mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229340 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			769 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			769 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| ///
 | |
| /// This file defines a set of templates that efficiently compute a dominator
 | |
| /// tree over a generic graph. This is used typically in LLVM for fast
 | |
| /// dominance queries on the CFG, but is fully generic w.r.t. the underlying
 | |
| /// graph types.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_SUPPORT_GENERICDOMTREE_H
 | |
| #define LLVM_SUPPORT_GENERICDOMTREE_H
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// \brief Base class that other, more interesting dominator analyses
 | |
| /// inherit from.
 | |
| template <class NodeT> class DominatorBase {
 | |
| protected:
 | |
|   std::vector<NodeT *> Roots;
 | |
|   bool IsPostDominators;
 | |
|   explicit DominatorBase(bool isPostDom)
 | |
|       : Roots(), IsPostDominators(isPostDom) {}
 | |
|   DominatorBase(DominatorBase &&Arg)
 | |
|       : Roots(std::move(Arg.Roots)),
 | |
|         IsPostDominators(std::move(Arg.IsPostDominators)) {
 | |
|     Arg.Roots.clear();
 | |
|   }
 | |
|   DominatorBase &operator=(DominatorBase &&RHS) {
 | |
|     Roots = std::move(RHS.Roots);
 | |
|     IsPostDominators = std::move(RHS.IsPostDominators);
 | |
|     RHS.Roots.clear();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// getRoots - Return the root blocks of the current CFG.  This may include
 | |
|   /// multiple blocks if we are computing post dominators.  For forward
 | |
|   /// dominators, this will always be a single block (the entry node).
 | |
|   ///
 | |
|   const std::vector<NodeT *> &getRoots() const { return Roots; }
 | |
| 
 | |
|   /// isPostDominator - Returns true if analysis based of postdoms
 | |
|   ///
 | |
|   bool isPostDominator() const { return IsPostDominators; }
 | |
| };
 | |
| 
 | |
| template <class NodeT> class DominatorTreeBase;
 | |
| struct PostDominatorTree;
 | |
| 
 | |
| /// \brief Base class for the actual dominator tree node.
 | |
| template <class NodeT> class DomTreeNodeBase {
 | |
|   NodeT *TheBB;
 | |
|   DomTreeNodeBase<NodeT> *IDom;
 | |
|   std::vector<DomTreeNodeBase<NodeT> *> Children;
 | |
|   mutable int DFSNumIn, DFSNumOut;
 | |
| 
 | |
|   template <class N> friend class DominatorTreeBase;
 | |
|   friend struct PostDominatorTree;
 | |
| 
 | |
| public:
 | |
|   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
 | |
|   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
 | |
|       const_iterator;
 | |
| 
 | |
|   iterator begin() { return Children.begin(); }
 | |
|   iterator end() { return Children.end(); }
 | |
|   const_iterator begin() const { return Children.begin(); }
 | |
|   const_iterator end() const { return Children.end(); }
 | |
| 
 | |
|   NodeT *getBlock() const { return TheBB; }
 | |
|   DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
 | |
|   const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
 | |
|     return Children;
 | |
|   }
 | |
| 
 | |
|   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
 | |
|       : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}
 | |
| 
 | |
|   std::unique_ptr<DomTreeNodeBase<NodeT>>
 | |
|   addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) {
 | |
|     Children.push_back(C.get());
 | |
|     return C;
 | |
|   }
 | |
| 
 | |
|   size_t getNumChildren() const { return Children.size(); }
 | |
| 
 | |
|   void clearAllChildren() { Children.clear(); }
 | |
| 
 | |
|   bool compare(const DomTreeNodeBase<NodeT> *Other) const {
 | |
|     if (getNumChildren() != Other->getNumChildren())
 | |
|       return true;
 | |
| 
 | |
|     SmallPtrSet<const NodeT *, 4> OtherChildren;
 | |
|     for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
 | |
|       const NodeT *Nd = (*I)->getBlock();
 | |
|       OtherChildren.insert(Nd);
 | |
|     }
 | |
| 
 | |
|     for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|       const NodeT *N = (*I)->getBlock();
 | |
|       if (OtherChildren.count(N) == 0)
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
 | |
|     assert(IDom && "No immediate dominator?");
 | |
|     if (IDom != NewIDom) {
 | |
|       typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
 | |
|           std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | |
|       assert(I != IDom->Children.end() &&
 | |
|              "Not in immediate dominator children set!");
 | |
|       // I am no longer your child...
 | |
|       IDom->Children.erase(I);
 | |
| 
 | |
|       // Switch to new dominator
 | |
|       IDom = NewIDom;
 | |
|       IDom->Children.push_back(this);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
 | |
|   /// not call them.
 | |
|   unsigned getDFSNumIn() const { return DFSNumIn; }
 | |
|   unsigned getDFSNumOut() const { return DFSNumOut; }
 | |
| 
 | |
| private:
 | |
|   // Return true if this node is dominated by other. Use this only if DFS info
 | |
|   // is valid.
 | |
|   bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
 | |
|     return this->DFSNumIn >= other->DFSNumIn &&
 | |
|            this->DFSNumOut <= other->DFSNumOut;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <class NodeT>
 | |
| raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
 | |
|   if (Node->getBlock())
 | |
|     Node->getBlock()->printAsOperand(o, false);
 | |
|   else
 | |
|     o << " <<exit node>>";
 | |
| 
 | |
|   o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
 | |
| 
 | |
|   return o << "\n";
 | |
| }
 | |
| 
 | |
| template <class NodeT>
 | |
| void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
 | |
|                   unsigned Lev) {
 | |
|   o.indent(2 * Lev) << "[" << Lev << "] " << N;
 | |
|   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
 | |
|                                                        E = N->end();
 | |
|        I != E; ++I)
 | |
|     PrintDomTree<NodeT>(*I, o, Lev + 1);
 | |
| }
 | |
| 
 | |
| // The calculate routine is provided in a separate header but referenced here.
 | |
| template <class FuncT, class N>
 | |
| void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
 | |
|                FuncT &F);
 | |
| 
 | |
| /// \brief Core dominator tree base class.
 | |
| ///
 | |
| /// This class is a generic template over graph nodes. It is instantiated for
 | |
| /// various graphs in the LLVM IR or in the code generator.
 | |
| template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
 | |
|   DominatorTreeBase(const DominatorTreeBase &) = delete;
 | |
|   DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
 | |
| 
 | |
|   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
 | |
|                                const DomTreeNodeBase<NodeT> *B) const {
 | |
|     assert(A != B);
 | |
|     assert(isReachableFromEntry(B));
 | |
|     assert(isReachableFromEntry(A));
 | |
| 
 | |
|     const DomTreeNodeBase<NodeT> *IDom;
 | |
|     while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
 | |
|       B = IDom; // Walk up the tree
 | |
|     return IDom != nullptr;
 | |
|   }
 | |
| 
 | |
|   /// \brief Wipe this tree's state without releasing any resources.
 | |
|   ///
 | |
|   /// This is essentially a post-move helper only. It leaves the object in an
 | |
|   /// assignable and destroyable state, but otherwise invalid.
 | |
|   void wipe() {
 | |
|     DomTreeNodes.clear();
 | |
|     IDoms.clear();
 | |
|     Vertex.clear();
 | |
|     Info.clear();
 | |
|     RootNode = nullptr;
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>
 | |
|       DomTreeNodeMapType;
 | |
|   DomTreeNodeMapType DomTreeNodes;
 | |
|   DomTreeNodeBase<NodeT> *RootNode;
 | |
| 
 | |
|   mutable bool DFSInfoValid;
 | |
|   mutable unsigned int SlowQueries;
 | |
|   // Information record used during immediate dominators computation.
 | |
|   struct InfoRec {
 | |
|     unsigned DFSNum;
 | |
|     unsigned Parent;
 | |
|     unsigned Semi;
 | |
|     NodeT *Label;
 | |
| 
 | |
|     InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
 | |
|   };
 | |
| 
 | |
|   DenseMap<NodeT *, NodeT *> IDoms;
 | |
| 
 | |
|   // Vertex - Map the DFS number to the NodeT*
 | |
|   std::vector<NodeT *> Vertex;
 | |
| 
 | |
|   // Info - Collection of information used during the computation of idoms.
 | |
|   DenseMap<NodeT *, InfoRec> Info;
 | |
| 
 | |
|   void reset() {
 | |
|     DomTreeNodes.clear();
 | |
|     IDoms.clear();
 | |
|     this->Roots.clear();
 | |
|     Vertex.clear();
 | |
|     RootNode = nullptr;
 | |
|   }
 | |
| 
 | |
|   // NewBB is split and now it has one successor. Update dominator tree to
 | |
|   // reflect this change.
 | |
|   template <class N, class GraphT>
 | |
|   void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
 | |
|              typename GraphT::NodeType *NewBB) {
 | |
|     assert(std::distance(GraphT::child_begin(NewBB),
 | |
|                          GraphT::child_end(NewBB)) == 1 &&
 | |
|            "NewBB should have a single successor!");
 | |
|     typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
 | |
| 
 | |
|     std::vector<typename GraphT::NodeType *> PredBlocks;
 | |
|     typedef GraphTraits<Inverse<N>> InvTraits;
 | |
|     for (typename InvTraits::ChildIteratorType
 | |
|              PI = InvTraits::child_begin(NewBB),
 | |
|              PE = InvTraits::child_end(NewBB);
 | |
|          PI != PE; ++PI)
 | |
|       PredBlocks.push_back(*PI);
 | |
| 
 | |
|     assert(!PredBlocks.empty() && "No predblocks?");
 | |
| 
 | |
|     bool NewBBDominatesNewBBSucc = true;
 | |
|     for (typename InvTraits::ChildIteratorType
 | |
|              PI = InvTraits::child_begin(NewBBSucc),
 | |
|              E = InvTraits::child_end(NewBBSucc);
 | |
|          PI != E; ++PI) {
 | |
|       typename InvTraits::NodeType *ND = *PI;
 | |
|       if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
 | |
|           DT.isReachableFromEntry(ND)) {
 | |
|         NewBBDominatesNewBBSucc = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Find NewBB's immediate dominator and create new dominator tree node for
 | |
|     // NewBB.
 | |
|     NodeT *NewBBIDom = nullptr;
 | |
|     unsigned i = 0;
 | |
|     for (i = 0; i < PredBlocks.size(); ++i)
 | |
|       if (DT.isReachableFromEntry(PredBlocks[i])) {
 | |
|         NewBBIDom = PredBlocks[i];
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // It's possible that none of the predecessors of NewBB are reachable;
 | |
|     // in that case, NewBB itself is unreachable, so nothing needs to be
 | |
|     // changed.
 | |
|     if (!NewBBIDom)
 | |
|       return;
 | |
| 
 | |
|     for (i = i + 1; i < PredBlocks.size(); ++i) {
 | |
|       if (DT.isReachableFromEntry(PredBlocks[i]))
 | |
|         NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
 | |
|     }
 | |
| 
 | |
|     // Create the new dominator tree node... and set the idom of NewBB.
 | |
|     DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
 | |
| 
 | |
|     // If NewBB strictly dominates other blocks, then it is now the immediate
 | |
|     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
 | |
|       DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   explicit DominatorTreeBase(bool isPostDom)
 | |
|       : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
 | |
| 
 | |
|   DominatorTreeBase(DominatorTreeBase &&Arg)
 | |
|       : DominatorBase<NodeT>(
 | |
|             std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
 | |
|         DomTreeNodes(std::move(Arg.DomTreeNodes)),
 | |
|         RootNode(std::move(Arg.RootNode)),
 | |
|         DFSInfoValid(std::move(Arg.DFSInfoValid)),
 | |
|         SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
 | |
|         Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
 | |
|     Arg.wipe();
 | |
|   }
 | |
|   DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
 | |
|     DominatorBase<NodeT>::operator=(
 | |
|         std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
 | |
|     DomTreeNodes = std::move(RHS.DomTreeNodes);
 | |
|     RootNode = std::move(RHS.RootNode);
 | |
|     DFSInfoValid = std::move(RHS.DFSInfoValid);
 | |
|     SlowQueries = std::move(RHS.SlowQueries);
 | |
|     IDoms = std::move(RHS.IDoms);
 | |
|     Vertex = std::move(RHS.Vertex);
 | |
|     Info = std::move(RHS.Info);
 | |
|     RHS.wipe();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// compare - Return false if the other dominator tree base matches this
 | |
|   /// dominator tree base. Otherwise return true.
 | |
|   bool compare(const DominatorTreeBase &Other) const {
 | |
| 
 | |
|     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
 | |
|     if (DomTreeNodes.size() != OtherDomTreeNodes.size())
 | |
|       return true;
 | |
| 
 | |
|     for (typename DomTreeNodeMapType::const_iterator
 | |
|              I = this->DomTreeNodes.begin(),
 | |
|              E = this->DomTreeNodes.end();
 | |
|          I != E; ++I) {
 | |
|       NodeT *BB = I->first;
 | |
|       typename DomTreeNodeMapType::const_iterator OI =
 | |
|           OtherDomTreeNodes.find(BB);
 | |
|       if (OI == OtherDomTreeNodes.end())
 | |
|         return true;
 | |
| 
 | |
|       DomTreeNodeBase<NodeT> &MyNd = *I->second;
 | |
|       DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
 | |
| 
 | |
|       if (MyNd.compare(&OtherNd))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void releaseMemory() { reset(); }
 | |
| 
 | |
|   /// getNode - return the (Post)DominatorTree node for the specified basic
 | |
|   /// block.  This is the same as using operator[] on this class.
 | |
|   ///
 | |
|   DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
 | |
|     auto I = DomTreeNodes.find(BB);
 | |
|     if (I != DomTreeNodes.end())
 | |
|       return I->second.get();
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
 | |
| 
 | |
|   /// getRootNode - This returns the entry node for the CFG of the function.  If
 | |
|   /// this tree represents the post-dominance relations for a function, however,
 | |
|   /// this root may be a node with the block == NULL.  This is the case when
 | |
|   /// there are multiple exit nodes from a particular function.  Consumers of
 | |
|   /// post-dominance information must be capable of dealing with this
 | |
|   /// possibility.
 | |
|   ///
 | |
|   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
 | |
|   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
 | |
| 
 | |
|   /// Get all nodes dominated by R, including R itself.
 | |
|   void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
 | |
|     Result.clear();
 | |
|     const DomTreeNodeBase<NodeT> *RN = getNode(R);
 | |
|     if (!RN)
 | |
|       return; // If R is unreachable, it will not be present in the DOM tree.
 | |
|     SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
 | |
|     WL.push_back(RN);
 | |
| 
 | |
|     while (!WL.empty()) {
 | |
|       const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
 | |
|       Result.push_back(N->getBlock());
 | |
|       WL.append(N->begin(), N->end());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// properlyDominates - Returns true iff A dominates B and A != B.
 | |
|   /// Note that this is not a constant time operation!
 | |
|   ///
 | |
|   bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
 | |
|                          const DomTreeNodeBase<NodeT> *B) const {
 | |
|     if (!A || !B)
 | |
|       return false;
 | |
|     if (A == B)
 | |
|       return false;
 | |
|     return dominates(A, B);
 | |
|   }
 | |
| 
 | |
|   bool properlyDominates(const NodeT *A, const NodeT *B) const;
 | |
| 
 | |
|   /// isReachableFromEntry - Return true if A is dominated by the entry
 | |
|   /// block of the function containing it.
 | |
|   bool isReachableFromEntry(const NodeT *A) const {
 | |
|     assert(!this->isPostDominator() &&
 | |
|            "This is not implemented for post dominators");
 | |
|     return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
 | |
|   }
 | |
| 
 | |
|   bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
 | |
| 
 | |
|   /// dominates - Returns true iff A dominates B.  Note that this is not a
 | |
|   /// constant time operation!
 | |
|   ///
 | |
|   bool dominates(const DomTreeNodeBase<NodeT> *A,
 | |
|                  const DomTreeNodeBase<NodeT> *B) const {
 | |
|     // A node trivially dominates itself.
 | |
|     if (B == A)
 | |
|       return true;
 | |
| 
 | |
|     // An unreachable node is dominated by anything.
 | |
|     if (!isReachableFromEntry(B))
 | |
|       return true;
 | |
| 
 | |
|     // And dominates nothing.
 | |
|     if (!isReachableFromEntry(A))
 | |
|       return false;
 | |
| 
 | |
|     // Compare the result of the tree walk and the dfs numbers, if expensive
 | |
|     // checks are enabled.
 | |
| #ifdef XDEBUG
 | |
|     assert((!DFSInfoValid ||
 | |
|             (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
 | |
|            "Tree walk disagrees with dfs numbers!");
 | |
| #endif
 | |
| 
 | |
|     if (DFSInfoValid)
 | |
|       return B->DominatedBy(A);
 | |
| 
 | |
|     // If we end up with too many slow queries, just update the
 | |
|     // DFS numbers on the theory that we are going to keep querying.
 | |
|     SlowQueries++;
 | |
|     if (SlowQueries > 32) {
 | |
|       updateDFSNumbers();
 | |
|       return B->DominatedBy(A);
 | |
|     }
 | |
| 
 | |
|     return dominatedBySlowTreeWalk(A, B);
 | |
|   }
 | |
| 
 | |
|   bool dominates(const NodeT *A, const NodeT *B) const;
 | |
| 
 | |
|   NodeT *getRoot() const {
 | |
|     assert(this->Roots.size() == 1 && "Should always have entry node!");
 | |
|     return this->Roots[0];
 | |
|   }
 | |
| 
 | |
|   /// findNearestCommonDominator - Find nearest common dominator basic block
 | |
|   /// for basic block A and B. If there is no such block then return NULL.
 | |
|   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
 | |
|     assert(A->getParent() == B->getParent() &&
 | |
|            "Two blocks are not in same function");
 | |
| 
 | |
|     // If either A or B is a entry block then it is nearest common dominator
 | |
|     // (for forward-dominators).
 | |
|     if (!this->isPostDominator()) {
 | |
|       NodeT &Entry = A->getParent()->front();
 | |
|       if (A == &Entry || B == &Entry)
 | |
|         return &Entry;
 | |
|     }
 | |
| 
 | |
|     // If B dominates A then B is nearest common dominator.
 | |
|     if (dominates(B, A))
 | |
|       return B;
 | |
| 
 | |
|     // If A dominates B then A is nearest common dominator.
 | |
|     if (dominates(A, B))
 | |
|       return A;
 | |
| 
 | |
|     DomTreeNodeBase<NodeT> *NodeA = getNode(A);
 | |
|     DomTreeNodeBase<NodeT> *NodeB = getNode(B);
 | |
| 
 | |
|     // If we have DFS info, then we can avoid all allocations by just querying
 | |
|     // it from each IDom. Note that because we call 'dominates' twice above, we
 | |
|     // expect to call through this code at most 16 times in a row without
 | |
|     // building valid DFS information. This is important as below is a *very*
 | |
|     // slow tree walk.
 | |
|     if (DFSInfoValid) {
 | |
|       DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
 | |
|       while (IDomA) {
 | |
|         if (NodeB->DominatedBy(IDomA))
 | |
|           return IDomA->getBlock();
 | |
|         IDomA = IDomA->getIDom();
 | |
|       }
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Collect NodeA dominators set.
 | |
|     SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
 | |
|     NodeADoms.insert(NodeA);
 | |
|     DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
 | |
|     while (IDomA) {
 | |
|       NodeADoms.insert(IDomA);
 | |
|       IDomA = IDomA->getIDom();
 | |
|     }
 | |
| 
 | |
|     // Walk NodeB immediate dominators chain and find common dominator node.
 | |
|     DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
 | |
|     while (IDomB) {
 | |
|       if (NodeADoms.count(IDomB) != 0)
 | |
|         return IDomB->getBlock();
 | |
| 
 | |
|       IDomB = IDomB->getIDom();
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
 | |
|     // Cast away the const qualifiers here. This is ok since
 | |
|     // const is re-introduced on the return type.
 | |
|     return findNearestCommonDominator(const_cast<NodeT *>(A),
 | |
|                                       const_cast<NodeT *>(B));
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // API to update (Post)DominatorTree information based on modifications to
 | |
|   // the CFG...
 | |
| 
 | |
|   /// addNewBlock - Add a new node to the dominator tree information.  This
 | |
|   /// creates a new node as a child of DomBB dominator node,linking it into
 | |
|   /// the children list of the immediate dominator.
 | |
|   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
 | |
|     assert(getNode(BB) == nullptr && "Block already in dominator tree!");
 | |
|     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
 | |
|     assert(IDomNode && "Not immediate dominator specified for block!");
 | |
|     DFSInfoValid = false;
 | |
|     return (DomTreeNodes[BB] = IDomNode->addChild(
 | |
|                 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
 | |
|   }
 | |
| 
 | |
|   /// changeImmediateDominator - This method is used to update the dominator
 | |
|   /// tree information when a node's immediate dominator changes.
 | |
|   ///
 | |
|   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
 | |
|                                 DomTreeNodeBase<NodeT> *NewIDom) {
 | |
|     assert(N && NewIDom && "Cannot change null node pointers!");
 | |
|     DFSInfoValid = false;
 | |
|     N->setIDom(NewIDom);
 | |
|   }
 | |
| 
 | |
|   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
 | |
|     changeImmediateDominator(getNode(BB), getNode(NewBB));
 | |
|   }
 | |
| 
 | |
|   /// eraseNode - Removes a node from the dominator tree. Block must not
 | |
|   /// dominate any other blocks. Removes node from its immediate dominator's
 | |
|   /// children list. Deletes dominator node associated with basic block BB.
 | |
|   void eraseNode(NodeT *BB) {
 | |
|     DomTreeNodeBase<NodeT> *Node = getNode(BB);
 | |
|     assert(Node && "Removing node that isn't in dominator tree.");
 | |
|     assert(Node->getChildren().empty() && "Node is not a leaf node.");
 | |
| 
 | |
|     // Remove node from immediate dominator's children list.
 | |
|     DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
 | |
|     if (IDom) {
 | |
|       typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
 | |
|           std::find(IDom->Children.begin(), IDom->Children.end(), Node);
 | |
|       assert(I != IDom->Children.end() &&
 | |
|              "Not in immediate dominator children set!");
 | |
|       // I am no longer your child...
 | |
|       IDom->Children.erase(I);
 | |
|     }
 | |
| 
 | |
|     DomTreeNodes.erase(BB);
 | |
|   }
 | |
| 
 | |
|   /// splitBlock - BB is split and now it has one successor. Update dominator
 | |
|   /// tree to reflect this change.
 | |
|   void splitBlock(NodeT *NewBB) {
 | |
|     if (this->IsPostDominators)
 | |
|       this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
 | |
|                                                                    NewBB);
 | |
|     else
 | |
|       this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
 | |
|   }
 | |
| 
 | |
|   /// print - Convert to human readable form
 | |
|   ///
 | |
|   void print(raw_ostream &o) const {
 | |
|     o << "=============================--------------------------------\n";
 | |
|     if (this->isPostDominator())
 | |
|       o << "Inorder PostDominator Tree: ";
 | |
|     else
 | |
|       o << "Inorder Dominator Tree: ";
 | |
|     if (!this->DFSInfoValid)
 | |
|       o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
 | |
|     o << "\n";
 | |
| 
 | |
|     // The postdom tree can have a null root if there are no returns.
 | |
|     if (getRootNode())
 | |
|       PrintDomTree<NodeT>(getRootNode(), o, 1);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   template <class GraphT>
 | |
|   friend typename GraphT::NodeType *
 | |
|   Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
 | |
|        typename GraphT::NodeType *V, unsigned LastLinked);
 | |
| 
 | |
|   template <class GraphT>
 | |
|   friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
 | |
|                           typename GraphT::NodeType *V, unsigned N);
 | |
| 
 | |
|   template <class FuncT, class N>
 | |
|   friend void
 | |
|   Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
 | |
| 
 | |
|   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
 | |
|   /// dominator tree in dfs order.
 | |
|   void updateDFSNumbers() const {
 | |
|     unsigned DFSNum = 0;
 | |
| 
 | |
|     SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
 | |
|                           typename DomTreeNodeBase<NodeT>::const_iterator>,
 | |
|                 32> WorkStack;
 | |
| 
 | |
|     const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
 | |
| 
 | |
|     if (!ThisRoot)
 | |
|       return;
 | |
| 
 | |
|     // Even in the case of multiple exits that form the post dominator root
 | |
|     // nodes, do not iterate over all exits, but start from the virtual root
 | |
|     // node. Otherwise bbs, that are not post dominated by any exit but by the
 | |
|     // virtual root node, will never be assigned a DFS number.
 | |
|     WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
 | |
|     ThisRoot->DFSNumIn = DFSNum++;
 | |
| 
 | |
|     while (!WorkStack.empty()) {
 | |
|       const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
 | |
|       typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
 | |
|           WorkStack.back().second;
 | |
| 
 | |
|       // If we visited all of the children of this node, "recurse" back up the
 | |
|       // stack setting the DFOutNum.
 | |
|       if (ChildIt == Node->end()) {
 | |
|         Node->DFSNumOut = DFSNum++;
 | |
|         WorkStack.pop_back();
 | |
|       } else {
 | |
|         // Otherwise, recursively visit this child.
 | |
|         const DomTreeNodeBase<NodeT> *Child = *ChildIt;
 | |
|         ++WorkStack.back().second;
 | |
| 
 | |
|         WorkStack.push_back(std::make_pair(Child, Child->begin()));
 | |
|         Child->DFSNumIn = DFSNum++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SlowQueries = 0;
 | |
|     DFSInfoValid = true;
 | |
|   }
 | |
| 
 | |
|   DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
 | |
|     if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
 | |
|       return Node;
 | |
| 
 | |
|     // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|     // immediate dominator.
 | |
|     NodeT *IDom = getIDom(BB);
 | |
| 
 | |
|     assert(IDom || this->DomTreeNodes[nullptr]);
 | |
|     DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
 | |
| 
 | |
|     // Add a new tree node for this NodeT, and link it as a child of
 | |
|     // IDomNode
 | |
|     return (this->DomTreeNodes[BB] = IDomNode->addChild(
 | |
|                 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
 | |
|   }
 | |
| 
 | |
|   NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
 | |
| 
 | |
|   void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
 | |
| 
 | |
| public:
 | |
|   /// recalculate - compute a dominator tree for the given function
 | |
|   template <class FT> void recalculate(FT &F) {
 | |
|     typedef GraphTraits<FT *> TraitsTy;
 | |
|     reset();
 | |
|     this->Vertex.push_back(nullptr);
 | |
| 
 | |
|     if (!this->IsPostDominators) {
 | |
|       // Initialize root
 | |
|       NodeT *entry = TraitsTy::getEntryNode(&F);
 | |
|       this->Roots.push_back(entry);
 | |
|       this->IDoms[entry] = nullptr;
 | |
|       this->DomTreeNodes[entry] = nullptr;
 | |
| 
 | |
|       Calculate<FT, NodeT *>(*this, F);
 | |
|     } else {
 | |
|       // Initialize the roots list
 | |
|       for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
 | |
|                                              E = TraitsTy::nodes_end(&F);
 | |
|            I != E; ++I) {
 | |
|         if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
 | |
|           addRoot(I);
 | |
| 
 | |
|         // Prepopulate maps so that we don't get iterator invalidation issues
 | |
|         // later.
 | |
|         this->IDoms[I] = nullptr;
 | |
|         this->DomTreeNodes[I] = nullptr;
 | |
|       }
 | |
| 
 | |
|       Calculate<FT, Inverse<NodeT *>>(*this, F);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| // These two functions are declared out of line as a workaround for building
 | |
| // with old (< r147295) versions of clang because of pr11642.
 | |
| template <class NodeT>
 | |
| bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
 | |
|   if (A == B)
 | |
|     return true;
 | |
| 
 | |
|   // Cast away the const qualifiers here. This is ok since
 | |
|   // this function doesn't actually return the values returned
 | |
|   // from getNode.
 | |
|   return dominates(getNode(const_cast<NodeT *>(A)),
 | |
|                    getNode(const_cast<NodeT *>(B)));
 | |
| }
 | |
| template <class NodeT>
 | |
| bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
 | |
|                                                  const NodeT *B) const {
 | |
|   if (A == B)
 | |
|     return false;
 | |
| 
 | |
|   // Cast away the const qualifiers here. This is ok since
 | |
|   // this function doesn't actually return the values returned
 | |
|   // from getNode.
 | |
|   return dominates(getNode(const_cast<NodeT *>(A)),
 | |
|                    getNode(const_cast<NodeT *>(B)));
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |