mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229340 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			913 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			913 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Calculate a program structure tree built out of single entry single exit
 | |
| // regions.
 | |
| // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
 | |
| // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
 | |
| // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
 | |
| // Koehler - 2009".
 | |
| // The algorithm to calculate these data structures however is completely
 | |
| // different, as it takes advantage of existing information already available
 | |
| // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
 | |
| // and in practice hopefully better performing algorithm. The runtime of the
 | |
| // algorithms described in the papers above are both linear in graph size,
 | |
| // O(V+E), whereas this algorithm is not, as the dominance frontier information
 | |
| // itself is not, but in practice runtime seems to be in the order of magnitude
 | |
| // of dominance tree calculation.
 | |
| //
 | |
| // WARNING: LLVM is generally very concerned about compile time such that
 | |
| //          the use of additional analysis passes in the default
 | |
| //          optimization sequence is avoided as much as possible.
 | |
| //          Specifically, if you do not need the RegionInfo, but dominance
 | |
| //          information could be sufficient please base your work only on
 | |
| //          the dominator tree. Most passes maintain it, such that using
 | |
| //          it has often near zero cost. In contrast RegionInfo is by
 | |
| //          default not available, is not maintained by existing
 | |
| //          transformations and there is no intention to do so.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ANALYSIS_REGIONINFO_H
 | |
| #define LLVM_ANALYSIS_REGIONINFO_H
 | |
| 
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/PointerIntPair.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <set>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| // RegionTraits - Class to be specialized for different users of RegionInfo
 | |
| // (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
 | |
| // pass around an unreasonable number of template parameters.
 | |
| template <class FuncT_>
 | |
| struct RegionTraits {
 | |
|   // FuncT
 | |
|   // BlockT
 | |
|   // RegionT
 | |
|   // RegionNodeT
 | |
|   // RegionInfoT
 | |
|   typedef typename FuncT_::UnknownRegionTypeError BrokenT;
 | |
| };
 | |
| 
 | |
| class DominatorTree;
 | |
| class DominanceFrontier;
 | |
| class Loop;
 | |
| class LoopInfo;
 | |
| struct PostDominatorTree;
 | |
| class raw_ostream;
 | |
| class Region;
 | |
| template <class RegionTr>
 | |
| class RegionBase;
 | |
| class RegionNode;
 | |
| class RegionInfo;
 | |
| template <class RegionTr>
 | |
| class RegionInfoBase;
 | |
| 
 | |
| template <>
 | |
| struct RegionTraits<Function> {
 | |
|   typedef Function FuncT;
 | |
|   typedef BasicBlock BlockT;
 | |
|   typedef Region RegionT;
 | |
|   typedef RegionNode RegionNodeT;
 | |
|   typedef RegionInfo RegionInfoT;
 | |
|   typedef DominatorTree DomTreeT;
 | |
|   typedef DomTreeNode DomTreeNodeT;
 | |
|   typedef DominanceFrontier DomFrontierT;
 | |
|   typedef PostDominatorTree PostDomTreeT;
 | |
|   typedef Instruction InstT;
 | |
|   typedef Loop LoopT;
 | |
|   typedef LoopInfo LoopInfoT;
 | |
| 
 | |
|   static unsigned getNumSuccessors(BasicBlock *BB) {
 | |
|     return BB->getTerminator()->getNumSuccessors();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// @brief Marker class to iterate over the elements of a Region in flat mode.
 | |
| ///
 | |
| /// The class is used to either iterate in Flat mode or by not using it to not
 | |
| /// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
 | |
| /// and the iteration returns every BasicBlock.  If the Flat mode is not
 | |
| /// selected for SubRegions just one RegionNode containing the subregion is
 | |
| /// returned.
 | |
| template <class GraphType>
 | |
| class FlatIt {};
 | |
| 
 | |
| /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
 | |
| /// Region.
 | |
| template <class Tr>
 | |
| class RegionNodeBase {
 | |
|   friend class RegionBase<Tr>;
 | |
| 
 | |
| public:
 | |
|   typedef typename Tr::BlockT BlockT;
 | |
|   typedef typename Tr::RegionT RegionT;
 | |
| 
 | |
| private:
 | |
|   RegionNodeBase(const RegionNodeBase &) = delete;
 | |
|   const RegionNodeBase &operator=(const RegionNodeBase &) = delete;
 | |
| 
 | |
|   /// This is the entry basic block that starts this region node.  If this is a
 | |
|   /// BasicBlock RegionNode, then entry is just the basic block, that this
 | |
|   /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
 | |
|   ///
 | |
|   /// In the BBtoRegionNode map of the parent of this node, BB will always map
 | |
|   /// to this node no matter which kind of node this one is.
 | |
|   ///
 | |
|   /// The node can hold either a Region or a BasicBlock.
 | |
|   /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
 | |
|   /// RegionNode.
 | |
|   PointerIntPair<BlockT *, 1, bool> entry;
 | |
| 
 | |
|   /// @brief The parent Region of this RegionNode.
