 | |
| 
 | |
| <p>This is a rare construct that should only be used in rare circumstances, and
 | |
|    should not be exposed to source languages.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
| <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| %0 = type { i32, void ()* }
 | |
| @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
 | |
|    functions and associated priorities.  The functions referenced by this array
 | |
|    will be called in ascending order of priority (i.e. lowest first) when the
 | |
|    module is loaded.  The order of functions with the same priority is not
 | |
|    defined.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
| <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| %0 = type { i32, void ()* }
 | |
| @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
 | |
|    and associated priorities.  The functions referenced by this array will be
 | |
|    called in descending order of priority (i.e. highest first) when the module
 | |
|    is loaded.  The order of functions with the same priority is not defined.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="instref">Instruction Reference</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The LLVM instruction set consists of several different classifications of
 | |
|    instructions: <a href="#terminators">terminator
 | |
|    instructions</a>, <a href="#binaryops">binary instructions</a>,
 | |
|    <a href="#bitwiseops">bitwise binary instructions</a>,
 | |
|    <a href="#memoryops">memory instructions</a>, and
 | |
|    <a href="#otherops">other instructions</a>.</p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="terminators">Terminator Instructions</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
 | |
|    in a program ends with a "Terminator" instruction, which indicates which
 | |
|    block should be executed after the current block is finished. These
 | |
|    terminator instructions typically yield a '<tt>void</tt>' value: they produce
 | |
|    control flow, not values (the one exception being the
 | |
|    '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
 | |
| 
 | |
| <p>The terminator instructions are: 
 | |
|    '<a href="#i_ret"><tt>ret</tt></a>', 
 | |
|    '<a href="#i_br"><tt>br</tt></a>',
 | |
|    '<a href="#i_switch"><tt>switch</tt></a>', 
 | |
|    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
 | |
|    '<a href="#i_invoke"><tt>invoke</tt></a>', 
 | |
|    '<a href="#i_resume"><tt>resume</tt></a>', and 
 | |
|    '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_ret">'<tt>ret</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   ret <type> <value>       <i>; Return a value from a non-void function</i>
 | |
|   ret void                 <i>; Return from void function</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
 | |
|    a value) from a function back to the caller.</p>
 | |
| 
 | |
| <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
 | |
|    value and then causes control flow, and one that just causes control flow to
 | |
|    occur.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
 | |
|    return value. The type of the return value must be a
 | |
|    '<a href="#t_firstclass">first class</a>' type.</p>
 | |
| 
 | |
| <p>A function is not <a href="#wellformed">well formed</a> if it it has a
 | |
|    non-void return type and contains a '<tt>ret</tt>' instruction with no return
 | |
|    value or a return value with a type that does not match its type, or if it
 | |
|    has a void return type and contains a '<tt>ret</tt>' instruction with a
 | |
|    return value.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
 | |
|    the calling function's context.  If the caller is a
 | |
|    "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
 | |
|    instruction after the call.  If the caller was an
 | |
|    "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
 | |
|    the beginning of the "normal" destination block.  If the instruction returns
 | |
|    a value, that value shall set the call or invoke instruction's return
 | |
|    value.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   ret i32 5                       <i>; Return an integer value of 5</i>
 | |
|   ret void                        <i>; Return from a void function</i>
 | |
|   ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_br">'<tt>br</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   br i1 <cond>, label <iftrue>, label <iffalse>
 | |
|   br label <dest>          <i>; Unconditional branch</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
 | |
|    different basic block in the current function.  There are two forms of this
 | |
|    instruction, corresponding to a conditional branch and an unconditional
 | |
|    branch.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
 | |
|    '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
 | |
|    of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
 | |
|    target.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
 | |
|    argument is evaluated.  If the value is <tt>true</tt>, control flows to the
 | |
|    '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
 | |
|    control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
| Test:
 | |
|   %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
 | |
|   br i1 %cond, label %IfEqual, label %IfUnequal
 | |
| IfEqual:
 | |
|   <a href="#i_ret">ret</a> i32 1
 | |
| IfUnequal:
 | |
|   <a href="#i_ret">ret</a> i32 0
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
 | |
|    several different places.  It is a generalization of the '<tt>br</tt>'
 | |
|    instruction, allowing a branch to occur to one of many possible
 | |
|    destinations.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
 | |
|    comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
 | |
|    and an array of pairs of comparison value constants and '<tt>label</tt>'s.
 | |
|    The table is not allowed to contain duplicate constant entries.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The <tt>switch</tt> instruction specifies a table of values and
 | |
|    destinations. When the '<tt>switch</tt>' instruction is executed, this table
 | |
|    is searched for the given value.  If the value is found, control flow is
 | |
|    transferred to the corresponding destination; otherwise, control flow is
 | |
|    transferred to the default destination.</p>
 | |
| 
 | |
| <h5>Implementation:</h5>
 | |
| <p>Depending on properties of the target machine and the particular
 | |
|    <tt>switch</tt> instruction, this instruction may be code generated in
 | |
|    different ways.  For example, it could be generated as a series of chained
 | |
|    conditional branches or with a lookup table.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|  <i>; Emulate a conditional br instruction</i>
 | |
|  %Val = <a href="#i_zext">zext</a> i1 %value to i32
 | |
|  switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
 | |
| 
 | |
|  <i>; Emulate an unconditional br instruction</i>
 | |
|  switch i32 0, label %dest [ ]
 | |
| 
 | |
|  <i>; Implement a jump table:</i>
 | |
|  switch i32 %val, label %otherwise [ i32 0, label %onzero
 | |
|                                      i32 1, label %onone
 | |
|                                      i32 2, label %ontwo ]
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
 | |
|    within the current function, whose address is specified by
 | |
|    "<tt>address</tt>".  Address must be derived from a <a
 | |
|    href="#blockaddress">blockaddress</a> constant.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
 | |
|    rest of the arguments indicate the full set of possible destinations that the
 | |
|    address may point to.  Blocks are allowed to occur multiple times in the
 | |
|    destination list, though this isn't particularly useful.</p>
 | |
| 
 | |
| <p>This destination list is required so that dataflow analysis has an accurate
 | |
|    understanding of the CFG.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>Control transfers to the block specified in the address argument.  All
 | |
|    possible destination blocks must be listed in the label list, otherwise this
 | |
|    instruction has undefined behavior.  This implies that jumps to labels
 | |
|    defined in other functions have undefined behavior as well.</p>
 | |
| 
 | |
| <h5>Implementation:</h5>
 | |
| 
 | |
| <p>This is typically implemented with a jump through a register.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|  indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ptr to function ty> <function ptr val>(<function args>) [<a href="#fnattrs">fn attrs</a>]
 | |
|                 to label <normal label> unwind label <exception label>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
 | |
|    function, with the possibility of control flow transfer to either the
 | |
|    '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
 | |
|    function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
 | |
|    control flow will return to the "normal" label.  If the callee (or any
 | |
|    indirect callees) returns via the "<a href="#i_resume"><tt>resume</tt></a>"
 | |
|    instruction or other exception handling mechanism, control is interrupted and
 | |
|    continued at the dynamically nearest "exception" label.</p>
 | |
| 
 | |
| <p>The '<tt>exception</tt>' label is a
 | |
|    <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
 | |
|    exception. As such, '<tt>exception</tt>' label is required to have the
 | |
|    "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
 | |
|    the information about the behavior of the program after unwinding
 | |
|    happens, as its first non-PHI instruction. The restrictions on the
 | |
|    "<tt>landingpad</tt>" instruction's tightly couples it to the
 | |
|    "<tt>invoke</tt>" instruction, so that the important information contained
 | |
|    within the "<tt>landingpad</tt>" instruction can't be lost through normal
 | |
|    code motion.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction requires several arguments:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
 | |
|       convention</a> the call should use.  If none is specified, the call
 | |
|       defaults to using C calling conventions.</li>
 | |
| 
 | |
|   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
 | |
|       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
 | |
|       '<tt>inreg</tt>' attributes are valid here.</li>
 | |
| 
 | |
|   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
 | |
|       function value being invoked.  In most cases, this is a direct function
 | |
|       invocation, but indirect <tt>invoke</tt>s are just as possible, branching
 | |
|       off an arbitrary pointer to function value.</li>
 | |
| 
 | |
|   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
 | |
|       function to be invoked. </li>
 | |
| 
 | |
|   <li>'<tt>function args</tt>': argument list whose types match the function
 | |
|       signature argument types and parameter attributes. All arguments must be
 | |
|       of <a href="#t_firstclass">first class</a> type. If the function
 | |
|       signature indicates the function accepts a variable number of arguments,
 | |
|       the extra arguments can be specified.</li>
 | |
| 
 | |
|   <li>'<tt>normal label</tt>': the label reached when the called function
 | |
|       executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
 | |
| 
 | |
|   <li>'<tt>exception label</tt>': the label reached when a callee returns via
 | |
|       the <a href="#i_resume"><tt>resume</tt></a> instruction or other exception
 | |
|       handling mechanism.</li>
 | |
| 
 | |
|   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
 | |
|       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
 | |
|       '<tt>readnone</tt>' attributes are valid here.</li>
 | |
| </ol>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This instruction is designed to operate as a standard
 | |
|    '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
 | |
|    primary difference is that it establishes an association with a label, which
 | |
|    is used by the runtime library to unwind the stack.</p>
 | |
| 
 | |
| <p>This instruction is used in languages with destructors to ensure that proper
 | |
|    cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
 | |
|    exception.  Additionally, this is important for implementation of
 | |
|    '<tt>catch</tt>' clauses in high-level languages that support them.</p>
 | |
| 
 | |
| <p>For the purposes of the SSA form, the definition of the value returned by the
 | |
|    '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
 | |
|    block to the "normal" label. If the callee unwinds then no return value is
 | |
|    available.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %retval = invoke i32 @Test(i32 15) to label %Continue
 | |
|               unwind label %TestCleanup              <i>; {i32}:retval set</i>
 | |
|   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
 | |
|               unwind label %TestCleanup              <i>; {i32}:retval set</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
|  <!-- _______________________________________________________________________ -->
 | |
|  
 | |
| <h4>
 | |
|   <a name="i_resume">'<tt>resume</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   resume <type> <value>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
 | |
|    successors.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>resume</tt>' instruction requires one argument, which must have the
 | |
|    same type as the result of any '<tt>landingpad</tt>' instruction in the same
 | |
|    function.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>resume</tt>' instruction resumes propagation of an existing
 | |
|    (in-flight) exception whose unwinding was interrupted with
 | |
|    a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   resume { i8*, i32 } %exn
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| 
 | |
| <h4>
 | |
|   <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   unreachable
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
 | |
|    instruction is used to inform the optimizer that a particular portion of the
 | |
|    code is not reachable.  This can be used to indicate that the code after a
 | |
|    no-return function cannot be reached, and other facts.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="binaryops">Binary Operations</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Binary operators are used to do most of the computation in a program.  They
 | |
|    require two operands of the same type, execute an operation on them, and
 | |
|    produce a single value.  The operands might represent multiple data, as is
 | |
|    the case with the <a href="#t_vector">vector</a> data type.  The result value
 | |
|    has the same type as its operands.</p>
 | |
| 
 | |
| <p>There are several different binary operators:</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_add">'<tt>add</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = add <ty> <op1>, <op2>          <i>; yields {ty}:result</i>
 | |
|   <result> = add nuw <ty> <op1>, <op2>      <i>; yields {ty}:result</i>
 | |
|   <result> = add nsw <ty> <op1>, <op2>      <i>; yields {ty}:result</i>
 | |
|   <result> = add nuw nsw <ty> <op1>, <op2>  <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>add</tt>' instruction must
 | |
|    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
 | |
|    integer values. Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the integer sum of the two operands.</p>
 | |
| 
 | |
| <p>If the sum has unsigned overflow, the result returned is the mathematical
 | |
|    result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
 | |
| 
 | |
| <p>Because LLVM integers use a two's complement representation, this instruction
 | |
|    is appropriate for both signed and unsigned integers.</p>
 | |
| 
 | |
| <p><tt>nuw</tt> and <tt>nsw</tt> stand for "No Unsigned Wrap"
 | |
|    and "No Signed Wrap", respectively. If the <tt>nuw</tt> and/or
 | |
|    <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
 | |
|    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
 | |
|    respectively, occurs.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fadd <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>fadd</tt>' instruction must be
 | |
|    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
 | |
|    floating point values. Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the floating point sum of the two operands.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_sub">'<tt>sub</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = sub <ty> <op1>, <op2>          <i>; yields {ty}:result</i>
 | |
|   <result> = sub nuw <ty> <op1>, <op2>      <i>; yields {ty}:result</i>
 | |
|   <result> = sub nsw <ty> <op1>, <op2>      <i>; yields {ty}:result</i>
 | |
|   <result> = sub nuw nsw <ty> <op1>, <op2>  <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>sub</tt>' instruction returns the difference of its two
 | |
|    operands.</p>
 | |
| 
 | |
| <p>Note that the '<tt>sub</tt>' instruction is used to represent the
 | |
|    '<tt>neg</tt>' instruction present in most other intermediate
 | |
|    representations.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>sub</tt>' instruction must
 | |
|    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
 | |
|    integer values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the integer difference of the two operands.</p>
 | |
| 
 | |
| <p>If the difference has unsigned overflow, the result returned is the
 | |
|    mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
 | |
|    result.</p>
 | |
| 
 | |
| <p>Because LLVM integers use a two's complement representation, this instruction
 | |
|    is appropriate for both signed and unsigned integers.</p>
 | |
| 
 | |
| <p><tt>nuw</tt> and <tt>nsw</tt> stand for "No Unsigned Wrap"
 | |
|    and "No Signed Wrap", respectively. If the <tt>nuw</tt> and/or
 | |
|    <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
 | |
|    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
 | |
|    respectively, occurs.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
 | |
|   <result> = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fsub <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fsub</tt>' instruction returns the difference of its two
 | |
|    operands.</p>
 | |
| 
 | |
| <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
 | |
|    '<tt>fneg</tt>' instruction present in most other intermediate
 | |
|    representations.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>fsub</tt>' instruction must be
 | |
|    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
 | |
|    floating point values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the floating point difference of the two operands.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
 | |
|   <result> = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_mul">'<tt>mul</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = mul <ty> <op1>, <op2>          <i>; yields {ty}:result</i>
 | |
|   <result> = mul nuw <ty> <op1>, <op2>      <i>; yields {ty}:result</i>
 | |
|   <result> = mul nsw <ty> <op1>, <op2>      <i>; yields {ty}:result</i>
 | |
|   <result> = mul nuw nsw <ty> <op1>, <op2>  <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>mul</tt>' instruction must
 | |
|    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
 | |
|    integer values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the integer product of the two operands.</p>
 | |
| 
 | |
| <p>If the result of the multiplication has unsigned overflow, the result
 | |
|    returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
 | |
|    width of the result.</p>
 | |
| 
 | |
| <p>Because LLVM integers use a two's complement representation, and the result
 | |
|    is the same width as the operands, this instruction returns the correct
 | |
|    result for both signed and unsigned integers.  If a full product
 | |
|    (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
 | |
|    be sign-extended or zero-extended as appropriate to the width of the full
 | |
|    product.</p>
 | |
| 
 | |
| <p><tt>nuw</tt> and <tt>nsw</tt> stand for "No Unsigned Wrap"
 | |
|    and "No Signed Wrap", respectively. If the <tt>nuw</tt> and/or
 | |
|    <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
 | |
|    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
 | |
|    respectively, occurs.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fmul <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>fmul</tt>' instruction must be
 | |
|    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
 | |
|    floating point values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the floating point product of the two operands.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = udiv <ty> <op1>, <op2>         <i>; yields {ty}:result</i>
 | |
|   <result> = udiv exact <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>udiv</tt>' instruction must be
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the unsigned integer quotient of the two operands.</p>
 | |
| 
 | |
| <p>Note that unsigned integer division and signed integer division are distinct
 | |
|    operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
 | |
| 
 | |
| <p>Division by zero leads to undefined behavior.</p>
 | |
| 
 | |
| <p>If the <tt>exact</tt> keyword is present, the result value of the
 | |
|    <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a
 | |
|   multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = sdiv <ty> <op1>, <op2>         <i>; yields {ty}:result</i>
 | |
|   <result> = sdiv exact <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the signed integer quotient of the two operands rounded
 | |
|    towards zero.</p>
 | |
| 
 | |
| <p>Note that signed integer division and unsigned integer division are distinct
 | |
|    operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
 | |
| 
 | |
| <p>Division by zero leads to undefined behavior. Overflow also leads to
 | |
|    undefined behavior; this is a rare case, but can occur, for example, by doing
 | |
|    a 32-bit division of -2147483648 by -1.</p>
 | |
| 
 | |
| <p>If the <tt>exact</tt> keyword is present, the result value of the
 | |
|    <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would
 | |
|    be rounded.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fdiv <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
 | |
|    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
 | |
|    floating point values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is the floating point quotient of the two operands.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_urem">'<tt>urem</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = urem <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
 | |
|    division of its two arguments.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>urem</tt>' instruction must be
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
 | |
|    This instruction always performs an unsigned division to get the
 | |
|    remainder.</p>
 | |
| 
 | |
| <p>Note that unsigned integer remainder and signed integer remainder are
 | |
|    distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
 | |
| 
 | |
| <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_srem">'<tt>srem</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = srem <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
 | |
|    division of its two operands. This instruction can also take
 | |
|    <a href="#t_vector">vector</a> versions of the values in which case the
 | |
|    elements must be integers.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>srem</tt>' instruction must be
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This instruction returns the <i>remainder</i> of a division (where the result
 | |
|    is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
 | |
|    <i>modulo</i> operator (where the result is either zero or has the same sign
 | |
|    as the divisor, <tt>op2</tt>) of a value.
