mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	The former lets us use SmallVectors. Do so in ARM and AArch64. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229925 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2825 lines
		
	
	
		
			117 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2825 lines
		
	
	
		
			117 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This file describes how to lower LLVM code to machine code.  This has two
 | |
| /// main components:
 | |
| ///
 | |
| ///  1. Which ValueTypes are natively supported by the target.
 | |
| ///  2. Which operations are supported for supported ValueTypes.
 | |
| ///  3. Cost thresholds for alternative implementations of certain operations.
 | |
| ///
 | |
| /// In addition it has a few other components, like information about FP
 | |
| /// immediates.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TARGET_TARGETLOWERING_H
 | |
| #define LLVM_TARGET_TARGETLOWERING_H
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/CodeGen/DAGCombine.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Target/TargetCallingConv.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <climits>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
|   class CallInst;
 | |
|   class CCState;
 | |
|   class FastISel;
 | |
|   class FunctionLoweringInfo;
 | |
|   class ImmutableCallSite;
 | |
|   class IntrinsicInst;
 | |
|   class MachineBasicBlock;
 | |
|   class MachineFunction;
 | |
|   class MachineInstr;
 | |
|   class MachineJumpTableInfo;
 | |
|   class MachineLoop;
 | |
|   class Mangler;
 | |
|   class MCContext;
 | |
|   class MCExpr;
 | |
|   class MCSymbol;
 | |
|   template<typename T> class SmallVectorImpl;
 | |
|   class DataLayout;
 | |
|   class TargetRegisterClass;
 | |
|   class TargetLibraryInfo;
 | |
|   class TargetLoweringObjectFile;
 | |
|   class Value;
 | |
| 
 | |
|   namespace Sched {
 | |
|     enum Preference {
 | |
|       None,             // No preference
 | |
|       Source,           // Follow source order.
 | |
|       RegPressure,      // Scheduling for lowest register pressure.
 | |
|       Hybrid,           // Scheduling for both latency and register pressure.
 | |
|       ILP,              // Scheduling for ILP in low register pressure mode.
 | |
|       VLIW              // Scheduling for VLIW targets.
 | |
|     };
 | |
|   }
 | |
| 
 | |
| /// This base class for TargetLowering contains the SelectionDAG-independent
 | |
| /// parts that can be used from the rest of CodeGen.
 | |
| class TargetLoweringBase {
 | |
|   TargetLoweringBase(const TargetLoweringBase&) = delete;
 | |
|   void operator=(const TargetLoweringBase&) = delete;
 | |
| 
 | |
| public:
 | |
|   /// This enum indicates whether operations are valid for a target, and if not,
 | |
|   /// what action should be used to make them valid.
 | |
|   enum LegalizeAction {
 | |
|     Legal,      // The target natively supports this operation.
 | |
|     Promote,    // This operation should be executed in a larger type.
 | |
|     Expand,     // Try to expand this to other ops, otherwise use a libcall.
 | |
|     Custom      // Use the LowerOperation hook to implement custom lowering.
 | |
|   };
 | |
| 
 | |
|   /// This enum indicates whether a types are legal for a target, and if not,
 | |
|   /// what action should be used to make them valid.
 | |
|   enum LegalizeTypeAction {
 | |
|     TypeLegal,           // The target natively supports this type.
 | |
|     TypePromoteInteger,  // Replace this integer with a larger one.
 | |
|     TypeExpandInteger,   // Split this integer into two of half the size.
 | |
|     TypeSoftenFloat,     // Convert this float to a same size integer type.
 | |
|     TypeExpandFloat,     // Split this float into two of half the size.
 | |
|     TypeScalarizeVector, // Replace this one-element vector with its element.
 | |
|     TypeSplitVector,     // Split this vector into two of half the size.
 | |
|     TypeWidenVector      // This vector should be widened into a larger vector.
 | |
|   };
 | |
| 
 | |
|   /// LegalizeKind holds the legalization kind that needs to happen to EVT
 | |
|   /// in order to type-legalize it.
 | |
|   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
 | |
| 
 | |
|   /// Enum that describes how the target represents true/false values.
 | |
|   enum BooleanContent {
 | |
|     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
 | |
|     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
 | |
|     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
 | |
|   };
 | |
| 
 | |
|   /// Enum that describes what type of support for selects the target has.
 | |
|   enum SelectSupportKind {
 | |
|     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
 | |
|     ScalarCondVectorVal,  // The target supports selects with a scalar condition
 | |
|                           // and vector values (ex: cmov).
 | |
|     VectorMaskSelect      // The target supports vector selects with a vector
 | |
|                           // mask (ex: x86 blends).
 | |
|   };
 | |
| 
 | |
|   static ISD::NodeType getExtendForContent(BooleanContent Content) {
 | |
|     switch (Content) {
 | |
|     case UndefinedBooleanContent:
 | |
|       // Extend by adding rubbish bits.
 | |
|       return ISD::ANY_EXTEND;
 | |
|     case ZeroOrOneBooleanContent:
 | |
|       // Extend by adding zero bits.
 | |
|       return ISD::ZERO_EXTEND;
 | |
|     case ZeroOrNegativeOneBooleanContent:
 | |
|       // Extend by copying the sign bit.
 | |
|       return ISD::SIGN_EXTEND;
 | |
|     }
 | |
|     llvm_unreachable("Invalid content kind");
 | |
|   }
 | |
| 
 | |
|   /// NOTE: The TargetMachine owns TLOF.
 | |
|   explicit TargetLoweringBase(const TargetMachine &TM);
 | |
|   virtual ~TargetLoweringBase() {}
 | |
| 
 | |
| protected:
 | |
|   /// \brief Initialize all of the actions to default values.
 | |
|   void initActions();
 | |
| 
 | |
| public:
 | |
|   const TargetMachine &getTargetMachine() const { return TM; }
 | |
|   const DataLayout *getDataLayout() const { return DL; }
 | |
| 
 | |
|   bool isBigEndian() const { return !IsLittleEndian; }
 | |
|   bool isLittleEndian() const { return IsLittleEndian; }
 | |
| 
 | |
|   /// Return the pointer type for the given address space, defaults to
 | |
|   /// the pointer type from the data layout.
 | |
|   /// FIXME: The default needs to be removed once all the code is updated.
 | |
|   virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
 | |
|   unsigned getPointerSizeInBits(uint32_t AS = 0) const;
 | |
|   unsigned getPointerTypeSizeInBits(Type *Ty) const;
 | |
|   virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
 | |
| 
 | |
|   EVT getShiftAmountTy(EVT LHSTy) const;
 | |
| 
 | |
|   /// Returns the type to be used for the index operand of:
 | |
|   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
 | |
|   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
 | |
|   virtual MVT getVectorIdxTy() const {
 | |
|     return getPointerTy();
 | |
|   }
 | |
| 
 | |
|   /// Return true if the select operation is expensive for this target.
 | |
|   bool isSelectExpensive() const { return SelectIsExpensive; }
 | |
| 
 | |
|   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Return true if multiple condition registers are available.
 | |
|   bool hasMultipleConditionRegisters() const {
 | |
|     return HasMultipleConditionRegisters;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the target has BitExtract instructions.
 | |
|   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
 | |
| 
 | |
|   /// Return the preferred vector type legalization action.
 | |
|   virtual TargetLoweringBase::LegalizeTypeAction
 | |
|   getPreferredVectorAction(EVT VT) const {
 | |
|     // The default action for one element vectors is to scalarize
 | |
|     if (VT.getVectorNumElements() == 1)
 | |
|       return TypeScalarizeVector;
 | |
|     // The default action for other vectors is to promote
 | |
|     return TypePromoteInteger;
 | |
|   }
 | |
| 
 | |
|   // There are two general methods for expanding a BUILD_VECTOR node:
 | |
|   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
 | |
|   //     them together.
 | |
|   //  2. Build the vector on the stack and then load it.
 | |
|   // If this function returns true, then method (1) will be used, subject to
 | |
|   // the constraint that all of the necessary shuffles are legal (as determined
 | |
|   // by isShuffleMaskLegal). If this function returns false, then method (2) is
 | |
|   // always used. The vector type, and the number of defined values, are
 | |
|   // provided.
 | |
|   virtual bool
 | |
|   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
 | |
|                                       unsigned DefinedValues) const {
 | |
|     return DefinedValues < 3;
 | |
|   }
 | |
| 
 | |
|   /// Return true if integer divide is usually cheaper than a sequence of
 | |
|   /// several shifts, adds, and multiplies for this target.
 | |
|   bool isIntDivCheap() const { return IntDivIsCheap; }
 | |
| 
 | |
|   /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
 | |
|   bool isFsqrtCheap() const {
 | |
|     return FsqrtIsCheap;
 | |
|   }
 | |
| 
 | |
|   /// Returns true if target has indicated at least one type should be bypassed.
 | |
|   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
 | |
| 
 | |
|   /// Returns map of slow types for division or remainder with corresponding
 | |
|   /// fast types
 | |
|   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
 | |
|     return BypassSlowDivWidths;
 | |
|   }
 | |
| 
 | |
|   /// Return true if pow2 sdiv is cheaper than a chain of sra/srl/add/sra.
 | |
|   bool isPow2SDivCheap() const { return Pow2SDivIsCheap; }
 | |
| 
 | |
|   /// Return true if Flow Control is an expensive operation that should be
 | |
|   /// avoided.
 | |
|   bool isJumpExpensive() const { return JumpIsExpensive; }
 | |
| 
 | |
|   /// Return true if selects are only cheaper than branches if the branch is
 | |
|   /// unlikely to be predicted right.
 | |
|   bool isPredictableSelectExpensive() const {
 | |
|     return PredictableSelectIsExpensive;
 | |
|   }
 | |
| 
 | |
|   /// isLoadBitCastBeneficial() - Return true if the following transform
 | |
|   /// is beneficial.
 | |
|   /// fold (conv (load x)) -> (load (conv*)x)
 | |
|   /// On architectures that don't natively support some vector loads efficiently,
 | |
|   /// casting the load to a smaller vector of larger types and loading
 | |
|   /// is more efficient, however, this can be undone by optimizations in
 | |
|   /// dag combiner.
 | |
|   virtual bool isLoadBitCastBeneficial(EVT /* Load */, EVT /* Bitcast */) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
 | |
|   virtual bool isCheapToSpeculateCttz() const {
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
 | |
|   virtual bool isCheapToSpeculateCtlz() const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return if the target supports combining a
 | |
|   /// chain like:
 | |
|   /// \code
 | |
|   ///   %andResult = and %val1, #imm-with-one-bit-set;
 | |
|   ///   %icmpResult = icmp %andResult, 0
 | |
|   ///   br i1 %icmpResult, label %dest1, label %dest2
 | |
|   /// \endcode
 | |
|   /// into a single machine instruction of a form like:
 | |
|   /// \code
 | |
|   ///   brOnBitSet %register, #bitNumber, dest
 | |
|   /// \endcode
 | |
|   bool isMaskAndBranchFoldingLegal() const {
 | |
|     return MaskAndBranchFoldingIsLegal;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return true if the target wants to use the optimization that
 | |
|   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
 | |
|   /// promotedInst1(...(promotedInstN(ext(load)))).
 | |
|   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
 | |
| 
 | |
|   /// Return true if the target can combine store(extractelement VectorTy,
 | |
|   /// Idx).
 | |
|   /// \p Cost[out] gives the cost of that transformation when this is true.
 | |
|   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
 | |
|                                          unsigned &Cost) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if target supports floating point exceptions.
 | |
|   bool hasFloatingPointExceptions() const {
 | |
|     return HasFloatingPointExceptions;
 | |
|   }
 | |
| 
 | |
|   /// Return true if target always beneficiates from combining into FMA for a
 | |
|   /// given value type. This must typically return false on targets where FMA
 | |
|   /// takes more cycles to execute than FADD.
 | |
|   virtual bool enableAggressiveFMAFusion(EVT VT) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return the ValueType of the result of SETCC operations.
 | |
|   virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
 | |
| 
 | |
|   /// Return the ValueType for comparison libcalls. Comparions libcalls include
 | |
|   /// floating point comparion calls, and Ordered/Unordered check calls on
 | |
|   /// floating point numbers.
 | |
|   virtual
 | |
|   MVT::SimpleValueType getCmpLibcallReturnType() const;
 | |
| 
 | |
|   /// For targets without i1 registers, this gives the nature of the high-bits
 | |
|   /// of boolean values held in types wider than i1.
 | |
|   ///
 | |
|   /// "Boolean values" are special true/false values produced by nodes like
 | |
|   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
 | |
|   /// Not to be confused with general values promoted from i1.  Some cpus
 | |
|   /// distinguish between vectors of boolean and scalars; the isVec parameter
 | |
|   /// selects between the two kinds.  For example on X86 a scalar boolean should
 | |
|   /// be zero extended from i1, while the elements of a vector of booleans
 | |
|   /// should be sign extended from i1.
 | |
|   ///
 | |
|   /// Some cpus also treat floating point types the same way as they treat
 | |
|   /// vectors instead of the way they treat scalars.
 | |
|   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
 | |
|     if (isVec)
 | |
|       return BooleanVectorContents;
 | |
|     return isFloat ? BooleanFloatContents : BooleanContents;
 | |
|   }
 | |
| 
 | |
|   BooleanContent getBooleanContents(EVT Type) const {
 | |
|     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
 | |
|   }
 | |
| 
 | |
|   /// Return target scheduling preference.
 | |
|   Sched::Preference getSchedulingPreference() const {
 | |
|     return SchedPreferenceInfo;
 | |
|   }
 | |
| 
 | |
|   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
 | |
|   /// for different nodes. This function returns the preference (or none) for
 | |
|   /// the given node.
 | |
|   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
 | |
|     return Sched::None;
 | |
|   }
 | |
| 
 | |
|   /// Return the register class that should be used for the specified value
 | |
|   /// type.
 | |
|   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
 | |
|     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
 | |
|     assert(RC && "This value type is not natively supported!");
 | |
|     return RC;
 | |
|   }
 | |
| 
 | |
|   /// Return the 'representative' register class for the specified value
 | |
|   /// type.
 | |
|   ///
 | |
|   /// The 'representative' register class is the largest legal super-reg
 | |
|   /// register class for the register class of the value type.  For example, on
 | |
|   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
 | |
|   /// register class is GR64 on x86_64.
 | |
|   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
 | |
|     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
 | |
|     return RC;
 | |
|   }
 | |
| 
 | |
|   /// Return the cost of the 'representative' register class for the specified
 | |
|   /// value type.
 | |
|   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
 | |
|     return RepRegClassCostForVT[VT.SimpleTy];
 | |
|   }
 | |
| 
 | |
|   /// Return true if the target has native support for the specified value type.
 | |
|   /// This means that it has a register that directly holds it without
 | |
|   /// promotions or expansions.
 | |
|   bool isTypeLegal(EVT VT) const {
 | |
|     assert(!VT.isSimple() ||
 | |
|            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
 | |
|     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
 | |
|   }
 | |
| 
 | |
|   class ValueTypeActionImpl {
 | |
|     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
 | |
|     /// that indicates how instruction selection should deal with the type.
 | |
|     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   public:
 | |
|     ValueTypeActionImpl() {
 | |
|       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 0);
 | |
|     }
 | |
| 
 | |
|     LegalizeTypeAction getTypeAction(MVT VT) const {
 | |
|       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
 | |
|     }
 | |
| 
 | |
|     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
 | |
|       unsigned I = VT.SimpleTy;
 | |
|       ValueTypeActions[I] = Action;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   const ValueTypeActionImpl &getValueTypeActions() const {
 | |
|     return ValueTypeActions;
 | |
|   }
 | |
| 
 | |
|   /// Return how we should legalize values of this type, either it is already
 | |
|   /// legal (return 'Legal') or we need to promote it to a larger type (return
 | |
|   /// 'Promote'), or we need to expand it into multiple registers of smaller
 | |
|   /// integer type (return 'Expand').  'Custom' is not an option.
 | |
|   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
 | |
|     return getTypeConversion(Context, VT).first;
 | |
|   }
 | |
|   LegalizeTypeAction getTypeAction(MVT VT) const {
 | |
|     return ValueTypeActions.getTypeAction(VT);
 | |
|   }
 | |
| 
 | |
|   /// For types supported by the target, this is an identity function.  For
 | |
|   /// types that must be promoted to larger types, this returns the larger type
 | |
|   /// to promote to.  For integer types that are larger than the largest integer
 | |
|   /// register, this contains one step in the expansion to get to the smaller
 | |
|   /// register. For illegal floating point types, this returns the integer type
 | |
|   /// to transform to.
 | |
|   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
 | |
|     return getTypeConversion(Context, VT).second;
 | |
|   }
 | |
| 
 | |
|   /// For types supported by the target, this is an identity function.  For
 | |
|   /// types that must be expanded (i.e. integer types that are larger than the
 | |
|   /// largest integer register or illegal floating point types), this returns
 | |
|   /// the largest legal type it will be expanded to.
 | |
|   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
 | |
|     assert(!VT.isVector());
 | |
|     while (true) {
 | |
|       switch (getTypeAction(Context, VT)) {
 | |
|       case TypeLegal:
 | |
|         return VT;
 | |
|       case TypeExpandInteger:
 | |
|         VT = getTypeToTransformTo(Context, VT);
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("Type is not legal nor is it to be expanded!");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Vector types are broken down into some number of legal first class types.
 | |
|   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
 | |
|   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
 | |
|   /// turns into 4 EVT::i32 values with both PPC and X86.
 | |
|   ///
 | |
|   /// This method returns the number of registers needed, and the VT for each
 | |
|   /// register.  It also returns the VT and quantity of the intermediate values
 | |
|   /// before they are promoted/expanded.
 | |
|   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
 | |
|                                   EVT &IntermediateVT,
 | |
|                                   unsigned &NumIntermediates,
 | |
|                                   MVT &RegisterVT) const;
 | |
| 
 | |
|   struct IntrinsicInfo {
 | |
|     unsigned     opc;         // target opcode
 | |
|     EVT          memVT;       // memory VT
 | |
|     const Value* ptrVal;      // value representing memory location
 | |
|     int          offset;      // offset off of ptrVal
 | |
|     unsigned     size;        // the size of the memory location
 | |
|                               // (taken from memVT if zero)
 | |
|     unsigned     align;       // alignment
 | |
|     bool         vol;         // is volatile?
 | |
|     bool         readMem;     // reads memory?
 | |
|     bool         writeMem;    // writes memory?
 | |
| 
 | |
|     IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
 | |
|                       vol(false), readMem(false), writeMem(false) {}
 | |
|   };
 | |
| 
 | |
|   /// Given an intrinsic, checks if on the target the intrinsic will need to map
 | |
|   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
 | |
|   /// true and store the intrinsic information into the IntrinsicInfo that was
 | |
|   /// passed to the function.
 | |
|   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
 | |
|                                   unsigned /*Intrinsic*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the target can instruction select the specified FP
 | |
|   /// immediate natively. If false, the legalizer will materialize the FP
 | |
|   /// immediate as a load from a constant pool.
 | |
|   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Targets can use this to indicate that they only support *some*
 | |
|   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
 | |
|   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
 | |
|   /// legal.
 | |
|   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
 | |
|                                   EVT /*VT*/) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the operation can trap for the value type.
 | |
|   ///
 | |
|   /// VT must be a legal type. By default, we optimistically assume most
 | |
|   /// operations don't trap except for divide and remainder.
 | |
|   virtual bool canOpTrap(unsigned Op, EVT VT) const;
 | |
| 
 | |
|   /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
 | |
|   /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
 | |
|   /// a VAND with a constant pool entry.
 | |
|   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
 | |
|                                       EVT /*VT*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return how this operation should be treated: either it is legal, needs to
 | |
|   /// be promoted to a larger size, needs to be expanded to some other code
 | |
|   /// sequence, or the target has a custom expander for it.
 | |
|   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
 | |
|     if (VT.isExtended()) return Expand;
 | |
|     // If a target-specific SDNode requires legalization, require the target
 | |
|     // to provide custom legalization for it.
 | |
|     if (Op > array_lengthof(OpActions[0])) return Custom;
 | |
|     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
 | |
|     return (LegalizeAction)OpActions[I][Op];
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified operation is legal on this target or can be
 | |
|   /// made legal with custom lowering. This is used to help guide high-level
 | |
|   /// lowering decisions.
 | |
|   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
 | |
|     return (VT == MVT::Other || isTypeLegal(VT)) &&
 | |
|       (getOperationAction(Op, VT) == Legal ||
 | |
|        getOperationAction(Op, VT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified operation is legal on this target or can be
 | |
|   /// made legal using promotion. This is used to help guide high-level lowering
 | |
|   /// decisions.
 | |
|   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
 | |
|     return (VT == MVT::Other || isTypeLegal(VT)) &&
 | |
|       (getOperationAction(Op, VT) == Legal ||
 | |
|        getOperationAction(Op, VT) == Promote);
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified operation is illegal on this target or
 | |
|   /// unlikely to be made legal with custom lowering. This is used to help guide
 | |
|   /// high-level lowering decisions.
 | |
|   bool isOperationExpand(unsigned Op, EVT VT) const {
 | |
|     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified operation is legal on this target.
 | |
|   bool isOperationLegal(unsigned Op, EVT VT) const {
 | |
|     return (VT == MVT::Other || isTypeLegal(VT)) &&
 | |
|            getOperationAction(Op, VT) == Legal;
 | |
|   }
 | |
| 
 | |
|   /// Return how this load with extension should be treated: either it is legal,
 | |
|   /// needs to be promoted to a larger size, needs to be expanded to some other
 | |
|   /// code sequence, or the target has a custom expander for it.
 | |
|   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const {
 | |
|     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
 | |
|     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
 | |
|     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
 | |
|     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
 | |
|            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
 | |
|     return (LegalizeAction)LoadExtActions[ValI][MemI][ExtType];
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified load with extension is legal on this target.
 | |
|   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
 | |
|     return ValVT.isSimple() && MemVT.isSimple() &&
 | |
|       getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified load with extension is legal or custom
 | |
|   /// on this target.
 | |
|   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
 | |
|     return ValVT.isSimple() && MemVT.isSimple() &&
 | |
|       (getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
 | |
|        getLoadExtAction(ExtType, ValVT, MemVT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// Return how this store with truncation should be treated: either it is
 | |
|   /// legal, needs to be promoted to a larger size, needs to be expanded to some
 | |
|   /// other code sequence, or the target has a custom expander for it.
 | |
|   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
 | |
|     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
 | |
|     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
 | |
|     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
 | |
|     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)TruncStoreActions[ValI][MemI];
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified store with truncation is legal on this
 | |
|   /// target.
 | |
|   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
 | |
|     return isTypeLegal(ValVT) && MemVT.isSimple() &&
 | |
|       getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
 | |
|   }
 | |
| 
 | |
|   /// Return how the indexed load should be treated: either it is legal, needs
 | |
|   /// to be promoted to a larger size, needs to be expanded to some other code
 | |
|   /// sequence, or the target has a custom expander for it.
 | |
|   LegalizeAction
 | |
|   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
 | |
|     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
 | |
|            "Table isn't big enough!");
 | |
|     unsigned Ty = (unsigned)VT.SimpleTy;
 | |
|     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified indexed load is legal on this target.
 | |
|   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
 | |
|     return VT.isSimple() &&
 | |
|       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
 | |
|        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// Return how the indexed store should be treated: either it is legal, needs
 | |
|   /// to be promoted to a larger size, needs to be expanded to some other code
 | |
|   /// sequence, or the target has a custom expander for it.
 | |
|   LegalizeAction
 | |
|   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
 | |
|     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
 | |
|            "Table isn't big enough!");
 | |
|     unsigned Ty = (unsigned)VT.SimpleTy;
 | |
|     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified indexed load is legal on this target.
 | |
|   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
 | |
|     return VT.isSimple() &&
 | |
|       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
 | |
|        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// Return how the condition code should be treated: either it is legal, needs
 | |
|   /// to be expanded to some other code sequence, or the target has a custom
 | |
|   /// expander for it.
 | |
|   LegalizeAction
 | |
|   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
 | |
|     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
 | |
|            ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
 | |
|            "Table isn't big enough!");
 | |
|     // See setCondCodeAction for how this is encoded.
 | |
|     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
 | |
|     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
 | |
|     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
 | |
|     assert(Action != Promote && "Can't promote condition code!");
 | |
|     return Action;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified condition code is legal on this target.
 | |
|   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
 | |
|     return
 | |
|       getCondCodeAction(CC, VT) == Legal ||
 | |
|       getCondCodeAction(CC, VT) == Custom;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// If the action for this operation is to promote, this method returns the
 | |
|   /// ValueType to promote to.
 | |
|   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
 | |
|     assert(getOperationAction(Op, VT) == Promote &&
 | |
|            "This operation isn't promoted!");
 | |
| 
 | |
|     // See if this has an explicit type specified.
 | |
|     std::map<std::pair<unsigned, MVT::SimpleValueType>,
 | |
|              MVT::SimpleValueType>::const_iterator PTTI =
 | |
|       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
 | |
|     if (PTTI != PromoteToType.end()) return PTTI->second;
 | |
| 
 | |
|     assert((VT.isInteger() || VT.isFloatingPoint()) &&
 | |
|            "Cannot autopromote this type, add it with AddPromotedToType.");
 | |
| 
 | |
|     MVT NVT = VT;
 | |
|     do {
 | |
|       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
 | |
|       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
 | |
|              "Didn't find type to promote to!");
 | |
|     } while (!isTypeLegal(NVT) ||
 | |
|               getOperationAction(Op, NVT) == Promote);
 | |
|     return NVT;
 | |
|   }
 | |
| 
 | |
|   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
 | |
|   /// operations except for the pointer size.  If AllowUnknown is true, this
 | |
|   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
 | |
|   /// otherwise it will assert.
 | |
|   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
 | |
|     // Lower scalar pointers to native pointer types.
 | |
|     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
 | |
|       return getPointerTy(PTy->getAddressSpace());
 | |
| 
 | |
|     if (Ty->isVectorTy()) {
 | |
|       VectorType *VTy = cast<VectorType>(Ty);
 | |
|       Type *Elm = VTy->getElementType();
 | |
|       // Lower vectors of pointers to native pointer types.
 | |
|       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
 | |
|         EVT PointerTy(getPointerTy(PT->getAddressSpace()));
 | |
|         Elm = PointerTy.getTypeForEVT(Ty->getContext());
 | |
|       }
 | |
| 
 | |
|       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
 | |
|                        VTy->getNumElements());
 | |
|     }
 | |
|     return EVT::getEVT(Ty, AllowUnknown);
 | |
|   }
 | |
| 
 | |
|   /// Return the MVT corresponding to this LLVM type. See getValueType.
 | |
|   MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
 | |
|     return getValueType(Ty, AllowUnknown).getSimpleVT();
 | |
|   }
 | |
| 
 | |
|   /// Return the desired alignment for ByVal or InAlloca aggregate function
 | |
|   /// arguments in the caller parameter area.  This is the actual alignment, not
 | |
|   /// its logarithm.
 | |
|   virtual unsigned getByValTypeAlignment(Type *Ty) const;
 | |
| 
 | |
|   /// Return the type of registers that this ValueType will eventually require.
 | |
|   MVT getRegisterType(MVT VT) const {
 | |
|     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
 | |
|     return RegisterTypeForVT[VT.SimpleTy];
 | |
|   }
 | |
| 
 | |
|   /// Return the type of registers that this ValueType will eventually require.
 | |
|   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
 | |
|     if (VT.isSimple()) {
 | |
|       assert((unsigned)VT.getSimpleVT().SimpleTy <
 | |
|                 array_lengthof(RegisterTypeForVT));
 | |
|       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
 | |
|     }
 | |
|     if (VT.isVector()) {
 | |
|       EVT VT1;
 | |
|       MVT RegisterVT;
 | |
|       unsigned NumIntermediates;
 | |
|       (void)getVectorTypeBreakdown(Context, VT, VT1,
 | |
|                                    NumIntermediates, RegisterVT);
 | |
|       return RegisterVT;
 | |
|     }
 | |
|     if (VT.isInteger()) {
 | |
|       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
 | |
|     }
 | |
|     llvm_unreachable("Unsupported extended type!");
 | |
|   }
 | |
| 
 | |
|   /// Return the number of registers that this ValueType will eventually
 | |
|   /// require.
 | |
|   ///
 | |
|   /// This is one for any types promoted to live in larger registers, but may be
 | |
|   /// more than one for types (like i64) that are split into pieces.  For types
 | |
|   /// like i140, which are first promoted then expanded, it is the number of
 | |
|   /// registers needed to hold all the bits of the original type.  For an i140
 | |
|   /// on a 32 bit machine this means 5 registers.
 | |
|   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
 | |
|     if (VT.isSimple()) {
 | |
|       assert((unsigned)VT.getSimpleVT().SimpleTy <
 | |
|                 array_lengthof(NumRegistersForVT));
 | |
|       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
 | |
|     }
 | |
|     if (VT.isVector()) {
 | |
|       EVT VT1;
 | |
|       MVT VT2;
 | |
|       unsigned NumIntermediates;
 | |
|       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
 | |
|     }
 | |
|     if (VT.isInteger()) {
 | |
|       unsigned BitWidth = VT.getSizeInBits();
 | |
|       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
 | |
|       return (BitWidth + RegWidth - 1) / RegWidth;
 | |
|     }
 | |
|     llvm_unreachable("Unsupported extended type!");
 | |
|   }
 | |
| 
 | |
|   /// If true, then instruction selection should seek to shrink the FP constant
 | |
|   /// of the specified type to a smaller type in order to save space and / or
 | |
|   /// reduce runtime.
 | |
|   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
 | |
| 
 | |
|   // Return true if it is profitable to reduce the given load node to a smaller
 | |
|   // type.
 | |
|   //
 | |
|   // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
 | |
|   virtual bool shouldReduceLoadWidth(SDNode *Load,
 | |
|                                      ISD::LoadExtType ExtTy,
 | |
|                                      EVT NewVT) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// When splitting a value of the specified type into parts, does the Lo
 | |
|   /// or Hi part come first?  This usually follows the endianness, except
 | |
|   /// for ppcf128, where the Hi part always comes first.
 | |
|   bool hasBigEndianPartOrdering(EVT VT) const {
 | |
|     return isBigEndian() || VT == MVT::ppcf128;
 | |
|   }
 | |
| 
 | |
|   /// If true, the target has custom DAG combine transformations that it can
 | |
|   /// perform for the specified node.
 | |
|   bool hasTargetDAGCombine(ISD::NodeType NT) const {
 | |
|     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
 | |
|     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
 | |
|   }
 | |
| 
 | |
|   /// \brief Get maximum # of store operations permitted for llvm.memset
 | |
|   ///
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memset. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement. If OptSize is true,
 | |
|   /// return the limit for functions that have OptSize attribute.
 | |
|   unsigned getMaxStoresPerMemset(bool OptSize) const {
 | |
|     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get maximum # of store operations permitted for llvm.memcpy
 | |
|   ///
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memcpy. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement. If OptSize is true,
 | |
|   /// return the limit for functions that have OptSize attribute.
 | |
|   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
 | |
|     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get maximum # of store operations permitted for llvm.memmove
 | |
|   ///
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memmove. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement. If OptSize is true,
 | |
|   /// return the limit for functions that have OptSize attribute.
 | |
|   unsigned getMaxStoresPerMemmove(bool OptSize) const {
 | |
|     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine if the target supports unaligned memory accesses.
 | |
|   ///
 | |
|   /// This function returns true if the target allows unaligned memory accesses
 | |
|   /// of the specified type in the given address space. If true, it also returns
 | |
|   /// whether the unaligned memory access is "fast" in the last argument by
 | |
|   /// reference. This is used, for example, in situations where an array
 | |
|   /// copy/move/set is converted to a sequence of store operations. Its use
 | |
|   /// helps to ensure that such replacements don't generate code that causes an
 | |
|   /// alignment error (trap) on the target machine.
 | |
|   virtual bool allowsMisalignedMemoryAccesses(EVT,
 | |
|                                               unsigned AddrSpace = 0,
 | |
|                                               unsigned Align = 1,
 | |
|                                               bool * /*Fast*/ = nullptr) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Returns the target specific optimal type for load and store operations as
 | |
|   /// a result of memset, memcpy, and memmove lowering.
 | |
|   ///
 | |
|   /// If DstAlign is zero that means it's safe to destination alignment can
 | |
|   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
 | |
|   /// a need to check it against alignment requirement, probably because the
 | |
|   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
 | |
|   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
 | |
|   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
 | |
|   /// does not need to be loaded.  It returns EVT::Other if the type should be
 | |
|   /// determined using generic target-independent logic.
 | |
|   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
 | |
|                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
 | |
|                                   bool /*IsMemset*/,
 | |
|                                   bool /*ZeroMemset*/,
 | |
|                                   bool /*MemcpyStrSrc*/,
 | |
|                                   MachineFunction &/*MF*/) const {
 | |
|     return MVT::Other;
 | |
|   }
 | |
| 
 | |
|   /// Returns true if it's safe to use load / store of the specified type to
 | |
|   /// expand memcpy / memset inline.
 | |
|   ///
 | |
|   /// This is mostly true for all types except for some special cases. For
 | |
|   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
 | |
|   /// fstpl which also does type conversion. Note the specified type doesn't
 | |
|   /// have to be legal as the hook is used before type legalization.
 | |
|   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
 | |
| 
 | |
|   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
 | |
|   bool usesUnderscoreSetJmp() const {
 | |
|     return UseUnderscoreSetJmp;
 | |
|   }
 | |
| 
 | |
|   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
 | |
|   bool usesUnderscoreLongJmp() const {
 | |
|     return UseUnderscoreLongJmp;
 | |
|   }
 | |
| 
 | |
|   /// Return integer threshold on number of blocks to use jump tables rather
 | |
|   /// than if sequence.
 | |
|   int getMinimumJumpTableEntries() const {
 | |
|     return MinimumJumpTableEntries;
 | |
|   }
 | |
| 
 | |
|   /// If a physical register, this specifies the register that
 | |
|   /// llvm.savestack/llvm.restorestack should save and restore.
 | |
|   unsigned getStackPointerRegisterToSaveRestore() const {
 | |
|     return StackPointerRegisterToSaveRestore;
 | |
|   }
 | |
| 
 | |
|   /// If a physical register, this returns the register that receives the
 | |
|   /// exception address on entry to a landing pad.
 | |
|   unsigned getExceptionPointerRegister() const {
 | |
|     return ExceptionPointerRegister;
 | |
|   }
 | |
| 
 | |
|   /// If a physical register, this returns the register that receives the
 | |
|   /// exception typeid on entry to a landing pad.
 | |
|   unsigned getExceptionSelectorRegister() const {
 | |
|     return ExceptionSelectorRegister;
 | |
|   }
 | |
| 
 | |
|   /// Returns the target's jmp_buf size in bytes (if never set, the default is
 | |
|   /// 200)
 | |
|   unsigned getJumpBufSize() const {
 | |
|     return JumpBufSize;
 | |
|   }
 | |
| 
 | |
|   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
 | |
|   /// is 0)
 | |
|   unsigned getJumpBufAlignment() const {
 | |
|     return JumpBufAlignment;
 | |
|   }
 | |
| 
 | |
|   /// Return the minimum stack alignment of an argument.
 | |
|   unsigned getMinStackArgumentAlignment() const {
 | |
|     return MinStackArgumentAlignment;
 | |
|   }
 | |
| 
 | |
|   /// Return the minimum function alignment.
 | |
|   unsigned getMinFunctionAlignment() const {
 | |
|     return MinFunctionAlignment;
 | |
|   }
 | |
| 
 | |
|   /// Return the preferred function alignment.
 | |
|   unsigned getPrefFunctionAlignment() const {
 | |
|     return PrefFunctionAlignment;
 | |
|   }
 | |
| 
 | |
|   /// Return the preferred loop alignment.
 | |
|   virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
 | |
|     return PrefLoopAlignment;
 | |
|   }
 | |
| 
 | |
|   /// Return whether the DAG builder should automatically insert fences and
 | |
|   /// reduce ordering for atomics.
 | |
|   bool getInsertFencesForAtomic() const {
 | |
|     return InsertFencesForAtomic;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the target stores stack protector cookies at a fixed offset
 | |
|   /// in some non-standard address space, and populates the address space and
 | |
|   /// offset as appropriate.
 | |
|   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
 | |
|                                       unsigned &/*Offset*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Returns the maximal possible offset which can be used for loads / stores
 | |
|   /// from the global.
 | |
|   virtual unsigned getMaximalGlobalOffset() const {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// Returns true if a cast between SrcAS and DestAS is a noop.
 | |
|   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// \name Helpers for TargetTransformInfo implementations
 | |
|   /// @{
 | |
| 
 | |
|   /// Get the ISD node that corresponds to the Instruction class opcode.
 | |
|   int InstructionOpcodeToISD(unsigned Opcode) const;
 | |
| 
 | |
|   /// Estimate the cost of type-legalization and the legalized type.
 | |
|   std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// \name Helpers for atomic expansion.
 | |
|   /// @{
 | |
| 
 | |
|   /// True if AtomicExpandPass should use emitLoadLinked/emitStoreConditional
 | |
|   /// and expand AtomicCmpXchgInst.
 | |
|   virtual bool hasLoadLinkedStoreConditional() const { return false; }
 | |
| 
 | |
|   /// Perform a load-linked operation on Addr, returning a "Value *" with the
 | |
|   /// corresponding pointee type. This may entail some non-trivial operations to
 | |
|   /// truncate or reconstruct types that will be illegal in the backend. See
 | |
|   /// ARMISelLowering for an example implementation.
 | |
|   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
 | |
|                                 AtomicOrdering Ord) const {
 | |
|     llvm_unreachable("Load linked unimplemented on this target");
 | |
|   }
 | |
| 
 | |
|   /// Perform a store-conditional operation to Addr. Return the status of the
 | |
|   /// store. This should be 0 if the store succeeded, non-zero otherwise.
 | |
|   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
 | |
|                                       Value *Addr, AtomicOrdering Ord) const {
 | |
|     llvm_unreachable("Store conditional unimplemented on this target");
 | |
|   }
 | |
| 
 | |
|   /// Inserts in the IR a target-specific intrinsic specifying a fence.
 | |
|   /// It is called by AtomicExpandPass before expanding an
 | |
|   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
 | |
|   /// RMW and CmpXchg set both IsStore and IsLoad to true.
 | |
|   /// This function should either return a nullptr, or a pointer to an IR-level
 | |
|   ///   Instruction*. Even complex fence sequences can be represented by a
 | |
|   ///   single Instruction* through an intrinsic to be lowered later.
 | |
|   /// Backends with !getInsertFencesForAtomic() should keep a no-op here.
 | |
|   /// Backends should override this method to produce target-specific intrinsic
 | |
|   ///   for their fences.
 | |
|   /// FIXME: Please note that the default implementation here in terms of
 | |
|   ///   IR-level fences exists for historical/compatibility reasons and is
 | |
|   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
 | |
|   ///   consistency. For example, consider the following example:
 | |
|   /// atomic<int> x = y = 0;
 | |
|   /// int r1, r2, r3, r4;
 | |
|   /// Thread 0:
 | |
|   ///   x.store(1);
 | |
|   /// Thread 1:
 | |
|   ///   y.store(1);
 | |
|   /// Thread 2:
 | |
|   ///   r1 = x.load();
 | |
|   ///   r2 = y.load();
 | |
|   /// Thread 3:
 | |
|   ///   r3 = y.load();
 | |
|   ///   r4 = x.load();
 | |
|   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
 | |
|   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
 | |
|   ///  IR-level fences can prevent it.
 | |
|   /// @{
 | |
|   virtual Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
 | |
|           bool IsStore, bool IsLoad) const {
 | |
|     if (!getInsertFencesForAtomic())
 | |
|       return nullptr;
 | |
| 
 | |
|     if (isAtLeastRelease(Ord) && IsStore)
 | |
|       return Builder.CreateFence(Ord);
 | |
|     else
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   virtual Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
 | |
|           bool IsStore, bool IsLoad) const {
 | |
|     if (!getInsertFencesForAtomic())
 | |
|       return nullptr;
 | |
| 
 | |
|     if (isAtLeastAcquire(Ord))
 | |
|       return Builder.CreateFence(Ord);
 | |
|     else
 | |
|       return nullptr;
 | |
|   }
 | |
|   /// @}
 | |
| 
 | |
|   /// Returns true if the given (atomic) store should be expanded by the
 | |
|   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
 | |
|   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the given (atomic) load should be expanded by the
 | |
|   /// IR-level AtomicExpand pass into a load-linked instruction
 | |
|   /// (through emitLoadLinked()).
 | |
|   virtual bool shouldExpandAtomicLoadInIR(LoadInst *LI) const { return false; }
 | |
| 
 | |
|   /// Returns true if the given AtomicRMW should be expanded by the
 | |
|   /// IR-level AtomicExpand pass into a loop using LoadLinked/StoreConditional.
 | |
|   virtual bool shouldExpandAtomicRMWInIR(AtomicRMWInst *RMWI) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// On some platforms, an AtomicRMW that never actually modifies the value
 | |
|   /// (such as fetch_add of 0) can be turned into a fence followed by an
 | |
|   /// atomic load. This may sound useless, but it makes it possible for the
 | |
|   /// processor to keep the cacheline shared, dramatically improving
 | |
|   /// performance. And such idempotent RMWs are useful for implementing some
 | |
|   /// kinds of locks, see for example (justification + benchmarks):
 | |
|   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
 | |
|   /// This method tries doing that transformation, returning the atomic load if
 | |
|   /// it succeeds, and nullptr otherwise.
 | |
|   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
 | |
|   /// another round of expansion.
 | |
|   virtual LoadInst *lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
 | |
|     return nullptr;
 | |
|   }
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // TargetLowering Configuration Methods - These methods should be invoked by
 | |
|   // the derived class constructor to configure this object for the target.
 | |
|   //
 | |
| protected:
 | |
|   /// Specify how the target extends the result of integer and floating point
 | |
|   /// boolean values from i1 to a wider type.  See getBooleanContents.
 | |
|   void setBooleanContents(BooleanContent Ty) {
 | |
|     BooleanContents = Ty;
 | |
|     BooleanFloatContents = Ty;
 | |
|   }
 | |
| 
 | |
|   /// Specify how the target extends the result of integer and floating point
 | |
|   /// boolean values from i1 to a wider type.  See getBooleanContents.
 | |
|   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
 | |
|     BooleanContents = IntTy;
 | |
|     BooleanFloatContents = FloatTy;
 | |
|   }
 | |
| 
 | |
|   /// Specify how the target extends the result of a vector boolean value from a
 | |
|   /// vector of i1 to a wider type.  See getBooleanContents.
 | |
|   void setBooleanVectorContents(BooleanContent Ty) {
 | |
|     BooleanVectorContents = Ty;
 | |
|   }
 | |
| 
 | |
|   /// Specify the target scheduling preference.
 | |
|   void setSchedulingPreference(Sched::Preference Pref) {
 | |
|     SchedPreferenceInfo = Pref;
 | |
|   }
 | |
| 
 | |
|   /// Indicate whether this target prefers to use _setjmp to implement
 | |
|   /// llvm.setjmp or the version without _.  Defaults to false.
 | |
|   void setUseUnderscoreSetJmp(bool Val) {
 | |
|     UseUnderscoreSetJmp = Val;
 | |
|   }
 | |
| 
 | |
|   /// Indicate whether this target prefers to use _longjmp to implement
 | |
|   /// llvm.longjmp or the version without _.  Defaults to false.
 | |
|   void setUseUnderscoreLongJmp(bool Val) {
 | |
|     UseUnderscoreLongJmp = Val;
 | |
|   }
 | |
| 
 | |
|   /// Indicate the number of blocks to generate jump tables rather than if
 | |
|   /// sequence.
 | |
|   void setMinimumJumpTableEntries(int Val) {
 | |
|     MinimumJumpTableEntries = Val;
 | |
|   }
 | |
| 
 | |
|   /// If set to a physical register, this specifies the register that
 | |
|   /// llvm.savestack/llvm.restorestack should save and restore.
 | |
|   void setStackPointerRegisterToSaveRestore(unsigned R) {
 | |
|     StackPointerRegisterToSaveRestore = R;
 | |
|   }
 | |
| 
 | |
|   /// If set to a physical register, this sets the register that receives the
 | |
|   /// exception address on entry to a landing pad.
 | |
|   void setExceptionPointerRegister(unsigned R) {
 | |
|     ExceptionPointerRegister = R;
 | |
|   }
 | |
| 
 | |
|   /// If set to a physical register, this sets the register that receives the
 | |
|   /// exception typeid on entry to a landing pad.
 | |
|   void setExceptionSelectorRegister(unsigned R) {
 | |
|     ExceptionSelectorRegister = R;
 | |
|   }
 | |
| 
 | |
|   /// Tells the code generator not to expand operations into sequences that use
 | |
|   /// the select operations if possible.
 | |
|   void setSelectIsExpensive(bool isExpensive = true) {
 | |
|     SelectIsExpensive = isExpensive;
 | |
|   }
 | |
| 
 | |
|   /// Tells the code generator that the target has multiple (allocatable)
 | |
|   /// condition registers that can be used to store the results of comparisons
 | |
|   /// for use by selects and conditional branches. With multiple condition
 | |
|   /// registers, the code generator will not aggressively sink comparisons into
 | |
|   /// the blocks of their users.
 | |
|   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
 | |
|     HasMultipleConditionRegisters = hasManyRegs;
 | |
|   }
 | |
| 
 | |
|   /// Tells the code generator that the target has BitExtract instructions.
 | |
|   /// The code generator will aggressively sink "shift"s into the blocks of
 | |
|   /// their users if the users will generate "and" instructions which can be
 | |
|   /// combined with "shift" to BitExtract instructions.
 | |
|   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
 | |
|     HasExtractBitsInsn = hasExtractInsn;
 | |
|   }
 | |
| 
 | |
|   /// Tells the code generator not to expand sequence of operations into a
 | |
|   /// separate sequences that increases the amount of flow control.
 | |
|   void setJumpIsExpensive(bool isExpensive = true) {
 | |
|     JumpIsExpensive = isExpensive;
 | |
|   }
 | |
| 
 | |
|   /// Tells the code generator that integer divide is expensive, and if
 | |
|   /// possible, should be replaced by an alternate sequence of instructions not
 | |
|   /// containing an integer divide.
 | |
|   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
 | |
| 
 | |
|   /// Tells the code generator that fsqrt is cheap, and should not be replaced
 | |
|   /// with an alternative sequence of instructions.
 | |
|   void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
 | |
| 
 | |
|   /// Tells the code generator that this target supports floating point
 | |
|   /// exceptions and cares about preserving floating point exception behavior.
 | |
|   void setHasFloatingPointExceptions(bool FPExceptions = true) {
 | |
|     HasFloatingPointExceptions = FPExceptions;
 | |
|   }
 | |
| 
 | |
|   /// Tells the code generator which bitwidths to bypass.
 | |
|   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
 | |
|     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
 | |
|   }
 | |
| 
 | |
|   /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
 | |
|   /// signed divide by power of two; let the target handle it.
 | |
|   void setPow2SDivIsCheap(bool isCheap = true) { Pow2SDivIsCheap = isCheap; }
 | |
| 
 | |
|   /// Add the specified register class as an available regclass for the
 | |
|   /// specified value type. This indicates the selector can handle values of
 | |
|   /// that class natively.
 | |
|   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
 | |
|     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
 | |
|     AvailableRegClasses.push_back(std::make_pair(VT, RC));
 | |
|     RegClassForVT[VT.SimpleTy] = RC;
 | |
|   }
 | |
| 
 | |
|   /// Remove all register classes.
 | |
|   void clearRegisterClasses() {
 | |
|     memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
 | |
| 
 | |
|     AvailableRegClasses.clear();
 | |
|   }
 | |
| 
 | |
|   /// \brief Remove all operation actions.
 | |
|   void clearOperationActions() {
 | |
|   }
 | |
| 
 | |
|   /// Return the largest legal super-reg register class of the register class
 | |
|   /// for the specified type and its associated "cost".
 | |
|   virtual std::pair<const TargetRegisterClass*, uint8_t>
 | |
|   findRepresentativeClass(MVT VT) const;
 | |
| 
 | |
|   /// Once all of the register classes are added, this allows us to compute
 | |
|   /// derived properties we expose.
 | |
|   void computeRegisterProperties();
 | |
| 
 | |
|   /// Indicate that the specified operation does not work with the specified
 | |
|   /// type and indicate what to do about it.
 | |
|   void setOperationAction(unsigned Op, MVT VT,
 | |
|                           LegalizeAction Action) {
 | |
|     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
 | |
|     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
 | |
|   }
 | |
| 
 | |
|   /// Indicate that the specified load with extension does not work with the
 | |
|   /// specified type and indicate what to do about it.
 | |
|   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
 | |
|                         LegalizeAction Action) {
 | |
|     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
 | |
|            MemVT.isValid() && "Table isn't big enough!");
 | |
|     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = (uint8_t)Action;
 | |
|   }
 | |
| 
 | |
|   /// Indicate that the specified truncating store does not work with the
 | |
|   /// specified type and indicate what to do about it.
 | |
|   void setTruncStoreAction(MVT ValVT, MVT MemVT,
 | |
|                            LegalizeAction Action) {
 | |
|     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
 | |
|     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
 | |
|   }
 | |
| 
 | |
|   /// Indicate that the specified indexed load does or does not work with the
 | |
|   /// specified type and indicate what to do abort it.
 | |
|   ///
 | |
|   /// NOTE: All indexed mode loads are initialized to Expand in
 | |
|   /// TargetLowering.cpp
 | |
|   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
 | |
|                             LegalizeAction Action) {
 | |
|     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
 | |
|            (unsigned)Action < 0xf && "Table isn't big enough!");
 | |
|     // Load action are kept in the upper half.
 | |
|     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
 | |
|     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
 | |
|   }
 | |
| 
 | |
|   /// Indicate that the specified indexed store does or does not work with the
 | |
|   /// specified type and indicate what to do about it.
 | |
|   ///
 | |
|   /// NOTE: All indexed mode stores are initialized to Expand in
 | |
|   /// TargetLowering.cpp
 | |
|   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
 | |
|                              LegalizeAction Action) {
 | |
|     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
 | |
|            (unsigned)Action < 0xf && "Table isn't big enough!");
 | |
|     // Store action are kept in the lower half.
 | |
|     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
 | |
|     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
 | |
|   }
 | |
| 
 | |
|   /// Indicate that the specified condition code is or isn't supported on the
 | |
|   /// target and indicate what to do about it.
 | |
|   void setCondCodeAction(ISD::CondCode CC, MVT VT,
 | |
|                          LegalizeAction Action) {
 | |
|     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
 | |
|            "Table isn't big enough!");
 | |
|     /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
 | |
|     /// value and the upper 27 bits index into the second dimension of the array
 | |
|     /// to select what 32-bit value to use.
 | |
|     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
 | |
|     CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
 | |
|     CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
 | |
|   }
 | |
| 
 | |
|   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
 | |
|   /// to trying a larger integer/fp until it can find one that works. If that
 | |
|   /// default is insufficient, this method can be used by the target to override
 | |
|   /// the default.
 | |
|   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
 | |
|     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
 | |
|   }
 | |
| 
 | |
|   /// Targets should invoke this method for each target independent node that
 | |
|   /// they want to provide a custom DAG combiner for by implementing the
 | |
|   /// PerformDAGCombine virtual method.
 | |
|   void setTargetDAGCombine(ISD::NodeType NT) {
 | |
|     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
 | |
|     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
 | |
|   }
 | |
| 
 | |
|   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
 | |
|   void setJumpBufSize(unsigned Size) {
 | |
|     JumpBufSize = Size;
 | |
|   }
 | |
| 
 | |
|   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
 | |
|   /// 0
 | |
|   void setJumpBufAlignment(unsigned Align) {
 | |
|     JumpBufAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// Set the target's minimum function alignment (in log2(bytes))
 | |
|   void setMinFunctionAlignment(unsigned Align) {
 | |
|     MinFunctionAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// Set the target's preferred function alignment.  This should be set if
 | |
|   /// there is a performance benefit to higher-than-minimum alignment (in
 | |
|   /// log2(bytes))
 | |
|   void setPrefFunctionAlignment(unsigned Align) {
 | |
|     PrefFunctionAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// Set the target's preferred loop alignment. Default alignment is zero, it
 | |
|   /// means the target does not care about loop alignment.  The alignment is
 | |
|   /// specified in log2(bytes). The target may also override
 | |
|   /// getPrefLoopAlignment to provide per-loop values.
 | |
|   void setPrefLoopAlignment(unsigned Align) {
 | |
|     PrefLoopAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// Set the minimum stack alignment of an argument (in log2(bytes)).
 | |
|   void setMinStackArgumentAlignment(unsigned Align) {
 | |
|     MinStackArgumentAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// Set if the DAG builder should automatically insert fences and reduce the
 | |
|   /// order of atomic memory operations to Monotonic.
 | |
|   void setInsertFencesForAtomic(bool fence) {
 | |
|     InsertFencesForAtomic = fence;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing mode description hooks (used by LSR etc).
 | |
|   //
 | |
| 
 | |
|   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
 | |
|   /// instructions reading the address. This allows as much computation as
 | |
|   /// possible to be done in the address mode for that operand. This hook lets
 | |
|   /// targets also pass back when this should be done on intrinsics which
 | |
|   /// load/store.
 | |
|   virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
 | |
|                                     SmallVectorImpl<Value*> &/*Ops*/,
 | |
|                                     Type *&/*AccessTy*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// This represents an addressing mode of:
 | |
|   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
 | |
|   /// If BaseGV is null,  there is no BaseGV.
 | |
|   /// If BaseOffs is zero, there is no base offset.
 | |
|   /// If HasBaseReg is false, there is no base register.
 | |
|   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
 | |
|   /// no scale.
 | |
|   struct AddrMode {
 | |
|     GlobalValue *BaseGV;
 | |
|     int64_t      BaseOffs;
 | |
|     bool         HasBaseReg;
 | |
|     int64_t      Scale;
 | |
|     AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
 | |
|   };
 | |
| 
 | |
|   /// Return true if the addressing mode represented by AM is legal for this
 | |
|   /// target, for a load/store of the specified type.
 | |
|   ///
 | |
|   /// The type may be VoidTy, in which case only return true if the addressing
 | |
|   /// mode is legal for a load/store of any legal type.  TODO: Handle
 | |
|   /// pre/postinc as well.
 | |
|   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
 | |
| 
 | |
|   /// \brief Return the cost of the scaling factor used in the addressing mode
 | |
|   /// represented by AM for this target, for a load/store of the specified type.
 | |
|   ///
 | |
|   /// If the AM is supported, the return value must be >= 0.
 | |
|   /// If the AM is not supported, it returns a negative value.
 | |
|   /// TODO: Handle pre/postinc as well.
 | |
|   virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
 | |
|     // Default: assume that any scaling factor used in a legal AM is free.
 | |
|     if (isLegalAddressingMode(AM, Ty)) return 0;
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified immediate is legal icmp immediate, that is
 | |
|   /// the target has icmp instructions which can compare a register against the
 | |
|   /// immediate without having to materialize the immediate into a register.
 | |
|   virtual bool isLegalICmpImmediate(int64_t) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the specified immediate is legal add immediate, that is the
 | |
|   /// target has add instructions which can add a register with the immediate
 | |
|   /// without having to materialize the immediate into a register.
 | |
|   virtual bool isLegalAddImmediate(int64_t) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Return true if it's significantly cheaper to shift a vector by a uniform
 | |
|   /// scalar than by an amount which will vary across each lane. On x86, for
 | |
|   /// example, there is a "psllw" instruction for the former case, but no simple
 | |
|   /// instruction for a general "a << b" operation on vectors.
 | |
|   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if it's free to truncate a value of type Ty1 to type
 | |
|   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
 | |
|   /// by referencing its sub-register AX.
 | |
|   virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
 | |
|   /// whether a call is in tail position. Typically this means that both results
 | |
|   /// would be assigned to the same register or stack slot, but it could mean
 | |
|   /// the target performs adequate checks of its own before proceeding with the
 | |
|   /// tail call.
 | |
|   virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if any actual instruction that defines a value of type Ty1
 | |
|   /// implicitly zero-extends the value to Ty2 in the result register.
 | |
|   ///
 | |
|   /// This does not necessarily include registers defined in unknown ways, such
 | |
|   /// as incoming arguments, or copies from unknown virtual registers. Also, if
 | |
|   /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
 | |
|   /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
 | |
|   /// values implicit zero-extend the result out to 64 bits.
 | |
|   virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the target supplies and combines to a paired load
 | |
|   /// two loaded values of type LoadedType next to each other in memory.
 | |
|   /// RequiredAlignment gives the minimal alignment constraints that must be met
 | |
|   /// to be able to select this paired load.
 | |
|   ///
 | |
|   /// This information is *not* used to generate actual paired loads, but it is
 | |
|   /// used to generate a sequence of loads that is easier to combine into a
 | |
|   /// paired load.
 | |
|   /// For instance, something like this:
 | |
|   /// a = load i64* addr
 | |
|   /// b = trunc i64 a to i32
 | |
|   /// c = lshr i64 a, 32
 | |
|   /// d = trunc i64 c to i32
 | |
|   /// will be optimized into:
 | |
|   /// b = load i32* addr1
 | |
|   /// d = load i32* addr2
 | |
|   /// Where addr1 = addr2 +/- sizeof(i32).
 | |
|   ///
 | |
|   /// In other words, unless the target performs a post-isel load combining,
 | |
|   /// this information should not be provided because it will generate more
 | |
|   /// loads.
 | |
|   virtual bool hasPairedLoad(Type * /*LoadedType*/,
 | |
|                              unsigned & /*RequiredAligment*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual bool hasPairedLoad(EVT /*LoadedType*/,
 | |
|                              unsigned & /*RequiredAligment*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if zero-extending the specific node Val to type VT2 is free
 | |
|   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
 | |
|   /// because it's folded such as X86 zero-extending loads).
 | |
|   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
 | |
|     return isZExtFree(Val.getValueType(), VT2);
 | |
|   }
 | |
| 
 | |
|   /// Return true if an fpext operation is free (for instance, because
 | |
|   /// single-precision floating-point numbers are implicitly extended to
 | |
|   /// double-precision).
 | |
|   virtual bool isFPExtFree(EVT VT) const {
 | |
|     assert(VT.isFloatingPoint());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
 | |
|   /// extend node) is profitable.
 | |
|   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
 | |
| 
 | |
|   /// Return true if an fneg operation is free to the point where it is never
 | |
|   /// worthwhile to replace it with a bitwise operation.
 | |
|   virtual bool isFNegFree(EVT VT) const {
 | |
|     assert(VT.isFloatingPoint());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if an fabs operation is free to the point where it is never
 | |
|   /// worthwhile to replace it with a bitwise operation.
 | |
|   virtual bool isFAbsFree(EVT VT) const {
 | |
|     assert(VT.isFloatingPoint());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if an FMA operation is faster than a pair of fmul and fadd
 | |
|   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
 | |
|   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
 | |
|   ///
 | |
|   /// NOTE: This may be called before legalization on types for which FMAs are
 | |
|   /// not legal, but should return true if those types will eventually legalize
 | |
|   /// to types that support FMAs. After legalization, it will only be called on
 | |
|   /// types that support FMAs (via Legal or Custom actions)
 | |
|   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if it's profitable to narrow operations of type VT1 to
 | |
|   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
 | |
|   /// i32 to i16.
 | |
|   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return true if it is beneficial to convert a load of a constant to
 | |
|   /// just the constant itself.
 | |
|   /// On some targets it might be more efficient to use a combination of
 | |
|   /// arithmetic instructions to materialize the constant instead of loading it
 | |
|   /// from a constant pool.
 | |
|   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | |
|                                                  Type *Ty) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
 | |
|   /// with this index. This is needed because EXTRACT_SUBVECTOR usually
 | |
|   /// has custom lowering that depends on the index of the first element,
 | |
|   /// and only the target knows which lowering is cheap.
 | |
|   virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Runtime Library hooks
 | |
|   //
 | |
| 
 | |
|   /// Rename the default libcall routine name for the specified libcall.
 | |
|   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
 | |
|     LibcallRoutineNames[Call] = Name;
 | |
|   }
 | |
| 
 | |
|   /// Get the libcall routine name for the specified libcall.
 | |
|   const char *getLibcallName(RTLIB::Libcall Call) const {
 | |
|     return LibcallRoutineNames[Call];
 | |
|   }
 | |
| 
 | |
|   /// Override the default CondCode to be used to test the result of the
 | |
|   /// comparison libcall against zero.
 | |
|   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
 | |
|     CmpLibcallCCs[Call] = CC;
 | |
|   }
 | |
| 
 | |
|   /// Get the CondCode that's to be used to test the result of the comparison
 | |
|   /// libcall against zero.
 | |
|   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
 | |
|     return CmpLibcallCCs[Call];
 | |
|   }
 | |
| 
 | |
|   /// Set the CallingConv that should be used for the specified libcall.
 | |
|   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
 | |
|     LibcallCallingConvs[Call] = CC;
 | |
|   }
 | |
| 
 | |
|   /// Get the CallingConv that should be used for the specified libcall.
 | |
|   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
 | |
|     return LibcallCallingConvs[Call];
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   const TargetMachine &TM;
 | |
|   const DataLayout *DL;
 | |
| 
 | |
|   /// True if this is a little endian target.
 | |
|   bool IsLittleEndian;
 | |
| 
 | |
|   /// Tells the code generator not to expand operations into sequences that use
 | |
|   /// the select operations if possible.
 | |
|   bool SelectIsExpensive;
 | |
| 
 | |
|   /// Tells the code generator that the target has multiple (allocatable)
 | |
|   /// condition registers that can be used to store the results of comparisons
 | |
|   /// for use by selects and conditional branches. With multiple condition
 | |
|   /// registers, the code generator will not aggressively sink comparisons into
 | |
|   /// the blocks of their users.
 | |
|   bool HasMultipleConditionRegisters;
 | |
| 
 | |
|   /// Tells the code generator that the target has BitExtract instructions.
 | |
|   /// The code generator will aggressively sink "shift"s into the blocks of
 | |
|   /// their users if the users will generate "and" instructions which can be
 | |
|   /// combined with "shift" to BitExtract instructions.
 | |
|   bool HasExtractBitsInsn;
 | |
| 
 | |
|   /// Tells the code generator not to expand integer divides by constants into a
 | |
|   /// sequence of muls, adds, and shifts.  This is a hack until a real cost
 | |
|   /// model is in place.  If we ever optimize for size, this will be set to true
 | |
|   /// unconditionally.
 | |
|   bool IntDivIsCheap;
 | |
| 
 | |
|   // Don't expand fsqrt with an approximation based on the inverse sqrt.
 | |
|   bool FsqrtIsCheap;
 | |
| 
 | |
|   /// Tells the code generator to bypass slow divide or remainder
 | |
|   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
 | |
|   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
 | |
|   /// div/rem when the operands are positive and less than 256.
 | |
|   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
 | |
| 
 | |
|   /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
 | |
|   /// signed divide by power of two; let the target handle it.
 | |
|   bool Pow2SDivIsCheap;
 | |
| 
 | |
|   /// Tells the code generator that it shouldn't generate extra flow control
 | |
|   /// instructions and should attempt to combine flow control instructions via
 | |
|   /// predication.
 | |
|   bool JumpIsExpensive;
 | |
| 
 | |
|   /// Whether the target supports or cares about preserving floating point
 | |
|   /// exception behavior.
 | |
|   bool HasFloatingPointExceptions;
 | |
| 
 | |
|   /// This target prefers to use _setjmp to implement llvm.setjmp.
 | |
|   ///
 | |
|   /// Defaults to false.
 | |
|   bool UseUnderscoreSetJmp;
 | |
| 
 | |
|   /// This target prefers to use _longjmp to implement llvm.longjmp.
 | |
|   ///
 | |
|   /// Defaults to false.
 | |
|   bool UseUnderscoreLongJmp;
 | |
| 
 | |
|   /// Number of blocks threshold to use jump tables.
 | |
|   int MinimumJumpTableEntries;
 | |
| 
 | |
|   /// Information about the contents of the high-bits in boolean values held in
 | |
|   /// a type wider than i1. See getBooleanContents.
 | |
|   BooleanContent BooleanContents;
 | |
| 
 | |
|   /// Information about the contents of the high-bits in boolean values held in
 | |
|   /// a type wider than i1. See getBooleanContents.
 | |
|   BooleanContent BooleanFloatContents;
 | |
| 
 | |
|   /// Information about the contents of the high-bits in boolean vector values
 | |
|   /// when the element type is wider than i1. See getBooleanContents.
 | |
|   BooleanContent BooleanVectorContents;
 | |
| 
 | |
|   /// The target scheduling preference: shortest possible total cycles or lowest
 | |
|   /// register usage.
 | |
|   Sched::Preference SchedPreferenceInfo;
 | |
| 
 | |
|   /// The size, in bytes, of the target's jmp_buf buffers
 | |
|   unsigned JumpBufSize;
 | |
| 
 | |
|   /// The alignment, in bytes, of the target's jmp_buf buffers
 | |
|   unsigned JumpBufAlignment;
 | |
| 
 | |
|   /// The minimum alignment that any argument on the stack needs to have.
 | |
|   unsigned MinStackArgumentAlignment;
 | |
| 
 | |
|   /// The minimum function alignment (used when optimizing for size, and to
 | |
|   /// prevent explicitly provided alignment from leading to incorrect code).
 | |
|   unsigned MinFunctionAlignment;
 | |
| 
 | |
|   /// The preferred function alignment (used when alignment unspecified and
 | |
|   /// optimizing for speed).
 | |
|   unsigned PrefFunctionAlignment;
 | |
| 
 | |
|   /// The preferred loop alignment.
 | |
|   unsigned PrefLoopAlignment;
 | |
| 
 | |
|   /// Whether the DAG builder should automatically insert fences and reduce
 | |
|   /// ordering for atomics.  (This will be set for for most architectures with
 | |
|   /// weak memory ordering.)
 | |
|   bool InsertFencesForAtomic;
 | |
| 
 | |
|   /// If set to a physical register, this specifies the register that
 | |
|   /// llvm.savestack/llvm.restorestack should save and restore.
 | |
|   unsigned StackPointerRegisterToSaveRestore;
 | |
| 
 | |
|   /// If set to a physical register, this specifies the register that receives
 | |
|   /// the exception address on entry to a landing pad.
 | |
|   unsigned ExceptionPointerRegister;
 | |
| 
 | |
|   /// If set to a physical register, this specifies the register that receives
 | |
|   /// the exception typeid on entry to a landing pad.
 | |
|   unsigned ExceptionSelectorRegister;
 | |
| 
 | |
|   /// This indicates the default register class to use for each ValueType the
 | |
|   /// target supports natively.
 | |
|   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
 | |
|   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
 | |
|   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// This indicates the "representative" register class to use for each
 | |
|   /// ValueType the target supports natively. This information is used by the
 | |
|   /// scheduler to track register pressure. By default, the representative
 | |
|   /// register class is the largest legal super-reg register class of the
 | |
|   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
 | |
|   /// representative class would be GR32.
 | |
|   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// This indicates the "cost" of the "representative" register class for each
 | |
|   /// ValueType. The cost is used by the scheduler to approximate register
 | |
|   /// pressure.
 | |
|   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// For any value types we are promoting or expanding, this contains the value
 | |
|   /// type that we are changing to.  For Expanded types, this contains one step
 | |
|   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
 | |
|   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
 | |
|   /// the same type (e.g. i32 -> i32).
 | |
|   MVT TransformToType[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// For each operation and each value type, keep a LegalizeAction that
 | |
|   /// indicates how instruction selection should deal with the operation.  Most
 | |
|   /// operations are Legal (aka, supported natively by the target), but
 | |
|   /// operations that are not should be described.  Note that operations on
 | |
|   /// non-legal value types are not described here.
 | |
|   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
 | |
| 
 | |
|   /// For each load extension type and each value type, keep a LegalizeAction
 | |
|   /// that indicates how instruction selection should deal with a load of a
 | |
|   /// specific value type and extension type.
 | |
|   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]
 | |
|                         [ISD::LAST_LOADEXT_TYPE];
 | |
| 
 | |
|   /// For each value type pair keep a LegalizeAction that indicates whether a
 | |
|   /// truncating store of a specific value type and truncating type is legal.
 | |
|   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// For each indexed mode and each value type, keep a pair of LegalizeAction
 | |
|   /// that indicates how instruction selection should deal with the load /
 | |
|   /// store.
 | |
|   ///
 | |
|   /// The first dimension is the value_type for the reference. The second
 | |
|   /// dimension represents the various modes for load store.
 | |
|   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
 | |
| 
 | |
|   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
 | |
|   /// indicates how instruction selection should deal with the condition code.
 | |
|   ///
 | |
|   /// Because each CC action takes up 2 bits, we need to have the array size be
 | |
|   /// large enough to fit all of the value types. This can be done by rounding
 | |
|   /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
 | |
|   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
 | |
| 
 | |
|   ValueTypeActionImpl ValueTypeActions;
 | |
| 
 | |
| public:
 | |
|   LegalizeKind
 | |
|   getTypeConversion(LLVMContext &Context, EVT VT) const {
 | |
|     // If this is a simple type, use the ComputeRegisterProp mechanism.
 | |
|     if (VT.isSimple()) {
 | |
|       MVT SVT = VT.getSimpleVT();
 | |
|       assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
 | |
|       MVT NVT = TransformToType[SVT.SimpleTy];
 | |
|       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
 | |
| 
 | |
|       assert(
 | |
|         (LA == TypeLegal || LA == TypeSoftenFloat ||
 | |
|          ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
 | |
|          && "Promote may not follow Expand or Promote");
 | |
| 
 | |
|       if (LA == TypeSplitVector)
 | |
|         return LegalizeKind(LA, EVT::getVectorVT(Context,
 | |
|                                                  SVT.getVectorElementType(),
 | |
|                                                  SVT.getVectorNumElements()/2));
 | |
|       if (LA == TypeScalarizeVector)
 | |
|         return LegalizeKind(LA, SVT.getVectorElementType());
 | |
|       return LegalizeKind(LA, NVT);
 | |
|     }
 | |
| 
 | |
|     // Handle Extended Scalar Types.
 | |
|     if (!VT.isVector()) {
 | |
|       assert(VT.isInteger() && "Float types must be simple");
 | |
|       unsigned BitSize = VT.getSizeInBits();
 | |
|       // First promote to a power-of-two size, then expand if necessary.
 | |
|       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
 | |
|         EVT NVT = VT.getRoundIntegerType(Context);
 | |
|         assert(NVT != VT && "Unable to round integer VT");
 | |
|         LegalizeKind NextStep = getTypeConversion(Context, NVT);
 | |
|         // Avoid multi-step promotion.
 | |
|         if (NextStep.first == TypePromoteInteger) return NextStep;
 | |
|         // Return rounded integer type.
 | |
|         return LegalizeKind(TypePromoteInteger, NVT);
 | |
|       }
 | |
| 
 | |
|       return LegalizeKind(TypeExpandInteger,
 | |
|                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
 | |
|     }
 | |
| 
 | |
|     // Handle vector types.
 | |
|     unsigned NumElts = VT.getVectorNumElements();
 | |
|     EVT EltVT = VT.getVectorElementType();
 | |
| 
 | |
|     // Vectors with only one element are always scalarized.
 | |
|     if (NumElts == 1)
 | |
|       return LegalizeKind(TypeScalarizeVector, EltVT);
 | |
| 
 | |
|     // Try to widen vector elements until the element type is a power of two and
 | |
|     // promote it to a legal type later on, for example:
 | |
|     // <3 x i8> -> <4 x i8> -> <4 x i32>
 | |
|     if (EltVT.isInteger()) {
 | |
|       // Vectors with a number of elements that is not a power of two are always
 | |
|       // widened, for example <3 x i8> -> <4 x i8>.
 | |
|       if (!VT.isPow2VectorType()) {
 | |
|         NumElts = (unsigned)NextPowerOf2(NumElts);
 | |
|         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
 | |
|         return LegalizeKind(TypeWidenVector, NVT);
 | |
|       }
 | |
| 
 | |
|       // Examine the element type.
 | |
|       LegalizeKind LK = getTypeConversion(Context, EltVT);
 | |
| 
 | |
|       // If type is to be expanded, split the vector.
 | |
|       //  <4 x i140> -> <2 x i140>
 | |
|       if (LK.first == TypeExpandInteger)
 | |
|         return LegalizeKind(TypeSplitVector,
 | |
|                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
 | |
| 
 | |
|       // Promote the integer element types until a legal vector type is found
 | |
|       // or until the element integer type is too big. If a legal type was not
 | |
|       // found, fallback to the usual mechanism of widening/splitting the
 | |
|       // vector.
 | |
|       EVT OldEltVT = EltVT;
 | |
|       while (1) {
 | |
|         // Increase the bitwidth of the element to the next pow-of-two
 | |
|         // (which is greater than 8 bits).
 | |
|         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
 | |
|                                  ).getRoundIntegerType(Context);
 | |
| 
 | |
|         // Stop trying when getting a non-simple element type.
 | |
|         // Note that vector elements may be greater than legal vector element
 | |
|         // types. Example: X86 XMM registers hold 64bit element on 32bit
 | |
|         // systems.
 | |
|         if (!EltVT.isSimple()) break;
 | |
| 
 | |
|         // Build a new vector type and check if it is legal.
 | |
|         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
 | |
|         // Found a legal promoted vector type.
 | |
|         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
 | |
|           return LegalizeKind(TypePromoteInteger,
 | |
|                               EVT::getVectorVT(Context, EltVT, NumElts));
 | |
|       }
 | |
| 
 | |
|       // Reset the type to the unexpanded type if we did not find a legal vector
 | |
|       // type with a promoted vector element type.
 | |
|       EltVT = OldEltVT;
 | |
|     }
 | |
| 
 | |
|     // Try to widen the vector until a legal type is found.
 | |
|     // If there is no wider legal type, split the vector.
 | |
|     while (1) {
 | |
|       // Round up to the next power of 2.
 | |
|       NumElts = (unsigned)NextPowerOf2(NumElts);
 | |
| 
 | |
|       // If there is no simple vector type with this many elements then there
 | |
|       // cannot be a larger legal vector type.  Note that this assumes that
 | |
|       // there are no skipped intermediate vector types in the simple types.
 | |
|       if (!EltVT.isSimple()) break;
 | |
|       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
 | |
|       if (LargerVector == MVT()) break;
 | |
| 
 | |
|       // If this type is legal then widen the vector.
 | |
|       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
 | |
|         return LegalizeKind(TypeWidenVector, LargerVector);
 | |
|     }
 | |
| 
 | |
|     // Widen odd vectors to next power of two.
 | |
|     if (!VT.isPow2VectorType()) {
 | |
|       EVT NVT = VT.getPow2VectorType(Context);
 | |
|       return LegalizeKind(TypeWidenVector, NVT);
 | |
|     }
 | |
| 
 | |
|     // Vectors with illegal element types are expanded.
 | |
|     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
 | |
|     return LegalizeKind(TypeSplitVector, NVT);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
 | |
| 
 | |
|   /// Targets can specify ISD nodes that they would like PerformDAGCombine
 | |
|   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
 | |
|   /// array.
 | |
|   unsigned char
 | |
|   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
 | |
| 
 | |
|   /// For operations that must be promoted to a specific type, this holds the
 | |
|   /// destination type.  This map should be sparse, so don't hold it as an
 | |
|   /// array.
 | |
|   ///
 | |
|   /// Targets add entries to this map with AddPromotedToType(..), clients access
 | |
|   /// this with getTypeToPromoteTo(..).
 | |
|   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
 | |
|     PromoteToType;
 | |
| 
 | |
|   /// Stores the name each libcall.
 | |
|   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
 | |
| 
 | |
|   /// The ISD::CondCode that should be used to test the result of each of the
 | |
|   /// comparison libcall against zero.
 | |
|   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
 | |
| 
 | |
|   /// Stores the CallingConv that should be used for each libcall.
 | |
|   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
 | |
| 
 | |
| protected:
 | |
|   /// \brief Specify maximum number of store instructions per memset call.
 | |
|   ///
 | |
|   /// When lowering \@llvm.memset this field specifies the maximum number of
 | |
|   /// store operations that may be substituted for the call to memset. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memset will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
 | |
|   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
 | |
|   /// store.  This only applies to setting a constant array of a constant size.
 | |
|   unsigned MaxStoresPerMemset;
 | |
| 
 | |
|   /// Maximum number of stores operations that may be substituted for the call
 | |
|   /// to memset, used for functions with OptSize attribute.
 | |
|   unsigned MaxStoresPerMemsetOptSize;
 | |
| 
 | |
|   /// \brief Specify maximum bytes of store instructions per memcpy call.
 | |
|   ///
 | |
|   /// When lowering \@llvm.memcpy this field specifies the maximum number of
 | |
|   /// store operations that may be substituted for a call to memcpy. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memcpy will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
 | |
|   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
 | |
|   /// and one 1-byte store. This only applies to copying a constant array of
 | |
|   /// constant size.
 | |
|   unsigned MaxStoresPerMemcpy;
 | |
| 
 | |
|   /// Maximum number of store operations that may be substituted for a call to
 | |
|   /// memcpy, used for functions with OptSize attribute.
 | |
|   unsigned MaxStoresPerMemcpyOptSize;
 | |
| 
 | |
|   /// \brief Specify maximum bytes of store instructions per memmove call.
 | |
|   ///
 | |
|   /// When lowering \@llvm.memmove this field specifies the maximum number of
 | |
|   /// store instructions that may be substituted for a call to memmove. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memmove will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
 | |
|   /// with 8-bit alignment would result in nine 1-byte stores.  This only
 | |
|   /// applies to copying a constant array of constant size.
 | |
|   unsigned MaxStoresPerMemmove;
 | |
| 
 | |
|   /// Maximum number of store instructions that may be substituted for a call to
 | |
|   /// memmove, used for functions with OpSize attribute.
 | |
|   unsigned MaxStoresPerMemmoveOptSize;
 | |
| 
 | |
|   /// Tells the code generator that select is more expensive than a branch if
 | |
|   /// the branch is usually predicted right.
 | |
|   bool PredictableSelectIsExpensive;
 | |
| 
 | |
|   /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
 | |
|   /// a mask of a single bit, a compare, and a branch into a single instruction.
 | |
|   bool MaskAndBranchFoldingIsLegal;
 | |
| 
 | |
|   /// \see enableExtLdPromotion.
 | |
|   bool EnableExtLdPromotion;
 | |
| 
 | |
| protected:
 | |
|   /// Return true if the value types that can be represented by the specified
 | |
|   /// register class are all legal.
 | |
|   bool isLegalRC(const TargetRegisterClass *RC) const;
 | |
| 
 | |
|   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
 | |
|   /// sequence of memory operands that is recognized by PrologEpilogInserter.
 | |
|   MachineBasicBlock *emitPatchPoint(MachineInstr *MI, MachineBasicBlock *MBB) const;
 | |
| };
 | |
| 
 | |
| /// This class defines information used to lower LLVM code to legal SelectionDAG
 | |
| /// operators that the target instruction selector can accept natively.
 | |
| ///
 | |
| /// This class also defines callbacks that targets must implement to lower
 | |
| /// target-specific constructs to SelectionDAG operators.
 | |
| class TargetLowering : public TargetLoweringBase {
 | |
|   TargetLowering(const TargetLowering&) = delete;
 | |
|   void operator=(const TargetLowering&) = delete;
 | |
| 
 | |
| public:
 | |
|   /// NOTE: The TargetMachine owns TLOF.
 | |
|   explicit TargetLowering(const TargetMachine &TM);
 | |
| 
 | |
|   /// Returns true by value, base pointer and offset pointer and addressing mode
 | |
|   /// by reference if the node's address can be legally represented as
 | |
|   /// pre-indexed load / store address.
 | |
|   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
 | |
|                                          SDValue &/*Offset*/,
 | |
|                                          ISD::MemIndexedMode &/*AM*/,
 | |
|                                          SelectionDAG &/*DAG*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Returns true by value, base pointer and offset pointer and addressing mode
 | |
|   /// by reference if this node can be combined with a load / store to form a
 | |
|   /// post-indexed load / store.
 | |
|   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
 | |
|                                           SDValue &/*Base*/,
 | |
|                                           SDValue &/*Offset*/,
 | |
|                                           ISD::MemIndexedMode &/*AM*/,
 | |
|                                           SelectionDAG &/*DAG*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return the entry encoding for a jump table in the current function.  The
 | |
|   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
 | |
|   virtual unsigned getJumpTableEncoding() const;
 | |
| 
 | |
|   virtual const MCExpr *
 | |
|   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
 | |
|                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
 | |
|                             MCContext &/*Ctx*/) const {
 | |
|     llvm_unreachable("Need to implement this hook if target has custom JTIs");
 | |
|   }
 | |
| 
 | |
|   /// Returns relocation base for the given PIC jumptable.
 | |
|   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
 | |
|                                            SelectionDAG &DAG) const;
 | |
| 
 | |
|   /// This returns the relocation base for the given PIC jumptable, the same as
 | |
|   /// getPICJumpTableRelocBase, but as an MCExpr.
 | |
|   virtual const MCExpr *
 | |
|   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | |
|                                unsigned JTI, MCContext &Ctx) const;
 | |
| 
 | |
|   /// Return true if folding a constant offset with the given GlobalAddress is
 | |
|   /// legal.  It is frequently not legal in PIC relocation models.
 | |
|   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
 | |
| 
 | |
|   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
 | |
|                             SDValue &Chain) const;
 | |
| 
 | |
|   void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
 | |
|                            SDValue &NewLHS, SDValue &NewRHS,
 | |
|                            ISD::CondCode &CCCode, SDLoc DL) const;
 | |
| 
 | |
|   /// Returns a pair of (return value, chain).
 | |
|   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
 | |
|                                           EVT RetVT, const SDValue *Ops,
 | |
|                                           unsigned NumOps, bool isSigned,
 | |
|                                           SDLoc dl, bool doesNotReturn = false,
 | |
|                                           bool isReturnValueUsed = true) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // TargetLowering Optimization Methods
 | |
|   //
 | |
| 
 | |
|   /// A convenience struct that encapsulates a DAG, and two SDValues for
 | |
|   /// returning information from TargetLowering to its clients that want to
 | |
|   /// combine.
 | |
|   struct TargetLoweringOpt {
 | |
|     SelectionDAG &DAG;
 | |
|     bool LegalTys;
 | |
|     bool LegalOps;
 | |
|     SDValue Old;
 | |
|     SDValue New;
 | |
| 
 | |
|     explicit TargetLoweringOpt(SelectionDAG &InDAG,
 | |
|                                bool LT, bool LO) :
 | |
|       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
 | |
| 
 | |
|     bool LegalTypes() const { return LegalTys; }
 | |
|     bool LegalOperations() const { return LegalOps; }
 | |
| 
 | |
|     bool CombineTo(SDValue O, SDValue N) {
 | |
|       Old = O;
 | |
|       New = N;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// Check to see if the specified operand of the specified instruction is a
 | |
|     /// constant integer.  If so, check to see if there are any bits set in the
 | |
|     /// constant that are not demanded.  If so, shrink the constant and return
 | |
|     /// true.
 | |
|     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
 | |
| 
 | |
|     /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
 | |
|     /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
 | |
|     /// generalized for targets with other types of implicit widening casts.
 | |
|     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
 | |
|                           SDLoc dl);
 | |
|   };
 | |
| 
 | |
|   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
 | |
|   /// result of Op are ever used downstream.  If we can use this information to
 | |
|   /// simplify Op, create a new simplified DAG node and return true, returning
 | |
|   /// the original and new nodes in Old and New.  Otherwise, analyze the
 | |
|   /// expression and return a mask of KnownOne and KnownZero bits for the
 | |
|   /// expression (used to simplify the caller).  The KnownZero/One bits may only
 | |
|   /// be accurate for those bits in the DemandedMask.
 | |
|   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
 | |
|                             APInt &KnownZero, APInt &KnownOne,
 | |
|                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
 | |
| 
 | |
|   /// Determine which of the bits specified in Mask are known to be either zero
 | |
|   /// or one and return them in the KnownZero/KnownOne bitsets.
 | |
|   virtual void computeKnownBitsForTargetNode(const SDValue Op,
 | |
|                                              APInt &KnownZero,
 | |
|                                              APInt &KnownOne,
 | |
|                                              const SelectionDAG &DAG,
 | |
|                                              unsigned Depth = 0) const;
 | |
| 
 | |
|   /// This method can be implemented by targets that want to expose additional
 | |
|   /// information about sign bits to the DAG Combiner.
 | |
|   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
 | |
|                                                    const SelectionDAG &DAG,
 | |
|                                                    unsigned Depth = 0) const;
 | |
| 
 | |
|   struct DAGCombinerInfo {
 | |
|     void *DC;  // The DAG Combiner object.
 | |
|     CombineLevel Level;
 | |
|     bool CalledByLegalizer;
 | |
|   public:
 | |
|     SelectionDAG &DAG;
 | |
| 
 | |
|     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
 | |
|       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
 | |
| 
 | |
|     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
 | |
|     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
 | |
|     bool isAfterLegalizeVectorOps() const {
 | |
|       return Level == AfterLegalizeDAG;
 | |
|     }
 | |
|     CombineLevel getDAGCombineLevel() { return Level; }
 | |
|     bool isCalledByLegalizer() const { return CalledByLegalizer; }
 | |
| 
 | |
|     void AddToWorklist(SDNode *N);
 | |
|     void RemoveFromWorklist(SDNode *N);
 | |
|     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
 | |
|     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
 | |
|     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
 | |
| 
 | |
|     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
 | |
|   };
 | |
| 
 | |
|   /// Return if the N is a constant or constant vector equal to the true value
 | |
|   /// from getBooleanContents().
 | |
|   bool isConstTrueVal(const SDNode *N) const;
 | |
| 
 | |
|   /// Return if the N is a constant or constant vector equal to the false value
 | |
|   /// from getBooleanContents().
 | |
|   bool isConstFalseVal(const SDNode *N) const;
 | |
| 
 | |
|   /// Try to simplify a setcc built with the specified operands and cc. If it is
 | |
|   /// unable to simplify it, return a null SDValue.
 | |
|   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
 | |
|                           ISD::CondCode Cond, bool foldBooleans,
 | |
|                           DAGCombinerInfo &DCI, SDLoc dl) const;
 | |
| 
 | |
|   /// Returns true (and the GlobalValue and the offset) if the node is a
 | |
|   /// GlobalAddress + offset.
 | |
|   virtual bool
 | |
|   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
 | |
| 
 | |
|   /// This method will be invoked for all target nodes and for any
 | |
|   /// target-independent nodes that the target has registered with invoke it
 | |
|   /// for.
 | |
|   ///
 | |
|   /// The semantics are as follows:
 | |
|   /// Return Value:
 | |
|   ///   SDValue.Val == 0   - No change was made
 | |
|   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
 | |
|   ///   otherwise          - N should be replaced by the returned Operand.
 | |
|   ///
 | |
|   /// In addition, methods provided by DAGCombinerInfo may be used to perform
 | |
|   /// more complex transformations.
 | |
|   ///
 | |
|   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
 | |
| 
 | |
|   /// Return true if it is profitable to move a following shift through this
 | |
|   //  node, adjusting any immediate operands as necessary to preserve semantics.
 | |
|   //  This transformation may not be desirable if it disrupts a particularly
 | |
|   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
 | |
|   //  By default, it returns true.
 | |
|   virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the target has native support for the specified value type
 | |
|   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
 | |
|   /// i16 is legal, but undesirable since i16 instruction encodings are longer
 | |
|   /// and some i16 instructions are slow.
 | |
|   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
 | |
|     // By default, assume all legal types are desirable.
 | |
|     return isTypeLegal(VT);
 | |
|   }
 | |
| 
 | |
|   /// Return true if it is profitable for dag combiner to transform a floating
 | |
|   /// point op of specified opcode to a equivalent op of an integer
 | |
|   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
 | |
|   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
 | |
|                                                  EVT /*VT*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// This method query the target whether it is beneficial for dag combiner to
 | |
|   /// promote the specified node. If true, it should return the desired
 | |
|   /// promotion type by reference.
 | |
|   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Lowering methods - These methods must be implemented by targets so that
 | |
|   // the SelectionDAGBuilder code knows how to lower these.
 | |
|   //
 | |
| 
 | |
|   /// This hook must be implemented to lower the incoming (formal) arguments,
 | |
|   /// described by the Ins array, into the specified DAG. The implementation
 | |
|   /// should fill in the InVals array with legal-type argument values, and
 | |
|   /// return the resulting token chain value.
 | |
|   ///
 | |
|   virtual SDValue
 | |
|     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
 | |
|                          bool /*isVarArg*/,
 | |
|                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
 | |
|                          SDLoc /*dl*/, SelectionDAG &/*DAG*/,
 | |
|                          SmallVectorImpl<SDValue> &/*InVals*/) const {
 | |
|     llvm_unreachable("Not Implemented");
 | |
|   }
 | |
| 
 | |
|   struct ArgListEntry {
 | |
|     SDValue Node;
 | |
|     Type* Ty;
 | |
|     bool isSExt     : 1;
 | |
|     bool isZExt     : 1;
 | |
|     bool isInReg    : 1;
 | |
|     bool isSRet     : 1;
 | |
|     bool isNest     : 1;
 | |
|     bool isByVal    : 1;
 | |
|     bool isInAlloca : 1;
 | |
|     bool isReturned : 1;
 | |
|     uint16_t Alignment;
 | |
| 
 | |
|     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
 | |
|       isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
 | |
|       isReturned(false), Alignment(0) { }
 | |
| 
 | |
|     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
 | |
|   };
 | |
|   typedef std::vector<ArgListEntry> ArgListTy;
 | |
| 
 | |
|   /// This structure contains all information that is necessary for lowering
 | |
|   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
 | |
|   /// needs to lower a call, and targets will see this struct in their LowerCall
 | |
|   /// implementation.
 | |
|   struct CallLoweringInfo {
 | |
|     SDValue Chain;
 | |
|     Type *RetTy;
 | |
|     bool RetSExt           : 1;
 | |
|     bool RetZExt           : 1;
 | |
|     bool IsVarArg          : 1;
 | |
|     bool IsInReg           : 1;
 | |
|     bool DoesNotReturn     : 1;
 | |
|     bool IsReturnValueUsed : 1;
 | |
| 
 | |
|     // IsTailCall should be modified by implementations of
 | |
|     // TargetLowering::LowerCall that perform tail call conversions.
 | |
|     bool IsTailCall;
 | |
| 
 | |
|     unsigned NumFixedArgs;
 | |
|     CallingConv::ID CallConv;
 | |
|     SDValue Callee;
 | |
|     ArgListTy Args;
 | |
|     SelectionDAG &DAG;
 | |
|     SDLoc DL;
 | |
|     ImmutableCallSite *CS;
 | |
|     bool IsPatchPoint;
 | |
|     SmallVector<ISD::OutputArg, 32> Outs;
 | |
|     SmallVector<SDValue, 32> OutVals;
 | |
|     SmallVector<ISD::InputArg, 32> Ins;
 | |
| 
 | |
|     CallLoweringInfo(SelectionDAG &DAG)
 | |
|       : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
 | |
|         IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
 | |
|         IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
 | |
|         DAG(DAG), CS(nullptr), IsPatchPoint(false) {}
 | |
| 
 | |
|     CallLoweringInfo &setDebugLoc(SDLoc dl) {
 | |
|       DL = dl;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setChain(SDValue InChain) {
 | |
|       Chain = InChain;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
 | |
|                                 SDValue Target, ArgListTy &&ArgsList,
 | |
|                                 unsigned FixedArgs = -1) {
 | |
|       RetTy = ResultType;
 | |
|       Callee = Target;
 | |
|       CallConv = CC;
 | |
|       NumFixedArgs =
 | |
|         (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
 | |
|       Args = std::move(ArgsList);
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
 | |
|                                 SDValue Target, ArgListTy &&ArgsList,
 | |
|                                 ImmutableCallSite &Call) {
 | |
|       RetTy = ResultType;
 | |
| 
 | |
|       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
 | |
|       DoesNotReturn = Call.doesNotReturn();
 | |
|       IsVarArg = FTy->isVarArg();
 | |
|       IsReturnValueUsed = !Call.getInstruction()->use_empty();
 | |
|       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
 | |
|       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
 | |
| 
 | |
|       Callee = Target;
 | |
| 
 | |
|       CallConv = Call.getCallingConv();
 | |
|       NumFixedArgs = FTy->getNumParams();
 | |
|       Args = std::move(ArgsList);
 | |
| 
 | |
|       CS = &Call;
 | |
| 
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setInRegister(bool Value = true) {
 | |
|       IsInReg = Value;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setNoReturn(bool Value = true) {
 | |
|       DoesNotReturn = Value;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setVarArg(bool Value = true) {
 | |
|       IsVarArg = Value;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setTailCall(bool Value = true) {
 | |
|       IsTailCall = Value;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setDiscardResult(bool Value = true) {
 | |
|       IsReturnValueUsed = !Value;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setSExtResult(bool Value = true) {
 | |
|       RetSExt = Value;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setZExtResult(bool Value = true) {
 | |
|       RetZExt = Value;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
 | |
|       IsPatchPoint = Value;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     ArgListTy &getArgs() {
 | |
|       return Args;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// This function lowers an abstract call to a function into an actual call.
 | |
|   /// This returns a pair of operands.  The first element is the return value
 | |
|   /// for the function (if RetTy is not VoidTy).  The second element is the
 | |
|   /// outgoing token chain. It calls LowerCall to do the actual lowering.
 | |
|   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
 | |
| 
 | |
|   /// This hook must be implemented to lower calls into the the specified
 | |
|   /// DAG. The outgoing arguments to the call are described by the Outs array,
 | |
|   /// and the values to be returned by the call are described by the Ins
 | |
|   /// array. The implementation should fill in the InVals array with legal-type
 | |
|   /// return values from the call, and return the resulting token chain value.
 | |
|   virtual SDValue
 | |
|     LowerCall(CallLoweringInfo &/*CLI*/,
 | |
|               SmallVectorImpl<SDValue> &/*InVals*/) const {
 | |
|     llvm_unreachable("Not Implemented");
 | |
|   }
 | |
| 
 | |
|   /// Target-specific cleanup for formal ByVal parameters.
 | |
|   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
 | |
| 
 | |
|   /// This hook should be implemented to check whether the return values
 | |
|   /// described by the Outs array can fit into the return registers.  If false
 | |
|   /// is returned, an sret-demotion is performed.
 | |
|   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
 | |
|                               MachineFunction &/*MF*/, bool /*isVarArg*/,
 | |
|                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
 | |
|                LLVMContext &/*Context*/) const
 | |
|   {
 | |
|     // Return true by default to get preexisting behavior.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// This hook must be implemented to lower outgoing return values, described
 | |
|   /// by the Outs array, into the specified DAG. The implementation should
 | |
|   /// return the resulting token chain value.
 | |
|   virtual SDValue
 | |
|     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
 | |
|                 bool /*isVarArg*/,
 | |
|                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
 | |
|                 const SmallVectorImpl<SDValue> &/*OutVals*/,
 | |
|                 SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
 | |
|     llvm_unreachable("Not Implemented");
 | |
|   }
 | |
| 
 | |
|   /// Return true if result of the specified node is used by a return node
 | |
|   /// only. It also compute and return the input chain for the tail call.
 | |
|   ///
 | |
|   /// This is used to determine whether it is possible to codegen a libcall as
 | |
|   /// tail call at legalization time.
 | |
|   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the target may be able emit the call instruction as a tail
 | |
|   /// call. This is used by optimization passes to determine if it's profitable
 | |
|   /// to duplicate return instructions to enable tailcall optimization.
 | |
|   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Return the builtin name for the __builtin___clear_cache intrinsic
 | |
|   /// Default is to invoke the clear cache library call
 | |
|   virtual const char * getClearCacheBuiltinName() const {
 | |
|     return "__clear_cache";
 | |
|   }
 | |
| 
 | |
|   /// Return the register ID of the name passed in. Used by named register
 | |
|   /// global variables extension. There is no target-independent behaviour
 | |
|   /// so the default action is to bail.
 | |
|   virtual unsigned getRegisterByName(const char* RegName, EVT VT) const {
 | |
|     report_fatal_error("Named registers not implemented for this target");
 | |
|   }
 | |
| 
 | |
|   /// Return the type that should be used to zero or sign extend a
 | |
|   /// zeroext/signext integer argument or return value.  FIXME: Most C calling
 | |
|   /// convention requires the return type to be promoted, but this is not true
 | |
|   /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
 | |
|   /// calling conventions. The frontend should handle this and include all of
 | |
|   /// the necessary information.
 | |
|   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
 | |
|                                        ISD::NodeType /*ExtendKind*/) const {
 | |
|     EVT MinVT = getRegisterType(Context, MVT::i32);
 | |
|     return VT.bitsLT(MinVT) ? MinVT : VT;
 | |
|   }
 | |
| 
 | |
|   /// For some targets, an LLVM struct type must be broken down into multiple
 | |
|   /// simple types, but the calling convention specifies that the entire struct
 | |
|   /// must be passed in a block of consecutive registers.
 | |
|   virtual bool
 | |
|   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
 | |
|                                             bool isVarArg) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Returns a 0 terminated array of registers that can be safely used as
 | |
|   /// scratch registers.
 | |
|   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   /// This callback is used to prepare for a volatile or atomic load.
 | |
|   /// It takes a chain node as input and returns the chain for the load itself.
 | |
|   ///
 | |
|   /// Having a callback like this is necessary for targets like SystemZ,
 | |
|   /// which allows a CPU to reuse the result of a previous load indefinitely,
 | |
|   /// even if a cache-coherent store is performed by another CPU.  The default
 | |
|   /// implementation does nothing.
 | |
|   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|     return Chain;
 | |
|   }
 | |
| 
 | |
|   /// This callback is invoked by the type legalizer to legalize nodes with an
 | |
|   /// illegal operand type but legal result types.  It replaces the
 | |
|   /// LowerOperation callback in the type Legalizer.  The reason we can not do
 | |
|   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
 | |
|   /// use this callback.
 | |
|   ///
 | |
|   /// TODO: Consider merging with ReplaceNodeResults.
 | |
|   ///
 | |
|   /// The target places new result values for the node in Results (their number
 | |
|   /// and types must exactly match those of the original return values of
 | |
|   /// the node), or leaves Results empty, which indicates that the node is not
 | |
|   /// to be custom lowered after all.
 | |
|   /// The default implementation calls LowerOperation.
 | |
|   virtual void LowerOperationWrapper(SDNode *N,
 | |
|                                      SmallVectorImpl<SDValue> &Results,
 | |
|                                      SelectionDAG &DAG) const;
 | |
| 
 | |
|   /// This callback is invoked for operations that are unsupported by the
 | |
|   /// target, which are registered to use 'custom' lowering, and whose defined
 | |
|   /// values are all legal.  If the target has no operations that require custom
 | |
|   /// lowering, it need not implement this.  The default implementation of this
 | |
|   /// aborts.
 | |
|   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
 | |
| 
 | |
|   /// This callback is invoked when a node result type is illegal for the
 | |
|   /// target, and the operation was registered to use 'custom' lowering for that
 | |
|   /// result type.  The target places new result values for the node in Results
 | |
|   /// (their number and types must exactly match those of the original return
 | |
|   /// values of the node), or leaves Results empty, which indicates that the
 | |
|   /// node is not to be custom lowered after all.
 | |
|   ///
 | |
|   /// If the target has no operations that require custom lowering, it need not
 | |
|   /// implement this.  The default implementation aborts.
 | |
|   virtual void ReplaceNodeResults(SDNode * /*N*/,
 | |
|                                   SmallVectorImpl<SDValue> &/*Results*/,
 | |
|                                   SelectionDAG &/*DAG*/) const {
 | |
|     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
 | |
|   }
 | |
| 
 | |
|   /// This method returns the name of a target specific DAG node.
 | |
|   virtual const char *getTargetNodeName(unsigned Opcode) const;
 | |
| 
 | |
|   /// This method returns a target specific FastISel object, or null if the
 | |
|   /// target does not support "fast" ISel.
 | |
|   virtual FastISel *createFastISel(FunctionLoweringInfo &,
 | |
|                                    const TargetLibraryInfo *) const {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Inline Asm Support hooks
 | |
|   //
 | |
| 
 | |
|   /// This hook allows the target to expand an inline asm call to be explicit
 | |
|   /// llvm code if it wants to.  This is useful for turning simple inline asms
 | |
|   /// into LLVM intrinsics, which gives the compiler more information about the
 | |
|   /// behavior of the code.
 | |
|   virtual bool ExpandInlineAsm(CallInst *) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   enum ConstraintType {
 | |
|     C_Register,            // Constraint represents specific register(s).
 | |
|     C_RegisterClass,       // Constraint represents any of register(s) in class.
 | |
|     C_Memory,              // Memory constraint.
 | |
|     C_Other,               // Something else.
 | |
|     C_Unknown              // Unsupported constraint.
 | |
|   };
 | |
| 
 | |
|   enum ConstraintWeight {
 | |
|     // Generic weights.
 | |
|     CW_Invalid  = -1,     // No match.
 | |
|     CW_Okay     = 0,      // Acceptable.
 | |
|     CW_Good     = 1,      // Good weight.
 | |
|     CW_Better   = 2,      // Better weight.
 | |
|     CW_Best     = 3,      // Best weight.
 | |
| 
 | |
|     // Well-known weights.
 | |
|     CW_SpecificReg  = CW_Okay,    // Specific register operands.
 | |
|     CW_Register     = CW_Good,    // Register operands.
 | |
|     CW_Memory       = CW_Better,  // Memory operands.
 | |
|     CW_Constant     = CW_Best,    // Constant operand.
 | |
|     CW_Default      = CW_Okay     // Default or don't know type.
 | |
|   };
 | |
| 
 | |
|   /// This contains information for each constraint that we are lowering.
 | |
|   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
 | |
|     /// This contains the actual string for the code, like "m".  TargetLowering
 | |
|     /// picks the 'best' code from ConstraintInfo::Codes that most closely
 | |
|     /// matches the operand.
 | |
|     std::string ConstraintCode;
 | |
| 
 | |
|     /// Information about the constraint code, e.g. Register, RegisterClass,
 | |
|     /// Memory, Other, Unknown.
 | |
|     TargetLowering::ConstraintType ConstraintType;
 | |
| 
 | |
|     /// If this is the result output operand or a clobber, this is null,
 | |
|     /// otherwise it is the incoming operand to the CallInst.  This gets
 | |
|     /// modified as the asm is processed.
 | |
|     Value *CallOperandVal;
 | |
| 
 | |
|     /// The ValueType for the operand value.
 | |
|     MVT ConstraintVT;
 | |
| 
 | |
|     /// Return true of this is an input operand that is a matching constraint
 | |
|     /// like "4".
 | |
|     bool isMatchingInputConstraint() const;
 | |
| 
 | |
|     /// If this is an input matching constraint, this method returns the output
 | |
|     /// operand it matches.
 | |
|     unsigned getMatchedOperand() const;
 | |
| 
 | |
|     /// Copy constructor for copying from a ConstraintInfo.
 | |
|     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
 | |
|         : InlineAsm::ConstraintInfo(std::move(Info)),
 | |
|           ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
 | |
|           ConstraintVT(MVT::Other) {}
 | |
|   };
 | |
| 
 | |
|   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
 | |
| 
 | |
|   /// Split up the constraint string from the inline assembly value into the
 | |
|   /// specific constraints and their prefixes, and also tie in the associated
 | |
|   /// operand values.  If this returns an empty vector, and if the constraint
 | |
|   /// string itself isn't empty, there was an error parsing.
 | |
|   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
 | |
| 
 | |
|   /// Examine constraint type and operand type and determine a weight value.
 | |
|   /// The operand object must already have been set up with the operand type.
 | |
|   virtual ConstraintWeight getMultipleConstraintMatchWeight(
 | |
|       AsmOperandInfo &info, int maIndex) const;
 | |
| 
 | |
|   /// Examine constraint string and operand type and determine a weight value.
 | |
|   /// The operand object must already have been set up with the operand type.
 | |
|   virtual ConstraintWeight getSingleConstraintMatchWeight(
 | |
|       AsmOperandInfo &info, const char *constraint) const;
 | |
| 
 | |
|   /// Determines the constraint code and constraint type to use for the specific
 | |
|   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
 | |
|   /// If the actual operand being passed in is available, it can be passed in as
 | |
|   /// Op, otherwise an empty SDValue can be passed.
 | |
|   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 | |
|                                       SDValue Op,
 | |
|                                       SelectionDAG *DAG = nullptr) const;
 | |
| 
 | |
|   /// Given a constraint, return the type of constraint it is for this target.
 | |
|   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
 | |
| 
 | |
|   /// Given a physical register constraint (e.g.  {edx}), return the register
 | |
|   /// number and the register class for the register.
 | |
|   ///
 | |
|   /// Given a register class constraint, like 'r', if this corresponds directly
 | |
|   /// to an LLVM register class, return a register of 0 and the register class
 | |
|   /// pointer.
 | |
|   ///
 | |
|   /// This should only be used for C_Register constraints.  On error, this
 | |
|   /// returns a register number of 0 and a null register class pointer.
 | |
|   virtual std::pair<unsigned, const TargetRegisterClass*>
 | |
|     getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                  MVT VT) const;
 | |
| 
 | |
|   /// Try to replace an X constraint, which matches anything, with another that
 | |
|   /// has more specific requirements based on the type of the corresponding
 | |
|   /// operand.  This returns null if there is no replacement to make.
 | |
|   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
 | |
| 
 | |
|   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
 | |
|   /// add anything to Ops.
 | |
|   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
 | |
|                                             std::vector<SDValue> &Ops,
 | |
|                                             SelectionDAG &DAG) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Div utility functions
 | |
|   //
 | |
|   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
 | |
|                          SelectionDAG &DAG) const;
 | |
|   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
 | |
|                     bool IsAfterLegalization,
 | |
|                     std::vector<SDNode *> *Created) const;
 | |
|   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
 | |
|                     bool IsAfterLegalization,
 | |
|                     std::vector<SDNode *> *Created) const;
 | |
|   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
 | |
|                                 SelectionDAG &DAG,
 | |
|                                 std::vector<SDNode *> *Created) const {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   /// Indicate whether this target prefers to combine the given number of FDIVs
 | |
|   /// with the same divisor.
 | |
|   virtual bool combineRepeatedFPDivisors(unsigned NumUsers) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Hooks for building estimates in place of slower divisions and square
 | |
|   /// roots.
 | |
|   
 | |
|   /// Return a reciprocal square root estimate value for the input operand.
 | |
|   /// The RefinementSteps output is the number of Newton-Raphson refinement
 | |
|   /// iterations required to generate a sufficient (though not necessarily
 | |
|   /// IEEE-754 compliant) estimate for the value type.
 | |
|   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
 | |
|   /// algorithm implementation that uses one constant or two constants.
 | |
|   /// A target may choose to implement its own refinement within this function.
 | |
|   /// If that's true, then return '0' as the number of RefinementSteps to avoid
 | |
|   /// any further refinement of the estimate.
 | |
|   /// An empty SDValue return means no estimate sequence can be created.
 | |
|   virtual SDValue getRsqrtEstimate(SDValue Operand,
 | |
|                               DAGCombinerInfo &DCI,
 | |
|                               unsigned &RefinementSteps,
 | |
|                               bool &UseOneConstNR) const {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   /// Return a reciprocal estimate value for the input operand.
 | |
|   /// The RefinementSteps output is the number of Newton-Raphson refinement
 | |
|   /// iterations required to generate a sufficient (though not necessarily
 | |
|   /// IEEE-754 compliant) estimate for the value type.
 | |
|   /// A target may choose to implement its own refinement within this function.
 | |
|   /// If that's true, then return '0' as the number of RefinementSteps to avoid
 | |
|   /// any further refinement of the estimate.
 | |
|   /// An empty SDValue return means no estimate sequence can be created.
 | |
|   virtual SDValue getRecipEstimate(SDValue Operand,
 | |
|                                    DAGCombinerInfo &DCI,
 | |
|                                    unsigned &RefinementSteps) const {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Legalization utility functions
 | |
|   //
 | |
| 
 | |
|   /// Expand a MUL into two nodes.  One that computes the high bits of
 | |
|   /// the result and one that computes the low bits.
 | |
|   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
 | |
|   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
 | |
|   ///        if you want to control how low bits are extracted from the LHS.
 | |
|   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
 | |
|   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
 | |
|   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
 | |
|   /// \returns true if the node has been expanded. false if it has not
 | |
|   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
 | |
|                  SelectionDAG &DAG, SDValue LL = SDValue(),
 | |
|                  SDValue LH = SDValue(), SDValue RL = SDValue(),
 | |
|                  SDValue RH = SDValue()) const;
 | |
| 
 | |
|   /// Expand float(f32) to SINT(i64) conversion
 | |
|   /// \param N Node to expand
 | |
|   /// \param Result output after conversion
 | |
|   /// \returns True, if the expansion was successful, false otherwise
 | |
|   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Instruction Emitting Hooks
 | |
|   //
 | |
| 
 | |
|   /// This method should be implemented by targets that mark instructions with
 | |
|   /// the 'usesCustomInserter' flag.  These instructions are special in various
 | |
|   /// ways, which require special support to insert.  The specified MachineInstr
 | |
|   /// is created but not inserted into any basic blocks, and this method is
 | |
|   /// called to expand it into a sequence of instructions, potentially also
 | |
|   /// creating new basic blocks and control flow.
 | |
|   virtual MachineBasicBlock *
 | |
|     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
 | |
| 
 | |
|   /// This method should be implemented by targets that mark instructions with
 | |
|   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
 | |
|   /// instruction selection by target hooks.  e.g. To fill in optional defs for
 | |
|   /// ARM 's' setting instructions.
 | |
|   virtual void
 | |
|   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
 | |
| 
 | |
|   /// If this function returns true, SelectionDAGBuilder emits a
 | |
|   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
 | |
|   virtual bool useLoadStackGuardNode() const {
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Given an LLVM IR type and return type attributes, compute the return value
 | |
| /// EVTs and flags, and optionally also the offsets, if the return value is
 | |
| /// being lowered to memory.
 | |
| void GetReturnInfo(Type* ReturnType, AttributeSet attr,
 | |
|                    SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                    const TargetLowering &TLI);
 | |
| 
 | |
| } // end llvm namespace
 | |
| 
 | |
| #endif
 |