 | |
|   /// @see getParent()
 | |
|   RegionT *parent;
 | |
| 
 | |
| protected:
 | |
|   /// @brief Create a RegionNode.
 | |
|   ///
 | |
|   /// @param Parent      The parent of this RegionNode.
 | |
|   /// @param Entry       The entry BasicBlock of the RegionNode.  If this
 | |
|   ///                    RegionNode represents a BasicBlock, this is the
 | |
|   ///                    BasicBlock itself.  If it represents a subregion, this
 | |
|   ///                    is the entry BasicBlock of the subregion.
 | |
|   /// @param isSubRegion If this RegionNode represents a SubRegion.
 | |
|   inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
 | |
|                         bool isSubRegion = false)
 | |
|       : entry(Entry, isSubRegion), parent(Parent) {}
 | |
| 
 | |
| public:
 | |
|   /// @brief Get the parent Region of this RegionNode.
 | |
|   ///
 | |
|   /// The parent Region is the Region this RegionNode belongs to. If for
 | |
|   /// example a BasicBlock is element of two Regions, there exist two
 | |
|   /// RegionNodes for this BasicBlock. Each with the getParent() function
 | |
|   /// pointing to the Region this RegionNode belongs to.
 | |
|   ///
 | |
|   /// @return Get the parent Region of this RegionNode.
 | |
|   inline RegionT *getParent() const { return parent; }
 | |
| 
 | |
|   /// @brief Get the entry BasicBlock of this RegionNode.
 | |
|   ///
 | |
|   /// If this RegionNode represents a BasicBlock this is just the BasicBlock
 | |
|   /// itself, otherwise we return the entry BasicBlock of the Subregion
 | |
|   ///
 | |
|   /// @return The entry BasicBlock of this RegionNode.
 | |
|   inline BlockT *getEntry() const { return entry.getPointer(); }
 | |
| 
 | |
|   /// @brief Get the content of this RegionNode.
 | |
|   ///
 | |
|   /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
 | |
|   /// check the type of the content with the isSubRegion() function call.
 | |
|   ///
 | |
|   /// @return The content of this RegionNode.
 | |
|   template <class T> inline T *getNodeAs() const;
 | |
| 
 | |
|   /// @brief Is this RegionNode a subregion?
 | |
|   ///
 | |
|   /// @return True if it contains a subregion. False if it contains a
 | |
|   ///         BasicBlock.
 | |
|   inline bool isSubRegion() const { return entry.getInt(); }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// @brief A single entry single exit Region.
 | |
| ///
 | |
| /// A Region is a connected subgraph of a control flow graph that has exactly
 | |
| /// two connections to the remaining graph. It can be used to analyze or
 | |
| /// optimize parts of the control flow graph.
 | |
| ///
 | |
| /// A <em> simple Region </em> is connected to the remaining graph by just two
 | |
| /// edges. One edge entering the Region and another one leaving the Region.
 | |
| ///
 | |
| /// An <em> extended Region </em> (or just Region) is a subgraph that can be
 | |
| /// transform into a simple Region. The transformation is done by adding
 | |
| /// BasicBlocks that merge several entry or exit edges so that after the merge
 | |
| /// just one entry and one exit edge exists.
 | |
| ///
 | |
| /// The \e Entry of a Region is the first BasicBlock that is passed after
 | |
| /// entering the Region. It is an element of the Region. The entry BasicBlock
 | |
| /// dominates all BasicBlocks in the Region.
 | |
| ///
 | |
| /// The \e Exit of a Region is the first BasicBlock that is passed after
 | |
| /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
 | |
| /// postdominates all BasicBlocks in the Region.
 | |
| ///
 | |
| /// A <em> canonical Region </em> cannot be constructed by combining smaller
 | |
| /// Regions.
 | |
| ///
 | |
| /// Region A is the \e parent of Region B, if B is completely contained in A.
 | |
| ///
 | |
| /// Two canonical Regions either do not intersect at all or one is
 | |
| /// the parent of the other.
 | |
| ///
 | |
| /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
 | |
| /// Regions in the control flow graph and E is the \e parent relation of these
 | |
| /// Regions.
 | |
| ///
 | |
| /// Example:
 | |
| ///
 | |
| /// \verbatim
 | |
| /// A simple control flow graph, that contains two regions.
 | |
| ///
 | |
| ///        1
 | |
| ///       / |
 | |
| ///      2   |
 | |
| ///     / \   3
 | |
| ///    4   5  |
 | |
| ///    |   |  |
 | |
| ///    6   7  8
 | |
| ///     \  | /
 | |
| ///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
 | |
| ///        9        Region B: 2 -> 9 {2,4,5,6,7}
 | |
| /// \endverbatim
 | |
| ///
 | |
| /// You can obtain more examples by either calling
 | |
| ///
 | |
| /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
 | |
| /// or
 | |
| /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
 | |
| ///
 | |
| /// on any LLVM file you are interested in.