 | |
|    For more information about the difference,
 | |
|    see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
 | |
|    Math Forum</a>. For a table of how this is implemented in various languages,
 | |
|    please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
 | |
|    Wikipedia: modulo operation</a>.</p>
 | |
| 
 | |
| <p>Note that signed integer remainder and unsigned integer remainder are
 | |
|    distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
 | |
| 
 | |
| <p>Taking the remainder of a division by zero leads to undefined behavior.
 | |
|    Overflow also leads to undefined behavior; this is a rare case, but can
 | |
|    occur, for example, by taking the remainder of a 32-bit division of
 | |
|    -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
 | |
|    lets srem be implemented using instructions that return both the result of
 | |
|    the division and the remainder.)</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_frem">'<tt>frem</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = frem <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
 | |
|    its two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>frem</tt>' instruction must be
 | |
|    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
 | |
|    floating point values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This instruction returns the <i>remainder</i> of a division.  The remainder
 | |
|    has the same sign as the dividend.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="bitwiseops">Bitwise Binary Operations</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
 | |
|    program.  They are generally very efficient instructions and can commonly be
 | |
|    strength reduced from other instructions.  They require two operands of the
 | |
|    same type, execute an operation on them, and produce a single value.  The
 | |
|    resulting value is the same type as its operands.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_shl">'<tt>shl</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = shl <ty> <op1>, <op2>           <i>; yields {ty}:result</i>
 | |
|   <result> = shl nuw <ty> <op1>, <op2>       <i>; yields {ty}:result</i>
 | |
|   <result> = shl nsw <ty> <op1>, <op2>       <i>; yields {ty}:result</i>
 | |
|   <result> = shl nuw nsw <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
 | |
|    a specified number of bits.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>Both arguments to the '<tt>shl</tt>' instruction must be the
 | |
|     same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
 | |
|     integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
 | |
|    2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
 | |
|    is (statically or dynamically) negative or equal to or larger than the number
 | |
|    of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
 | |
|    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
 | |
|    shift amount in <tt>op2</tt>.</p>
 | |
| 
 | |
| <p>If the <tt>nuw</tt> keyword is present, then the shift produces a 
 | |
|    <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits.  If
 | |
|    the <tt>nsw</tt> keyword is present, then the shift produces a
 | |
|    <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree
 | |
|    with the resultant sign bit.  As such, NUW/NSW have the same semantics as
 | |
|    they would if the shift were expressed as a mul instruction with the same
 | |
|    nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = shl i32 4, %var   <i>; yields {i32}: 4 << %var</i>
 | |
|   <result> = shl i32 4, 2      <i>; yields {i32}: 16</i>
 | |
|   <result> = shl i32 1, 10     <i>; yields {i32}: 1024</i>
 | |
|   <result> = shl i32 1, 32     <i>; undefined</i>
 | |
|   <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   <i>; yields: result=<2 x i32> < i32 2, i32 4></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = lshr <ty> <op1>, <op2>         <i>; yields {ty}:result</i>
 | |
|   <result> = lshr exact <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
 | |
|    operand shifted to the right a specified number of bits with zero fill.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    type. '<tt>op2</tt>' is treated as an unsigned value.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This instruction always performs a logical shift right operation. The most
 | |
|    significant bits of the result will be filled with zero bits after the shift.
 | |
|    If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
 | |
|    number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
 | |
|    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
 | |
|    shift amount in <tt>op2</tt>.</p>
 | |
| 
 | |
| <p>If the <tt>exact</tt> keyword is present, the result value of the
 | |
|    <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
 | |
|    shifted out are non-zero.</p>
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
 | |
|   <result> = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
 | |
|   <result> = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
 | |
|   <result> = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
 | |
|   <result> = lshr i32 1, 32  <i>; undefined</i>
 | |
|   <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   <i>; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = ashr <ty> <op1>, <op2>         <i>; yields {ty}:result</i>
 | |
|   <result> = ashr exact <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
 | |
|    operand shifted to the right a specified number of bits with sign
 | |
|    extension.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This instruction always performs an arithmetic shift right operation, The
 | |
|    most significant bits of the result will be filled with the sign bit
 | |
|    of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
 | |
|    larger than the number of bits in <tt>op1</tt>, the result is undefined. If
 | |
|    the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
 | |
|    the corresponding shift amount in <tt>op2</tt>.</p>
 | |
| 
 | |
| <p>If the <tt>exact</tt> keyword is present, the result value of the
 | |
|    <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
 | |
|    shifted out are non-zero.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
 | |
|   <result> = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
 | |
|   <result> = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
 | |
|   <result> = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
 | |
|   <result> = ashr i32 1, 32  <i>; undefined</i>
 | |
|   <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   <i>; yields: result=<2 x i32> < i32 -1, i32 0></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_and">'<tt>and</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = and <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
 | |
|    operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>and</tt>' instruction must be
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
 | |
| 
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <th>In0</th>
 | |
|       <th>In1</th>
 | |
|       <th>Out</th>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = and i32 4, %var         <i>; yields {i32}:result = 4 & %var</i>
 | |
|   <result> = and i32 15, 40          <i>; yields {i32}:result = 8</i>
 | |
|   <result> = and i32 4, 8            <i>; yields {i32}:result = 0</i>
 | |
| </pre>
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_or">'<tt>or</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = or <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
 | |
|    two operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>or</tt>' instruction must be
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
 | |
| 
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <th>In0</th>
 | |
|       <th>In1</th>
 | |
|       <th>Out</th>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
 | |
|   <result> = or i32 15, 40          <i>; yields {i32}:result = 47</i>
 | |
|   <result> = or i32 4, 8            <i>; yields {i32}:result = 12</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_xor">'<tt>xor</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = xor <ty> <op1>, <op2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
 | |
|    its two operands.  The <tt>xor</tt> is used to implement the "one's
 | |
|    complement" operation, which is the "~" operator in C.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The two arguments to the '<tt>xor</tt>' instruction must be
 | |
|    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
 | |
|    values.  Both arguments must have identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
 | |
| 
 | |
| <table border="1" cellspacing="0" cellpadding="4">
 | |
|   <tbody>
 | |
|     <tr>
 | |
|       <th>In0</th>
 | |
|       <th>In1</th>
 | |
|       <th>Out</th>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|       <td>1</td>
 | |
|     </tr>
 | |
|     <tr>
 | |
|       <td>1</td>
 | |
|       <td>1</td>
 | |
|       <td>0</td>
 | |
|     </tr>
 | |
|   </tbody>
 | |
| </table>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
 | |
|   <result> = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
 | |
|   <result> = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
 | |
|   <result> = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="vectorops">Vector Operations</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM supports several instructions to represent vector operations in a
 | |
|    target-independent manner.  These instructions cover the element-access and
 | |
|    vector-specific operations needed to process vectors effectively.  While LLVM
 | |
|    does directly support these vector operations, many sophisticated algorithms
 | |
|    will want to use target-specific intrinsics to take full advantage of a
 | |
|    specific target.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = extractelement <n x <ty>> <val>, i32 <idx>    <i>; yields <ty></i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
 | |
|    from a vector at a specified index.</p>
 | |
| 
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
 | |
|    of <a href="#t_vector">vector</a> type.  The second operand is an index
 | |
|    indicating the position from which to extract the element.  The index may be
 | |
|    a variable.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The result is a scalar of the same type as the element type of
 | |
|    <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
 | |
|    <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
 | |
|    results are undefined.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = extractelement <4 x i32> %vec, i32 0    <i>; yields i32</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx>    <i>; yields <n x <ty>></i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
 | |
|    vector at a specified index.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
 | |
|    of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
 | |
|    whose type must equal the element type of the first operand.  The third
 | |
|    operand is an index indicating the position at which to insert the value.
 | |
|    The index may be a variable.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The result is a vector of the same type as <tt>val</tt>.  Its element values
 | |
|    are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
 | |
|    value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
 | |
|    results are undefined.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = insertelement <4 x i32> %vec, i32 1, i32 0    <i>; yields <4 x i32></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    <i>; yields <m x <ty>></i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
 | |
|    from two input vectors, returning a vector with the same element type as the
 | |
|    input and length that is the same as the shuffle mask.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
 | |
|    with the same type.  The third argument is a shuffle mask whose
 | |
|    element type is always 'i32'.  The result of the instruction is a vector
 | |
|    whose length is the same as the shuffle mask and whose element type is the
 | |
|    same as the element type of the first two operands.</p>
 | |
| 
 | |
| <p>The shuffle mask operand is required to be a constant vector with either
 | |
|    constant integer or undef values.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The elements of the two input vectors are numbered from left to right across
 | |
|    both of the vectors.  The shuffle mask operand specifies, for each element of
 | |
|    the result vector, which element of the two input vectors the result element
 | |
|    gets.  The element selector may be undef (meaning "don't care") and the
 | |
|    second operand may be undef if performing a shuffle from only one vector.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
 | |
|                           <4 x i32> <i32 0, i32 4, i32 1, i32 5>  <i>; yields <4 x i32></i>
 | |
|   <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
 | |
|                           <4 x i32> <i32 0, i32 1, i32 2, i32 3>  <i>; yields <4 x i32></i> - Identity shuffle.
 | |
|   <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
 | |
|                           <4 x i32> <i32 0, i32 1, i32 2, i32 3>  <i>; yields <4 x i32></i>
 | |
|   <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
 | |
|                           <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  <i>; yields <8 x i32></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="aggregateops">Aggregate Operations</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM supports several instructions for working with
 | |
|   <a href="#t_aggregate">aggregate</a> values.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
 | |
|    from an <a href="#t_aggregate">aggregate</a> value.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
 | |
|    of <a href="#t_struct">struct</a> or
 | |
|    <a href="#t_array">array</a> type.  The operands are constant indices to
 | |
|    specify which value to extract in a similar manner as indices in a
 | |
|    '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
 | |
|    <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
 | |
|      <ul>
 | |
|        <li>Since the value being indexed is not a pointer, the first index is
 | |
|            omitted and assumed to be zero.</li>
 | |
|        <li>At least one index must be specified.</li>
 | |
|        <li>Not only struct indices but also array indices must be in
 | |
|            bounds.</li>
 | |
|      </ul>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The result is the value at the position in the aggregate specified by the
 | |
|    index operands.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    <i>; yields <aggregate type></i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
 | |
|    in an <a href="#t_aggregate">aggregate</a> value.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
 | |
|    of <a href="#t_struct">struct</a> or
 | |
|    <a href="#t_array">array</a> type.  The second operand is a first-class
 | |
|    value to insert.  The following operands are constant indices indicating
 | |
|    the position at which to insert the value in a similar manner as indices in a
 | |
|    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
 | |
|    value to insert must have the same type as the value identified by the
 | |
|    indices.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
 | |
|    that of <tt>val</tt> except that the value at the position specified by the
 | |
|    indices is that of <tt>elt</tt>.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
 | |
|   %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
 | |
|   %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="memoryops">Memory Access and Addressing Operations</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>A key design point of an SSA-based representation is how it represents
 | |
|    memory.  In LLVM, no memory locations are in SSA form, which makes things
 | |
|    very simple.  This section describes how to read, write, and allocate
 | |
|    memory in LLVM.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>]     <i>; yields {type*}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
 | |
|    currently executing function, to be automatically released when this function
 | |
|    returns to its caller. The object is always allocated in the generic address
 | |
|    space (address space zero).</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>alloca</tt>' instruction
 | |
|    allocates <tt>sizeof(<type>)*NumElements</tt> bytes of memory on the
 | |
|    runtime stack, returning a pointer of the appropriate type to the program.
 | |
|    If "NumElements" is specified, it is the number of elements allocated,
 | |
|    otherwise "NumElements" is defaulted to be one.  If a constant alignment is
 | |
|    specified, the value result of the allocation is guaranteed to be aligned to
 | |
|    at least that boundary.  If not specified, or if zero, the target can choose
 | |
|    to align the allocation on any convenient boundary compatible with the
 | |
|    type.</p>
 | |
| 
 | |
| <p>'<tt>type</tt>' may be any sized type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>Memory is allocated; a pointer is returned.  The operation is undefined if
 | |
|    there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
 | |
|    memory is automatically released when the function returns.  The
 | |
|    '<tt>alloca</tt>' instruction is commonly used to represent automatic
 | |
|    variables that must have an address available.  When the function returns
 | |
|    (either with the <tt><a href="#i_ret">ret</a></tt>
 | |
|    or <tt><a href="#i_resume">resume</a></tt> instructions), the memory is
 | |
|    reclaimed.  Allocating zero bytes is legal, but the result is undefined.
 | |
|    The order in which memory is allocated (ie., which way the stack grows) is
 | |
|    not specified.</p>
 | |
| 
 | |
| <p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
 | |
|   %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
 | |
|   %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
 | |
|   %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_load">'<tt>load</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
 | |
|   <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
 | |
|   !<index> = !{ i32 1 }
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
 | |
|    from which to load.  The pointer must point to
 | |
|    a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
 | |
|    marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
 | |
|    number or order of execution of this <tt>load</tt> with other <a
 | |
|    href="#volatile">volatile operations</a>.</p>
 | |
| 
 | |
| <p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
 | |
|    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
 | |
|    argument.  The <code>release</code> and <code>acq_rel</code> orderings are
 | |
|    not valid on <code>load</code> instructions.  Atomic loads produce <a
 | |
|    href="#memorymodel">defined</a> results when they may see multiple atomic
 | |
|    stores.  The type of the pointee must be an integer type whose bit width
 | |
|    is a power of two greater than or equal to eight and less than or equal
 | |
|    to a target-specific size limit. <code>align</code> must be explicitly 
 | |
|    specified on atomic loads, and the load has undefined behavior if the
 | |
|    alignment is not set to a value which is at least the size in bytes of
 | |
|    the pointee. <code>!nontemporal</code> does not have any defined semantics
 | |
|    for atomic loads.</p>
 | |
| 
 | |
| <p>The optional constant <tt>align</tt> argument specifies the alignment of the
 | |
|    operation (that is, the alignment of the memory address). A value of 0 or an
 | |
|    omitted <tt>align</tt> argument means that the operation has the preferential
 | |
|    alignment for the target. It is the responsibility of the code emitter to
 | |
|    ensure that the alignment information is correct. Overestimating the
 | |
|    alignment results in undefined behavior. Underestimating the alignment may
 | |
|    produce less efficient code. An alignment of 1 is always safe.</p>
 | |
| 
 | |
| <p>The optional <tt>!nontemporal</tt> metadata must reference a single
 | |
|    metatadata name <index> corresponding to a metadata node with
 | |
|    one <tt>i32</tt> entry of value 1.  The existence of
 | |
|    the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
 | |
|    and code generator that this load is not expected to be reused in the cache.
 | |
|    The code generator may select special instructions to save cache bandwidth,
 | |
|    such as the <tt>MOVNT</tt> instruction on x86.</p>
 | |
| 
 | |
| <p>The optional <tt>!invariant.load</tt> metadata must reference a single
 | |
|    metatadata name <index> corresponding to a metadata node with no
 | |
|    entries.  The existence of the <tt>!invariant.load</tt> metatadata on the
 | |
|    instruction tells the optimizer and code generator that this load address
 | |
|    points to memory which does not change value during program execution.
 | |
|    The optimizer may then move this load around, for example, by hoisting it
 | |
|    out of loops using loop invariant code motion.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The location of memory pointed to is loaded.  If the value being loaded is of
 | |
|    scalar type then the number of bytes read does not exceed the minimum number
 | |
|    of bytes needed to hold all bits of the type.  For example, loading an
 | |
|    <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
 | |
|    <tt>i20</tt> with a size that is not an integral number of bytes, the result
 | |
|    is undefined if the value was not originally written using a store of the
 | |
|    same type.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
 | |
|   <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
 | |
|   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_store">'<tt>store</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        <i>; yields {void}</i>
 | |
|   store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  <i>; yields {void}</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
 | |
|    and an address at which to store it.  The type of the
 | |
|    '<tt><pointer></tt>' operand must be a pointer to
 | |
|    the <a href="#t_firstclass">first class</a> type of the
 | |
|    '<tt><value></tt>' operand. If the <tt>store</tt> is marked as
 | |
|    <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
 | |
|    order of execution of this <tt>store</tt> with other <a
 | |
|    href="#volatile">volatile operations</a>.</p>
 | |
| 
 | |
| <p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
 | |
|    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
 | |
|    argument.  The <code>acquire</code> and <code>acq_rel</code> orderings aren't
 | |
|    valid on <code>store</code> instructions.  Atomic loads produce <a
 | |
|    href="#memorymodel">defined</a> results when they may see multiple atomic
 | |
|    stores. The type of the pointee must be an integer type whose bit width
 | |
|    is a power of two greater than or equal to eight and less than or equal
 | |
|    to a target-specific size limit. <code>align</code> must be explicitly 
 | |
|    specified on atomic stores, and the store has undefined behavior if the
 | |
|    alignment is not set to a value which is at least the size in bytes of
 | |
|    the pointee. <code>!nontemporal</code> does not have any defined semantics
 | |
|    for atomic stores.</p>
 | |
| 
 | |
| <p>The optional constant "align" argument specifies the alignment of the
 | |
|    operation (that is, the alignment of the memory address). A value of 0 or an
 | |
|    omitted "align" argument means that the operation has the preferential
 | |
|    alignment for the target. It is the responsibility of the code emitter to
 | |
|    ensure that the alignment information is correct. Overestimating the
 | |
|    alignment results in an undefined behavior. Underestimating the alignment may
 | |
|    produce less efficient code. An alignment of 1 is always safe.</p>
 | |
| 
 | |
| <p>The optional !nontemporal metadata must reference a single metatadata
 | |
|    name <index> corresponding to a metadata node with one i32 entry of
 | |
|    value 1.  The existence of the !nontemporal metatadata on the
 | |
|    instruction tells the optimizer and code generator that this load is
 | |
|    not expected to be reused in the cache.  The code generator may
 | |
|    select special instructions to save cache bandwidth, such as the
 | |
|    MOVNT instruction on x86.</p>
 | |
| 
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The contents of memory are updated to contain '<tt><value></tt>' at the
 | |
|    location specified by the '<tt><pointer></tt>' operand.  If
 | |
|    '<tt><value></tt>' is of scalar type then the number of bytes written
 | |
|    does not exceed the minimum number of bytes needed to hold all bits of the
 | |
|    type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
 | |
|    writing a value of a type like <tt>i20</tt> with a size that is not an
 | |
|    integral number of bytes, it is unspecified what happens to the extra bits
 | |
|    that do not belong to the type, but they will typically be overwritten.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
 | |
|   store i32 3, i32* %ptr                          <i>; yields {void}</i>
 | |
|   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
| <a name="i_fence">'<tt>fence</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   fence [singlethread] <ordering>                   <i>; yields {void}</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
 | |
| between operations.</p>
 | |
| 
 | |
| <h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
 | |
| href="#ordering">ordering</a> argument which defines what
 | |
| <i>synchronizes-with</i> edges they add.  They can only be given
 | |
| <code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
 | |
| <code>seq_cst</code> orderings.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>A fence <var>A</var> which has (at least) <code>release</code> ordering
 | |
| semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
 | |
| <code>acquire</code> ordering semantics if and only if there exist atomic
 | |
| operations <var>X</var> and <var>Y</var>, both operating on some atomic object
 | |
| <var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
 | |
| <var>X</var> modifies <var>M</var> (either directly or through some side effect
 | |
| of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
 | |
| <var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
 | |
| <i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
 | |
| than an explicit <code>fence</code>, one (but not both) of the atomic operations
 | |
| <var>X</var> or <var>Y</var> might provide a <code>release</code> or
 | |
| <code>acquire</code> (resp.) ordering constraint and still
 | |
| <i>synchronize-with</i> the explicit <code>fence</code> and establish the
 | |
| <i>happens-before</i> edge.</p>
 | |
| 
 | |
| <p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
 | |
| having both <code>acquire</code> and <code>release</code> semantics specified
 | |
| above, participates in the global program order of other <code>seq_cst</code>
 | |
| operations and/or fences.</p>
 | |
| 
 | |
| <p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
 | |
| specifies that the fence only synchronizes with other fences in the same
 | |
| thread.  (This is useful for interacting with signal handlers.)</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   fence acquire                          <i>; yields {void}</i>
 | |
|   fence singlethread seq_cst             <i>; yields {void}</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
| <a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering>  <i>; yields {ty}</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
 | |
| It loads a value in memory and compares it to a given value. If they are
 | |
| equal, it stores a new value into the memory.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
 | |
| address to operate on, a value to compare to the value currently be at that
 | |
| address, and a new value to place at that address if the compared values are
 | |
| equal.  The type of '<var><cmp></var>' must be an integer type whose
 | |
| bit width is a power of two greater than or equal to eight and less than
 | |
| or equal to a target-specific size limit. '<var><cmp></var>' and
 | |
| '<var><new></var>' must have the same type, and the type of
 | |
| '<var><pointer></var>' must be a pointer to that type. If the
 | |
| <code>cmpxchg</code> is marked as <code>volatile</code>, then the
 | |
| optimizer is not allowed to modify the number or order of execution
 | |
| of this <code>cmpxchg</code> with other <a href="#volatile">volatile
 | |
| operations</a>.</p>
 | |
| 
 | |
| <!-- FIXME: Extend allowed types. -->
 | |
| 
 | |
| <p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
 | |
| <code>cmpxchg</code> synchronizes with other atomic operations.</p>
 | |
| 
 | |
| <p>The optional "<code>singlethread</code>" argument declares that the
 | |
| <code>cmpxchg</code> is only atomic with respect to code (usually signal
 | |
| handlers) running in the same thread as the <code>cmpxchg</code>.  Otherwise the
 | |
| cmpxchg is atomic with respect to all other code in the system.</p>
 | |
| 
 | |
| <p>The pointer passed into cmpxchg must have alignment greater than or equal to
 | |
| the size in memory of the operand.
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The contents of memory at the location specified by the
 | |
| '<tt><pointer></tt>' operand is read and compared to
 | |
| '<tt><cmp></tt>'; if the read value is the equal,
 | |
| '<tt><new></tt>' is written.  The original value at the location
 | |
| is returned.
 | |
| 
 | |
| <p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
 | |
| purpose of identifying <a href="#release_sequence">release sequences</a>.  A
 | |
| failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
 | |
| parameter determined by dropping any <code>release</code> part of the
 | |
| <code>cmpxchg</code>'s ordering.</p>
 | |
| 
 | |
| <!--
 | |
| FIXME: Is compare_exchange_weak() necessary?  (Consider after we've done
 | |
| optimization work on ARM.)
 | |
| 
 | |
| FIXME: Is a weaker ordering constraint on failure helpful in practice?
 | |
| -->
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
| entry:
 | |
|   %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered                   <i>; yields {i32}</i>
 | |
|   <a href="#i_br">br</a> label %loop
 | |
| 
 | |
| loop:
 | |
|   %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
 | |
|   %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
 | |
|   %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared          <i>; yields {i32}</i>
 | |
|   %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
 | |
|   <a href="#i_br">br</a> i1 %success, label %done, label %loop
 | |
| 
 | |
| done:
 | |
|   ...
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
| <a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   <i>; yields {ty}</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
 | |
| operation to apply, an address whose value to modify, an argument to the
 | |
| operation.  The operation must be one of the following keywords:</p>
 | |
| <ul>
 | |
|   <li>xchg</li>
 | |
|   <li>add</li>
 | |
|   <li>sub</li>
 | |
|   <li>and</li>
 | |
|   <li>nand</li>
 | |
|   <li>or</li>
 | |
|   <li>xor</li>
 | |
|   <li>max</li>
 | |
|   <li>min</li>
 | |
|   <li>umax</li>
 | |
|   <li>umin</li>
 | |
| </ul>
 | |
| 
 | |
| <p>The type of '<var><value></var>' must be an integer type whose
 | |
| bit width is a power of two greater than or equal to eight and less than
 | |
| or equal to a target-specific size limit.  The type of the
 | |
| '<code><pointer></code>' operand must be a pointer to that type.
 | |
| If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
 | |
| optimizer is not allowed to modify the number or order of execution of this
 | |
| <code>atomicrmw</code> with other <a href="#volatile">volatile
 | |
|   operations</a>.</p>
 | |
| 
 | |
| <!-- FIXME: Extend allowed types. -->
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The contents of memory at the location specified by the
 | |
| '<tt><pointer></tt>' operand are atomically read, modified, and written
 | |
| back.  The original value at the location is returned.  The modification is
 | |
| specified by the <var>operation</var> argument:</p>
 | |
| 
 | |
| <ul>
 | |
|   <li>xchg: <code>*ptr = val</code></li>
 | |
|   <li>add: <code>*ptr = *ptr + val</code></li>
 | |
|   <li>sub: <code>*ptr = *ptr - val</code></li>
 | |
|   <li>and: <code>*ptr = *ptr & val</code></li>
 | |
|   <li>nand: <code>*ptr = ~(*ptr & val)</code></li>
 | |
|   <li>or: <code>*ptr = *ptr | val</code></li>
 | |
|   <li>xor: <code>*ptr = *ptr ^ val</code></li>
 | |
|   <li>max: <code>*ptr = *ptr > val ? *ptr : val</code> (using a signed comparison)</li>
 | |
|   <li>min: <code>*ptr = *ptr < val ? *ptr : val</code> (using a signed comparison)</li>
 | |
|   <li>umax: <code>*ptr = *ptr > val ? *ptr : val</code> (using an unsigned comparison)</li>
 | |
|   <li>umin: <code>*ptr = *ptr < val ? *ptr : val</code> (using an unsigned comparison)</li>
 | |
| </ul>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %old = atomicrmw add i32* %ptr, i32 1 acquire                        <i>; yields {i32}</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
 | |
|   <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
 | |
|   <result> = getelementptr <ptr vector> ptrval, <vector index type> idx 
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
 | |
|    subelement of an <a href="#t_aggregate">aggregate</a> data structure.
 | |
|    It performs address calculation only and does not access memory.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is always a pointer or a vector of pointers,
 | |
|    and forms the basis of the
 | |
|    calculation. The remaining arguments are indices that indicate which of the
 | |
|    elements of the aggregate object are indexed. The interpretation of each
 | |
|    index is dependent on the type being indexed into. The first index always
 | |
|    indexes the pointer value given as the first argument, the second index
 | |
|    indexes a value of the type pointed to (not necessarily the value directly
 | |
|    pointed to, since the first index can be non-zero), etc. The first type
 | |
|    indexed into must be a pointer value, subsequent types can be arrays,
 | |
|    vectors, and structs. Note that subsequent types being indexed into
 | |
|    can never be pointers, since that would require loading the pointer before
 | |
|    continuing calculation.</p>
 | |
| 
 | |
| <p>The type of each index argument depends on the type it is indexing into.
 | |
|    When indexing into a (optionally packed) structure, only <tt>i32</tt>
 | |
|    integer <b>constants</b> are allowed.  When indexing into an array, pointer
 | |
|    or vector, integers of any width are allowed, and they are not required to be
 | |
|    constant.  These integers are treated as signed values where relevant.</p>
 | |
| 
 | |
| <p>For example, let's consider a C code fragment and how it gets compiled to
 | |
|    LLVM:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| struct RT {
 | |
|   char A;
 | |
|   int B[10][20];
 | |
|   char C;
 | |
| };
 | |
| struct ST {
 | |
|   int X;
 | |
|   double Y;
 | |
|   struct RT Z;
 | |
| };
 | |
| 
 | |
| int *foo(struct ST *s) {
 | |
|   return &s[1].Z.B[5][13];
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| <p>The LLVM code generated by Clang is:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| %struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 }
 | |
| %struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT }
 | |
| 
 | |
| define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
 | |
| entry:
 | |
|   %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
 | |
|   ret i32* %arrayidx
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>In the example above, the first index is indexing into the
 | |
|    '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a
 | |
|    '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a
 | |
|    structure. The second index indexes into the third element of the structure,
 | |
|    yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>'
 | |
|    type, another structure. The third index indexes into the second element of
 | |
|    the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The
 | |
|    two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>'
 | |
|    type. The '<tt>getelementptr</tt>' instruction returns a pointer to this
 | |
|    element, thus computing a value of '<tt>i32*</tt>' type.</p>
 | |
| 
 | |
| <p>Note that it is perfectly legal to index partially through a structure,
 | |
|    returning a pointer to an inner element.  Because of this, the LLVM code for
 | |
|    the given testcase is equivalent to:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| define i32* @foo(%struct.ST* %s) {
 | |
|   %t1 = getelementptr %struct.ST* %s, i32 1                 <i>; yields %struct.ST*:%t1</i>
 | |
|   %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         <i>; yields %struct.RT*:%t2</i>
 | |
|   %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         <i>; yields [10 x [20 x i32]]*:%t3</i>
 | |
|   %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
 | |
|   %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
 | |
|   ret i32* %t5
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| <p>If the <tt>inbounds</tt> keyword is present, the result value of the
 | |
|    <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the
 | |
|    base pointer is not an <i>in bounds</i> address of an allocated object,
 | |
|    or if any of the addresses that would be formed by successive addition of
 | |
|    the offsets implied by the indices to the base address with infinitely
 | |
|    precise signed arithmetic are not an <i>in bounds</i> address of that
 | |
|    allocated object. The <i>in bounds</i> addresses for an allocated object
 | |
|    are all the addresses that point into the object, plus the address one
 | |
|    byte past the end.
 | |
|    In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword
 | |
|    applies to each of the computations element-wise. </p>
 | |
| 
 | |
| <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
 | |
|    the base address with silently-wrapping two's complement arithmetic. If the
 | |
|    offsets have a different width from the pointer, they are sign-extended or
 | |
|    truncated to the width of the pointer. The result value of the
 | |
|    <tt>getelementptr</tt> may be outside the object pointed to by the base
 | |
|    pointer. The result value may not necessarily be used to access memory
 | |
|    though, even if it happens to point into allocated storage. See the
 | |
|    <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
 | |
|    information.</p>
 | |
| 
 | |
| <p>The getelementptr instruction is often confusing.  For some more insight into
 | |
|    how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|     <i>; yields [12 x i8]*:aptr</i>
 | |
|     %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
 | |
|     <i>; yields i8*:vptr</i>
 | |
|     %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
 | |
|     <i>; yields i8*:eptr</i>
 | |
|     %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
 | |
|     <i>; yields i32*:iptr</i>
 | |
|     %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
 | |
| </pre>
 | |
| 
 | |
| <p>In cases where the pointer argument is a vector of pointers, only a
 | |
|    single index may be used, and the number of vector elements has to be
 | |
|    the same.  For example: </p>
 | |
| <pre class="doc_code">
 | |
|  %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="convertops">Conversion Operations</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The instructions in this category are the conversion instructions (casting)
 | |
|    which all take a single operand and a type. They perform various bit
 | |
|    conversions on the operand.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = trunc <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>trunc</tt>' instruction truncates its operand to the
 | |
|    type <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
 | |
|    Both types must be of <a href="#t_integer">integer</a> types, or vectors
 | |
|    of the same number of integers.
 | |
|    The bit size of the <tt>value</tt> must be larger than
 | |
|    the bit size of the destination type, <tt>ty2</tt>.
 | |
|    Equal sized types are not allowed.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>trunc</tt>' instruction truncates the high order bits
 | |
|    in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
 | |
|    source size must be larger than the destination size, <tt>trunc</tt> cannot
 | |
|    be a <i>no-op cast</i>.  It will always truncate bits.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
 | |
|   %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
 | |
|   %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
 | |
|   %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> <i>; yields <i8 8, i8 7></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = zext <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>zext</tt>' instruction zero extends its operand to type
 | |
|    <tt>ty2</tt>.</p>
 | |
| 
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
 | |
|    Both types must be of <a href="#t_integer">integer</a> types, or vectors
 | |
|    of the same number of integers.
 | |
|    The bit size of the <tt>value</tt> must be smaller than
 | |
|    the bit size of the destination type,
 | |
|    <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
 | |
|    bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
 | |
| 
 | |
| <p>When zero extending from i1, the result will always be either 0 or 1.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = zext i32 257 to i64              <i>; yields i64:257</i>
 | |
|   %Y = zext i1 true to i32              <i>; yields i32:1</i>
 | |
|   %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> <i>; yields <i32 8, i32 7></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = sext <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
 | |
|    Both types must be of <a href="#t_integer">integer</a> types, or vectors
 | |
|    of the same number of integers.
 | |
|    The bit size of the <tt>value</tt> must be smaller than
 | |
|    the bit size of the destination type,
 | |
|    <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
 | |
|    bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
 | |
|    of the type <tt>ty2</tt>.</p>
 | |
| 
 | |
| <p>When sign extending from i1, the extension always results in -1 or 0.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
 | |
|   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
 | |
|   %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> <i>; yields <i32 8, i32 7></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fptrunc <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
 | |
|    <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
 | |
|    point</a> value to cast and a <a href="#t_floating">floating point</a> type
 | |
|    to cast it to. The size of <tt>value</tt> must be larger than the size of
 | |
|    <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
 | |
|    <i>no-op cast</i>.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
 | |
|    <a href="#t_floating">floating point</a> type to a smaller
 | |
|    <a href="#t_floating">floating point</a> type.  If the value cannot fit
 | |
|    within the destination type, <tt>ty2</tt>, then the results are
 | |
|    undefined.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
 | |
|   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fpext <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
 | |
|    floating point value.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>fpext</tt>' instruction takes a
 | |
|    <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
 | |
|    a <a href="#t_floating">floating point</a> type to cast it to. The source
 | |
|    type must be smaller than the destination type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
 | |
|    <a href="#t_floating">floating point</a> type to a larger
 | |
|    <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
 | |
|    used to make a <i>no-op cast</i> because it always changes bits. Use
 | |
|    <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
 | |
|   %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fptoui <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
 | |
|    unsigned integer equivalent of type <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
 | |
|    scalar or vector <a href="#t_floating">floating point</a> value, and a type
 | |
|    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
 | |
|    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
 | |
|    vector integer type with the same number of elements as <tt>ty</tt></p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>fptoui</tt>' instruction converts its
 | |
|    <a href="#t_floating">floating point</a> operand into the nearest (rounding
 | |
|    towards zero) unsigned integer value. If the value cannot fit
 | |
|    in <tt>ty2</tt>, the results are undefined.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
 | |
|   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
 | |
|   %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fptosi <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fptosi</tt>' instruction converts
 | |
|    <a href="#t_floating">floating point</a> <tt>value</tt> to
 | |
|    type <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
 | |
|    scalar or vector <a href="#t_floating">floating point</a> value, and a type
 | |
|    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
 | |
|    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
 | |
|    vector integer type with the same number of elements as <tt>ty</tt></p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>fptosi</tt>' instruction converts its
 | |
|    <a href="#t_floating">floating point</a> operand into the nearest (rounding
 | |
|    towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
 | |
|    the results are undefined.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
 | |
|   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
 | |
|   %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = uitofp <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
 | |
|    integer and converts that value to the <tt>ty2</tt> type.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
 | |
|    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
 | |
|    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
 | |
|    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
 | |
|    floating point type with the same number of elements as <tt>ty</tt></p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
 | |
|    integer quantity and converts it to the corresponding floating point
 | |
|    value. If the value cannot fit in the floating point value, the results are
 | |
|    undefined.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
 | |
|   %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = sitofp <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
 | |
|    and converts that value to the <tt>ty2</tt> type.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
 | |
|    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
 | |
|    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
 | |
|    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
 | |
|    floating point type with the same number of elements as <tt>ty</tt></p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
 | |
|    quantity and converts it to the corresponding floating point value. If the
 | |
|    value cannot fit in the floating point value, the results are undefined.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
 | |
|   %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = ptrtoint <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of
 | |
|    pointers <tt>value</tt> to
 | |
|    the integer (or vector of integers) type <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
 | |
|    must be a a value of type <a href="#t_pointer">pointer</a> or a vector of
 | |
|     pointers, and a type to cast it to
 | |
|    <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector
 | |
|    of integers type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
 | |
|    <tt>ty2</tt> by interpreting the pointer value as an integer and either
 | |
|    truncating or zero extending that value to the size of the integer type. If
 | |
|    <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
 | |
|    <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
 | |
|    are the same size, then nothing is done (<i>no-op cast</i>) other than a type
 | |
|    change.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = ptrtoint i32* %P to i8                         <i>; yields truncation on 32-bit architecture</i>
 | |
|   %Y = ptrtoint i32* %P to i64                        <i>; yields zero extension on 32-bit architecture</i>
 | |
|   %Z = ptrtoint <4 x i32*> %P to <4 x i64><i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = inttoptr <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
 | |
|    pointer type, <tt>ty2</tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
 | |
|    value to cast, and a type to cast it to, which must be a
 | |
|    <a href="#t_pointer">pointer</a> type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
 | |
|    <tt>ty2</tt> by applying either a zero extension or a truncation depending on
 | |
|    the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
 | |
|    size of a pointer then a truncation is done. If <tt>value</tt> is smaller
 | |
|    than the size of a pointer then a zero extension is done. If they are the
 | |
|    same size, nothing is done (<i>no-op cast</i>).</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
 | |
|   %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
 | |
|   %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
 | |
|   %Z = inttoptr <4 x i32> %G to <4 x i8*><i>; yields truncation of vector G to four pointers</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = bitcast <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
 | |
|    <tt>ty2</tt> without changing any bits.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
 | |
|    non-aggregate first class value, and a type to cast it to, which must also be
 | |
|    a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
 | |
|    of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
 | |
|    identical. If the source type is a pointer, the destination type must also be
 | |
|    a pointer.  This instruction supports bitwise conversion of vectors to
 | |
|    integers and to vectors of other types (as long as they have the same
 | |
|    size).</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
 | |
|    <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
 | |
|    this conversion.  The conversion is done as if the <tt>value</tt> had been
 | |
|    stored to memory and read back as type <tt>ty2</tt>.
 | |
|    Pointer (or vector of pointers) types may only be converted to other pointer
 | |
|    (or vector of pointers) types with this instruction. To convert
 | |
|    pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
 | |
|    <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
 | |
|   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
 | |
|   %Z = bitcast <2 x int> %V to i64;        <i>; yields i64: %V</i>
 | |
|   %Z = bitcast <2 x i32*> %V to <2 x i64*> <i>; yields <2 x i64*></i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="otherops">Other Operations</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The instructions in this category are the "miscellaneous" instructions, which
 | |
|    defy better classification.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = icmp <cond> <ty> <op1>, <op2>   <i>; yields {i1} or {<N x i1>}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
 | |
|    boolean values based on comparison of its two integer, integer vector,
 | |
|    pointer, or pointer vector operands.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
 | |
|    the condition code indicating the kind of comparison to perform. It is not a
 | |
|    value, just a keyword. The possible condition code are:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li><tt>eq</tt>: equal</li>
 | |
|   <li><tt>ne</tt>: not equal </li>
 | |
|   <li><tt>ugt</tt>: unsigned greater than</li>
 | |
|   <li><tt>uge</tt>: unsigned greater or equal</li>
 | |
|   <li><tt>ult</tt>: unsigned less than</li>
 | |
|   <li><tt>ule</tt>: unsigned less or equal</li>
 | |
|   <li><tt>sgt</tt>: signed greater than</li>
 | |
|   <li><tt>sge</tt>: signed greater or equal</li>
 | |
|   <li><tt>slt</tt>: signed less than</li>
 | |
|   <li><tt>sle</tt>: signed less or equal</li>
 | |
| </ol>
 | |
| 
 | |
| <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
 | |
|    <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
 | |
|    typed.  They must also be identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
 | |
|    condition code given as <tt>cond</tt>. The comparison performed always yields
 | |
|    either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
 | |
|    result, as follows:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
 | |
|       <tt>false</tt> otherwise. No sign interpretation is necessary or
 | |
|       performed.</li>
 | |
| 
 | |
|   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
 | |
|       <tt>false</tt> otherwise. No sign interpretation is necessary or
 | |
|       performed.</li>
 | |
| 
 | |
|   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
 | |
|       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
 | |
|       <tt>true</tt> if <tt>op1</tt> is greater than or equal
 | |
|       to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
 | |
|       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
 | |
|       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>sgt</tt>: interprets the operands as signed values and yields
 | |
|       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>sge</tt>: interprets the operands as signed values and yields
 | |
|       <tt>true</tt> if <tt>op1</tt> is greater than or equal
 | |
|       to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>slt</tt>: interprets the operands as signed values and yields
 | |
|       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>sle</tt>: interprets the operands as signed values and yields
 | |
|       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
 | |
| </ol>
 | |
| 
 | |
| <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
 | |
|    values are compared as if they were integers.</p>
 | |
| 
 | |
| <p>If the operands are integer vectors, then they are compared element by
 | |
|    element. The result is an <tt>i1</tt> vector with the same number of elements
 | |
|    as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = icmp eq i32 4, 5          <i>; yields: result=false</i>
 | |
|   <result> = icmp ne float* %X, %X     <i>; yields: result=false</i>
 | |
|   <result> = icmp ult i16  4, 5        <i>; yields: result=true</i>
 | |
|   <result> = icmp sgt i16  4, 5        <i>; yields: result=false</i>
 | |
|   <result> = icmp ule i16 -4, 5        <i>; yields: result=false</i>
 | |
|   <result> = icmp sge i16  4, 5        <i>; yields: result=false</i>
 | |
| </pre>
 | |
| 
 | |
| <p>Note that the code generator does not yet support vector types with
 | |
|    the <tt>icmp</tt> instruction.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = fcmp <cond> <ty> <op1>, <op2>     <i>; yields {i1} or {<N x i1>}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
 | |
|    values based on comparison of its operands.</p>
 | |
| 
 | |
| <p>If the operands are floating point scalars, then the result type is a boolean
 | |
| (<a href="#t_integer"><tt>i1</tt></a>).</p>
 | |
| 
 | |
| <p>If the operands are floating point vectors, then the result type is a vector
 | |
|    of boolean with the same number of elements as the operands being
 | |
|    compared.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
 | |
|    the condition code indicating the kind of comparison to perform. It is not a
 | |
|    value, just a keyword. The possible condition code are:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li><tt>false</tt>: no comparison, always returns false</li>
 | |
|   <li><tt>oeq</tt>: ordered and equal</li>
 | |
|   <li><tt>ogt</tt>: ordered and greater than </li>
 | |
|   <li><tt>oge</tt>: ordered and greater than or equal</li>
 | |
|   <li><tt>olt</tt>: ordered and less than </li>
 | |
|   <li><tt>ole</tt>: ordered and less than or equal</li>
 | |
|   <li><tt>one</tt>: ordered and not equal</li>
 | |
|   <li><tt>ord</tt>: ordered (no nans)</li>
 | |
|   <li><tt>ueq</tt>: unordered or equal</li>
 | |
|   <li><tt>ugt</tt>: unordered or greater than </li>
 | |
|   <li><tt>uge</tt>: unordered or greater than or equal</li>
 | |
|   <li><tt>ult</tt>: unordered or less than </li>
 | |
|   <li><tt>ule</tt>: unordered or less than or equal</li>
 | |
|   <li><tt>une</tt>: unordered or not equal</li>
 | |
|   <li><tt>uno</tt>: unordered (either nans)</li>
 | |
|   <li><tt>true</tt>: no comparison, always returns true</li>
 | |
| </ol>
 | |
| 
 | |
| <p><i>Ordered</i> means that neither operand is a QNAN while
 | |
|    <i>unordered</i> means that either operand may be a QNAN.</p>
 | |
| 
 | |
| <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
 | |
|    a <a href="#t_floating">floating point</a> type or
 | |
|    a <a href="#t_vector">vector</a> of floating point type.  They must have
 | |
|    identical types.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
 | |
|    according to the condition code given as <tt>cond</tt>.  If the operands are
 | |
|    vectors, then the vectors are compared element by element.  Each comparison
 | |
|    performed always yields an <a href="#t_integer">i1</a> result, as
 | |
|    follows:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
 | |
| 
 | |
|   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
 | |
|       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
 | |
|       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
 | |
|       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
 | |
|       <tt>op1</tt> is less than <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
 | |
|       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
 | |
|       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
 | |
| 
 | |
|   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
 | |
|       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
 | |
|       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
 | |
|       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
 | |
|       <tt>op1</tt> is less than <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
 | |
|       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
 | |
|       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
 | |
| 
 | |
|   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
 | |
| 
 | |
|   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
 | |
| </ol>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
 | |
|   <result> = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
 | |
|   <result> = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
 | |
|   <result> = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
 | |
| </pre>
 | |
| 
 | |
| <p>Note that the code generator does not yet support vector types with
 | |
|    the <tt>fcmp</tt> instruction.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_phi">'<tt>phi</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = phi <ty> [ <val0>, <label0>], ...
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>phi</tt>' instruction is used to implement the φ node in the
 | |
|    SSA graph representing the function.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The type of the incoming values is specified with the first type field. After
 | |
|    this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
 | |
|    one pair for each predecessor basic block of the current block.  Only values
 | |
|    of <a href="#t_firstclass">first class</a> type may be used as the value
 | |
|    arguments to the PHI node.  Only labels may be used as the label
 | |
|    arguments.</p>
 | |
| 
 | |
| <p>There must be no non-phi instructions between the start of a basic block and
 | |
|    the PHI instructions: i.e. PHI instructions must be first in a basic
 | |
|    block.</p>
 | |
| 
 | |
| <p>For the purposes of the SSA form, the use of each incoming value is deemed to
 | |
|    occur on the edge from the corresponding predecessor block to the current
 | |
|    block (but after any definition of an '<tt>invoke</tt>' instruction's return
 | |
|    value on the same edge).</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
 | |
|    specified by the pair corresponding to the predecessor basic block that
 | |
|    executed just prior to the current block.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
| Loop:       ; Infinite loop that counts from 0 on up...
 | |
|   %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
 | |
|   %nextindvar = add i32 %indvar, 1
 | |
|   br label %Loop
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|    <a name="i_select">'<tt>select</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = select <i>selty</i> <cond>, <ty> <val1>, <ty> <val2>             <i>; yields ty</i>
 | |
| 
 | |
|   <i>selty</i> is either i1 or {<N x i1>}
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>select</tt>' instruction is used to choose one value based on a
 | |
|    condition, without branching.</p>
 | |
| 
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
 | |
|    values indicating the condition, and two values of the
 | |
|    same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
 | |
|    vectors and the condition is a scalar, then entire vectors are selected, not
 | |
|    individual elements.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
 | |
|    first value argument; otherwise, it returns the second value argument.</p>
 | |
| 
 | |
| <p>If the condition is a vector of i1, then the value arguments must be vectors
 | |
|    of the same size, and the selection is done element by element.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_call">'<tt>call</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ty> [<fnty>*] <fnptrval>(<function args>) [<a href="#fnattrs">fn attrs</a>]
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction requires several arguments:</p>
 | |
| 
 | |
| <ol>
 | |
|   <li>The optional "tail" marker indicates that the callee function does not
 | |
|       access any allocas or varargs in the caller.  Note that calls may be
 | |
|       marked "tail" even if they do not occur before
 | |
|       a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
 | |
|       present, the function call is eligible for tail call optimization,
 | |
|       but <a href="CodeGenerator.html#tailcallopt">might not in fact be
 | |
|       optimized into a jump</a>.  The code generator may optimize calls marked
 | |
|       "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
 | |
|       sibling call optimization</a> when the caller and callee have
 | |
|       matching signatures, or 2) forced tail call optimization when the
 | |
|       following extra requirements are met:
 | |
|       <ul>
 | |
|         <li>Caller and callee both have the calling
 | |
|             convention <tt>fastcc</tt>.</li>
 | |
|         <li>The call is in tail position (ret immediately follows call and ret
 | |
|             uses value of call or is void).</li>
 | |
|         <li>Option <tt>-tailcallopt</tt> is enabled,
 | |
|             or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
 | |
|         <li><a href="CodeGenerator.html#tailcallopt">Platform specific
 | |
|             constraints are met.</a></li>
 | |
|       </ul>
 | |
|   </li>
 | |
| 
 | |
|   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
 | |
|       convention</a> the call should use.  If none is specified, the call
 | |
|       defaults to using C calling conventions.  The calling convention of the
 | |
|       call must match the calling convention of the target function, or else the
 | |
|       behavior is undefined.</li>
 | |
| 
 | |
|   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
 | |
|       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
 | |
|       '<tt>inreg</tt>' attributes are valid here.</li>
 | |
| 
 | |
|   <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
 | |
|       type of the return value.  Functions that return no value are marked
 | |
|       <tt><a href="#t_void">void</a></tt>.</li>
 | |
| 
 | |
|   <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
 | |
|       being invoked.  The argument types must match the types implied by this
 | |
|       signature.  This type can be omitted if the function is not varargs and if
 | |
|       the function type does not return a pointer to a function.</li>
 | |
| 
 | |
|   <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
 | |
|       be invoked. In most cases, this is a direct function invocation, but
 | |
|       indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
 | |
|       to function value.</li>
 | |
| 
 | |
|   <li>'<tt>function args</tt>': argument list whose types match the function
 | |
|       signature argument types and parameter attributes. All arguments must be
 | |
|       of <a href="#t_firstclass">first class</a> type. If the function
 | |
|       signature indicates the function accepts a variable number of arguments,
 | |
|       the extra arguments can be specified.</li>
 | |
| 
 | |
|   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
 | |
|       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
 | |
|       '<tt>readnone</tt>' attributes are valid here.</li>
 | |
| </ol>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
 | |
|    a specified function, with its incoming arguments bound to the specified
 | |
|    values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
 | |
|    function, control flow continues with the instruction after the function
 | |
|    call, and the return value of the function is bound to the result
 | |
|    argument.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %retval = call i32 @test(i32 %argc)
 | |
|   call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
 | |
|   %X = tail call i32 @foo()                                    <i>; yields i32</i>
 | |
|   %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
 | |
|   call void %foo(i8 97 signext)
 | |
| 
 | |
|   %struct.A = type { i32, i8 }
 | |
|   %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
 | |
|   %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
 | |
|   %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
 | |
|   %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
 | |
|   %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
 | |
| </pre>
 | |
| 
 | |
| <p>llvm treats calls to some functions with names and arguments that match the
 | |
| standard C99 library as being the C99 library functions, and may perform
 | |
| optimizations or generate code for them under that assumption.  This is
 | |
| something we'd like to change in the future to provide better support for
 | |
| freestanding environments and non-C-based languages.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <resultval> = va_arg <va_list*> <arglist>, <argty>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
 | |
|    the "variable argument" area of a function call.  It is used to implement the
 | |
|    <tt>va_arg</tt> macro in C.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction takes a <tt>va_list*</tt> value and the type of the
 | |
|    argument. It returns a value of the specified argument type and increments
 | |
|    the <tt>va_list</tt> to point to the next argument.  The actual type
 | |
|    of <tt>va_list</tt> is target specific.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
 | |
|    from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
 | |
|    to the next argument.  For more information, see the variable argument
 | |
|    handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
 | |
| 
 | |
| <p>It is legal for this instruction to be called in a function which does not
 | |
|    take a variable number of arguments, for example, the <tt>vfprintf</tt>
 | |
|    function.</p>
 | |
| 
 | |
| <p><tt>va_arg</tt> is an LLVM instruction instead of
 | |
|    an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
 | |
|    argument.</p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
 | |
| 
 | |
| <p>Note that the code generator does not yet fully support va_arg on many
 | |
|    targets. Also, it does not currently support va_arg with aggregate types on
 | |
|    any target.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
 | |
|   <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
 | |
| 
 | |
|   <clause> := catch <type> <value>
 | |
|   <clause> := filter <array constant type> <array constant>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>landingpad</tt>' instruction is used by
 | |
|    <a href="ExceptionHandling.html#overview">LLVM's exception handling
 | |
|    system</a> to specify that a basic block is a landing pad — one where
 | |
|    the exception lands, and corresponds to the code found in the
 | |
|    <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
 | |
|    defines values supplied by the personality function (<tt>pers_fn</tt>) upon
 | |
|    re-entry to the function. The <tt>resultval</tt> has the
 | |
|    type <tt>resultty</tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
 | |
|    function associated with the unwinding mechanism. The optional
 | |
|    <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
 | |
| 
 | |
| <p>A <tt>clause</tt> begins with the clause type — <tt>catch</tt>
 | |
|    or <tt>filter</tt> — and contains the global variable representing the
 | |
|    "type" that may be caught or filtered respectively. Unlike the
 | |
|    <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
 | |
|    its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
 | |
|    throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
 | |
|    one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
 | |
|    personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
 | |
|    therefore the "result type" of the <tt>landingpad</tt> instruction. As with
 | |
|    calling conventions, how the personality function results are represented in
 | |
|    LLVM IR is target specific.</p>
 | |
| 
 | |
| <p>The clauses are applied in order from top to bottom. If two
 | |
|    <tt>landingpad</tt> instructions are merged together through inlining, the
 | |
|    clauses from the calling function are appended to the list of clauses.
