mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Update all callers. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228930 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			650 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			650 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains some functions that are useful for math stuff.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_SUPPORT_MATHEXTRAS_H
 | |
| #define LLVM_SUPPORT_MATHEXTRAS_H
 | |
| 
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/SwapByteOrder.h"
 | |
| #include <cassert>
 | |
| #include <cstring>
 | |
| #include <type_traits>
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #include <intrin.h>
 | |
| #endif
 | |
| 
 | |
| namespace llvm {
 | |
| /// \brief The behavior an operation has on an input of 0.
 | |
| enum ZeroBehavior {
 | |
|   /// \brief The returned value is undefined.
 | |
|   ZB_Undefined,
 | |
|   /// \brief The returned value is numeric_limits<T>::max()
 | |
|   ZB_Max,
 | |
|   /// \brief The returned value is numeric_limits<T>::digits
 | |
|   ZB_Width
 | |
| };
 | |
| 
 | |
| namespace detail {
 | |
| template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
 | |
|   static std::size_t count(T Val, ZeroBehavior) {
 | |
|     if (!Val)
 | |
|       return std::numeric_limits<T>::digits;
 | |
|     if (Val & 0x1)
 | |
|       return 0;
 | |
| 
 | |
|     // Bisection method.
 | |
|     std::size_t ZeroBits = 0;
 | |
|     T Shift = std::numeric_limits<T>::digits >> 1;
 | |
|     T Mask = std::numeric_limits<T>::max() >> Shift;
 | |
|     while (Shift) {
 | |
|       if ((Val & Mask) == 0) {
 | |
|         Val >>= Shift;
 | |
|         ZeroBits |= Shift;
 | |
|       }
 | |
|       Shift >>= 1;
 | |
|       Mask >>= Shift;
 | |
|     }
 | |
|     return ZeroBits;
 | |
|   }
 | |
| };
 | |
| 
 | |
| #if __GNUC__ >= 4 || _MSC_VER
 | |
| template <typename T> struct TrailingZerosCounter<T, 4> {
 | |
|   static std::size_t count(T Val, ZeroBehavior ZB) {
 | |
|     if (ZB != ZB_Undefined && Val == 0)
 | |
|       return 32;
 | |
| 
 | |
| #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
 | |
|     return __builtin_ctz(Val);
 | |
| #elif _MSC_VER
 | |
|     unsigned long Index;
 | |
|     _BitScanForward(&Index, Val);
 | |
|     return Index;
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| 
 | |
| #if !defined(_MSC_VER) || defined(_M_X64)
 | |
| template <typename T> struct TrailingZerosCounter<T, 8> {
 | |
|   static std::size_t count(T Val, ZeroBehavior ZB) {
 | |
|     if (ZB != ZB_Undefined && Val == 0)
 | |
|       return 64;
 | |
| 
 | |
| #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
 | |
|     return __builtin_ctzll(Val);
 | |
| #elif _MSC_VER
 | |
|     unsigned long Index;
 | |
|     _BitScanForward64(&Index, Val);
 | |
|     return Index;
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| #endif
 | |
| #endif
 | |
| } // namespace detail
 | |
| 
 | |
| /// \brief Count number of 0's from the least significant bit to the most
 | |
| ///   stopping at the first 1.
 | |
| ///
 | |
| /// Only unsigned integral types are allowed.
 | |
| ///
 | |
| /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
 | |
| ///   valid arguments.
 | |
| template <typename T>
 | |
| std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
 | |
|   static_assert(std::numeric_limits<T>::is_integer &&
 | |
|                     !std::numeric_limits<T>::is_signed,
 | |
|                 "Only unsigned integral types are allowed.");
 | |
|   return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
 | |
| }
 | |
| 
 | |
| namespace detail {
 | |
| template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
 | |
|   static std::size_t count(T Val, ZeroBehavior) {
 | |
|     if (!Val)
 | |
|       return std::numeric_limits<T>::digits;
 | |
| 
 | |
|     // Bisection method.