 | |
| ///
 | |
| /// The first call returns a textual representation of the program structure
 | |
| /// tree, the second one creates a graphical representation using graphviz.
 | |
| template <class Tr>
 | |
| class RegionBase : public RegionNodeBase<Tr> {
 | |
|   typedef typename Tr::FuncT FuncT;
 | |
|   typedef typename Tr::BlockT BlockT;
 | |
|   typedef typename Tr::RegionInfoT RegionInfoT;
 | |
|   typedef typename Tr::RegionT RegionT;
 | |
|   typedef typename Tr::RegionNodeT RegionNodeT;
 | |
|   typedef typename Tr::DomTreeT DomTreeT;
 | |
|   typedef typename Tr::LoopT LoopT;
 | |
|   typedef typename Tr::LoopInfoT LoopInfoT;
 | |
|   typedef typename Tr::InstT InstT;
 | |
| 
 | |
|   typedef GraphTraits<BlockT *> BlockTraits;
 | |
|   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
 | |
|   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
 | |
|   typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
 | |
| 
 | |
|   friend class RegionInfoBase<Tr>;
 | |
|   RegionBase(const RegionBase &) = delete;
 | |
|   const RegionBase &operator=(const RegionBase &) = delete;
 | |
| 
 | |
|   // Information necessary to manage this Region.
 | |
|   RegionInfoT *RI;
 | |
|   DomTreeT *DT;
 | |
| 
 | |
|   // The exit BasicBlock of this region.
 | |
|   // (The entry BasicBlock is part of RegionNode)
 | |
|   BlockT *exit;
 | |
| 
 | |
|   typedef std::vector<std::unique_ptr<RegionT>> RegionSet;
 | |
| 
 | |
|   // The subregions of this region.
 | |
|   RegionSet children;
 | |
| 
 | |
|   typedef std::map<BlockT *, RegionNodeT *> BBNodeMapT;
 | |
| 
 | |
|   // Save the BasicBlock RegionNodes that are element of this Region.
 | |
|   mutable BBNodeMapT BBNodeMap;
 | |
| 
 | |
|   /// verifyBBInRegion - Check if a BB is in this Region. This check also works
 | |
|   /// if the region is incorrectly built. (EXPENSIVE!)
 | |
|   void verifyBBInRegion(BlockT *BB) const;
 | |
| 
 | |
|   /// verifyWalk - Walk over all the BBs of the region starting from BB and
 | |
|   /// verify that all reachable basic blocks are elements of the region.
 | |
|   /// (EXPENSIVE!)
 | |
|   void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
 | |
| 
 | |
|   /// verifyRegionNest - Verify if the region and its children are valid
 | |
|   /// regions (EXPENSIVE!)
 | |
|   void verifyRegionNest() const;
 | |
| 
 | |
| public:
 | |
|   /// @brief Create a new region.
 | |
|   ///
 | |
|   /// @param Entry  The entry basic block of the region.
 | |
|   /// @param Exit   The exit basic block of the region.
 | |
|   /// @param RI     The region info object that is managing this region.
 | |
|   /// @param DT     The dominator tree of the current function.
 | |
|   /// @param Parent The surrounding region or NULL if this is a top level
 | |
|   ///               region.
 | |
|   RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
 | |
|              RegionT *Parent = nullptr);
 | |
| 
 | |
|   /// Delete the Region and all its subregions.
 | |
|   ~RegionBase();
 | |
| 
 | |
|   /// @brief Get the entry BasicBlock of the Region.
 | |
|   /// @return The entry BasicBlock of the region.
 | |
|   BlockT *getEntry() const {
 | |
|     return RegionNodeBase<Tr>::getEntry();
 | |
|   }
 | |
| 
 | |
|   /// @brief Replace the entry basic block of the region with the new basic
 | |
|   ///        block.
 | |
|   ///
 | |
|   /// @param BB  The new entry basic block of the region.
 | |
|   void replaceEntry(BlockT *BB);
 | |
| 
 | |
|   /// @brief Replace the exit basic block of the region with the new basic
 | |
|   ///        block.
 | |
|   ///
 | |
|   /// @param BB  The new exit basic block of the region.
 | |
|   void replaceExit(BlockT *BB);
 | |
| 
 | |
|   /// @brief Recursively replace the entry basic block of the region.
 | |
|   ///
 | |
|   /// This function replaces the entry basic block with a new basic block. It
 | |
|   /// also updates all child regions that have the same entry basic block as
 | |
|   /// this region.
 | |
|   ///
 | |
|   /// @param NewEntry The new entry basic block.
 | |
|   void replaceEntryRecursive(BlockT *NewEntry);
 | |
| 
 | |
|   /// @brief Recursively replace the exit basic block of the region.
 | |
|   ///
 | |
|   /// This function replaces the exit basic block with a new basic block. It
 | |
|   /// also updates all child regions that have the same exit basic block as
 | |
|   /// this region.
 | |
|   ///
 | |
|   /// @param NewExit The new exit basic block.
