mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229490 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			597 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			597 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocPBQP.h ------------------------------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the PBQPBuilder interface, for classes which build PBQP
 | |
| // instances to represent register allocation problems, and the RegAllocPBQP
 | |
| // interface.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CODEGEN_REGALLOCPBQP_H
 | |
| #define LLVM_CODEGEN_REGALLOCPBQP_H
 | |
| 
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/PBQP/CostAllocator.h"
 | |
| #include "llvm/CodeGen/PBQP/ReductionRules.h"
 | |
| #include "llvm/CodeGen/PBQPRAConstraint.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class raw_ostream;
 | |
| 
 | |
| namespace PBQP {
 | |
| namespace RegAlloc {
 | |
| 
 | |
| /// @brief Spill option index.
 | |
| inline unsigned getSpillOptionIdx() { return 0; }
 | |
| 
 | |
| /// \brief Metadata to speed allocatability test.
 | |
| ///
 | |
| /// Keeps track of the number of infinities in each row and column.
 | |
| class MatrixMetadata {
 | |
| private:
 | |
|   MatrixMetadata(const MatrixMetadata&);
 | |
|   void operator=(const MatrixMetadata&);
 | |
| public:
 | |
|   MatrixMetadata(const Matrix& M)
 | |
|     : WorstRow(0), WorstCol(0),
 | |
|       UnsafeRows(new bool[M.getRows() - 1]()),
 | |
|       UnsafeCols(new bool[M.getCols() - 1]()) {
 | |
| 
 | |
|     unsigned* ColCounts = new unsigned[M.getCols() - 1]();
 | |
| 
 | |
|     for (unsigned i = 1; i < M.getRows(); ++i) {
 | |
|       unsigned RowCount = 0;
 | |
|       for (unsigned j = 1; j < M.getCols(); ++j) {
 | |
|         if (M[i][j] == std::numeric_limits<PBQPNum>::infinity()) {
 | |
|           ++RowCount;
 | |
|           ++ColCounts[j - 1];
 | |
|           UnsafeRows[i - 1] = true;
 | |
|           UnsafeCols[j - 1] = true;
 | |
|         }
 | |
|       }
 | |
|       WorstRow = std::max(WorstRow, RowCount);
 | |
|     }
 | |
|     unsigned WorstColCountForCurRow =
 | |
|       *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
 | |
|     WorstCol = std::max(WorstCol, WorstColCountForCurRow);
 | |
|     delete[] ColCounts;
 | |
|   }
 | |
| 
 | |
|   unsigned getWorstRow() const { return WorstRow; }
 | |
|   unsigned getWorstCol() const { return WorstCol; }
 | |
|   const bool* getUnsafeRows() const { return UnsafeRows.get(); }
 | |
|   const bool* getUnsafeCols() const { return UnsafeCols.get(); }
 | |
| 
 | |
| private:
 | |
|   unsigned WorstRow, WorstCol;
 | |
|   std::unique_ptr<bool[]> UnsafeRows;
 | |
|   std::unique_ptr<bool[]> UnsafeCols;
 | |
| };
 | |
| 
 | |
| /// \brief Holds a vector of the allowed physical regs for a vreg.
 | |
| class AllowedRegVector {
 | |
|   friend hash_code hash_value(const AllowedRegVector &);
 | |
| public:
 | |
| 
 | |
|   AllowedRegVector() : NumOpts(0), Opts(nullptr) {}
 | |
| 
 | |
|   AllowedRegVector(const std::vector<unsigned> &OptVec)
 | |
|     : NumOpts(OptVec.size()), Opts(new unsigned[NumOpts]) {
 | |
|     std::copy(OptVec.begin(), OptVec.end(), Opts.get());
 | |
|   }
 | |
| 
 | |
|   AllowedRegVector(const AllowedRegVector &Other)
 | |
|     : NumOpts(Other.NumOpts), Opts(new unsigned[NumOpts]) {
 | |
|     std::copy(Other.Opts.get(), Other.Opts.get() + NumOpts, Opts.get());
 | |
|   }
 | |
| 
 | |
|   AllowedRegVector(AllowedRegVector &&Other)
 | |
|     : NumOpts(std::move(Other.NumOpts)), Opts(std::move(Other.Opts)) {}
 | |
| 
 | |
|   AllowedRegVector& operator=(const AllowedRegVector &Other) {
 | |
|     NumOpts = Other.NumOpts;
 | |
|     Opts.reset(new unsigned[NumOpts]);
 | |
|     std::copy(Other.Opts.get(), Other.Opts.get() + NumOpts, Opts.get());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   AllowedRegVector& operator=(AllowedRegVector &&Other) {
 | |
|     NumOpts = std::move(Other.NumOpts);
 | |
|     Opts = std::move(Other.Opts);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   unsigned size() const { return NumOpts; }
 | |
|   unsigned operator[](size_t I) const { return Opts[I]; }
 | |
| 
 | |
|   bool operator==(const AllowedRegVector &Other) const {
 | |
|     if (NumOpts != Other.NumOpts)
 | |
|       return false;
 | |
|     return std::equal(Opts.get(), Opts.get() + NumOpts, Other.Opts.get());
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const AllowedRegVector &Other) const {
 | |
|     return !(*this == Other);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   unsigned NumOpts;
 | |
|   std::unique_ptr<unsigned[]> Opts;
 | |
| };
 | |
| 
 | |
| inline hash_code hash_value(const AllowedRegVector &OptRegs) {
 | |
|   unsigned *OStart = OptRegs.Opts.get();
 | |
|   unsigned *OEnd = OptRegs.Opts.get() + OptRegs.NumOpts;
 | |
|   return hash_combine(OptRegs.NumOpts,
 | |
|                       hash_combine_range(OStart, OEnd));
 | |
| }
 | |
| 
 | |
| /// \brief Holds graph-level metadata relevent to PBQP RA problems.
 | |
| class GraphMetadata {
 | |
| private:
 | |
|   typedef ValuePool<AllowedRegVector> AllowedRegVecPool;
 | |
| public:
 | |
| 
 | |
|   typedef AllowedRegVecPool::PoolRef AllowedRegVecRef;
 | |
| 
 | |
|   GraphMetadata(MachineFunction &MF,
 | |
|                 LiveIntervals &LIS,
 | |
|                 MachineBlockFrequencyInfo &MBFI)
 | |
|     : MF(MF), LIS(LIS), MBFI(MBFI) {}
 | |
| 
 | |
|   MachineFunction &MF;
 | |
|   LiveIntervals &LIS;
 | |
|   MachineBlockFrequencyInfo &MBFI;
 | |
| 
 | |
|   void setNodeIdForVReg(unsigned VReg, GraphBase::NodeId NId) {
 | |
|     VRegToNodeId[VReg] = NId;
 | |
|   }
 | |
| 
 | |
|   GraphBase::NodeId getNodeIdForVReg(unsigned VReg) const {
 | |
|     auto VRegItr = VRegToNodeId.find(VReg);
 | |
|     if (VRegItr == VRegToNodeId.end())
 | |
|       return GraphBase::invalidNodeId();
 | |
|     return VRegItr->second;
 | |
|   }
 | |
| 
 | |
|   void eraseNodeIdForVReg(unsigned VReg) {
 | |
|     VRegToNodeId.erase(VReg);
 | |
|   }
 | |
| 
 | |
|   AllowedRegVecRef getAllowedRegs(AllowedRegVector Allowed) {
 | |
|     return AllowedRegVecs.getValue(std::move(Allowed));
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   DenseMap<unsigned, GraphBase::NodeId> VRegToNodeId;
 | |
|   AllowedRegVecPool AllowedRegVecs;
 | |
| };
 | |
| 
 | |
| /// \brief Holds solver state and other metadata relevant to each PBQP RA node.
 | |
| class NodeMetadata {
 | |
| public:
 | |
|   typedef RegAlloc::AllowedRegVector AllowedRegVector;
 | |
| 
 | |
|   // The node's reduction state. The order in this enum is important,
 | |
|   // as it is assumed nodes can only progress up (i.e. towards being
 | |
|   // optimally reducible) when reducing the graph.
 | |
|   typedef enum {
 | |
|     Unprocessed,
 | |
|     NotProvablyAllocatable,
 | |
|     ConservativelyAllocatable,
 | |
|     OptimallyReducible
 | |
|   } ReductionState;
 | |
| 
 | |
|   NodeMetadata()
 | |
|     : RS(Unprocessed), NumOpts(0), DeniedOpts(0), OptUnsafeEdges(nullptr),
 | |
|       VReg(0)
 | |
| #ifndef NDEBUG
 | |
|       , everConservativelyAllocatable(false)
 | |
| #endif
 | |
|       {}
 | |
| 
 | |
|   // FIXME: Re-implementing default behavior to work around MSVC. Remove once
 | |
|   // MSVC synthesizes move constructors properly.
 | |
|   NodeMetadata(const NodeMetadata &Other)
 | |
|     : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
 | |
|       OptUnsafeEdges(new unsigned[NumOpts]), VReg(Other.VReg),
 | |
|       AllowedRegs(Other.AllowedRegs)
 | |
| #ifndef NDEBUG
 | |
|       , everConservativelyAllocatable(Other.everConservativelyAllocatable)
 | |
| #endif
 | |
|   {
 | |
|     if (NumOpts > 0) {
 | |
|       std::copy(&Other.OptUnsafeEdges[0], &Other.OptUnsafeEdges[NumOpts],
 | |
|                 &OptUnsafeEdges[0]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Re-implementing default behavior to work around MSVC. Remove once
 | |
|   // MSVC synthesizes move constructors properly.
 | |
|   NodeMetadata(NodeMetadata &&Other)
 | |
|     : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
 | |
|       OptUnsafeEdges(std::move(Other.OptUnsafeEdges)), VReg(Other.VReg),
 | |
|       AllowedRegs(std::move(Other.AllowedRegs))
 | |
| #ifndef NDEBUG
 | |
|       , everConservativelyAllocatable(Other.everConservativelyAllocatable)
 | |
| #endif
 | |
|   {}
 | |
| 
 | |
|   // FIXME: Re-implementing default behavior to work around MSVC. Remove once
 | |
|   // MSVC synthesizes move constructors properly.
 | |
|   NodeMetadata& operator=(const NodeMetadata &Other) {
 | |
|     RS = Other.RS;
 | |
|     NumOpts = Other.NumOpts;
 | |
|     DeniedOpts = Other.DeniedOpts;
 | |
|     OptUnsafeEdges.reset(new unsigned[NumOpts]);
 | |
|     std::copy(Other.OptUnsafeEdges.get(), Other.OptUnsafeEdges.get() + NumOpts,
 | |
|               OptUnsafeEdges.get());
 | |
|     VReg = Other.VReg;
 | |
|     AllowedRegs = Other.AllowedRegs;
 | |
| #ifndef NDEBUG
 | |
|     everConservativelyAllocatable = Other.everConservativelyAllocatable;
 | |
| #endif
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Re-implementing default behavior to work around MSVC. Remove once
 | |
|   // MSVC synthesizes move constructors properly.
 | |
|   NodeMetadata& operator=(NodeMetadata &&Other) {
 | |
|     RS = Other.RS;
 | |
|     NumOpts = Other.NumOpts;
 | |
|     DeniedOpts = Other.DeniedOpts;
 | |
|     OptUnsafeEdges = std::move(Other.OptUnsafeEdges);
 | |
|     VReg = Other.VReg;
 | |
|     AllowedRegs = std::move(Other.AllowedRegs);
 | |
| #ifndef NDEBUG
 | |
|     everConservativelyAllocatable = Other.everConservativelyAllocatable;
 | |
| #endif
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   void setVReg(unsigned VReg) { this->VReg = VReg; }
 | |
|   unsigned getVReg() const { return VReg; }
 | |
| 
 | |
|   void setAllowedRegs(GraphMetadata::AllowedRegVecRef AllowedRegs) {
 | |
|     this->AllowedRegs = std::move(AllowedRegs);
 | |
|   }
 | |
|   const AllowedRegVector& getAllowedRegs() const { return *AllowedRegs; }
 | |
| 
 | |
|   void setup(const Vector& Costs) {
 | |
|     NumOpts = Costs.getLength() - 1;
 | |
|     OptUnsafeEdges = std::unique_ptr<unsigned[]>(new unsigned[NumOpts]());
 | |
|   }
 | |
| 
 | |
|   ReductionState getReductionState() const { return RS; }
 | |
|   void setReductionState(ReductionState RS) {
 | |
|     assert(RS >= this->RS && "A node's reduction state can not be downgraded");
 | |
|     this->RS = RS;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     // Remember this state to assert later that a non-infinite register
 | |
|     // option was available.
 | |
|     if (RS == ConservativelyAllocatable)
 | |
|       everConservativelyAllocatable = true;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
| 
 | |
|   void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
 | |
|     DeniedOpts += Transpose ? MD.getWorstRow() : MD.getWorstCol();
 | |
|     const bool* UnsafeOpts =
 | |
|       Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
 | |
|     for (unsigned i = 0; i < NumOpts; ++i)
 | |
|       OptUnsafeEdges[i] += UnsafeOpts[i];
 | |
|   }
 | |
| 
 | |
|   void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
 | |
|     DeniedOpts -= Transpose ? MD.getWorstRow() : MD.getWorstCol();
 | |
|     const bool* UnsafeOpts =
 | |
|       Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
 | |
|     for (unsigned i = 0; i < NumOpts; ++i)
 | |
|       OptUnsafeEdges[i] -= UnsafeOpts[i];
 | |
|   }
 | |
| 
 | |
|   bool isConservativelyAllocatable() const {
 | |
|     return (DeniedOpts < NumOpts) ||
 | |
|       (std::find(&OptUnsafeEdges[0], &OptUnsafeEdges[NumOpts], 0) !=
 | |
|        &OptUnsafeEdges[NumOpts]);
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   bool wasConservativelyAllocatable() const {
 | |
|     return everConservativelyAllocatable;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|   ReductionState RS;
 | |
|   unsigned NumOpts;
 | |
|   unsigned DeniedOpts;
 | |
|   std::unique_ptr<unsigned[]> OptUnsafeEdges;
 | |
|   unsigned VReg;
 | |
|   GraphMetadata::AllowedRegVecRef AllowedRegs;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   bool everConservativelyAllocatable;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| class RegAllocSolverImpl {
 | |
| private:
 | |
|   typedef MDMatrix<MatrixMetadata> RAMatrix;
 | |
| public:
 | |
|   typedef PBQP::Vector RawVector;
 | |
|   typedef PBQP::Matrix RawMatrix;
 | |
|   typedef PBQP::Vector Vector;
 | |
|   typedef RAMatrix     Matrix;
 | |
|   typedef PBQP::PoolCostAllocator<Vector, Matrix> CostAllocator;
 | |
| 
 | |
|   typedef GraphBase::NodeId NodeId;
 | |
|   typedef GraphBase::EdgeId EdgeId;
 | |
| 
 | |
|   typedef RegAlloc::NodeMetadata NodeMetadata;
 | |
|   struct EdgeMetadata { };
 | |
|   typedef RegAlloc::GraphMetadata GraphMetadata;
 | |
| 
 | |
|   typedef PBQP::Graph<RegAllocSolverImpl> Graph;
 | |
| 
 | |
|   RegAllocSolverImpl(Graph &G) : G(G) {}
 | |
| 
 | |
|   Solution solve() {
 | |
|     G.setSolver(*this);
 | |
|     Solution S;
 | |
|     setup();
 | |
|     S = backpropagate(G, reduce());
 | |
|     G.unsetSolver();
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   void handleAddNode(NodeId NId) {
 | |
|     assert(G.getNodeCosts(NId).getLength() > 1 &&
 | |
|            "PBQP Graph should not contain single or zero-option nodes");
 | |
|     G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
 | |
|   }
 | |
|   void handleRemoveNode(NodeId NId) {}
 | |
|   void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
 | |
| 
 | |
|   void handleAddEdge(EdgeId EId) {
 | |
|     handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
 | |
|     handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
 | |
|   }
 | |
| 
 | |
|   void handleRemoveEdge(EdgeId EId) {
 | |
|     handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
 | |
|     handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
 | |
|   }
 | |
| 
 | |
|   void handleDisconnectEdge(EdgeId EId, NodeId NId) {
 | |
|     NodeMetadata& NMd = G.getNodeMetadata(NId);
 | |
|     const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
 | |
|     NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
 | |
|     promote(NId, NMd);
 | |
|   }
 | |
| 
 | |
|   void handleReconnectEdge(EdgeId EId, NodeId NId) {
 | |
|     NodeMetadata& NMd = G.getNodeMetadata(NId);
 | |
|     const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
 | |
|     NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
 | |
|   }
 | |
| 
 | |
|   void handleUpdateCosts(EdgeId EId, const Matrix& NewCosts) {
 | |
|     NodeId N1Id = G.getEdgeNode1Id(EId);
 | |
|     NodeId N2Id = G.getEdgeNode2Id(EId);
 | |
|     NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
 | |
|     NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
 | |
|     bool Transpose = N1Id != G.getEdgeNode1Id(EId);
 | |
| 
 | |
|     // Metadata are computed incrementally. First, update them
 | |
|     // by removing the old cost.
 | |
|     const MatrixMetadata& OldMMd = G.getEdgeCosts(EId).getMetadata();
 | |
|     N1Md.handleRemoveEdge(OldMMd, Transpose);
 | |
|     N2Md.handleRemoveEdge(OldMMd, !Transpose);
 | |
| 
 | |
|     // And update now the metadata with the new cost.
 | |
|     const MatrixMetadata& MMd = NewCosts.getMetadata();
 | |
|     N1Md.handleAddEdge(MMd, Transpose);
 | |
|     N2Md.handleAddEdge(MMd, !Transpose);
 | |
| 
 | |
|     // As the metadata may have changed with the update, the nodes may have
 | |
|     // become ConservativelyAllocatable or OptimallyReducible.
 | |
|     promote(N1Id, N1Md);
 | |
|     promote(N2Id, N2Md);
 | |
|   }
 | |
| 
 | |
| private:
 | |
| 
 | |
|   void promote(NodeId NId, NodeMetadata& NMd) {
 | |
|     if (G.getNodeDegree(NId) == 3) {
 | |
|       // This node is becoming optimally reducible.
 | |
|       moveToOptimallyReducibleNodes(NId);
 | |
|     } else if (NMd.getReductionState() ==
 | |
|                NodeMetadata::NotProvablyAllocatable &&
 | |
|                NMd.isConservativelyAllocatable()) {
 | |
|       // This node just became conservatively allocatable.
 | |
|       moveToConservativelyAllocatableNodes(NId);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void removeFromCurrentSet(NodeId NId) {
 | |
|     switch (G.getNodeMetadata(NId).getReductionState()) {
 | |
|     case NodeMetadata::Unprocessed: break;
 | |
|     case NodeMetadata::OptimallyReducible:
 | |
|       assert(OptimallyReducibleNodes.find(NId) !=
 | |
|              OptimallyReducibleNodes.end() &&
 | |
|              "Node not in optimally reducible set.");
 | |
|       OptimallyReducibleNodes.erase(NId);
 | |
|       break;
 | |
|     case NodeMetadata::ConservativelyAllocatable:
 | |
|       assert(ConservativelyAllocatableNodes.find(NId) !=
 | |
|              ConservativelyAllocatableNodes.end() &&
 | |
|              "Node not in conservatively allocatable set.");
 | |
|       ConservativelyAllocatableNodes.erase(NId);
 | |
|       break;
 | |
|     case NodeMetadata::NotProvablyAllocatable:
 | |
|       assert(NotProvablyAllocatableNodes.find(NId) !=
 | |
|              NotProvablyAllocatableNodes.end() &&
 | |
|              "Node not in not-provably-allocatable set.");
 | |
|       NotProvablyAllocatableNodes.erase(NId);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void moveToOptimallyReducibleNodes(NodeId NId) {
 | |
|     removeFromCurrentSet(NId);
 | |
|     OptimallyReducibleNodes.insert(NId);
 | |
|     G.getNodeMetadata(NId).setReductionState(
 | |
|       NodeMetadata::OptimallyReducible);
 | |
|   }
 | |
| 
 | |
|   void moveToConservativelyAllocatableNodes(NodeId NId) {
 | |
|     removeFromCurrentSet(NId);
 | |
|     ConservativelyAllocatableNodes.insert(NId);
 | |
|     G.getNodeMetadata(NId).setReductionState(
 | |
|       NodeMetadata::ConservativelyAllocatable);
 | |
|   }
 | |
| 
 | |
|   void moveToNotProvablyAllocatableNodes(NodeId NId) {
 | |
|     removeFromCurrentSet(NId);
 | |
|     NotProvablyAllocatableNodes.insert(NId);
 | |
|     G.getNodeMetadata(NId).setReductionState(
 | |
|       NodeMetadata::NotProvablyAllocatable);
 | |
|   }
 | |
| 
 | |
|   void setup() {
 | |
|     // Set up worklists.
 | |
|     for (auto NId : G.nodeIds()) {
 | |
|       if (G.getNodeDegree(NId) < 3)
 | |
|         moveToOptimallyReducibleNodes(NId);
 | |
|       else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
 | |
|         moveToConservativelyAllocatableNodes(NId);
 | |
|       else
 | |
|         moveToNotProvablyAllocatableNodes(NId);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute a reduction order for the graph by iteratively applying PBQP
 | |
|   // reduction rules. Locally optimal rules are applied whenever possible (R0,
 | |
|   // R1, R2). If no locally-optimal rules apply then any conservatively
 | |
|   // allocatable node is reduced. Finally, if no conservatively allocatable
 | |
|   // node exists then the node with the lowest spill-cost:degree ratio is
 | |
|   // selected.
 | |
|   std::vector<GraphBase::NodeId> reduce() {
 | |
|     assert(!G.empty() && "Cannot reduce empty graph.");
 | |
| 
 | |
|     typedef GraphBase::NodeId NodeId;
 | |
|     std::vector<NodeId> NodeStack;
 | |
| 
 | |
|     // Consume worklists.
 | |
|     while (true) {
 | |
|       if (!OptimallyReducibleNodes.empty()) {
 | |
|         NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
 | |
|         NodeId NId = *NItr;
 | |
|         OptimallyReducibleNodes.erase(NItr);
 | |
|         NodeStack.push_back(NId);
 | |
|         switch (G.getNodeDegree(NId)) {
 | |
|         case 0:
 | |
|           break;
 | |
|         case 1:
 | |
|           applyR1(G, NId);
 | |
|           break;
 | |
|         case 2:
 | |
|           applyR2(G, NId);
 | |
|           break;
 | |
|         default: llvm_unreachable("Not an optimally reducible node.");
 | |
|         }
 | |
|       } else if (!ConservativelyAllocatableNodes.empty()) {
 | |
|         // Conservatively allocatable nodes will never spill. For now just
 | |
|         // take the first node in the set and push it on the stack. When we
 | |
|         // start optimizing more heavily for register preferencing, it may
 | |
|         // would be better to push nodes with lower 'expected' or worst-case
 | |
|         // register costs first (since early nodes are the most
 | |
|         // constrained).
 | |
|         NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
 | |
|         NodeId NId = *NItr;
 | |
|         ConservativelyAllocatableNodes.erase(NItr);
 | |
|         NodeStack.push_back(NId);
 | |
|         G.disconnectAllNeighborsFromNode(NId);
 | |
| 
 | |
|       } else if (!NotProvablyAllocatableNodes.empty()) {
 | |
|         NodeSet::iterator NItr =
 | |
|           std::min_element(NotProvablyAllocatableNodes.begin(),
 | |
|                            NotProvablyAllocatableNodes.end(),
 | |
|                            SpillCostComparator(G));
 | |
|         NodeId NId = *NItr;
 | |
|         NotProvablyAllocatableNodes.erase(NItr);
 | |
|         NodeStack.push_back(NId);
 | |
|         G.disconnectAllNeighborsFromNode(NId);
 | |
|       } else
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return NodeStack;
 | |
|   }
 | |
| 
 | |
|   class SpillCostComparator {
 | |
|   public:
 | |
|     SpillCostComparator(const Graph& G) : G(G) {}
 | |
|     bool operator()(NodeId N1Id, NodeId N2Id) {
 | |
|       PBQPNum N1SC = G.getNodeCosts(N1Id)[0] / G.getNodeDegree(N1Id);
 | |
|       PBQPNum N2SC = G.getNodeCosts(N2Id)[0] / G.getNodeDegree(N2Id);
 | |
|       return N1SC < N2SC;
 | |
|     }
 | |
|   private:
 | |
|     const Graph& G;
 | |
|   };
 | |
| 
 | |
|   Graph& G;
 | |
|   typedef std::set<NodeId> NodeSet;
 | |
|   NodeSet OptimallyReducibleNodes;
 | |
|   NodeSet ConservativelyAllocatableNodes;
 | |
|   NodeSet NotProvablyAllocatableNodes;
 | |
| };
 | |
| 
 | |
| class PBQPRAGraph : public PBQP::Graph<RegAllocSolverImpl> {
 | |
| private:
 | |
|   typedef PBQP::Graph<RegAllocSolverImpl> BaseT;
 | |
| public:
 | |
|   PBQPRAGraph(GraphMetadata Metadata) : BaseT(Metadata) {}
 | |
| 
 | |
|   /// @brief Dump this graph to dbgs().
 | |
|   void dump() const;
 | |
| 
 | |
|   /// @brief Dump this graph to an output stream.
 | |
|   /// @param OS Output stream to print on.
 | |
|   void dump(raw_ostream &OS) const;
 | |
| 
 | |
|   /// @brief Print a representation of this graph in DOT format.
 | |
|   /// @param OS Output stream to print on.
 | |
|   void printDot(raw_ostream &OS) const;
 | |
| };
 | |
| 
 | |
| inline Solution solve(PBQPRAGraph& G) {
 | |
|   if (G.empty())
 | |
|     return Solution();
 | |
|   RegAllocSolverImpl RegAllocSolver(G);
 | |
|   return RegAllocSolver.solve();
 | |
| }
 | |
| 
 | |
| } // namespace RegAlloc
 | |
| } // namespace PBQP
 | |
| 
 | |
| /// @brief Create a PBQP register allocator instance.
 | |
| FunctionPass *
 | |
| createPBQPRegisterAllocator(char *customPassID = nullptr);
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| #endif /* LLVM_CODEGEN_REGALLOCPBQP_H */
 |