 | |
|     std::size_t ZeroBits = 0;
 | |
|     for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
 | |
|       T Tmp = Val >> Shift;
 | |
|       if (Tmp)
 | |
|         Val = Tmp;
 | |
|       else
 | |
|         ZeroBits |= Shift;
 | |
|     }
 | |
|     return ZeroBits;
 | |
|   }
 | |
| };
 | |
| 
 | |
| #if __GNUC__ >= 4 || _MSC_VER
 | |
| template <typename T> struct LeadingZerosCounter<T, 4> {
 | |
|   static std::size_t count(T Val, ZeroBehavior ZB) {
 | |
|     if (ZB != ZB_Undefined && Val == 0)
 | |
|       return 32;
 | |
| 
 | |
| #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
 | |
|     return __builtin_clz(Val);
 | |
| #elif _MSC_VER
 | |
|     unsigned long Index;
 | |
|     _BitScanReverse(&Index, Val);
 | |
|     return Index ^ 31;
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| 
 | |
| #if !defined(_MSC_VER) || defined(_M_X64)
 | |
| template <typename T> struct LeadingZerosCounter<T, 8> {
 | |
|   static std::size_t count(T Val, ZeroBehavior ZB) {
 | |
|     if (ZB != ZB_Undefined && Val == 0)
 | |
|       return 64;
 | |
| 
 | |
| #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
 | |
|     return __builtin_clzll(Val);
 | |
| #elif _MSC_VER
 | |
|     unsigned long Index;
 | |
|     _BitScanReverse64(&Index, Val);
 | |
|     return Index ^ 63;
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| #endif
 | |
| #endif
 | |
| } // namespace detail
 | |
| 
 | |
| /// \brief Count number of 0's from the most significant bit to the least
 | |
| ///   stopping at the first 1.
 | |
| ///
 | |
| /// Only unsigned integral types are allowed.
 | |
| ///
 | |
| /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
 | |
| ///   valid arguments.
 | |
| template <typename T>
 | |
| std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
 | |
|   static_assert(std::numeric_limits<T>::is_integer &&
 | |
|                     !std::numeric_limits<T>::is_signed,
 | |
|                 "Only unsigned integral types are allowed.");
 | |
|   return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
 | |
| }
 | |
| 
 | |
| /// \brief Get the index of the first set bit starting from the least
 | |
| ///   significant bit.
 | |
| ///
 | |
| /// Only unsigned integral types are allowed.
 | |
| ///
 | |
| /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
 | |
| ///   valid arguments.
 | |
| template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
 | |
|   if (ZB == ZB_Max && Val == 0)
 | |
|     return std::numeric_limits<T>::max();
 | |
| 
 | |
|   return countTrailingZeros(Val, ZB_Undefined);
 | |
| }
 | |
| 
 | |
| /// \brief Get the index of the last set bit starting from the least
 | |
| ///   significant bit.
 | |
| ///
 | |
| /// Only unsigned integral types are allowed.
 | |
| ///
 | |
| /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
 | |
| ///   valid arguments.
 | |
| template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
 | |
|   if (ZB == ZB_Max && Val == 0)
 | |
|     return std::numeric_limits<T>::max();
 | |
| 
 | |
|   // Use ^ instead of - because both gcc and llvm can remove the associated ^
 | |
|   // in the __builtin_clz intrinsic on x86.
 | |
|   return countLeadingZeros(Val, ZB_Undefined) ^
 | |
|          (std::numeric_limits<T>::digits - 1);
 | |
| }
 | |
| 
 | |
| /// \brief Macro compressed bit reversal table for 256 bits.
 | |
| ///
 | |
| /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
 | |
| static const unsigned char BitReverseTable256[256] = {
 | |
| #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
 | |
| #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
 | |
| #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
 | |
|   R6(0), R6(2), R6(1), R6(3)
 | |
| #undef R2
 | |
| #undef R4
 | |
| #undef R6
 | |
| };
 | |
| 
 | |
| /// \brief Reverse the bits in \p Val.
 | |
| template <typename T>
 | |
| T reverseBits(T Val) {
 | |
|   unsigned char in[sizeof(Val)];
 | |
|   unsigned char out[sizeof(Val)];
 | |
|   std::memcpy(in, &Val, sizeof(Val));
 | |
|   for (unsigned i = 0; i < sizeof(Val); ++i)
 | |
|     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
 | |
|   std::memcpy(&Val, out, sizeof(Val));
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| // NOTE: The following support functions use the _32/_64 extensions instead of
 | |
| // type overloading so that signed and unsigned integers can be used without
 | |
| // ambiguity.
 | |
| 
 | |
| /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
 | |
| inline uint32_t Hi_32(uint64_t Value) {
 | |
|   return static_cast<uint32_t>(Value >> 32);
 | |
| }
 | |
| 
 | |
| /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
 | |
| inline uint32_t Lo_32(uint64_t Value) {
 | |
|   return static_cast<uint32_t>(Value);
 | |
| }
 | |
| 
 | |
| /// Make_64 - This functions makes a 64-bit integer from a high / low pair of
 | |
| ///           32-bit integers.
 | |
| inline uint64_t Make_64(uint32_t High, uint32_t Low) {
 | |
|   return ((uint64_t)High << 32) | (uint64_t)Low;
 | |
| }
 | |
| 
 | |
| /// isInt - Checks if an integer fits into the given bit width.
 | |
| template<unsigned N>
 | |
| inline bool isInt(int64_t x) {
 | |
|   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
 | |
| }
 | |
| // Template specializations to get better code for common cases.
 | |
| template<>
 | |
| inline bool isInt<8>(int64_t x) {
 | |
|   return static_cast<int8_t>(x) == x;
 | |
| }
 | |
| template<>
 | |
| inline bool isInt<16>(int64_t x) {
 | |
|   return static_cast<int16_t>(x) == x;
 | |
| }
 | |
| template<>
 | |
| inline bool isInt<32>(int64_t x) {
 | |
|   return static_cast<int32_t>(x) == x;
 | |
| }
 | |
| 
 | |
| /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
 | |
| ///                     left by S.
 | |
| template<unsigned N, unsigned S>
 | |
| inline bool isShiftedInt(int64_t x) {
 | |
|   return isInt<N+S>(x) && (x % (1<<S) == 0);
 | |
| }
 | |
| 
 | |
| /// isUInt - Checks if an unsigned integer fits into the given bit width.
 | |
| template<unsigned N>
 | |
| inline bool isUInt(uint64_t x) {
 | |
|   return N >= 64 || x < (UINT64_C(1)<<(N));
 | |
| }
 | |
| // Template specializations to get better code for common cases.
 | |
| template<>
 | |
| inline bool isUInt<8>(uint64_t x) {
 | |
|   return static_cast<uint8_t>(x) == x;
 | |
| }
 | |
| template<>
 | |
| inline bool isUInt<16>(uint64_t x) {
 | |
|   return static_cast<uint16_t>(x) == x;
 | |
| }
 | |
| template<>
 | |
| inline bool isUInt<32>(uint64_t x) {
 | |
|   return static_cast<uint32_t>(x) == x;
 | |
| }
 | |
| 
 | |
| /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
 | |
| ///                     left by S.
 | |
| template<unsigned N, unsigned S>
 | |
| inline bool isShiftedUInt(uint64_t x) {
 | |
|   return isUInt<N+S>(x) && (x % (1<<S) == 0);
 | |
| }
 | |
| 
 | |
| /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
 | |
| /// bit width.
 | |
| inline bool isUIntN(unsigned N, uint64_t x) {
 | |
|   return x == (x & (~0ULL >> (64 - N)));
 | |
| }
 | |
| 
 | |
| /// isIntN - Checks if an signed integer fits into the given (dynamic)
 | |
| /// bit width.
 | |
| inline bool isIntN(unsigned N, int64_t x) {
 | |
|   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
 | |
| }
 | |
| 
 | |
| /// isMask_32 - This function returns true if the argument is a sequence of ones
 | |
| /// starting at the least significant bit with the remainder zero (32 bit
 | |
| /// version).   Ex. isMask_32(0x0000FFFFU) == true.
 | |
| inline bool isMask_32(uint32_t Value) {
 | |
|   return Value && ((Value + 1) & Value) == 0;
 | |
| }
 | |
| 
 | |
| /// isMask_64 - This function returns true if the argument is a sequence of ones
 | |
| /// starting at the least significant bit with the remainder zero (64 bit
 | |
| /// version).
 | |
| inline bool isMask_64(uint64_t Value) {
 | |
|   return Value && ((Value + 1) & Value) == 0;
 | |
| }
 | |
| 
 | |
| /// isShiftedMask_32 - This function returns true if the argument contains a
 | |
| /// sequence of ones with the remainder zero (32 bit version.)
 | |
| /// Ex. isShiftedMask_32(0x0000FF00U) == true.
 | |
| inline bool isShiftedMask_32(uint32_t Value) {
 | |
|   return isMask_32((Value - 1) | Value);
 | |
| }
 | |
| 
 | |
| /// isShiftedMask_64 - This function returns true if the argument contains a
 | |
| /// sequence of ones with the remainder zero (64 bit version.)