 | |
|   void replaceExitRecursive(BlockT *NewExit);
 | |
| 
 | |
|   /// @brief Get the exit BasicBlock of the Region.
 | |
|   /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
 | |
|   ///         Region.
 | |
|   BlockT *getExit() const { return exit; }
 | |
| 
 | |
|   /// @brief Get the parent of the Region.
 | |
|   /// @return The parent of the Region or NULL if this is a top level
 | |
|   ///         Region.
 | |
|   RegionT *getParent() const {
 | |
|     return RegionNodeBase<Tr>::getParent();
 | |
|   }
 | |
| 
 | |
|   /// @brief Get the RegionNode representing the current Region.
 | |
|   /// @return The RegionNode representing the current Region.
 | |
|   RegionNodeT *getNode() const {
 | |
|     return const_cast<RegionNodeT *>(
 | |
|         reinterpret_cast<const RegionNodeT *>(this));
 | |
|   }
 | |
| 
 | |
|   /// @brief Get the nesting level of this Region.
 | |
|   ///
 | |
|   /// An toplevel Region has depth 0.
 | |
|   ///
 | |
|   /// @return The depth of the region.
 | |
|   unsigned getDepth() const;
 | |
| 
 | |
|   /// @brief Check if a Region is the TopLevel region.
 | |
|   ///
 | |
|   /// The toplevel region represents the whole function.
 | |
|   bool isTopLevelRegion() const { return exit == nullptr; }
 | |
| 
 | |
|   /// @brief Return a new (non-canonical) region, that is obtained by joining
 | |
|   ///        this region with its predecessors.
 | |
|   ///
 | |
|   /// @return A region also starting at getEntry(), but reaching to the next
 | |
|   ///         basic block that forms with getEntry() a (non-canonical) region.
 | |
|   ///         NULL if such a basic block does not exist.
 | |
|   RegionT *getExpandedRegion() const;
 | |
| 
 | |
|   /// @brief Return the first block of this region's single entry edge,
 | |
|   ///        if existing.
 | |
|   ///
 | |
|   /// @return The BasicBlock starting this region's single entry edge,
 | |
|   ///         else NULL.
 | |
|   BlockT *getEnteringBlock() const;
 | |
| 
 | |
|   /// @brief Return the first block of this region's single exit edge,
 | |
|   ///        if existing.
 | |
|   ///
 | |
|   /// @return The BasicBlock starting this region's single exit edge,
 | |
|   ///         else NULL.
 | |
|   BlockT *getExitingBlock() const;
 | |
| 
 | |
|   /// @brief Is this a simple region?
 | |
|   ///
 | |
|   /// A region is simple if it has exactly one exit and one entry edge.
 | |
|   ///
 | |
|   /// @return True if the Region is simple.
 | |
|   bool isSimple() const;
 | |
| 
 | |
|   /// @brief Returns the name of the Region.
 | |
|   /// @return The Name of the Region.
 | |
|   std::string getNameStr() const;
 | |
| 
 | |
|   /// @brief Return the RegionInfo object, that belongs to this Region.
 | |
|   RegionInfoT *getRegionInfo() const { return RI; }
 | |
| 
 | |
|   /// PrintStyle - Print region in difference ways.
 | |
|   enum PrintStyle { PrintNone, PrintBB, PrintRN };
 | |
| 
 | |
|   /// @brief Print the region.
 | |
|   ///
 | |
|   /// @param OS The output stream the Region is printed to.
 | |
|   /// @param printTree Print also the tree of subregions.
 | |
|   /// @param level The indentation level used for printing.
 | |
|   void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
 | |
|              PrintStyle Style = PrintNone) const;
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   /// @brief Print the region to stderr.
 | |
|   void dump() const;
 | |
| #endif
 | |
| 
 | |
|   /// @brief Check if the region contains a BasicBlock.
 | |
|   ///
 | |
|   /// @param BB The BasicBlock that might be contained in this Region.
 | |
|   /// @return True if the block is contained in the region otherwise false.
 | |
|   bool contains(const BlockT *BB) const;
 | |
| 
 | |
|   /// @brief Check if the region contains another region.
 | |
|   ///
 | |
|   /// @param SubRegion The region that might be contained in this Region.
 | |
|   /// @return True if SubRegion is contained in the region otherwise false.
 | |
|   bool contains(const RegionT *SubRegion) const {
 | |
|     // Toplevel Region.
 | |
|     if (!getExit())
 | |
|       return true;
 | |
| 
 | |
|     return contains(SubRegion->getEntry()) &&
 | |
|            (contains(SubRegion->getExit()) ||
 | |
|             SubRegion->getExit() == getExit());
 | |
|   }
 | |
| 
 | |
|   /// @brief Check if the region contains an Instruction.
 | |
|   ///
 | |
|   /// @param Inst The Instruction that might be contained in this region.
 | |
|   /// @return True if the Instruction is contained in the region otherwise
 | |
|   /// false.