 | |
|    When the call stack is being unwound due to an exception being thrown, the
 | |
|    exception is compared against each <tt>clause</tt> in turn.  If it doesn't
 | |
|    match any of the clauses, and the <tt>cleanup</tt> flag is not set, then
 | |
|    unwinding continues further up the call stack.</p>
 | |
| 
 | |
| <p>The <tt>landingpad</tt> instruction has several restrictions:</p>
 | |
| 
 | |
| <ul>
 | |
|   <li>A landing pad block is a basic block which is the unwind destination of an
 | |
|       '<tt>invoke</tt>' instruction.</li>
 | |
|   <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
 | |
|       first non-PHI instruction.</li>
 | |
|   <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
 | |
|       pad block.</li>
 | |
|   <li>A basic block that is not a landing pad block may not include a
 | |
|       '<tt>landingpad</tt>' instruction.</li>
 | |
|   <li>All '<tt>landingpad</tt>' instructions in a function must have the same
 | |
|       personality function.</li>
 | |
| </ul>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   ;; A landing pad which can catch an integer.
 | |
|   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
 | |
|            catch i8** @_ZTIi
 | |
|   ;; A landing pad that is a cleanup.
 | |
|   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
 | |
|            cleanup
 | |
|   ;; A landing pad which can catch an integer and can only throw a double.
 | |
|   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
 | |
|            catch i8** @_ZTIi
 | |
|            filter [1 x i8**] [@_ZTId]
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="intrinsics">Intrinsic Functions</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM supports the notion of an "intrinsic function".  These functions have
 | |
|    well known names and semantics and are required to follow certain
 | |
|    restrictions.  Overall, these intrinsics represent an extension mechanism for
 | |
|    the LLVM language that does not require changing all of the transformations
 | |
|    in LLVM when adding to the language (or the bitcode reader/writer, the
 | |
|    parser, etc...).</p>
 | |
| 
 | |
| <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
 | |
|    prefix is reserved in LLVM for intrinsic names; thus, function names may not
 | |
|    begin with this prefix.  Intrinsic functions must always be external
 | |
|    functions: you cannot define the body of intrinsic functions.  Intrinsic
 | |
|    functions may only be used in call or invoke instructions: it is illegal to
 | |
|    take the address of an intrinsic function.  Additionally, because intrinsic
 | |
|    functions are part of the LLVM language, it is required if any are added that
 | |
|    they be documented here.</p>
 | |
| 
 | |
| <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
 | |
|    family of functions that perform the same operation but on different data
 | |
|    types. Because LLVM can represent over 8 million different integer types,
 | |
|    overloading is used commonly to allow an intrinsic function to operate on any
 | |
|    integer type. One or more of the argument types or the result type can be
 | |
|    overloaded to accept any integer type. Argument types may also be defined as
 | |
|    exactly matching a previous argument's type or the result type. This allows
 | |
|    an intrinsic function which accepts multiple arguments, but needs all of them
 | |
|    to be of the same type, to only be overloaded with respect to a single
 | |
|    argument or the result.</p>
 | |
| 
 | |
| <p>Overloaded intrinsics will have the names of its overloaded argument types
 | |
|    encoded into its function name, each preceded by a period. Only those types
 | |
|    which are overloaded result in a name suffix. Arguments whose type is matched
 | |
|    against another type do not. For example, the <tt>llvm.ctpop</tt> function
 | |
|    can take an integer of any width and returns an integer of exactly the same
 | |
|    integer width. This leads to a family of functions such as
 | |
|    <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
 | |
|    %val)</tt>.  Only one type, the return type, is overloaded, and only one type
 | |
|    suffix is required. Because the argument's type is matched against the return
 | |
|    type, it does not require its own name suffix.</p>
 | |
| 
 | |
| <p>To learn how to add an intrinsic function, please see the
 | |
|    <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Variable argument support is defined in LLVM with
 | |
|    the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
 | |
|    intrinsic functions.  These functions are related to the similarly named
 | |
|    macros defined in the <tt><stdarg.h></tt> header file.</p>
 | |
| 
 | |
| <p>All of these functions operate on arguments that use a target-specific value
 | |
|    type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
 | |
|    not define what this type is, so all transformations should be prepared to
 | |
|    handle these functions regardless of the type used.</p>
 | |
| 
 | |
| <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
 | |
|    instruction and the variable argument handling intrinsic functions are
 | |
|    used.</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
| define i32 @test(i32 %X, ...) {
 | |
|   ; Initialize variable argument processing
 | |
|   %ap = alloca i8*
 | |
|   %ap2 = bitcast i8** %ap to i8*
 | |
|   call void @llvm.va_start(i8* %ap2)
 | |
| 
 | |
|   ; Read a single integer argument
 | |
|   %tmp = va_arg i8** %ap, i32
 | |
| 
 | |
|   ; Demonstrate usage of llvm.va_copy and llvm.va_end
 | |
|   %aq = alloca i8*
 | |
|   %aq2 = bitcast i8** %aq to i8*
 | |
|   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
 | |
|   call void @llvm.va_end(i8* %aq2)
 | |
| 
 | |
|   ; Stop processing of arguments.
 | |
|   call void @llvm.va_end(i8* %ap2)
 | |
|   ret i32 %tmp
 | |
| }
 | |
| 
 | |
| declare void @llvm.va_start(i8*)
 | |
| declare void @llvm.va_copy(i8*, i8*)
 | |
| declare void @llvm.va_end(i8*)
 | |
| </pre>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void %llvm.va_start(i8* <arglist>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*<arglist></tt>
 | |
|    for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
 | |
|    macro available in C.  In a target-dependent way, it initializes
 | |
|    the <tt>va_list</tt> element to which the argument points, so that the next
 | |
|    call to <tt>va_arg</tt> will produce the first variable argument passed to
 | |
|    the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
 | |
|    need to know the last argument of the function as the compiler can figure
 | |
|    that out.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.va_end(i8* <arglist>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*<arglist></tt>,
 | |
|    which has been initialized previously
 | |
|    with <tt><a href="#int_va_start">llvm.va_start</a></tt>
 | |
|    or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
 | |
|    macro available in C.  In a target-dependent way, it destroys
 | |
|    the <tt>va_list</tt> element to which the argument points.  Calls
 | |
|    to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
 | |
|    and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
 | |
|    with calls to <tt>llvm.va_end</tt>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
 | |
|    from the source argument list to the destination argument list.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
 | |
|    The second argument is a pointer to a <tt>va_list</tt> element to copy
 | |
|    from.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
 | |
|    macro available in C.  In a target-dependent way, it copies the
 | |
|    source <tt>va_list</tt> element into the destination <tt>va_list</tt>
 | |
|    element.  This intrinsic is necessary because
 | |
|    the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
 | |
|    arbitrarily complex and require, for example, memory allocation.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
 | |
| Collection</a> (GC) requires the implementation and generation of these
 | |
| intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
 | |
| roots on the stack</a>, as well as garbage collector implementations that
 | |
| require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
 | |
| barriers.  Front-ends for type-safe garbage collected languages should generate
 | |
| these intrinsics to make use of the LLVM garbage collectors.  For more details,
 | |
| see <a href="GarbageCollection.html">Accurate Garbage Collection with
 | |
| LLVM</a>.</p>
 | |
| 
 | |
| <p>The garbage collection intrinsics only operate on objects in the generic
 | |
|    address space (address space zero).</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
 | |
|    the code generator, and allows some metadata to be associated with it.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument specifies the address of a stack object that contains the
 | |
|    root pointer.  The second pointer (which must be either a constant or a
 | |
|    global value address) contains the meta-data to be associated with the
 | |
|    root.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
 | |
|    location.  At compile-time, the code generator generates information to allow
 | |
|    the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
 | |
|    intrinsic may only be used in a function which <a href="#gc">specifies a GC
 | |
|    algorithm</a>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
 | |
|    locations, allowing garbage collector implementations that require read
 | |
|    barriers.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The second argument is the address to read from, which should be an address
 | |
|    allocated from the garbage collector.  The first object is a pointer to the
 | |
|    start of the referenced object, if needed by the language runtime (otherwise
 | |
|    null).</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
 | |
|    instruction, but may be replaced with substantially more complex code by the
 | |
|    garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
 | |
|    may only be used in a function which <a href="#gc">specifies a GC
 | |
|    algorithm</a>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
 | |
|    locations, allowing garbage collector implementations that require write
 | |
|    barriers (such as generational or reference counting collectors).</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is the reference to store, the second is the start of the
 | |
|    object to store it to, and the third is the address of the field of Obj to
 | |
|    store to.  If the runtime does not require a pointer to the object, Obj may
 | |
|    be null.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
 | |
|    instruction, but may be replaced with substantially more complex code by the
 | |
|    garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
 | |
|    may only be used in a function which <a href="#gc">specifies a GC
 | |
|    algorithm</a>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_codegen">Code Generator Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>These intrinsics are provided by LLVM to expose special features that may
 | |
|    only be implemented with code generator support.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i8  *@llvm.returnaddress(i32 <level>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
 | |
|    target-specific value indicating the return address of the current function
 | |
|    or one of its callers.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument to this intrinsic indicates which function to return the address
 | |
|    for.  Zero indicates the calling function, one indicates its caller, etc.
 | |
|    The argument is <b>required</b> to be a constant integer value.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
 | |
|    indicating the return address of the specified call frame, or zero if it
 | |
|    cannot be identified.  The value returned by this intrinsic is likely to be
 | |
|    incorrect or 0 for arguments other than zero, so it should only be used for
 | |
|    debugging purposes.</p>
 | |
| 
 | |
| <p>Note that calling this intrinsic does not prevent function inlining or other
 | |
|    aggressive transformations, so the value returned may not be that of the
 | |
|    obvious source-language caller.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i8* @llvm.frameaddress(i32 <level>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
 | |
|    target-specific frame pointer value for the specified stack frame.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument to this intrinsic indicates which function to return the frame
 | |
|    pointer for.  Zero indicates the calling function, one indicates its caller,
 | |
|    etc.  The argument is <b>required</b> to be a constant integer value.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
 | |
|    indicating the frame address of the specified call frame, or zero if it
 | |
|    cannot be identified.  The value returned by this intrinsic is likely to be
 | |
|    incorrect or 0 for arguments other than zero, so it should only be used for
 | |
|    debugging purposes.</p>
 | |
| 
 | |
| <p>Note that calling this intrinsic does not prevent function inlining or other
 | |
|    aggressive transformations, so the value returned may not be that of the
 | |
|    obvious source-language caller.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i8* @llvm.stacksave()
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
 | |
|    of the function stack, for use
 | |
|    with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
 | |
|    useful for implementing language features like scoped automatic variable
 | |
|    sized arrays in C99.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic returns a opaque pointer value that can be passed
 | |
|    to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
 | |
|    an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
 | |
|    from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
 | |
|    to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
 | |
|    In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
 | |
|    stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.stackrestore(i8* %ptr)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
 | |
|    the function stack to the state it was in when the
 | |
|    corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
 | |
|    executed.  This is useful for implementing language features like scoped
 | |
|    automatic variable sized arrays in C99.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>See the description
 | |
|    for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
 | |
|    insert a prefetch instruction if supported; otherwise, it is a noop.
 | |
|    Prefetches have no effect on the behavior of the program but can change its
 | |
|    performance characteristics.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
 | |
|    specifier determining if the fetch should be for a read (0) or write (1),
 | |
|    and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
 | |
|    locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
 | |
|    specifies whether the prefetch is performed on the data (1) or instruction (0)
 | |
|    cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
 | |
|    must be constant integers.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic does not modify the behavior of the program.  In particular,
 | |
|    prefetches cannot trap and do not produce a value.  On targets that support
 | |
|    this intrinsic, the prefetch can provide hints to the processor cache for
 | |
|    better performance.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.pcmarker(i32 <id>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
 | |
|    Counter (PC) in a region of code to simulators and other tools.  The method
 | |
|    is target specific, but it is expected that the marker will use exported
 | |
|    symbols to transmit the PC of the marker.  The marker makes no guarantees
 | |
|    that it will remain with any specific instruction after optimizations.  It is
 | |
|    possible that the presence of a marker will inhibit optimizations.  The
 | |
|    intended use is to be inserted after optimizations to allow correlations of
 | |
|    simulation runs.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p><tt>id</tt> is a numerical id identifying the marker.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic does not modify the behavior of the program.  Backends that do
 | |
|    not support this intrinsic may ignore it.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i64 @llvm.readcyclecounter()
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
 | |
|    counter register (or similar low latency, high accuracy clocks) on those
 | |
|    targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
 | |
|    should map to RPCC.  As the backing counters overflow quickly (on the order
 | |
|    of 9 seconds on alpha), this should only be used for small timings.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>When directly supported, reading the cycle counter should not modify any
 | |
|    memory.  Implementations are allowed to either return a application specific
 | |
|    value or a system wide value.  On backends without support, this is lowered
 | |
|    to a constant 0.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_libc">Standard C Library Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM provides intrinsics for a few important standard C library functions.
 | |
|    These intrinsics allow source-language front-ends to pass information about
 | |
|    the alignment of the pointer arguments to the code generator, providing
 | |
|    opportunity for more efficient code generation.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
 | |
|    integer bit width and for different address spaces. Not all targets support
 | |
|    all bit widths however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
 | |
|                                           i32 <len>, i32 <align>, i1 <isvolatile>)
 | |
|   declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
 | |
|                                           i64 <len>, i32 <align>, i1 <isvolatile>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
 | |
|    source location to the destination location.</p>
 | |
| 
 | |
| <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
 | |
|    intrinsics do not return a value, takes extra alignment/isvolatile arguments
 | |
|    and the pointers can be in specified address spaces.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>The first argument is a pointer to the destination, the second is a pointer
 | |
|    to the source.  The third argument is an integer argument specifying the
 | |
|    number of bytes to copy, the fourth argument is the alignment of the
 | |
|    source and destination locations, and the fifth is a boolean indicating a
 | |
|    volatile access.</p>
 | |
| 
 | |
| <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
 | |
|    then the caller guarantees that both the source and destination pointers are
 | |
|    aligned to that boundary.</p>
 | |
| 
 | |
| <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
 | |
|    <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
 | |
|    The detailed access behavior is not very cleanly specified and it is unwise
 | |
|    to depend on it.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
 | |
|    source location to the destination location, which are not allowed to
 | |
|    overlap.  It copies "len" bytes of memory over.  If the argument is known to
 | |
|    be aligned to some boundary, this can be specified as the fourth argument,
 | |
|    otherwise it should be set to 0 or 1.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
 | |
|    width and for different address space. Not all targets support all bit
 | |
|    widths however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
 | |
|                                            i32 <len>, i32 <align>, i1 <isvolatile>)
 | |
|   declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
 | |
|                                            i64 <len>, i32 <align>, i1 <isvolatile>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
 | |
|    source location to the destination location. It is similar to the
 | |
|    '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
 | |
|    overlap.</p>
 | |
| 
 | |
| <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
 | |
|    intrinsics do not return a value, takes extra alignment/isvolatile arguments
 | |
|    and the pointers can be in specified address spaces.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| <p>The first argument is a pointer to the destination, the second is a pointer
 | |
|    to the source.  The third argument is an integer argument specifying the
 | |
|    number of bytes to copy, the fourth argument is the alignment of the
 | |
|    source and destination locations, and the fifth is a boolean indicating a
 | |
|    volatile access.</p>
 | |
| 
 | |
| <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
 | |
|    then the caller guarantees that the source and destination pointers are
 | |
|    aligned to that boundary.</p>
 | |
| 
 | |
| <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
 | |
|    <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
 | |
|    The detailed access behavior is not very cleanly specified and it is unwise
 | |
|    to depend on it.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
 | |
|    source location to the destination location, which may overlap.  It copies
 | |
|    "len" bytes of memory over.  If the argument is known to be aligned to some
 | |
|    boundary, this can be specified as the fourth argument, otherwise it should
 | |
|    be set to 0 or 1.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
 | |
|    width and for different address spaces. However, not all targets support all
 | |
|    bit widths.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
 | |
|                                      i32 <len>, i32 <align>, i1 <isvolatile>)
 | |
|   declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
 | |
|                                      i64 <len>, i32 <align>, i1 <isvolatile>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
 | |
|    particular byte value.</p>
 | |
| 
 | |
| <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
 | |
|    intrinsic does not return a value and takes extra alignment/volatile
 | |
|    arguments.  Also, the destination can be in an arbitrary address space.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is a pointer to the destination to fill, the second is the
 | |
|    byte value with which to fill it, the third argument is an integer argument
 | |
|    specifying the number of bytes to fill, and the fourth argument is the known
 | |
|    alignment of the destination location.</p>
 | |
| 
 | |
| <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
 | |
|    then the caller guarantees that the destination pointer is aligned to that
 | |
|    boundary.</p>
 | |
| 
 | |
| <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
 | |
|    <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
 | |
|    The detailed access behavior is not very cleanly specified and it is unwise
 | |
|    to depend on it.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
 | |
|    at the destination location.  If the argument is known to be aligned to some
 | |
|    boundary, this can be specified as the fourth argument, otherwise it should
 | |
|    be set to 0 or 1.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.sqrt.f32(float %Val)
 | |
|   declare double    @llvm.sqrt.f64(double %Val)
 | |
|   declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
 | |
|   declare fp128     @llvm.sqrt.f128(fp128 %Val)
 | |
|   declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
 | |
|    returning the same value as the libm '<tt>sqrt</tt>' functions would.
 | |
|    Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
 | |
|    behavior for negative numbers other than -0.0 (which allows for better
 | |
|    optimization, because there is no need to worry about errno being
 | |
|    set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument and return value are floating point numbers of the same
 | |
|    type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the sqrt of the specified operand if it is a
 | |
|    nonnegative floating point number.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.powi.f32(float  %Val, i32 %power)
 | |
|   declare double    @llvm.powi.f64(double %Val, i32 %power)
 | |
|   declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
 | |
|   declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
 | |
|   declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
 | |
|    specified (positive or negative) power.  The order of evaluation of
 | |
|    multiplications is not defined.  When a vector of floating point type is
 | |
|    used, the second argument remains a scalar integer value.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The second argument is an integer power, and the first is a value to raise to
 | |
|    that power.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the first value raised to the second power with an
 | |
|    unspecified sequence of rounding operations.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.sin.f32(float  %Val)
 | |
|   declare double    @llvm.sin.f64(double %Val)
 | |
|   declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
 | |
|   declare fp128     @llvm.sin.f128(fp128 %Val)
 | |
|   declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument and return value are floating point numbers of the same
 | |
|    type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the sine of the specified operand, returning the same
 | |
|    values as the libm <tt>sin</tt> functions would, and handles error conditions
 | |
|    in the same way.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.cos.f32(float  %Val)
 | |
|   declare double    @llvm.cos.f64(double %Val)
 | |
|   declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
 | |
|   declare fp128     @llvm.cos.f128(fp128 %Val)
 | |
|   declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument and return value are floating point numbers of the same
 | |
|    type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the cosine of the specified operand, returning the same
 | |
|    values as the libm <tt>cos</tt> functions would, and handles error conditions
 | |
|    in the same way.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.pow.f32(float  %Val, float %Power)
 | |
|   declare double    @llvm.pow.f64(double %Val, double %Power)
 | |
|   declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
 | |
|   declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
 | |
|   declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
 | |
|    specified (positive or negative) power.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The second argument is a floating point power, and the first is a value to
 | |
|    raise to that power.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the first value raised to the second power, returning
 | |
|    the same values as the libm <tt>pow</tt> functions would, and handles error
 | |
|    conditions in the same way.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.exp.f32(float  %Val)
 | |
|   declare double    @llvm.exp.f64(double %Val)
 | |
|   declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
 | |
|   declare fp128     @llvm.exp.f128(fp128 %Val)
 | |
|   declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument and return value are floating point numbers of the same
 | |
|    type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the same values as the libm <tt>exp</tt> functions
 | |
|    would, and handles error conditions in the same way.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.log.f32(float  %Val)
 | |
|   declare double    @llvm.log.f64(double %Val)
 | |
|   declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
 | |
|   declare fp128     @llvm.log.f128(fp128 %Val)
 | |
|   declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument and return value are floating point numbers of the same
 | |
|    type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the same values as the libm <tt>log</tt> functions
 | |
|    would, and handles error conditions in the same way.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
 | |
|   declare double    @llvm.fma.f64(double %a, double %b, double %c)
 | |
|   declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
 | |
|   declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
 | |
|   declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
 | |
|    operation.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument and return value are floating point numbers of the same
 | |
|    type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the same values as the libm <tt>fma</tt> functions
 | |
|    would.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_fabs">'<tt>llvm.fabs.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.fabs</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.fabs.f32(float  %Val)
 | |
|   declare double    @llvm.fabs.f64(double %Val)
 | |
|   declare x86_fp80  @llvm.fabs.f80(x86_fp80  %Val)
 | |
|   declare fp128     @llvm.fabs.f128(fp128 %Val)
 | |
|   declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128  %Val)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.fabs.*</tt>' intrinsics return the absolute value of
 | |
|    the operand.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument and return value are floating point numbers of the same
 | |
|    type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the same values as the libm <tt>fabs</tt> functions
 | |
|    would, and handles error conditions in the same way.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_floor">'<tt>llvm.floor.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.floor</tt> on any
 | |
|    floating point or vector of floating point type. Not all targets support all
 | |
|    types however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare float     @llvm.floor.f32(float  %Val)
 | |
|   declare double    @llvm.floor.f64(double %Val)
 | |
|   declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
 | |
|   declare fp128     @llvm.floor.f128(fp128 %Val)
 | |
|   declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.floor.*</tt>' intrinsics return the floor of
 | |
|    the operand.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The argument and return value are floating point numbers of the same
 | |
|    type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This function returns the same values as the libm <tt>floor</tt> functions
 | |
|    would, and handles error conditions in the same way.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_manip">Bit Manipulation Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM provides intrinsics for a few important bit manipulation operations.
 | |
|    These allow efficient code generation for some algorithms.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic function. You can use bswap on any integer
 | |
|    type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
 | |
| 
 | |
| <pre>
 | |
|   declare i16 @llvm.bswap.i16(i16 <id>)
 | |
|   declare i32 @llvm.bswap.i32(i32 <id>)
 | |
|   declare i64 @llvm.bswap.i64(i64 <id>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
 | |
|    values with an even number of bytes (positive multiple of 16 bits).  These
 | |
|    are useful for performing operations on data that is not in the target's
 | |
|    native byte order.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
 | |
|    and low byte of the input i16 swapped.  Similarly,
 | |
|    the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
 | |
|    bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
 | |
|    2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
 | |
|    The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
 | |
|    extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
 | |
|    more, respectively).</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
 | |
|    width, or on any vector with integer elements. Not all targets support all
 | |
|   bit widths or vector types, however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare i8 @llvm.ctpop.i8(i8  <src>)
 | |
|   declare i16 @llvm.ctpop.i16(i16 <src>)
 | |
|   declare i32 @llvm.ctpop.i32(i32 <src>)
 | |
|   declare i64 @llvm.ctpop.i64(i64 <src>)
 | |
|   declare i256 @llvm.ctpop.i256(i256 <src>)
 | |
|   declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
 | |
|    in a value.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The only argument is the value to be counted.  The argument may be of any
 | |
|    integer type, or a vector with integer elements.
 | |
|    The return type must match the argument type.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
 | |
|    element of a vector.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
 | |
|    integer bit width, or any vector whose elements are integers. Not all
 | |
|    targets support all bit widths or vector types, however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
 | |
|   declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
 | |
|   declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
 | |
|   declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
 | |
|   declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
 | |
|   declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
 | |
|    leading zeros in a variable.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is the value to be counted. This argument may be of any
 | |
|    integer type, or a vectory with integer element type. The return type
 | |
|    must match the first argument type.</p>
 | |
| 
 | |
| <p>The second argument must be a constant and is a flag to indicate whether the
 | |
|    intrinsic should ensure that a zero as the first argument produces a defined
 | |
|    result. Historically some architectures did not provide a defined result for
 | |
|    zero values as efficiently, and many algorithms are now predicated on
 | |
|    avoiding zero-value inputs.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
 | |
|    zeros in a variable, or within each element of the vector.
 | |
|    If <tt>src == 0</tt> then the result is the size in bits of the type of
 | |
|    <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
 | |
|    For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
 | |
|    integer bit width, or any vector of integer elements. Not all targets
 | |
|    support all bit widths or vector types, however.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
 | |
|   declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
 | |
|   declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
 | |
|   declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
 | |
|   declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
 | |
|   declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
 | |
|    trailing zeros.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is the value to be counted. This argument may be of any
 | |
|    integer type, or a vectory with integer element type. The return type
 | |
|    must match the first argument type.</p>
 | |
| 
 | |
| <p>The second argument must be a constant and is a flag to indicate whether the
 | |
|    intrinsic should ensure that a zero as the first argument produces a defined
 | |
|    result. Historically some architectures did not provide a defined result for
 | |
|    zero values as efficiently, and many algorithms are now predicated on
 | |
|    avoiding zero-value inputs.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
 | |
|    zeros in a variable, or within each element of a vector.
 | |
|    If <tt>src == 0</tt> then the result is the size in bits of the type of
 | |
|    <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
 | |
|    For example, <tt>llvm.cttz(2) = 1</tt>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_sadd_overflow">
 | |
|     '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
 | |
|    on any integer bit width.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
 | |
|   declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
 | |
|   declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
 | |
|    a signed addition of the two arguments, and indicate whether an overflow
 | |
|    occurred during the signed summation.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The arguments (%a and %b) and the first element of the result structure may
 | |
|    be of integer types of any bit width, but they must have the same bit
 | |
|    width. The second element of the result structure must be of
 | |
|    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
 | |
|    undergo signed addition.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
 | |
|    a signed addition of the two variables. They return a structure — the
 | |
|    first element of which is the signed summation, and the second element of
 | |
|    which is a bit specifying if the signed summation resulted in an
 | |
|    overflow.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
 | |
|   %sum = extractvalue {i32, i1} %res, 0
 | |
|   %obit = extractvalue {i32, i1} %res, 1
 | |
|   br i1 %obit, label %overflow, label %normal
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_uadd_overflow">
 | |
|     '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
 | |
|    on any integer bit width.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
 | |
|   declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
 | |
|   declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
 | |
|    an unsigned addition of the two arguments, and indicate whether a carry
 | |
|    occurred during the unsigned summation.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The arguments (%a and %b) and the first element of the result structure may
 | |
|    be of integer types of any bit width, but they must have the same bit
 | |
|    width. The second element of the result structure must be of
 | |
|    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
 | |
|    undergo unsigned addition.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
 | |
|    an unsigned addition of the two arguments. They return a structure —
 | |
|    the first element of which is the sum, and the second element of which is a
 | |
|    bit specifying if the unsigned summation resulted in a carry.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
 | |
|   %sum = extractvalue {i32, i1} %res, 0
 | |
|   %obit = extractvalue {i32, i1} %res, 1
 | |
|   br i1 %obit, label %carry, label %normal
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_ssub_overflow">
 | |
|     '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
 | |
|    on any integer bit width.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
 | |
|   declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
 | |
|   declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
 | |
|    a signed subtraction of the two arguments, and indicate whether an overflow
 | |
|    occurred during the signed subtraction.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The arguments (%a and %b) and the first element of the result structure may
 | |
|    be of integer types of any bit width, but they must have the same bit
 | |
|    width. The second element of the result structure must be of
 | |
|    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
 | |
|    undergo signed subtraction.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
 | |
|    a signed subtraction of the two arguments. They return a structure —
 | |
|    the first element of which is the subtraction, and the second element of
 | |
|    which is a bit specifying if the signed subtraction resulted in an
 | |
|    overflow.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
 | |
|   %sum = extractvalue {i32, i1} %res, 0
 | |
|   %obit = extractvalue {i32, i1} %res, 1
 | |
|   br i1 %obit, label %overflow, label %normal
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_usub_overflow">
 | |
|     '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
 | |
|    on any integer bit width.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
 | |
|   declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
 | |
|   declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
 | |
|    an unsigned subtraction of the two arguments, and indicate whether an
 | |
|    overflow occurred during the unsigned subtraction.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The arguments (%a and %b) and the first element of the result structure may
 | |
|    be of integer types of any bit width, but they must have the same bit
 | |
|    width. The second element of the result structure must be of
 | |
|    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
 | |
|    undergo unsigned subtraction.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
 | |
|    an unsigned subtraction of the two arguments. They return a structure —
 | |
|    the first element of which is the subtraction, and the second element of
 | |
|    which is a bit specifying if the unsigned subtraction resulted in an
 | |
|    overflow.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
 | |
|   %sum = extractvalue {i32, i1} %res, 0
 | |
|   %obit = extractvalue {i32, i1} %res, 1
 | |
|   br i1 %obit, label %overflow, label %normal
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_smul_overflow">
 | |
|     '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
 | |
|    on any integer bit width.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
 | |
|   declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
 | |
|   declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
 | |
|    a signed multiplication of the two arguments, and indicate whether an
 | |
|    overflow occurred during the signed multiplication.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The arguments (%a and %b) and the first element of the result structure may
 | |
|    be of integer types of any bit width, but they must have the same bit
 | |
|    width. The second element of the result structure must be of
 | |
|    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
 | |
|    undergo signed multiplication.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
 | |
|    a signed multiplication of the two arguments. They return a structure —
 | |
|    the first element of which is the multiplication, and the second element of
 | |
|    which is a bit specifying if the signed multiplication resulted in an
 | |
|    overflow.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
 | |
|   %sum = extractvalue {i32, i1} %res, 0
 | |
|   %obit = extractvalue {i32, i1} %res, 1
 | |
|   br i1 %obit, label %overflow, label %normal
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_umul_overflow">
 | |
|     '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
 | |
|    on any integer bit width.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
 | |
|   declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
 | |
|   declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
 | |
|    a unsigned multiplication of the two arguments, and indicate whether an
 | |
|    overflow occurred during the unsigned multiplication.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The arguments (%a and %b) and the first element of the result structure may
 | |
|    be of integer types of any bit width, but they must have the same bit
 | |
|    width. The second element of the result structure must be of
 | |
|    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
 | |
|    undergo unsigned multiplication.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
 | |
|    an unsigned multiplication of the two arguments. They return a structure
 | |
|    — the first element of which is the multiplication, and the second
 | |
|    element of which is a bit specifying if the unsigned multiplication resulted
 | |
|    in an overflow.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
 | |
|   %sum = extractvalue {i32, i1} %res, 0
 | |
|   %obit = extractvalue {i32, i1} %res, 1
 | |
|   br i1 %obit, label %overflow, label %normal
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="spec_arithmetic">Specialised Arithmetic Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| 
 | |
| <h4>
 | |
|   <a name="fmuladd">'<tt>llvm.fmuladd.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
 | |
|   declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.fmuladd.*</tt>' intrinsic functions represent multiply-add
 | |
| expressions that can be fused if the code generator determines that the fused
 | |
| expression would be legal and efficient.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The '<tt>llvm.fmuladd.*</tt>' intrinsics each take three arguments: two
 | |
| multiplicands, a and b, and an addend c.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The expression:</p>
 | |
| <pre>
 | |
|   %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
 | |
| </pre>
 | |
| <p>is equivalent to the expression a * b + c, except that rounding will not be
 | |
| performed between the multiplication and addition steps if the code generator
 | |
| fuses the operations. Fusion is not guaranteed, even if the target platform
 | |
| supports it. If a fused multiply-add is required the corresponding llvm.fma.*
 | |
| intrinsic function should be used instead.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>For most target platforms, half precision floating point is a storage-only
 | |
|    format. This means that it is
 | |
|    a dense encoding (in memory) but does not support computation in the
 | |
|    format.</p>
 | |
|    
 | |
| <p>This means that code must first load the half-precision floating point
 | |
|    value as an i16, then convert it to float with <a
 | |
|    href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
 | |
|    Computation can then be performed on the float value (including extending to
 | |
|    double etc).  To store the value back to memory, it is first converted to
 | |
|    float if needed, then converted to i16 with
 | |
|    <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
 | |
|    storing as an i16 value.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_convert_to_fp16">
 | |
|     '<tt>llvm.convert.to.fp16</tt>' Intrinsic
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i16 @llvm.convert.to.fp16(f32 %a)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
 | |
|    a conversion from single precision floating point format to half precision
 | |
|    floating point format.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The intrinsic function contains single argument - the value to be
 | |
|    converted.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
 | |
|    a conversion from single precision floating point format to half precision
 | |
|    floating point format. The return value is an <tt>i16</tt> which
 | |
|    contains the converted number.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %res = call i16 @llvm.convert.to.fp16(f32 %a)
 | |
|   store i16 %res, i16* @x, align 2
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_convert_from_fp16">
 | |
|     '<tt>llvm.convert.from.fp16</tt>' Intrinsic
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare f32 @llvm.convert.from.fp16(i16 %a)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
 | |
|    a conversion from half precision floating point format to single precision
 | |
|    floating point format.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The intrinsic function contains single argument - the value to be
 | |
|    converted.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
 | |
|    conversion from half single precision floating point format to single
 | |
|    precision floating point format. The input half-float value is represented by
 | |
|    an <tt>i16</tt> value.</p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %a = load i16* @x, align 2
 | |
|   %res = call f32 @llvm.convert.from.fp16(i16 %a)
 | |
| </pre>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_debugger">Debugger Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
 | |
|    prefix), are described in
 | |
|    the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
 | |
|    Level Debugging</a> document.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_eh">Exception Handling Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>The LLVM exception handling intrinsics (which all start with
 | |
|    <tt>llvm.eh.</tt> prefix), are described in
 | |
|    the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
 | |
|    Handling</a> document.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_trampoline">Trampoline Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>These intrinsics make it possible to excise one parameter, marked with
 | |
|    the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
 | |
|    The result is a callable
 | |
|    function pointer lacking the nest parameter - the caller does not need to
 | |
|    provide a value for it.  Instead, the value to use is stored in advance in a
 | |
|    "trampoline", a block of memory usually allocated on the stack, which also
 | |
|    contains code to splice the nest value into the argument list.  This is used
 | |
|    to implement the GCC nested function address extension.</p>
 | |
| 
 | |
| <p>For example, if the function is
 | |
|    <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
 | |
|    pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
 | |
|    follows:</p>
 | |
| 
 | |
| <pre class="doc_code">
 | |
|   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
 | |
|   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
 | |
|   call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
 | |
|   %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
 | |
|   %fp = bitcast i8* %p to i32 (i32, i32)*
 | |
| </pre>
 | |
| 
 | |
| <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
 | |
|    to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_it">
 | |
|     '<tt>llvm.init.trampoline</tt>' Intrinsic
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
 | |
|    turning it into a trampoline.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
 | |
|    pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
 | |
|    sufficiently aligned block of memory; this memory is written to by the
 | |
|    intrinsic.  Note that the size and the alignment are target-specific - LLVM
 | |
|    currently provides no portable way of determining them, so a front-end that
 | |
|    generates this intrinsic needs to have some target-specific knowledge.
 | |
|    The <tt>func</tt> argument must hold a function bitcast to
 | |
|    an <tt>i8*</tt>.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
 | |
|    dependent code, turning it into a function.  Then <tt>tramp</tt> needs to be
 | |
|    passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
 | |
|    which can be <a href="#int_trampoline">bitcast (to a new function) and
 | |
|    called</a>.  The new function's signature is the same as that of
 | |
|    <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
 | |
|    removed.  At most one such <tt>nest</tt> argument is allowed, and it must be of
 | |
|    pointer type.  Calling the new function is equivalent to calling <tt>func</tt>
 | |
|    with the same argument list, but with <tt>nval</tt> used for the missing
 | |
|    <tt>nest</tt> argument.  If, after calling <tt>llvm.init.trampoline</tt>, the
 | |
|    memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
 | |
|    to the returned function pointer is undefined.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_at">
 | |
|     '<tt>llvm.adjust.trampoline</tt>' Intrinsic
 | |
|   </a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i8* @llvm.adjust.trampoline(i8* <tramp>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>This performs any required machine-specific adjustment to the address of a
 | |
|    trampoline (passed as <tt>tramp</tt>).</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p><tt>tramp</tt> must point to a block of memory which already has trampoline code
 | |
|    filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
 | |
|    </a>.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>On some architectures the address of the code to be executed needs to be
 | |
|    different to the address where the trampoline is actually stored.  This
 | |
|    intrinsic returns the executable address corresponding to <tt>tramp</tt>
 | |
|    after performing the required machine specific adjustments.
 | |
|    The pointer returned can then be <a href="#int_trampoline"> bitcast and
 | |
|    executed</a>.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_memorymarkers">Memory Use Markers</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>This class of intrinsics exists to information about the lifetime of memory
 | |
|    objects and ranges where variables are immutable.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
 | |
|    object's lifetime.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is a constant integer representing the size of the
 | |
|    object, or -1 if it is variable sized.  The second argument is a pointer to
 | |
|    the object.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic indicates that before this point in the code, the value of the
 | |
|    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
 | |
|    never be used and has an undefined value.  A load from the pointer that
 | |
|    precedes this intrinsic can be replaced with
 | |
|    <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
 | |
|    object's lifetime.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is a constant integer representing the size of the
 | |
|    object, or -1 if it is variable sized.  The second argument is a pointer to
 | |
|    the object.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic indicates that after this point in the code, the value of the
 | |
|    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
 | |
|    never be used and has an undefined value.  Any stores into the memory object
 | |
|    following this intrinsic may be removed as dead.
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
 | |
|    a memory object will not change.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is a constant integer representing the size of the
 | |
|    object, or -1 if it is variable sized.  The second argument is a pointer to
 | |
|    the object.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
 | |
|    the return value, the referenced memory location is constant and
 | |
|    unchanging.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
 | |
|    a memory object are mutable.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
 | |
|    The second argument is a constant integer representing the size of the
 | |
|    object, or -1 if it is variable sized and the third argument is a pointer
 | |
|    to the object.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic indicates that the memory is mutable again.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="int_general">General Intrinsics</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>This class of intrinsics is designed to be generic and has no specific
 | |
|    purpose.</p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is a pointer to a value, the second is a pointer to a
 | |
|    global string, the third is a pointer to a global string which is the source
 | |
|    file name, and the last argument is the line number.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic allows annotation of local variables with arbitrary strings.
 | |
|    This can be useful for special purpose optimizations that want to look for
 | |
|    these annotations.  These have no other defined use; they are ignored by code
 | |
|    generation and optimization.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
 | |
|    any integer bit width.</p>
 | |
| 
 | |
| <pre>
 | |
|   declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
 | |
|   declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
 | |
|   declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
 | |
|   declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
 | |
|   declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The first argument is an integer value (result of some expression), the
 | |
|    second is a pointer to a global string, the third is a pointer to a global
 | |
|    string which is the source file name, and the last argument is the line
 | |
|    number.  It returns the value of the first argument.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic allows annotations to be put on arbitrary expressions with
 | |
|    arbitrary strings.  This can be useful for special purpose optimizations that
 | |
|    want to look for these annotations.  These have no other defined use; they
 | |
|    are ignored by code generation and optimization.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.trap() noreturn nounwind
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>None.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic is lowered to the target dependent trap instruction. If the
 | |
|    target does not have a trap instruction, this intrinsic will be lowered to
 | |
|    a call of the <tt>abort()</tt> function.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_debugtrap">'<tt>llvm.debugtrap</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.debugtrap() nounwind
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The '<tt>llvm.debugtrap</tt>' intrinsic.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>None.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic is lowered to code which is intended to cause an execution
 | |
|    trap with the intention of requesting the attention of a debugger.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
 | |
|    stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
 | |
|    ensure that it is placed on the stack before local variables.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
 | |
|    arguments. The first argument is the value loaded from the stack
 | |
|    guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
 | |
|    that has enough space to hold the value of the guard.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic causes the prologue/epilogue inserter to force the position of
 | |
|    the <tt>AllocaInst</tt> stack slot to be before local variables on the
 | |
|    stack. This is to ensure that if a local variable on the stack is
 | |
|    overwritten, it will destroy the value of the guard. When the function exits,
 | |
|    the guard on the stack is checked against the original guard. If they are
 | |
|    different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
 | |
|    function.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
 | |
|   declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
 | |
|    the optimizers to determine at compile time whether a) an operation (like
 | |
|    memcpy) will overflow a buffer that corresponds to an object, or b) that a
 | |
|    runtime check for overflow isn't necessary. An object in this context means
 | |
|    an allocation of a specific class, structure, array, or other object.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
 | |
|    argument is a pointer to or into the <tt>object</tt>. The second argument
 | |
|    is a boolean and determines whether <tt>llvm.objectsize</tt> returns 0 (if
 | |
|    true) or -1 (if false) when the object size is unknown.
 | |
|    The second argument only accepts constants.</p>
 | |
|    
 | |
| <h5>Semantics:</h5>
 | |
| <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to a constant representing
 | |
|    the size of the object concerned. If the size cannot be determined at compile
 | |
|    time, <tt>llvm.objectsize</tt> returns <tt>i32/i64 -1 or 0</tt>
 | |
|    (depending on the <tt>min</tt> argument).</p>
 | |
| 
 | |
| </div>
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
 | |
|   declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the
 | |
|    most probable) value of <tt>val</tt>, which can be used by optimizers.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first
 | |
|    argument is a value. The second argument is an expected value, this needs to
 | |
|    be a constant value, variables are not allowed.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic is lowered to the <tt>val</tt>.</p>
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="int_donothing">'<tt>llvm.donothing</tt>' Intrinsic</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   declare void @llvm.donothing() nounwind readnone
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| <p>The <tt>llvm.donothing</tt> intrinsic doesn't perform any operation. It's the
 | |
| only intrinsic that can be called with an invoke instruction.</p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| <p>None.</p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| <p>This intrinsic does nothing, and it's removed by optimizers and ignored by
 | |
| codegen.</p>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
 | |
| 
 | |
|   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | |
|   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
 | |
|   Last modified: $Date$
 | |
| </address>
 | |
| 
 | |
| </body>
 | |
| </html>
 |