 | |
| inline bool isShiftedMask_64(uint64_t Value) {
 | |
|   return isMask_64((Value - 1) | Value);
 | |
| }
 | |
| 
 | |
| /// isPowerOf2_32 - This function returns true if the argument is a power of
 | |
| /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
 | |
| inline bool isPowerOf2_32(uint32_t Value) {
 | |
|   return Value && !(Value & (Value - 1));
 | |
| }
 | |
| 
 | |
| /// isPowerOf2_64 - This function returns true if the argument is a power of two
 | |
| /// > 0 (64 bit edition.)
 | |
| inline bool isPowerOf2_64(uint64_t Value) {
 | |
|   return Value && !(Value & (Value - int64_t(1L)));
 | |
| }
 | |
| 
 | |
| /// ByteSwap_16 - This function returns a byte-swapped representation of the
 | |
| /// 16-bit argument, Value.
 | |
| inline uint16_t ByteSwap_16(uint16_t Value) {
 | |
|   return sys::SwapByteOrder_16(Value);
 | |
| }
 | |
| 
 | |
| /// ByteSwap_32 - This function returns a byte-swapped representation of the
 | |
| /// 32-bit argument, Value.
 | |
| inline uint32_t ByteSwap_32(uint32_t Value) {
 | |
|   return sys::SwapByteOrder_32(Value);
 | |
| }
 | |
| 
 | |
| /// ByteSwap_64 - This function returns a byte-swapped representation of the
 | |
| /// 64-bit argument, Value.
 | |
| inline uint64_t ByteSwap_64(uint64_t Value) {
 | |
|   return sys::SwapByteOrder_64(Value);
 | |
| }
 | |
| 
 | |
| /// \brief Count the number of ones from the most significant bit to the first
 | |
| /// zero bit.
 | |
| ///
 | |
| /// Ex. CountLeadingOnes(0xFF0FFF00) == 8.
 | |
| /// Only unsigned integral types are allowed.
 | |
| ///
 | |
| /// \param ZB the behavior on an input of all ones. Only ZB_Width and
 | |
| /// ZB_Undefined are valid arguments.
 | |
| template <typename T>
 | |
| std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
 | |
|   static_assert(std::numeric_limits<T>::is_integer &&
 | |
|                     !std::numeric_limits<T>::is_signed,
 | |
|                 "Only unsigned integral types are allowed.");
 | |
|   return countLeadingZeros(~Value, ZB);
 | |
| }
 | |
| 
 | |
| /// \brief Count the number of ones from the least significant bit to the first
 | |
| /// zero bit.
 | |
| ///
 | |
| /// Ex. countTrailingOnes(0x00FF00FF) == 8.
 | |
| /// Only unsigned integral types are allowed.
 | |
| ///
 | |
| /// \param ZB the behavior on an input of all ones. Only ZB_Width and
 | |
| /// ZB_Undefined are valid arguments.
 | |
| template <typename T>
 | |
| std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
 | |
|   static_assert(std::numeric_limits<T>::is_integer &&
 | |
|                     !std::numeric_limits<T>::is_signed,
 | |
|                 "Only unsigned integral types are allowed.");
 | |
|   return countTrailingZeros(~Value, ZB);
 | |
| }
 | |
| 
 | |
| namespace detail {
 | |
| template <typename T, std::size_t SizeOfT> struct PopulationCounter {
 | |
|   static unsigned count(T Value) {
 | |
|     // Generic version, forward to 32 bits.
 | |
|     static_assert(SizeOfT <= 4, "Not implemented!");
 | |
| #if __GNUC__ >= 4
 | |
|     return __builtin_popcount(Value);
 | |
| #else
 | |
|     uint32_t v = Value;
 | |
|     v = v - ((v >> 1) & 0x55555555);
 | |
|     v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 | |
|     return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T> struct PopulationCounter<T, 8> {
 | |
|   static unsigned count(T Value) {
 | |
| #if __GNUC__ >= 4
 | |
|     return __builtin_popcountll(Value);
 | |
| #else
 | |
|     uint64_t v = Value;
 | |
|     v = v - ((v >> 1) & 0x5555555555555555ULL);
 | |
|     v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
 | |
|     v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
 | |
|     return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| } // namespace detail
 | |
| 
 | |
| /// \brief Count the number of set bits in a value.