 | |
|   bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
 | |
| 
 | |
|   /// @brief Check if the region contains a loop.
 | |
|   ///
 | |
|   /// @param L The loop that might be contained in this region.
 | |
|   /// @return True if the loop is contained in the region otherwise false.
 | |
|   ///         In case a NULL pointer is passed to this function the result
 | |
|   ///         is false, except for the region that describes the whole function.
 | |
|   ///         In that case true is returned.
 | |
|   bool contains(const LoopT *L) const;
 | |
| 
 | |
|   /// @brief Get the outermost loop in the region that contains a loop.
 | |
|   ///
 | |
|   /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
 | |
|   /// and is itself contained in the region.
 | |
|   ///
 | |
|   /// @param L The loop the lookup is started.
 | |
|   /// @return The outermost loop in the region, NULL if such a loop does not
 | |
|   ///         exist or if the region describes the whole function.
 | |
|   LoopT *outermostLoopInRegion(LoopT *L) const;
 | |
| 
 | |
|   /// @brief Get the outermost loop in the region that contains a basic block.
 | |
|   ///
 | |
|   /// Find for a basic block BB the outermost loop L that contains BB and is
 | |
|   /// itself contained in the region.
 | |
|   ///
 | |
|   /// @param LI A pointer to a LoopInfo analysis.
 | |
|   /// @param BB The basic block surrounded by the loop.
 | |
|   /// @return The outermost loop in the region, NULL if such a loop does not
 | |
|   ///         exist or if the region describes the whole function.
 | |
|   LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
 | |
| 
 | |
|   /// @brief Get the subregion that starts at a BasicBlock
 | |
|   ///
 | |
|   /// @param BB The BasicBlock the subregion should start.
 | |
|   /// @return The Subregion if available, otherwise NULL.
 | |
|   RegionT *getSubRegionNode(BlockT *BB) const;
 | |
| 
 | |
|   /// @brief Get the RegionNode for a BasicBlock
 | |
|   ///
 | |
|   /// @param BB The BasicBlock at which the RegionNode should start.
 | |
|   /// @return If available, the RegionNode that represents the subregion
 | |
|   ///         starting at BB. If no subregion starts at BB, the RegionNode
 | |
|   ///         representing BB.
 | |
|   RegionNodeT *getNode(BlockT *BB) const;
 | |
| 
 | |
|   /// @brief Get the BasicBlock RegionNode for a BasicBlock
 | |
|   ///
 | |
|   /// @param BB The BasicBlock for which the RegionNode is requested.
 | |
|   /// @return The RegionNode representing the BB.
 | |
|   RegionNodeT *getBBNode(BlockT *BB) const;
 | |
| 
 | |
|   /// @brief Add a new subregion to this Region.
 | |
|   ///
 | |
|   /// @param SubRegion The new subregion that will be added.
 | |
|   /// @param moveChildren Move the children of this region, that are also
 | |
|   ///                     contained in SubRegion into SubRegion.
 | |
|   void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
 | |
| 
 | |
|   /// @brief Remove a subregion from this Region.
 | |
|   ///
 | |
|   /// The subregion is not deleted, as it will probably be inserted into another
 | |
|   /// region.
 | |
|   /// @param SubRegion The SubRegion that will be removed.
 | |
|   RegionT *removeSubRegion(RegionT *SubRegion);
 | |
| 
 | |
|   /// @brief Move all direct child nodes of this Region to another Region.
 | |
|   ///
 | |
|   /// @param To The Region the child nodes will be transferred to.
 | |
|   void transferChildrenTo(RegionT *To);
 | |
| 
 | |
|   /// @brief Verify if the region is a correct region.
 | |
|   ///
 | |
|   /// Check if this is a correctly build Region. This is an expensive check, as
 | |
|   /// the complete CFG of the Region will be walked.
 | |
|   void verifyRegion() const;
 | |
| 
 | |
|   /// @brief Clear the cache for BB RegionNodes.
 | |
|   ///
 | |
|   /// After calling this function the BasicBlock RegionNodes will be stored at
 | |
|   /// different memory locations. RegionNodes obtained before this function is
 | |
|   /// called are therefore not comparable to RegionNodes abtained afterwords.
 | |
|   void clearNodeCache();
 | |
| 
 | |
|   /// @name Subregion Iterators
 | |
|   ///
 | |
|   /// These iterators iterator over all subregions of this Region.
 | |
|   //@{
 | |
|   typedef typename RegionSet::iterator iterator;
 | |
|   typedef typename RegionSet::const_iterator const_iterator;
 | |
| 
 | |
|   iterator begin() { return children.begin(); }
 | |
|   iterator end() { return children.end(); }
 | |
| 
 | |
|   const_iterator begin() const { return children.begin(); }
 | |
|   const_iterator end() const { return children.end(); }
 | |
|   //@}
 | |
| 
 | |
|   /// @name BasicBlock Iterators
 | |
|   ///
 | |
|   /// These iterators iterate over all BasicBlocks that are contained in this
 | |
|   /// Region. The iterator also iterates over BasicBlocks that are elements of
 | |
|   /// a subregion of this Region. It is therefore called a flat iterator.
 | |
|   //@{
 | |
|   template <bool IsConst>
 | |
|   class block_iterator_wrapper
 | |
|       : public df_iterator<
 | |
|             typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
 | |
|     typedef df_iterator<
 | |
|         typename std::conditional<IsConst, const BlockT, BlockT>::type *> super;
 | |
| 
 | |
|   public:
 | |
|     typedef block_iterator_wrapper<IsConst> Self;
 | |
|     typedef typename super::pointer pointer;
 | |
| 
 | |
|     // Construct the begin iterator.
 | |
|     block_iterator_wrapper(pointer Entry, pointer Exit)
 | |
|         : super(df_begin(Entry)) {
 | |
|       // Mark the exit of the region as visited, so that the children of the
 | |
|       // exit and the exit itself, i.e. the block outside the region will never
 | |
|       // be visited.
 | |
|       super::Visited.insert(Exit);
 | |
|     }
 | |
| 
 | |
|     // Construct the end iterator.
 | |
|     block_iterator_wrapper() : super(df_end<pointer>((BlockT *)nullptr)) {}
 | |
| 
 | |
|     /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
 | |
| 
 | |
|     // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
 | |
|     //        This was introduced for backwards compatibility, but should
 | |
|     //        be removed as soon as all users are fixed.
 | |
|     BlockT *operator*() const {
 | |
|       return const_cast<BlockT *>(super::operator*());
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   typedef block_iterator_wrapper<false> block_iterator;
 | |
|   typedef block_iterator_wrapper<true> const_block_iterator;
 | |
| 
 | |
|   block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
 | |
| 
 | |
|   block_iterator block_end() { return block_iterator(); }
 | |
| 
 | |
|   const_block_iterator block_begin() const {
 | |
|     return const_block_iterator(getEntry(), getExit());
 | |
|   }
 | |
|   const_block_iterator block_end() const { return const_block_iterator(); }
 | |
| 
 | |
|   typedef iterator_range<block_iterator> block_range;
 | |
|   typedef iterator_range<const_block_iterator> const_block_range;
 | |
| 
 | |
|   /// @brief Returns a range view of the basic blocks in the region.
 | |
|   inline block_range blocks() {
 | |
|     return block_range(block_begin(), block_end());
 | |
|   }
 | |
| 
 | |
|   /// @brief Returns a range view of the basic blocks in the region.
 | |
|   ///
 | |
|   /// This is the 'const' version of the range view.
 | |
|   inline const_block_range blocks() const {
 | |
|     return const_block_range(block_begin(), block_end());
 | |
|   }
 | |
|   //@}
 | |
| 
 | |
|   /// @name Element Iterators
 | |
|   ///
 | |
|   /// These iterators iterate over all BasicBlock and subregion RegionNodes that
 | |
|   /// are direct children of this Region. It does not iterate over any
 | |
|   /// RegionNodes that are also element of a subregion of this Region.
 | |
|   //@{
 | |
|   typedef df_iterator<RegionNodeT *, SmallPtrSet<RegionNodeT *, 8>, false,
 | |
|                       GraphTraits<RegionNodeT *>> element_iterator;
 | |
| 
 | |
|   typedef df_iterator<const RegionNodeT *, SmallPtrSet<const RegionNodeT *, 8>,
 | |
|                       false,
 | |
|                       GraphTraits<const RegionNodeT *>> const_element_iterator;
 | |
| 
 | |
|   element_iterator element_begin();
 | |
|   element_iterator element_end();
 | |
| 
 | |
|   const_element_iterator element_begin() const;
 | |
|   const_element_iterator element_end() const;
 | |
|   //@}
 | |
| };
 | |
| 
 | |
| /// Print a RegionNode.
 | |
| template <class Tr>
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// @brief Analysis that detects all canonical Regions.
 | |
| ///
 | |
| /// The RegionInfo pass detects all canonical regions in a function. The Regions
 | |
| /// are connected using the parent relation. This builds a Program Structure
 | |
| /// Tree.
 | |
| template <class Tr>
 | |
| class RegionInfoBase {
 | |
|   typedef typename Tr::BlockT BlockT;
 | |
|   typedef typename Tr::FuncT FuncT;
 | |
|   typedef typename Tr::RegionT RegionT;
 | |
|   typedef typename Tr::RegionInfoT RegionInfoT;
 | |
|   typedef typename Tr::DomTreeT DomTreeT;
 | |
|   typedef typename Tr::DomTreeNodeT DomTreeNodeT;
 | |
|   typedef typename Tr::PostDomTreeT PostDomTreeT;
 | |
|   typedef typename Tr::DomFrontierT DomFrontierT;
 | |
|   typedef GraphTraits<BlockT *> BlockTraits;
 | |
|   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
 | |
|   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
 | |
|   typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
 | |
| 
 | |
|   friend class RegionInfo;
 | |
|   friend class MachineRegionInfo;
 | |
|   typedef DenseMap<BlockT *, BlockT *> BBtoBBMap;
 | |
|   typedef DenseMap<BlockT *, RegionT *> BBtoRegionMap;
 | |
|   typedef SmallPtrSet<RegionT *, 4> RegionSet;
 | |
| 
 | |
|   RegionInfoBase();
 | |
|   virtual ~RegionInfoBase();
 | |
| 
 | |
|   RegionInfoBase(const RegionInfoBase &) = delete;
 | |
|   const RegionInfoBase &operator=(const RegionInfoBase &) = delete;
 | |
| 
 | |
|   DomTreeT *DT;
 | |
|   PostDomTreeT *PDT;
 | |
|   DomFrontierT *DF;
 | |
| 
 | |
|   /// The top level region.
 | |
|   RegionT *TopLevelRegion;
 | |
| 
 | |
| private:
 | |
|   /// Map every BB to the smallest region, that contains BB.
 | |
|   BBtoRegionMap BBtoRegion;
 | |
| 
 | |
|   // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
 | |
|   // entry, because it was inherited from exit. In the other case there is an
 | |
|   // edge going from entry to BB without passing exit.
 | |
|   bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
 | |
| 
 | |
|   // isRegion - Check if entry and exit surround a valid region, based on
 | |
|   // dominance tree and dominance frontier.
 | |
|   bool isRegion(BlockT *entry, BlockT *exit) const;
 | |
| 
 | |
|   // insertShortCut - Saves a shortcut pointing from entry to exit.
 | |
|   // This function may extend this shortcut if possible.
 | |
|   void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
 | |
| 
 | |
|   // getNextPostDom - Returns the next BB that postdominates N, while skipping
 | |
|   // all post dominators that cannot finish a canonical region.
 | |
|   DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
 | |
| 
 | |
|   // isTrivialRegion - A region is trivial, if it contains only one BB.
 | |
|   bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
 | |
| 
 | |
|   // createRegion - Creates a single entry single exit region.
 | |
|   RegionT *createRegion(BlockT *entry, BlockT *exit);
 | |
| 
 | |
|   // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
 | |
|   void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
 | |
| 
 | |
|   // scanForRegions - Detects regions in F.
 | |
|   void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
 | |
| 
 | |
|   // getTopMostParent - Get the top most parent with the same entry block.
 | |
|   RegionT *getTopMostParent(RegionT *region);
 | |
| 
 | |
|   // buildRegionsTree - build the region hierarchy after all region detected.
 | |
|   void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
 | |
| 
 | |
|   // updateStatistics - Update statistic about created regions.
 | |
|   virtual void updateStatistics(RegionT *R) = 0;
 | |
| 
 | |
|   // calculate - detect all regions in function and build the region tree.
 | |
|   void calculate(FuncT &F);
 | |
| 
 | |
| public:
 | |
|   static bool VerifyRegionInfo;
 | |
|   static typename RegionT::PrintStyle printStyle;
 | |
| 
 | |
|   void print(raw_ostream &OS) const;
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   void dump() const;
 | |
| #endif
 | |
| 
 | |
|   void releaseMemory();
 | |
| 
 | |
|   /// @brief Get the smallest region that contains a BasicBlock.
 | |
|   ///
 | |
|   /// @param BB The basic block.
 | |
|   /// @return The smallest region, that contains BB or NULL, if there is no
 | |
|   /// region containing BB.
 | |
|   RegionT *getRegionFor(BlockT *BB) const;
 | |
| 
 | |
|   /// @brief  Set the smallest region that surrounds a basic block.
 | |
|   ///
 | |
|   /// @param BB The basic block surrounded by a region.
 | |
|   /// @param R The smallest region that surrounds BB.
 | |
|   void setRegionFor(BlockT *BB, RegionT *R);
 | |
| 
 | |
|   /// @brief A shortcut for getRegionFor().
 | |
|   ///
 | |
|   /// @param BB The basic block.
 | |
|   /// @return The smallest region, that contains BB or NULL, if there is no
 | |
|   /// region containing BB.
 | |
|   RegionT *operator[](BlockT *BB) const;
 | |
| 
 | |
|   /// @brief Return the exit of the maximal refined region, that starts at a
 | |
|   /// BasicBlock.
 | |
|   ///
 | |
|   /// @param BB The BasicBlock the refined region starts.
 | |
|   BlockT *getMaxRegionExit(BlockT *BB) const;
 | |
| 
 | |
|   /// @brief Find the smallest region that contains two regions.
 | |
|   ///
 | |
|   /// @param A The first region.
 | |
|   /// @param B The second region.
 | |
|   /// @return The smallest region containing A and B.
 | |
|   RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
 | |
| 
 | |
|   /// @brief Find the smallest region that contains two basic blocks.
 | |
|   ///
 | |
|   /// @param A The first basic block.
 | |
|   /// @param B The second basic block.
 | |
|   /// @return The smallest region that contains A and B.
 | |
|   RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
 | |
|     return getCommonRegion(getRegionFor(A), getRegionFor(B));
 | |
|   }
 | |
| 
 | |
|   /// @brief Find the smallest region that contains a set of regions.
 | |
|   ///
 | |
|   /// @param Regions A vector of regions.
 | |
|   /// @return The smallest region that contains all regions in Regions.
 | |
|   RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
 | |
| 
 | |
|   /// @brief Find the smallest region that contains a set of basic blocks.
 | |
|   ///
 | |
|   /// @param BBs A vector of basic blocks.
 | |
|   /// @return The smallest region that contains all basic blocks in BBS.
 | |
|   RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
 | |
| 
 | |
|   RegionT *getTopLevelRegion() const { return TopLevelRegion; }
 | |
| 
 | |
|   /// @brief Update RegionInfo after a basic block was split.
 | |
|   ///
 | |
|   /// @param NewBB The basic block that was created before OldBB.
 | |
|   /// @param OldBB The old basic block.
 | |
|   void splitBlock(BlockT *NewBB, BlockT *OldBB);
 | |
| 
 | |
|   /// @brief Clear the Node Cache for all Regions.
 | |
|   ///
 | |
|   /// @see Region::clearNodeCache()
 | |
|   void clearNodeCache() {
 | |
|     if (TopLevelRegion)
 | |
|       TopLevelRegion->clearNodeCache();
 | |
|   }
 | |
| 
 | |
|   void verifyAnalysis() const;
 | |
| };
 | |
| 
 | |
| class Region;
 | |
| 
 | |
| class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
 | |
| public:
 | |
|   inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
 | |
|       : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
 | |
| 
 | |
|   ~RegionNode() {}
 | |
| 
 | |
|   bool operator==(const Region &RN) const {
 | |
|     return this == reinterpret_cast<const RegionNode *>(&RN);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class Region : public RegionBase<RegionTraits<Function>> {
 | |
| public:
 | |
|   Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
 | |
|          Region *Parent = nullptr);
 | |
|   ~Region();
 | |
| 
 | |
|   bool operator==(const RegionNode &RN) const {
 | |
|     return &RN == reinterpret_cast<const RegionNode *>(this);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
 | |
| public:
 | |
|   explicit RegionInfo();
 | |
| 
 | |
|   virtual ~RegionInfo();
 | |
| 
 | |
|   // updateStatistics - Update statistic about created regions.
 | |
|   void updateStatistics(Region *R) final;
 | |
| 
 | |
|   void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
 | |
|                    DominanceFrontier *DF);
 | |
| };
 | |
| 
 | |
| class RegionInfoPass : public FunctionPass {
 | |
|   RegionInfo RI;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
|   explicit RegionInfoPass();
 | |
| 
 | |
|   ~RegionInfoPass();
 | |
| 
 | |
|   RegionInfo &getRegionInfo() { return RI; }
 | |
| 
 | |
|   const RegionInfo &getRegionInfo() const { return RI; }
 | |
| 
 | |
|   /// @name FunctionPass interface
 | |
|   //@{
 | |
|   bool runOnFunction(Function &F) override;
 | |
|   void releaseMemory() override;
 | |
|   void verifyAnalysis() const override;
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
|   void print(raw_ostream &OS, const Module *) const override;
 | |
|   void dump() const;
 | |
|   //@}
 | |
| };
 | |
| 
 | |
| template <>
 | |
| template <>
 | |
| inline BasicBlock *
 | |
| RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
 | |
|   assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
 | |
|   return getEntry();
 | |
| }
 | |
| 
 | |
| template <>
 | |
| template <>
 | |
| inline Region *
 | |
| RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
 | |
|   assert(isSubRegion() && "This is not a subregion RegionNode!");
 | |
|   auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
 | |
|   return reinterpret_cast<Region *>(Unconst);
 | |
| }
 | |
| 
 | |
| template <class Tr>
 | |
| inline raw_ostream &operator<<(raw_ostream &OS,
 | |
|                                const RegionNodeBase<Tr> &Node) {
 | |
|   typedef typename Tr::BlockT BlockT;
 | |
|   typedef typename Tr::RegionT RegionT;
 | |
| 
 | |
|   if (Node.isSubRegion())
 | |
|     return OS << Node.template getNodeAs<RegionT>()->getNameStr();
 | |
|   else
 | |
|     return OS << Node.template getNodeAs<BlockT>()->getName();
 | |
| }
 | |
| 
 | |
| EXTERN_TEMPLATE_INSTANTIATION(class RegionBase<RegionTraits<Function>>);
 | |
| EXTERN_TEMPLATE_INSTANTIATION(class RegionNodeBase<RegionTraits<Function>>);
 | |
| EXTERN_TEMPLATE_INSTANTIATION(class RegionInfoBase<RegionTraits<Function>>);
 | |
| 
 | |
| } // End llvm namespace
 | |
| #endif
 |