 | |
| /// Ex. countPopulation(0xF000F000) = 8
 | |
| /// Returns 0 if the word is zero.
 | |
| template <typename T>
 | |
| inline unsigned countPopulation(T Value) {
 | |
|   static_assert(std::numeric_limits<T>::is_integer &&
 | |
|                     !std::numeric_limits<T>::is_signed,
 | |
|                 "Only unsigned integral types are allowed.");
 | |
|   return detail::PopulationCounter<T, sizeof(T)>::count(Value);
 | |
| }
 | |
| 
 | |
| /// Log2_32 - This function returns the floor log base 2 of the specified value,
 | |
| /// -1 if the value is zero. (32 bit edition.)
 | |
| /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
 | |
| inline unsigned Log2_32(uint32_t Value) {
 | |
|   return 31 - countLeadingZeros(Value);
 | |
| }
 | |
| 
 | |
| /// Log2_64 - This function returns the floor log base 2 of the specified value,
 | |
| /// -1 if the value is zero. (64 bit edition.)
 | |
| inline unsigned Log2_64(uint64_t Value) {
 | |
|   return 63 - countLeadingZeros(Value);
 | |
| }
 | |
| 
 | |
| /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
 | |
| /// value, 32 if the value is zero. (32 bit edition).
 | |
| /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
 | |
| inline unsigned Log2_32_Ceil(uint32_t Value) {
 | |
|   return 32 - countLeadingZeros(Value - 1);
 | |
| }
 | |
| 
 | |
| /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
 | |
| /// value, 64 if the value is zero. (64 bit edition.)
 | |
| inline unsigned Log2_64_Ceil(uint64_t Value) {
 | |
|   return 64 - countLeadingZeros(Value - 1);
 | |
| }
 | |
| 
 | |
| /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
 | |
| /// values using Euclid's algorithm.
 | |
| inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
 | |
|   while (B) {
 | |
|     uint64_t T = B;
 | |
|     B = A % B;
 | |
|     A = T;
 | |
|   }
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /// BitsToDouble - This function takes a 64-bit integer and returns the bit
 | |
| /// equivalent double.
 | |
| inline double BitsToDouble(uint64_t Bits) {
 | |
|   union {
 | |
|     uint64_t L;
 | |
|     double D;
 | |
|   } T;
 | |
|   T.L = Bits;
 | |
|   return T.D;
 | |
| }
 | |
| 
 | |
| /// BitsToFloat - This function takes a 32-bit integer and returns the bit
 | |
| /// equivalent float.
 | |
| inline float BitsToFloat(uint32_t Bits) {
 | |
|   union {
 | |
|     uint32_t I;
 | |
|     float F;
 | |
|   } T;
 | |
|   T.I = Bits;
 | |
|   return T.F;
 | |
| }
 | |
| 
 | |
| /// DoubleToBits - This function takes a double and returns the bit
 | |
| /// equivalent 64-bit integer.  Note that copying doubles around
 | |
| /// changes the bits of NaNs on some hosts, notably x86, so this
 | |
| /// routine cannot be used if these bits are needed.
 | |
| inline uint64_t DoubleToBits(double Double) {
 | |
|   union {
 | |
|     uint64_t L;
 | |
|     double D;
 | |
|   } T;
 | |
|   T.D = Double;
 | |
|   return T.L;
 | |
| }
 | |
| 
 | |
| /// FloatToBits - This function takes a float and returns the bit
 | |
| /// equivalent 32-bit integer.  Note that copying floats around
 | |
| /// changes the bits of NaNs on some hosts, notably x86, so this
 | |
| /// routine cannot be used if these bits are needed.
 | |
| inline uint32_t FloatToBits(float Float) {
 | |
|   union {
 | |
|     uint32_t I;
 | |
|     float F;
 | |
|   } T;
 | |
|   T.F = Float;
 | |
|   return T.I;
 | |
| }
 | |
| 
 | |
| /// Platform-independent wrappers for the C99 isnan() function.
 | |
| int IsNAN(float f);
 | |
| int IsNAN(double d);
 | |
| 
 | |
| /// Platform-independent wrappers for the C99 isinf() function.
 | |
| int IsInf(float f);
 | |
| int IsInf(double d);
 | |
| 
 | |
| /// MinAlign - A and B are either alignments or offsets.  Return the minimum
 | |
| /// alignment that may be assumed after adding the two together.
 | |
| inline uint64_t MinAlign(uint64_t A, uint64_t B) {
 | |
|   // The largest power of 2 that divides both A and B.
 | |
|   //
 | |
|   // Replace "-Value" by "1+~Value" in the following commented code to avoid 
 | |
|   // MSVC warning C4146
 | |
|   //    return (A | B) & -(A | B);
 | |
|   return (A | B) & (1 + ~(A | B));
 | |
| }
 | |
| 
 | |
| /// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
 | |
| ///
 | |
| /// Alignment should be a power of two.  This method rounds up, so
 | |
| /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
 | |
| inline uintptr_t alignAddr(void *Addr, size_t Alignment) {
 | |
|   assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
 | |
|          "Alignment is not a power of two!");
 | |
| 
 | |
|   assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
 | |
| 
 | |
|   return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
 | |
| }
 | |
| 
 | |
| /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
 | |
| /// bytes, rounding up.
 | |
| inline size_t alignmentAdjustment(void *Ptr, size_t Alignment) {
 | |
|   return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
 | |
| }
 | |
| 
 | |
| /// NextPowerOf2 - Returns the next power of two (in 64-bits)
 | |
| /// that is strictly greater than A.  Returns zero on overflow.
 | |
| inline uint64_t NextPowerOf2(uint64_t A) {
 | |
|   A |= (A >> 1);
 | |
|   A |= (A >> 2);
 | |
|   A |= (A >> 4);
 | |
|   A |= (A >> 8);
 | |
|   A |= (A >> 16);
 | |
|   A |= (A >> 32);
 | |
|   return A + 1;
 | |
| }
 | |
| 
 | |
| /// Returns the power of two which is less than or equal to the given value.
 | |
| /// Essentially, it is a floor operation across the domain of powers of two.
 | |
| inline uint64_t PowerOf2Floor(uint64_t A) {
 | |
|   if (!A) return 0;
 | |
|   return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
 | |
| }
 | |
| 
 | |
| /// Returns the next integer (mod 2**64) that is greater than or equal to
 | |
| /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
 | |
| ///
 | |
| /// Examples:
 | |
| /// \code
 | |
| ///   RoundUpToAlignment(5, 8) = 8
 | |
| ///   RoundUpToAlignment(17, 8) = 24
 | |
| ///   RoundUpToAlignment(~0LL, 8) = 0
 | |
| ///   RoundUpToAlignment(321, 255) = 510
 | |
| /// \endcode
 | |
| inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
 | |
|   return (Value + Align - 1) / Align * Align;
 | |
| }
 | |
| 
 | |
| /// Returns the offset to the next integer (mod 2**64) that is greater than
 | |
| /// or equal to \p Value and is a multiple of \p Align. \p Align must be
 | |
| /// non-zero.
 | |
| inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
 | |
|   return RoundUpToAlignment(Value, Align) - Value;
 | |
| }
 | |
| 
 | |
| /// abs64 - absolute value of a 64-bit int.  Not all environments support
 | |
| /// "abs" on whatever their name for the 64-bit int type is.  The absolute
 | |
| /// value of the largest negative number is undefined, as with "abs".
 | |
| inline int64_t abs64(int64_t x) {
 | |
|   return (x < 0) ? -x : x;
 | |
| }
 | |
| 
 | |
| /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
 | |
| /// Usage int32_t r = SignExtend32<5>(x);
 | |
| template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
 | |
|   return int32_t(x << (32 - B)) >> (32 - B);
 | |
| }
 | |
| 
 | |
| /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
 | |
| /// Requires 0 < B <= 32.
 | |
| inline int32_t SignExtend32(uint32_t X, unsigned B) {
 | |
|   return int32_t(X << (32 - B)) >> (32 - B);
 | |
| }
 | |
| 
 | |
| /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
 | |
| /// Usage int64_t r = SignExtend64<5>(x);
 | |
| template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
 | |
|   return int64_t(x << (64 - B)) >> (64 - B);
 | |
| }
 | |
| 
 | |
| /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
 | |
| /// Requires 0 < B <= 64.
 | |
| inline int64_t SignExtend64(uint64_t X, unsigned B) {
 | |
|   return int64_t(X << (64 - B)) >> (64 - B);
 | |
| }
 | |
| 
 | |
| extern const float huge_valf;
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |