mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	From: Mehdi Amini <mehdi.amini@apple.com> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229075 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3825 lines
		
	
	
		
			145 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3825 lines
		
	
	
		
			145 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements routines for folding instructions into simpler forms
 | |
| // that do not require creating new instructions.  This does constant folding
 | |
| // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
 | |
| // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
 | |
| // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
 | |
| // simplified: This is usually true and assuming it simplifies the logic (if
 | |
| // they have not been simplified then results are correct but maybe suboptimal).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instsimplify"
 | |
| 
 | |
| enum { RecursionLimit = 3 };
 | |
| 
 | |
| STATISTIC(NumExpand,  "Number of expansions");
 | |
| STATISTIC(NumReassoc, "Number of reassociations");
 | |
| 
 | |
| namespace {
 | |
| struct Query {
 | |
|   const DataLayout *DL;
 | |
|   const TargetLibraryInfo *TLI;
 | |
|   const DominatorTree *DT;
 | |
|   AssumptionCache *AC;
 | |
|   const Instruction *CxtI;
 | |
| 
 | |
|   Query(const DataLayout *DL, const TargetLibraryInfo *tli,
 | |
|         const DominatorTree *dt, AssumptionCache *ac = nullptr,
 | |
|         const Instruction *cxti = nullptr)
 | |
|       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
 | |
| static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
 | |
|                             unsigned);
 | |
| static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
 | |
|                               const Query &, unsigned);
 | |
| static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
 | |
|                               unsigned);
 | |
| static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
 | |
| static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
 | |
| static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
 | |
| 
 | |
| /// getFalse - For a boolean type, or a vector of boolean type, return false, or
 | |
| /// a vector with every element false, as appropriate for the type.
 | |
| static Constant *getFalse(Type *Ty) {
 | |
|   assert(Ty->getScalarType()->isIntegerTy(1) &&
 | |
|          "Expected i1 type or a vector of i1!");
 | |
|   return Constant::getNullValue(Ty);
 | |
| }
 | |
| 
 | |
| /// getTrue - For a boolean type, or a vector of boolean type, return true, or
 | |
| /// a vector with every element true, as appropriate for the type.
 | |
| static Constant *getTrue(Type *Ty) {
 | |
|   assert(Ty->getScalarType()->isIntegerTy(1) &&
 | |
|          "Expected i1 type or a vector of i1!");
 | |
|   return Constant::getAllOnesValue(Ty);
 | |
| }
 | |
| 
 | |
| /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
 | |
| static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
 | |
|                           Value *RHS) {
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(V);
 | |
|   if (!Cmp)
 | |
|     return false;
 | |
|   CmpInst::Predicate CPred = Cmp->getPredicate();
 | |
|   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
 | |
|   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
 | |
|     return true;
 | |
|   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
 | |
|     CRHS == LHS;
 | |
| }
 | |
| 
 | |
| /// ValueDominatesPHI - Does the given value dominate the specified phi node?
 | |
| static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     // Arguments and constants dominate all instructions.
 | |
|     return true;
 | |
| 
 | |
|   // If we are processing instructions (and/or basic blocks) that have not been
 | |
|   // fully added to a function, the parent nodes may still be null. Simply
 | |
|   // return the conservative answer in these cases.
 | |
|   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // If we have a DominatorTree then do a precise test.
 | |
|   if (DT) {
 | |
|     if (!DT->isReachableFromEntry(P->getParent()))
 | |
|       return true;
 | |
|     if (!DT->isReachableFromEntry(I->getParent()))
 | |
|       return false;
 | |
|     return DT->dominates(I, P);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if the instruction is in the entry block, and is not an invoke,
 | |
|   // then it obviously dominates all phi nodes.
 | |
|   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
 | |
|       !isa<InvokeInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
 | |
| /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
 | |
| /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
 | |
| /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
 | |
| /// Returns the simplified value, or null if no simplification was performed.
 | |
| static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                           unsigned OpcToExpand, const Query &Q,
 | |
|                           unsigned MaxRecurse) {
 | |
|   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check whether the expression has the form "(A op' B) op C".
 | |
|   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
 | |
|     if (Op0->getOpcode() == OpcodeToExpand) {
 | |
|       // It does!  Try turning it into "(A op C) op' (B op C)".
 | |
|       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
 | |
|       // Do "A op C" and "B op C" both simplify?
 | |
|       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
 | |
|         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
 | |
|           // They do! Return "L op' R" if it simplifies or is already available.
 | |
|           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
 | |
|           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
 | |
|                                      && L == B && R == A)) {
 | |
|             ++NumExpand;
 | |
|             return LHS;
 | |
|           }
 | |
|           // Otherwise return "L op' R" if it simplifies.
 | |
|           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
 | |
|             ++NumExpand;
 | |
|             return V;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   // Check whether the expression has the form "A op (B op' C)".
 | |
|   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
 | |
|     if (Op1->getOpcode() == OpcodeToExpand) {
 | |
|       // It does!  Try turning it into "(A op B) op' (A op C)".
 | |
|       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
 | |
|       // Do "A op B" and "A op C" both simplify?
 | |
|       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
 | |
|         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
 | |
|           // They do! Return "L op' R" if it simplifies or is already available.
 | |
|           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
 | |
|           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
 | |
|                                      && L == C && R == B)) {
 | |
|             ++NumExpand;
 | |
|             return RHS;
 | |
|           }
 | |
|           // Otherwise return "L op' R" if it simplifies.
 | |
|           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
 | |
|             ++NumExpand;
 | |
|             return V;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
 | |
| /// operations.  Returns the simpler value, or null if none was found.
 | |
| static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
 | |
|                                        const Query &Q, unsigned MaxRecurse) {
 | |
|   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
 | |
|   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
 | |
| 
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | |
| 
 | |
|   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
 | |
|   if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|     Value *A = Op0->getOperand(0);
 | |
|     Value *B = Op0->getOperand(1);
 | |
|     Value *C = RHS;
 | |
| 
 | |
|     // Does "B op C" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
 | |
|       // It does!  Return "A op V" if it simplifies or is already available.
 | |
|       // If V equals B then "A op V" is just the LHS.
 | |
|       if (V == B) return LHS;
 | |
|       // Otherwise return "A op V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
 | |
|   if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|     Value *A = LHS;
 | |
|     Value *B = Op1->getOperand(0);
 | |
|     Value *C = Op1->getOperand(1);
 | |
| 
 | |
|     // Does "A op B" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
 | |
|       // It does!  Return "V op C" if it simplifies or is already available.
 | |
|       // If V equals B then "V op C" is just the RHS.
 | |
|       if (V == B) return RHS;
 | |
|       // Otherwise return "V op C" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The remaining transforms require commutativity as well as associativity.
 | |
|   if (!Instruction::isCommutative(Opcode))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
 | |
|   if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|     Value *A = Op0->getOperand(0);
 | |
|     Value *B = Op0->getOperand(1);
 | |
|     Value *C = RHS;
 | |
| 
 | |
|     // Does "C op A" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
 | |
|       // It does!  Return "V op B" if it simplifies or is already available.
 | |
|       // If V equals A then "V op B" is just the LHS.
 | |
|       if (V == A) return LHS;
 | |
|       // Otherwise return "V op B" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
 | |
|   if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|     Value *A = LHS;
 | |
|     Value *B = Op1->getOperand(0);
 | |
|     Value *C = Op1->getOperand(1);
 | |
| 
 | |
|     // Does "C op A" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
 | |
|       // It does!  Return "B op V" if it simplifies or is already available.
 | |
|       // If V equals C then "B op V" is just the RHS.
 | |
|       if (V == C) return RHS;
 | |
|       // Otherwise return "B op V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// ThreadBinOpOverSelect - In the case of a binary operation with a select
 | |
| /// instruction as an operand, try to simplify the binop by seeing whether
 | |
| /// evaluating it on both branches of the select results in the same value.
 | |
| /// Returns the common value if so, otherwise returns null.
 | |
| static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                                     const Query &Q, unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   SelectInst *SI;
 | |
|   if (isa<SelectInst>(LHS)) {
 | |
|     SI = cast<SelectInst>(LHS);
 | |
|   } else {
 | |
|     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
 | |
|     SI = cast<SelectInst>(RHS);
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the true and false branches of the select.
 | |
|   Value *TV;
 | |
|   Value *FV;
 | |
|   if (SI == LHS) {
 | |
|     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
 | |
|   } else {
 | |
|     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
 | |
|   }
 | |
| 
 | |
|   // If they simplified to the same value, then return the common value.
 | |
|   // If they both failed to simplify then return null.
 | |
|   if (TV == FV)
 | |
|     return TV;
 | |
| 
 | |
|   // If one branch simplified to undef, return the other one.
 | |
|   if (TV && isa<UndefValue>(TV))
 | |
|     return FV;
 | |
|   if (FV && isa<UndefValue>(FV))
 | |
|     return TV;
 | |
| 
 | |
|   // If applying the operation did not change the true and false select values,
 | |
|   // then the result of the binop is the select itself.
 | |
|   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
 | |
|     return SI;
 | |
| 
 | |
|   // If one branch simplified and the other did not, and the simplified
 | |
|   // value is equal to the unsimplified one, return the simplified value.
 | |
|   // For example, select (cond, X, X & Z) & Z -> X & Z.
 | |
|   if ((FV && !TV) || (TV && !FV)) {
 | |
|     // Check that the simplified value has the form "X op Y" where "op" is the
 | |
|     // same as the original operation.
 | |
|     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
 | |
|     if (Simplified && Simplified->getOpcode() == Opcode) {
 | |
|       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
 | |
|       // We already know that "op" is the same as for the simplified value.  See
 | |
|       // if the operands match too.  If so, return the simplified value.
 | |
|       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
 | |
|       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
 | |
|       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
 | |
|       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|       if (Simplified->isCommutative() &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(0) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
 | |
| /// try to simplify the comparison by seeing whether both branches of the select
 | |
| /// result in the same value.  Returns the common value if so, otherwise returns
 | |
| /// null.
 | |
| static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                   Value *RHS, const Query &Q,
 | |
|                                   unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure the select is on the LHS.
 | |
|   if (!isa<SelectInst>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
 | |
|   SelectInst *SI = cast<SelectInst>(LHS);
 | |
|   Value *Cond = SI->getCondition();
 | |
|   Value *TV = SI->getTrueValue();
 | |
|   Value *FV = SI->getFalseValue();
 | |
| 
 | |
|   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
 | |
|   // Does "cmp TV, RHS" simplify?
 | |
|   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
 | |
|   if (TCmp == Cond) {
 | |
|     // It not only simplified, it simplified to the select condition.  Replace
 | |
|     // it with 'true'.
 | |
|     TCmp = getTrue(Cond->getType());
 | |
|   } else if (!TCmp) {
 | |
|     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
 | |
|     // condition then we can replace it with 'true'.  Otherwise give up.
 | |
|     if (!isSameCompare(Cond, Pred, TV, RHS))
 | |
|       return nullptr;
 | |
|     TCmp = getTrue(Cond->getType());
 | |
|   }
 | |
| 
 | |
|   // Does "cmp FV, RHS" simplify?
 | |
|   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
 | |
|   if (FCmp == Cond) {
 | |
|     // It not only simplified, it simplified to the select condition.  Replace
 | |
|     // it with 'false'.
 | |
|     FCmp = getFalse(Cond->getType());
 | |
|   } else if (!FCmp) {
 | |
|     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
 | |
|     // condition then we can replace it with 'false'.  Otherwise give up.
 | |
|     if (!isSameCompare(Cond, Pred, FV, RHS))
 | |
|       return nullptr;
 | |
|     FCmp = getFalse(Cond->getType());
 | |
|   }
 | |
| 
 | |
|   // If both sides simplified to the same value, then use it as the result of
 | |
|   // the original comparison.
 | |
|   if (TCmp == FCmp)
 | |
|     return TCmp;
 | |
| 
 | |
|   // The remaining cases only make sense if the select condition has the same
 | |
|   // type as the result of the comparison, so bail out if this is not so.
 | |
|   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
|   // If the false value simplified to false, then the result of the compare
 | |
|   // is equal to "Cond && TCmp".  This also catches the case when the false
 | |
|   // value simplified to false and the true value to true, returning "Cond".
 | |
|   if (match(FCmp, m_Zero()))
 | |
|     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
 | |
|       return V;
 | |
|   // If the true value simplified to true, then the result of the compare
 | |
|   // is equal to "Cond || FCmp".
 | |
|   if (match(TCmp, m_One()))
 | |
|     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
 | |
|       return V;
 | |
|   // Finally, if the false value simplified to true and the true value to
 | |
|   // false, then the result of the compare is equal to "!Cond".
 | |
|   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
 | |
|     if (Value *V =
 | |
|         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
 | |
|                         Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
 | |
| /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
 | |
| /// it on the incoming phi values yields the same result for every value.  If so
 | |
| /// returns the common value, otherwise returns null.
 | |
| static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                                  const Query &Q, unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   PHINode *PI;
 | |
|   if (isa<PHINode>(LHS)) {
 | |
|     PI = cast<PHINode>(LHS);
 | |
|     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!ValueDominatesPHI(RHS, PI, Q.DT))
 | |
|       return nullptr;
 | |
|   } else {
 | |
|     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
 | |
|     PI = cast<PHINode>(RHS);
 | |
|     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!ValueDominatesPHI(LHS, PI, Q.DT))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = nullptr;
 | |
|   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PI->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = PI == LHS ?
 | |
|       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
 | |
|       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return nullptr;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
 | |
| /// try to simplify the comparison by seeing whether comparing with all of the
 | |
| /// incoming phi values yields the same result every time.  If so returns the
 | |
| /// common result, otherwise returns null.
 | |
| static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
 | |
|                                const Query &Q, unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure the phi is on the LHS.
 | |
|   if (!isa<PHINode>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
 | |
|   PHINode *PI = cast<PHINode>(LHS);
 | |
| 
 | |
|   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|   if (!ValueDominatesPHI(RHS, PI, Q.DT))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = nullptr;
 | |
|   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PI->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return nullptr;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| /// SimplifyAddInst - Given operands for an Add, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
 | |
|                                       Q.DL, Q.TLI);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X + undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X + 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X + (Y - X) -> Y
 | |
|   // (Y - X) + X -> Y
 | |
|   // Eg: X + -X -> 0
 | |
|   Value *Y = nullptr;
 | |
|   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
 | |
|       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
 | |
|     return Y;
 | |
| 
 | |
|   // X + ~X -> -1   since   ~X = -X-1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   /// i1 add -> xor.
 | |
|   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | |
|     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Threading Add over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A + select(cond, B, C)" means evaluating
 | |
|   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const DataLayout *DL, const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
 | |
|                            RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// \brief Compute the base pointer and cumulative constant offsets for V.
 | |
| ///
 | |
| /// This strips all constant offsets off of V, leaving it the base pointer, and
 | |
| /// accumulates the total constant offset applied in the returned constant. It
 | |
| /// returns 0 if V is not a pointer, and returns the constant '0' if there are
 | |
| /// no constant offsets applied.
 | |
| ///
 | |
| /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
 | |
| /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
 | |
| /// folding.
 | |
| static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
 | |
|                                                 Value *&V,
 | |
|                                                 bool AllowNonInbounds = false) {
 | |
|   assert(V->getType()->getScalarType()->isPointerTy());
 | |
| 
 | |
|   // Without DataLayout, just be conservative for now. Theoretically, more could
 | |
|   // be done in this case.
 | |
|   if (!DL)
 | |
|     return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
 | |
| 
 | |
|   Type *IntPtrTy = DL->getIntPtrType(V->getType())->getScalarType();
 | |
|   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
 | |
| 
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   Visited.insert(V);
 | |
|   do {
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
 | |
|           !GEP->accumulateConstantOffset(*DL, Offset))
 | |
|         break;
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|       if (GA->mayBeOverridden())
 | |
|         break;
 | |
|       V = GA->getAliasee();
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     assert(V->getType()->getScalarType()->isPointerTy() &&
 | |
|            "Unexpected operand type!");
 | |
|   } while (Visited.insert(V).second);
 | |
| 
 | |
|   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
 | |
|   if (V->getType()->isVectorTy())
 | |
|     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
 | |
|                                     OffsetIntPtr);
 | |
|   return OffsetIntPtr;
 | |
| }
 | |
| 
 | |
| /// \brief Compute the constant difference between two pointer values.
 | |
| /// If the difference is not a constant, returns zero.
 | |
| static Constant *computePointerDifference(const DataLayout *DL,
 | |
|                                           Value *LHS, Value *RHS) {
 | |
|   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
 | |
|   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
 | |
| 
 | |
|   // If LHS and RHS are not related via constant offsets to the same base
 | |
|   // value, there is nothing we can do here.
 | |
|   if (LHS != RHS)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Otherwise, the difference of LHS - RHS can be computed as:
 | |
|   //    LHS - RHS
 | |
|   //  = (LHSOffset + Base) - (RHSOffset + Base)
 | |
|   //  = LHSOffset - RHSOffset
 | |
|   return ConstantExpr::getSub(LHSOffset, RHSOffset);
 | |
| }
 | |
| 
 | |
| /// SimplifySubInst - Given operands for a Sub, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0))
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
 | |
|                                       Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
| 
 | |
|   // X - undef -> undef
 | |
|   // undef - X -> undef
 | |
|   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // X - 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X - X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // 0 - X -> 0 if the sub is NUW.
 | |
|   if (isNUW && match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
 | |
|   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
 | |
|   Value *X = nullptr, *Y = nullptr, *Z = Op1;
 | |
|   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
 | |
|     // See if "V === Y - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "X + V" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     // See if "V === X - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "Y + V" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
 | |
|   // For example, X - (X + 1) -> -1
 | |
|   X = Op0;
 | |
|   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
 | |
|     // See if "V === X - Y" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V - Z" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     // See if "V === X - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V - Y" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
 | |
|   // For example, X - (X - Y) -> Y.
 | |
|   Z = Op0;
 | |
|   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
 | |
|     // See if "V === Z - X" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V + Y" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
| 
 | |
|   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
 | |
|   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
 | |
|       match(Op1, m_Trunc(m_Value(Y))))
 | |
|     if (X->getType() == Y->getType())
 | |
|       // See if "V === X - Y" simplifies.
 | |
|       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
 | |
|         // It does!  Now see if "trunc V" simplifies.
 | |
|         if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
 | |
|           // It does, return the simplified "trunc V".
 | |
|           return W;
 | |
| 
 | |
|   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
 | |
|   if (match(Op0, m_PtrToInt(m_Value(X))) &&
 | |
|       match(Op1, m_PtrToInt(m_Value(Y))))
 | |
|     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
 | |
|       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
 | |
| 
 | |
|   // i1 sub -> xor.
 | |
|   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | |
|     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Threading Sub over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A - select(cond, B, C)" means evaluating
 | |
|   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const DataLayout *DL, const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
 | |
|                            RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an FAdd, see if we can fold the result.  If not, this
 | |
| /// returns null.
 | |
| static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
 | |
|                                       Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // fadd X, -0 ==> X
 | |
|   if (match(Op1, m_NegZero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // fadd X, 0 ==> X, when we know X is not -0
 | |
|   if (match(Op1, m_Zero()) &&
 | |
|       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
 | |
|     return Op0;
 | |
| 
 | |
|   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
 | |
|   //   where nnan and ninf have to occur at least once somewhere in this
 | |
|   //   expression
 | |
|   Value *SubOp = nullptr;
 | |
|   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
 | |
|     SubOp = Op1;
 | |
|   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
 | |
|     SubOp = Op0;
 | |
|   if (SubOp) {
 | |
|     Instruction *FSub = cast<Instruction>(SubOp);
 | |
|     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
 | |
|         (FMF.noInfs() || FSub->hasNoInfs()))
 | |
|       return Constant::getNullValue(Op0->getType());
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an FSub, see if we can fold the result.  If not, this
 | |
| /// returns null.
 | |
| static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
 | |
|                                       Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // fsub X, 0 ==> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // fsub X, -0 ==> X, when we know X is not -0
 | |
|   if (match(Op1, m_NegZero()) &&
 | |
|       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
 | |
|     return Op0;
 | |
| 
 | |
|   // fsub 0, (fsub -0.0, X) ==> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_AnyZero())) {
 | |
|     if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
 | |
|       return X;
 | |
|     if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
 | |
|       return X;
 | |
|   }
 | |
| 
 | |
|   // fsub nnan ninf x, x ==> 0.0
 | |
|   if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given the operands for an FMul, see if we can fold the result
 | |
| static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
 | |
|                                FastMathFlags FMF,
 | |
|                                const Query &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
 | |
|                                       Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|  }
 | |
| 
 | |
|  // fmul X, 1.0 ==> X
 | |
|  if (match(Op1, m_FPOne()))
 | |
|    return Op0;
 | |
| 
 | |
|  // fmul nnan nsz X, 0 ==> 0
 | |
|  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
 | |
|    return Op1;
 | |
| 
 | |
|  return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifyMulInst - Given operands for a Mul, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
 | |
|                                       Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X * undef -> 0
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X * 0 -> 0
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X * 1 -> X
 | |
|   if (match(Op1, m_One()))
 | |
|     return Op0;
 | |
| 
 | |
|   // (X / Y) * Y -> X if the division is exact.
 | |
|   Value *X = nullptr;
 | |
|   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
 | |
|       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
 | |
|     return X;
 | |
| 
 | |
|   // i1 mul -> and.
 | |
|   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | |
|     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Mul distributes over Add.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
 | |
|                              Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                              const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                            RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | |
|                           const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { C0, C1 };
 | |
|       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isSigned = Opcode == Instruction::SDiv;
 | |
| 
 | |
|   // X / undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X / 0 -> undef, we don't need to preserve faults!
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return UndefValue::get(Op1->getType());
 | |
| 
 | |
|   // undef / X -> 0
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // 0 / X -> 0, we don't need to preserve faults!
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X / 1 -> X
 | |
|   if (match(Op1, m_One()))
 | |
|     return Op0;
 | |
| 
 | |
|   if (Op0->getType()->isIntegerTy(1))
 | |
|     // It can't be division by zero, hence it must be division by one.
 | |
|     return Op0;
 | |
| 
 | |
|   // X / X -> 1
 | |
|   if (Op0 == Op1)
 | |
|     return ConstantInt::get(Op0->getType(), 1);
 | |
| 
 | |
|   // (X * Y) / Y -> X if the multiplication does not overflow.
 | |
|   Value *X = nullptr, *Y = nullptr;
 | |
|   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
 | |
|     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
 | |
|     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
 | |
|     // If the Mul knows it does not overflow, then we are good to go.
 | |
|     if ((isSigned && Mul->hasNoSignedWrap()) ||
 | |
|         (!isSigned && Mul->hasNoUnsignedWrap()))
 | |
|       return X;
 | |
|     // If X has the form X = A / Y then X * Y cannot overflow.
 | |
|     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
 | |
|       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
 | |
|         return X;
 | |
|   }
 | |
| 
 | |
|   // (X rem Y) / Y -> 0
 | |
|   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
 | |
|       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
 | |
|   ConstantInt *C1, *C2;
 | |
|   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
 | |
|       match(Op1, m_ConstantInt(C2))) {
 | |
|     bool Overflow;
 | |
|     C1->getValue().umul_ov(C2->getValue(), Overflow);
 | |
|     if (Overflow)
 | |
|       return Constant::getNullValue(Op0->getType());
 | |
|   }
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifySDivInst - Given operands for an SDiv, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyUDivInst - Given operands for a UDiv, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                                unsigned) {
 | |
|   // undef / X -> undef    (the undef could be a snan).
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X / undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyFDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyRem - Given operands for an SRem or URem, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | |
|                           const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { C0, C1 };
 | |
|       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // X % undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // undef % X -> 0
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // 0 % X -> 0, we don't need to preserve faults!
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X % 0 -> undef, we don't need to preserve faults!
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // X % 1 -> 0
 | |
|   if (match(Op1, m_One()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   if (Op0->getType()->isIntegerTy(1))
 | |
|     // It can't be remainder by zero, hence it must be remainder by one.
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X % X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X % Y) % Y -> X % Y
 | |
|   if ((Opcode == Instruction::SRem &&
 | |
|        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
 | |
|       (Opcode == Instruction::URem &&
 | |
|        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
 | |
|     return Op0;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifySRemInst - Given operands for an SRem, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyURemInst - Given operands for a URem, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
 | |
|                                unsigned) {
 | |
|   // undef % X -> undef    (the undef could be a snan).
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X % undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyFRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// isUndefShift - Returns true if a shift by \c Amount always yields undef.
 | |
| static bool isUndefShift(Value *Amount) {
 | |
|   Constant *C = dyn_cast<Constant>(Amount);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   // X shift by undef -> undef because it may shift by the bitwidth.
 | |
|   if (isa<UndefValue>(C))
 | |
|     return true;
 | |
| 
 | |
|   // Shifting by the bitwidth or more is undefined.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
 | |
|     if (CI->getValue().getLimitedValue() >=
 | |
|         CI->getType()->getScalarSizeInBits())
 | |
|       return true;
 | |
| 
 | |
|   // If all lanes of a vector shift are undefined the whole shift is.
 | |
|   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
 | |
|     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
 | |
|       if (!isUndefShift(C->getAggregateElement(I)))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
 | |
|                             const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { C0, C1 };
 | |
|       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // 0 shift by X -> 0
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X shift by 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // Fold undefined shifts.
 | |
|   if (isUndefShift(Op1))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Given operands for an Shl, LShr or AShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
 | |
|                                  bool isExact, const Query &Q,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // X >> X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // undef >> X -> 0
 | |
|   // undef >> X -> undef (if it's exact)
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // The low bit cannot be shifted out of an exact shift if it is set.
 | |
|   if (isExact) {
 | |
|     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
 | |
|     APInt Op0KnownZero(BitWidth, 0);
 | |
|     APInt Op0KnownOne(BitWidth, 0);
 | |
|     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|     if (Op0KnownOne[0])
 | |
|       return Op0;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifyShlInst - Given operands for an Shl, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // undef << X -> 0
 | |
|   // undef << X -> undef if (if it's NSW/NUW)
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X >> A) << A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
 | |
|     return X;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const DataLayout *DL, const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
 | |
|                            RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyLShrInst - Given operands for an LShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                                const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
 | |
|                                     MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // (X << A) >> A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                               const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyAShrInst - Given operands for an AShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                                const Query &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
 | |
|                                     MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // all ones >>a X -> all ones
 | |
|   if (match(Op0, m_AllOnes()))
 | |
|     return Op0;
 | |
| 
 | |
|   // (X << A) >> A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
 | |
|     return X;
 | |
| 
 | |
|   // Arithmetic shifting an all-sign-bit value is a no-op.
 | |
|   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
 | |
|     return Op0;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                               const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
 | |
|                                          ICmpInst *UnsignedICmp, bool IsAnd) {
 | |
|   Value *X, *Y;
 | |
| 
 | |
|   ICmpInst::Predicate EqPred;
 | |
|   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
 | |
|       !ICmpInst::isEquality(EqPred))
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate UnsignedPred;
 | |
|   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
 | |
|       ICmpInst::isUnsigned(UnsignedPred))
 | |
|     ;
 | |
|   else if (match(UnsignedICmp,
 | |
|                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
 | |
|            ICmpInst::isUnsigned(UnsignedPred))
 | |
|     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // X < Y && Y != 0  -->  X < Y
 | |
|   // X < Y || Y != 0  -->  Y != 0
 | |
|   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
 | |
|     return IsAnd ? UnsignedICmp : ZeroICmp;
 | |
| 
 | |
|   // X >= Y || Y != 0  -->  true
 | |
|   // X >= Y || Y == 0  -->  X >= Y
 | |
|   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
 | |
|     if (EqPred == ICmpInst::ICMP_NE)
 | |
|       return getTrue(UnsignedICmp->getType());
 | |
|     return UnsignedICmp;
 | |
|   }
 | |
| 
 | |
|   // X < Y && Y == 0  -->  false
 | |
|   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
 | |
|       IsAnd)
 | |
|     return getFalse(UnsignedICmp->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
 | |
| // of possible values cannot be satisfied.
 | |
| static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   ConstantInt *CI1, *CI2;
 | |
|   Value *V;
 | |
| 
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
 | |
|     return X;
 | |
| 
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
 | |
|                          m_ConstantInt(CI2))))
 | |
|    return nullptr;
 | |
| 
 | |
|   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ITy = Op0->getType();
 | |
| 
 | |
|   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
 | |
|   bool isNSW = AddInst->hasNoSignedWrap();
 | |
|   bool isNUW = AddInst->hasNoUnsignedWrap();
 | |
| 
 | |
|   const APInt &CI1V = CI1->getValue();
 | |
|   const APInt &CI2V = CI2->getValue();
 | |
|   const APInt Delta = CI2V - CI1V;
 | |
|   if (CI1V.isStrictlyPositive()) {
 | |
|     if (Delta == 2) {
 | |
|       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
 | |
|         return getFalse(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
 | |
|         return getFalse(ITy);
 | |
|     }
 | |
|     if (Delta == 1) {
 | |
|       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
 | |
|         return getFalse(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
 | |
|         return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
|   if (CI1V.getBoolValue() && isNUW) {
 | |
|     if (Delta == 2)
 | |
|       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
 | |
|         return getFalse(ITy);
 | |
|     if (Delta == 1)
 | |
|       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
 | |
|         return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifyAndInst - Given operands for an And, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
 | |
|                                       Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X & undef -> 0
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X & X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X & 0 = 0
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X & -1 = X
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A & ~A  =  ~A & A  =  0
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (A | ?) & A = A
 | |
|   Value *A = nullptr, *B = nullptr;
 | |
|   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Op1;
 | |
| 
 | |
|   // A & (A | ?) = A
 | |
|   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Op0;
 | |
| 
 | |
|   // A & (-A) = A if A is a power of two or zero.
 | |
|   if (match(Op0, m_Neg(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Neg(m_Specific(Op0)))) {
 | |
|     if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return Op0;
 | |
|     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return Op1;
 | |
|   }
 | |
| 
 | |
|   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
 | |
|     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
 | |
|       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
 | |
|         return V;
 | |
|       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
 | |
|         return V;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Or.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
 | |
|                              Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Xor.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
 | |
|                              Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                              const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                            RecursionLimit);
 | |
| }
 | |
| 
 | |
| // Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
 | |
| // contains all possible values.
 | |
| static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   ConstantInt *CI1, *CI2;
 | |
|   Value *V;
 | |
| 
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
 | |
|     return X;
 | |
| 
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
 | |
|                          m_ConstantInt(CI2))))
 | |
|    return nullptr;
 | |
| 
 | |
|   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ITy = Op0->getType();
 | |
| 
 | |
|   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
 | |
|   bool isNSW = AddInst->hasNoSignedWrap();
 | |
|   bool isNUW = AddInst->hasNoUnsignedWrap();
 | |
| 
 | |
|   const APInt &CI1V = CI1->getValue();
 | |
|   const APInt &CI2V = CI2->getValue();
 | |
|   const APInt Delta = CI2V - CI1V;
 | |
|   if (CI1V.isStrictlyPositive()) {
 | |
|     if (Delta == 2) {
 | |
|       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
 | |
|         return getTrue(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
 | |
|         return getTrue(ITy);
 | |
|     }
 | |
|     if (Delta == 1) {
 | |
|       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
 | |
|         return getTrue(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
 | |
|         return getTrue(ITy);
 | |
|     }
 | |
|   }
 | |
|   if (CI1V.getBoolValue() && isNUW) {
 | |
|     if (Delta == 2)
 | |
|       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
 | |
|         return getTrue(ITy);
 | |
|     if (Delta == 1)
 | |
|       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
 | |
|         return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifyOrInst - Given operands for an Or, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                              unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
 | |
|                                       Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X | undef -> -1
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // X | X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X | 0 = X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X | -1 = -1
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | ~A  =  ~A | A  =  -1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // (A & ?) | A = A
 | |
|   Value *A = nullptr, *B = nullptr;
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | (A & ?) = A
 | |
|   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Op0;
 | |
| 
 | |
|   // ~(A & ?) | A = -1
 | |
|   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Constant::getAllOnesValue(Op1->getType());
 | |
| 
 | |
|   // A | ~(A & ?) = -1
 | |
|   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
 | |
|     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
 | |
|       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
 | |
|         return V;
 | |
|       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
 | |
|         return V;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Or distributes over And.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
 | |
|                              MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // (A & C)|(B & D)
 | |
|   Value *C = nullptr, *D = nullptr;
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_Value(D)))) {
 | |
|     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
 | |
|     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
 | |
|     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
 | |
|       // (A & C1)|(B & C2)
 | |
|       // If we have: ((V + N) & C1) | (V & C2)
 | |
|       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
 | |
|       // replace with V+N.
 | |
|       Value *V1, *V2;
 | |
|       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
 | |
|           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
 | |
|         // Add commutes, try both ways.
 | |
|         if (V1 == B &&
 | |
|             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|           return A;
 | |
|         if (V2 == B &&
 | |
|             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|           return A;
 | |
|       }
 | |
|       // Or commutes, try both ways.
 | |
|       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
 | |
|           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
 | |
|         // Add commutes, try both ways.
 | |
|         if (V1 == A &&
 | |
|             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|           return B;
 | |
|         if (V2 == A &&
 | |
|             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|           return B;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                             const TargetLibraryInfo *TLI,
 | |
|                             const DominatorTree *DT, AssumptionCache *AC,
 | |
|                             const Instruction *CxtI) {
 | |
|   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                           RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyXorInst - Given operands for a Xor, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
 | |
|                                       Ops, Q.DL, Q.TLI);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // A ^ undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // A ^ 0 = A
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A ^ A = 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // A ^ ~A  =  ~A ^ A  =  -1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Threading Xor over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
 | |
|   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
 | |
|                              const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
 | |
|                            RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Type *GetCompareTy(Value *Op) {
 | |
|   return CmpInst::makeCmpResultType(Op->getType());
 | |
| }
 | |
| 
 | |
| /// ExtractEquivalentCondition - Rummage around inside V looking for something
 | |
| /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
 | |
| /// otherwise return null.  Helper function for analyzing max/min idioms.
 | |
| static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
 | |
|                                          Value *LHS, Value *RHS) {
 | |
|   SelectInst *SI = dyn_cast<SelectInst>(V);
 | |
|   if (!SI)
 | |
|     return nullptr;
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | |
|   if (!Cmp)
 | |
|     return nullptr;
 | |
|   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
 | |
|   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
 | |
|     return Cmp;
 | |
|   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
 | |
|       LHS == CmpRHS && RHS == CmpLHS)
 | |
|     return Cmp;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // A significant optimization not implemented here is assuming that alloca
 | |
| // addresses are not equal to incoming argument values. They don't *alias*,
 | |
| // as we say, but that doesn't mean they aren't equal, so we take a
 | |
| // conservative approach.
 | |
| //
 | |
| // This is inspired in part by C++11 5.10p1:
 | |
| //   "Two pointers of the same type compare equal if and only if they are both
 | |
| //    null, both point to the same function, or both represent the same
 | |
| //    address."
 | |
| //
 | |
| // This is pretty permissive.
 | |
| //
 | |
| // It's also partly due to C11 6.5.9p6:
 | |
| //   "Two pointers compare equal if and only if both are null pointers, both are
 | |
| //    pointers to the same object (including a pointer to an object and a
 | |
| //    subobject at its beginning) or function, both are pointers to one past the
 | |
| //    last element of the same array object, or one is a pointer to one past the
 | |
| //    end of one array object and the other is a pointer to the start of a
 | |
| //    different array object that happens to immediately follow the first array
 | |
| //    object in the address space.)
 | |
| //
 | |
| // C11's version is more restrictive, however there's no reason why an argument
 | |
| // couldn't be a one-past-the-end value for a stack object in the caller and be
 | |
| // equal to the beginning of a stack object in the callee.
 | |
| //
 | |
| // If the C and C++ standards are ever made sufficiently restrictive in this
 | |
| // area, it may be possible to update LLVM's semantics accordingly and reinstate
 | |
| // this optimization.
 | |
| static Constant *computePointerICmp(const DataLayout *DL,
 | |
|                                     const TargetLibraryInfo *TLI,
 | |
|                                     CmpInst::Predicate Pred,
 | |
|                                     Value *LHS, Value *RHS) {
 | |
|   // First, skip past any trivial no-ops.
 | |
|   LHS = LHS->stripPointerCasts();
 | |
|   RHS = RHS->stripPointerCasts();
 | |
| 
 | |
|   // A non-null pointer is not equal to a null pointer.
 | |
|   if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
 | |
|       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
 | |
|     return ConstantInt::get(GetCompareTy(LHS),
 | |
|                             !CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|   // We can only fold certain predicates on pointer comparisons.
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     return nullptr;
 | |
| 
 | |
|     // Equality comaprisons are easy to fold.
 | |
|   case CmpInst::ICMP_EQ:
 | |
|   case CmpInst::ICMP_NE:
 | |
|     break;
 | |
| 
 | |
|     // We can only handle unsigned relational comparisons because 'inbounds' on
 | |
|     // a GEP only protects against unsigned wrapping.
 | |
|   case CmpInst::ICMP_UGT:
 | |
|   case CmpInst::ICMP_UGE:
 | |
|   case CmpInst::ICMP_ULT:
 | |
|   case CmpInst::ICMP_ULE:
 | |
|     // However, we have to switch them to their signed variants to handle
 | |
|     // negative indices from the base pointer.
 | |
|     Pred = ICmpInst::getSignedPredicate(Pred);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Strip off any constant offsets so that we can reason about them.
 | |
|   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
 | |
|   // here and compare base addresses like AliasAnalysis does, however there are
 | |
|   // numerous hazards. AliasAnalysis and its utilities rely on special rules
 | |
|   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
 | |
|   // doesn't need to guarantee pointer inequality when it says NoAlias.
 | |
|   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
 | |
|   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
 | |
| 
 | |
|   // If LHS and RHS are related via constant offsets to the same base
 | |
|   // value, we can replace it with an icmp which just compares the offsets.
 | |
|   if (LHS == RHS)
 | |
|     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
 | |
| 
 | |
|   // Various optimizations for (in)equality comparisons.
 | |
|   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
 | |
|     // Different non-empty allocations that exist at the same time have
 | |
|     // different addresses (if the program can tell). Global variables always
 | |
|     // exist, so they always exist during the lifetime of each other and all
 | |
|     // allocas. Two different allocas usually have different addresses...
 | |
|     //
 | |
|     // However, if there's an @llvm.stackrestore dynamically in between two
 | |
|     // allocas, they may have the same address. It's tempting to reduce the
 | |
|     // scope of the problem by only looking at *static* allocas here. That would
 | |
|     // cover the majority of allocas while significantly reducing the likelihood
 | |
|     // of having an @llvm.stackrestore pop up in the middle. However, it's not
 | |
|     // actually impossible for an @llvm.stackrestore to pop up in the middle of
 | |
|     // an entry block. Also, if we have a block that's not attached to a
 | |
|     // function, we can't tell if it's "static" under the current definition.
 | |
|     // Theoretically, this problem could be fixed by creating a new kind of
 | |
|     // instruction kind specifically for static allocas. Such a new instruction
 | |
|     // could be required to be at the top of the entry block, thus preventing it
 | |
|     // from being subject to a @llvm.stackrestore. Instcombine could even
 | |
|     // convert regular allocas into these special allocas. It'd be nifty.
 | |
|     // However, until then, this problem remains open.
 | |
|     //
 | |
|     // So, we'll assume that two non-empty allocas have different addresses
 | |
|     // for now.
 | |
|     //
 | |
|     // With all that, if the offsets are within the bounds of their allocations
 | |
|     // (and not one-past-the-end! so we can't use inbounds!), and their
 | |
|     // allocations aren't the same, the pointers are not equal.
 | |
|     //
 | |
|     // Note that it's not necessary to check for LHS being a global variable
 | |
|     // address, due to canonicalization and constant folding.
 | |
|     if (isa<AllocaInst>(LHS) &&
 | |
|         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
 | |
|       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
 | |
|       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
 | |
|       uint64_t LHSSize, RHSSize;
 | |
|       if (LHSOffsetCI && RHSOffsetCI &&
 | |
|           getObjectSize(LHS, LHSSize, DL, TLI) &&
 | |
|           getObjectSize(RHS, RHSSize, DL, TLI)) {
 | |
|         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
 | |
|         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
 | |
|         if (!LHSOffsetValue.isNegative() &&
 | |
|             !RHSOffsetValue.isNegative() &&
 | |
|             LHSOffsetValue.ult(LHSSize) &&
 | |
|             RHSOffsetValue.ult(RHSSize)) {
 | |
|           return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                   !CmpInst::isTrueWhenEqual(Pred));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Repeat the above check but this time without depending on DataLayout
 | |
|       // or being able to compute a precise size.
 | |
|       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
 | |
|           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
 | |
|           LHSOffset->isNullValue() &&
 | |
|           RHSOffset->isNullValue())
 | |
|         return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                 !CmpInst::isTrueWhenEqual(Pred));
 | |
|     }
 | |
| 
 | |
|     // Even if an non-inbounds GEP occurs along the path we can still optimize
 | |
|     // equality comparisons concerning the result. We avoid walking the whole
 | |
|     // chain again by starting where the last calls to
 | |
|     // stripAndComputeConstantOffsets left off and accumulate the offsets.
 | |
|     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
 | |
|     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
 | |
|     if (LHS == RHS)
 | |
|       return ConstantExpr::getICmp(Pred,
 | |
|                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
 | |
|                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
 | |
| 
 | |
|     // If one side of the equality comparison must come from a noalias call
 | |
|     // (meaning a system memory allocation function), and the other side must
 | |
|     // come from a pointer that cannot overlap with dynamically-allocated
 | |
|     // memory within the lifetime of the current function (allocas, byval
 | |
|     // arguments, globals), then determine the comparison result here.
 | |
|     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
 | |
|     GetUnderlyingObjects(LHS, LHSUObjs, DL);
 | |
|     GetUnderlyingObjects(RHS, RHSUObjs, DL);
 | |
| 
 | |
|     // Is the set of underlying objects all noalias calls?
 | |
|     auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
 | |
|       return std::all_of(Objects.begin(), Objects.end(),
 | |
|                          [](Value *V){ return isNoAliasCall(V); });
 | |
|     };
 | |
| 
 | |
|     // Is the set of underlying objects all things which must be disjoint from
 | |
|     // noalias calls. For allocas, we consider only static ones (dynamic
 | |
|     // allocas might be transformed into calls to malloc not simultaneously
 | |
|     // live with the compared-to allocation). For globals, we exclude symbols
 | |
|     // that might be resolve lazily to symbols in another dynamically-loaded
 | |
|     // library (and, thus, could be malloc'ed by the implementation).
 | |
|     auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
 | |
|       return std::all_of(Objects.begin(), Objects.end(),
 | |
|                          [](Value *V){
 | |
|                            if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
 | |
|                              return AI->getParent() && AI->getParent()->getParent() &&
 | |
|                                     AI->isStaticAlloca();
 | |
|                            if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | |
|                              return (GV->hasLocalLinkage() ||
 | |
|                                      GV->hasHiddenVisibility() ||
 | |
|                                      GV->hasProtectedVisibility() ||
 | |
|                                      GV->hasUnnamedAddr()) &&
 | |
|                                     !GV->isThreadLocal();
 | |
|                            if (const Argument *A = dyn_cast<Argument>(V))
 | |
|                              return A->hasByValAttr();
 | |
|                            return false;
 | |
|                          });
 | |
|     };
 | |
| 
 | |
|     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
 | |
|         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
 | |
|         return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                 !CmpInst::isTrueWhenEqual(Pred));
 | |
|   }
 | |
| 
 | |
|   // Otherwise, fail.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const Query &Q, unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
|   Type *OpTy = LHS->getType();   // The operand type.
 | |
| 
 | |
|   // icmp X, X -> true/false
 | |
|   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
 | |
|   // because X could be 0.
 | |
|   if (LHS == RHS || isa<UndefValue>(RHS))
 | |
|     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|   // Special case logic when the operands have i1 type.
 | |
|   if (OpTy->getScalarType()->isIntegerTy(1)) {
 | |
|     switch (Pred) {
 | |
|     default: break;
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       // X == 1 -> X
 | |
|       if (match(RHS, m_One()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       // X != 0 -> X
 | |
|       if (match(RHS, m_Zero()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       // X >u 0 -> X
 | |
|       if (match(RHS, m_Zero()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       // X >=u 1 -> X
 | |
|       if (match(RHS, m_One()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       // X <s 0 -> X
 | |
|       if (match(RHS, m_Zero()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       // X <=s -1 -> X
 | |
|       if (match(RHS, m_One()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are comparing with zero then try hard since this is a common case.
 | |
|   if (match(RHS, m_Zero())) {
 | |
|     bool LHSKnownNonNegative, LHSKnownNegative;
 | |
|     switch (Pred) {
 | |
|     default: llvm_unreachable("Unknown ICmp predicate!");
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       return getFalse(ITy);
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getTrue(ITy);
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|         return getFalse(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|         return getTrue(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|       if (LHSKnownNegative)
 | |
|         return getTrue(ITy);
 | |
|       if (LHSKnownNonNegative)
 | |
|         return getFalse(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|       if (LHSKnownNegative)
 | |
|         return getTrue(ITy);
 | |
|       if (LHSKnownNonNegative &&
 | |
|           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|         return getFalse(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|       if (LHSKnownNegative)
 | |
|         return getFalse(ITy);
 | |
|       if (LHSKnownNonNegative)
 | |
|         return getTrue(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|       if (LHSKnownNegative)
 | |
|         return getFalse(ITy);
 | |
|       if (LHSKnownNonNegative &&
 | |
|           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|         return getTrue(ITy);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we are doing a comparison with a constant integer.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|     // Rule out tautological comparisons (eg., ult 0 or uge 0).
 | |
|     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
 | |
|     if (RHS_CR.isEmptySet())
 | |
|       return ConstantInt::getFalse(CI->getContext());
 | |
|     if (RHS_CR.isFullSet())
 | |
|       return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|     // Many binary operators with constant RHS have easy to compute constant
 | |
|     // range.  Use them to check whether the comparison is a tautology.
 | |
|     unsigned Width = CI->getBitWidth();
 | |
|     APInt Lower = APInt(Width, 0);
 | |
|     APInt Upper = APInt(Width, 0);
 | |
|     ConstantInt *CI2;
 | |
|     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'urem x, CI2' produces [0, CI2).
 | |
|       Upper = CI2->getValue();
 | |
|     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'srem x, CI2' produces (-|CI2|, |CI2|).
 | |
|       Upper = CI2->getValue().abs();
 | |
|       Lower = (-Upper) + 1;
 | |
|     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
 | |
|       // 'udiv CI2, x' produces [0, CI2].
 | |
|       Upper = CI2->getValue() + 1;
 | |
|     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
 | |
|       APInt NegOne = APInt::getAllOnesValue(Width);
 | |
|       if (!CI2->isZero())
 | |
|         Upper = NegOne.udiv(CI2->getValue()) + 1;
 | |
|     } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
 | |
|       if (CI2->isMinSignedValue()) {
 | |
|         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
 | |
|         Lower = CI2->getValue();
 | |
|         Upper = Lower.lshr(1) + 1;
 | |
|       } else {
 | |
|         // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
 | |
|         Upper = CI2->getValue().abs() + 1;
 | |
|         Lower = (-Upper) + 1;
 | |
|       }
 | |
|     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       APInt IntMin = APInt::getSignedMinValue(Width);
 | |
|       APInt IntMax = APInt::getSignedMaxValue(Width);
 | |
|       APInt Val = CI2->getValue();
 | |
|       if (Val.isAllOnesValue()) {
 | |
|         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
 | |
|         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
 | |
|         Lower = IntMin + 1;
 | |
|         Upper = IntMax + 1;
 | |
|       } else if (Val.countLeadingZeros() < Width - 1) {
 | |
|         // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
 | |
|         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
 | |
|         Lower = IntMin.sdiv(Val);
 | |
|         Upper = IntMax.sdiv(Val);
 | |
|         if (Lower.sgt(Upper))
 | |
|           std::swap(Lower, Upper);
 | |
|         Upper = Upper + 1;
 | |
|         assert(Upper != Lower && "Upper part of range has wrapped!");
 | |
|       }
 | |
|     } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
 | |
|       // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
 | |
|       Lower = CI2->getValue();
 | |
|       Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
 | |
|     } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
 | |
|       if (CI2->isNegative()) {
 | |
|         // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
 | |
|         unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
 | |
|         Lower = CI2->getValue().shl(ShiftAmount);
 | |
|         Upper = CI2->getValue() + 1;
 | |
|       } else {
 | |
|         // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
 | |
|         unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
 | |
|         Lower = CI2->getValue();
 | |
|         Upper = CI2->getValue().shl(ShiftAmount) + 1;
 | |
|       }
 | |
|     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
 | |
|       APInt NegOne = APInt::getAllOnesValue(Width);
 | |
|       if (CI2->getValue().ult(Width))
 | |
|         Upper = NegOne.lshr(CI2->getValue()) + 1;
 | |
|     } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
 | |
|       // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
 | |
|       unsigned ShiftAmount = Width - 1;
 | |
|       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
 | |
|         ShiftAmount = CI2->getValue().countTrailingZeros();
 | |
|       Lower = CI2->getValue().lshr(ShiftAmount);
 | |
|       Upper = CI2->getValue() + 1;
 | |
|     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
 | |
|       APInt IntMin = APInt::getSignedMinValue(Width);
 | |
|       APInt IntMax = APInt::getSignedMaxValue(Width);
 | |
|       if (CI2->getValue().ult(Width)) {
 | |
|         Lower = IntMin.ashr(CI2->getValue());
 | |
|         Upper = IntMax.ashr(CI2->getValue()) + 1;
 | |
|       }
 | |
|     } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
 | |
|       unsigned ShiftAmount = Width - 1;
 | |
|       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
 | |
|         ShiftAmount = CI2->getValue().countTrailingZeros();
 | |
|       if (CI2->isNegative()) {
 | |
|         // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
 | |
|         Lower = CI2->getValue();
 | |
|         Upper = CI2->getValue().ashr(ShiftAmount) + 1;
 | |
|       } else {
 | |
|         // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
 | |
|         Lower = CI2->getValue().ashr(ShiftAmount);
 | |
|         Upper = CI2->getValue() + 1;
 | |
|       }
 | |
|     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'or x, CI2' produces [CI2, UINT_MAX].
 | |
|       Lower = CI2->getValue();
 | |
|     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'and x, CI2' produces [0, CI2].
 | |
|       Upper = CI2->getValue() + 1;
 | |
|     }
 | |
|     if (Lower != Upper) {
 | |
|       ConstantRange LHS_CR = ConstantRange(Lower, Upper);
 | |
|       if (RHS_CR.contains(LHS_CR))
 | |
|         return ConstantInt::getTrue(RHS->getContext());
 | |
|       if (RHS_CR.inverse().contains(LHS_CR))
 | |
|         return ConstantInt::getFalse(RHS->getContext());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compare of cast, for example (zext X) != 0 -> X != 0
 | |
|   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
 | |
|     Instruction *LI = cast<CastInst>(LHS);
 | |
|     Value *SrcOp = LI->getOperand(0);
 | |
|     Type *SrcTy = SrcOp->getType();
 | |
|     Type *DstTy = LI->getType();
 | |
| 
 | |
|     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
 | |
|     // if the integer type is the same size as the pointer type.
 | |
|     if (MaxRecurse && Q.DL && isa<PtrToIntInst>(LI) &&
 | |
|         Q.DL->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
 | |
|       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|         // Transfer the cast to the constant.
 | |
|         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
 | |
|                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
 | |
|                                         Q, MaxRecurse-1))
 | |
|           return V;
 | |
|       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
 | |
|         if (RI->getOperand(0)->getType() == SrcTy)
 | |
|           // Compare without the cast.
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | |
|                                           Q, MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<ZExtInst>(LHS)) {
 | |
|       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
 | |
|       // same type.
 | |
|       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
 | |
|         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | |
|           // Compare X and Y.  Note that signed predicates become unsigned.
 | |
|           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | |
|                                           SrcOp, RI->getOperand(0), Q,
 | |
|                                           MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
 | |
|       // too.  If not, then try to deduce the result of the comparison.
 | |
|       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|         // Compute the constant that would happen if we truncated to SrcTy then
 | |
|         // reextended to DstTy.
 | |
|         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
 | |
| 
 | |
|         // If the re-extended constant didn't change then this is effectively
 | |
|         // also a case of comparing two zero-extended values.
 | |
|         if (RExt == CI && MaxRecurse)
 | |
|           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | |
|                                         SrcOp, Trunc, Q, MaxRecurse-1))
 | |
|             return V;
 | |
| 
 | |
|         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
 | |
|         // there.  Use this to work out the result of the comparison.
 | |
|         if (RExt != CI) {
 | |
|           switch (Pred) {
 | |
|           default: llvm_unreachable("Unknown ICmp predicate!");
 | |
|           // LHS <u RHS.
 | |
|           case ICmpInst::ICMP_EQ:
 | |
|           case ICmpInst::ICMP_UGT:
 | |
|           case ICmpInst::ICMP_UGE:
 | |
|             return ConstantInt::getFalse(CI->getContext());
 | |
| 
 | |
|           case ICmpInst::ICMP_NE:
 | |
|           case ICmpInst::ICMP_ULT:
 | |
|           case ICmpInst::ICMP_ULE:
 | |
|             return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
 | |
|           // is non-negative then LHS <s RHS.
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getTrue(CI->getContext()) :
 | |
|               ConstantInt::getFalse(CI->getContext());
 | |
| 
 | |
|           case ICmpInst::ICMP_SLT:
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getFalse(CI->getContext()) :
 | |
|               ConstantInt::getTrue(CI->getContext());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<SExtInst>(LHS)) {
 | |
|       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
 | |
|       // same type.
 | |
|       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
 | |
|         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | |
|           // Compare X and Y.  Note that the predicate does not change.
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | |
|                                           Q, MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
 | |
|       // too.  If not, then try to deduce the result of the comparison.
 | |
|       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|         // Compute the constant that would happen if we truncated to SrcTy then
 | |
|         // reextended to DstTy.
 | |
|         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
 | |
| 
 | |
|         // If the re-extended constant didn't change then this is effectively
 | |
|         // also a case of comparing two sign-extended values.
 | |
|         if (RExt == CI && MaxRecurse)
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
 | |
|             return V;
 | |
| 
 | |
|         // Otherwise the upper bits of LHS are all equal, while RHS has varying
 | |
|         // bits there.  Use this to work out the result of the comparison.
 | |
|         if (RExt != CI) {
 | |
|           switch (Pred) {
 | |
|           default: llvm_unreachable("Unknown ICmp predicate!");
 | |
|           case ICmpInst::ICMP_EQ:
 | |
|             return ConstantInt::getFalse(CI->getContext());
 | |
|           case ICmpInst::ICMP_NE:
 | |
|             return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
 | |
|           // LHS >s RHS.
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getTrue(CI->getContext()) :
 | |
|               ConstantInt::getFalse(CI->getContext());
 | |
|           case ICmpInst::ICMP_SLT:
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getFalse(CI->getContext()) :
 | |
|               ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
 | |
|           // LHS >u RHS.
 | |
|           case ICmpInst::ICMP_UGT:
 | |
|           case ICmpInst::ICMP_UGE:
 | |
|             // Comparison is true iff the LHS <s 0.
 | |
|             if (MaxRecurse)
 | |
|               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
 | |
|                                               Constant::getNullValue(SrcTy),
 | |
|                                               Q, MaxRecurse-1))
 | |
|                 return V;
 | |
|             break;
 | |
|           case ICmpInst::ICMP_ULT:
 | |
|           case ICmpInst::ICMP_ULE:
 | |
|             // Comparison is true iff the LHS >=s 0.
 | |
|             if (MaxRecurse)
 | |
|               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
 | |
|                                               Constant::getNullValue(SrcTy),
 | |
|                                               Q, MaxRecurse-1))
 | |
|                 return V;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Special logic for binary operators.
 | |
|   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
 | |
|   if (MaxRecurse && (LBO || RBO)) {
 | |
|     // Analyze the case when either LHS or RHS is an add instruction.
 | |
|     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
 | |
|     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
 | |
|     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
 | |
|     if (LBO && LBO->getOpcode() == Instruction::Add) {
 | |
|       A = LBO->getOperand(0); B = LBO->getOperand(1);
 | |
|       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
 | |
|         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
 | |
|         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
 | |
|     }
 | |
|     if (RBO && RBO->getOpcode() == Instruction::Add) {
 | |
|       C = RBO->getOperand(0); D = RBO->getOperand(1);
 | |
|       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
 | |
|         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
 | |
|         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
 | |
|     }
 | |
| 
 | |
|     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
 | |
|     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
 | |
|       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
 | |
|                                       Constant::getNullValue(RHS->getType()),
 | |
|                                       Q, MaxRecurse-1))
 | |
|         return V;
 | |
| 
 | |
|     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
 | |
|     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
 | |
|       if (Value *V = SimplifyICmpInst(Pred,
 | |
|                                       Constant::getNullValue(LHS->getType()),
 | |
|                                       C == LHS ? D : C, Q, MaxRecurse-1))
 | |
|         return V;
 | |
| 
 | |
|     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
 | |
|     if (A && C && (A == C || A == D || B == C || B == D) &&
 | |
|         NoLHSWrapProblem && NoRHSWrapProblem) {
 | |
|       // Determine Y and Z in the form icmp (X+Y), (X+Z).
 | |
|       Value *Y, *Z;
 | |
|       if (A == C) {
 | |
|         // C + B == C + D  ->  B == D
 | |
|         Y = B;
 | |
|         Z = D;
 | |
|       } else if (A == D) {
 | |
|         // D + B == C + D  ->  B == C
 | |
|         Y = B;
 | |
|         Z = C;
 | |
|       } else if (B == C) {
 | |
|         // A + C == C + D  ->  A == D
 | |
|         Y = A;
 | |
|         Z = D;
 | |
|       } else {
 | |
|         assert(B == D);
 | |
|         // A + D == C + D  ->  A == C
 | |
|         Y = A;
 | |
|         Z = C;
 | |
|       }
 | |
|       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
 | |
|         return V;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp pred (or X, Y), X
 | |
|   if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
 | |
|                                     m_Or(m_Specific(RHS), m_Value())))) {
 | |
|     if (Pred == ICmpInst::ICMP_ULT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_UGE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
|   // icmp pred X, (or X, Y)
 | |
|   if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
 | |
|                                     m_Or(m_Specific(LHS), m_Value())))) {
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   // icmp pred (and X, Y), X
 | |
|   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
 | |
|                                     m_And(m_Specific(RHS), m_Value())))) {
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
|   // icmp pred X, (and X, Y)
 | |
|   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
 | |
|                                     m_And(m_Specific(LHS), m_Value())))) {
 | |
|     if (Pred == ICmpInst::ICMP_UGE)
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULT)
 | |
|       return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   // 0 - (zext X) pred C
 | |
|   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
 | |
|     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
 | |
|       if (RHSC->getValue().isStrictlyPositive()) {
 | |
|         if (Pred == ICmpInst::ICMP_SLT)
 | |
|           return ConstantInt::getTrue(RHSC->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_SGE)
 | |
|           return ConstantInt::getFalse(RHSC->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_EQ)
 | |
|           return ConstantInt::getFalse(RHSC->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_NE)
 | |
|           return ConstantInt::getTrue(RHSC->getContext());
 | |
|       }
 | |
|       if (RHSC->getValue().isNonNegative()) {
 | |
|         if (Pred == ICmpInst::ICMP_SLE)
 | |
|           return ConstantInt::getTrue(RHSC->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_SGT)
 | |
|           return ConstantInt::getFalse(RHSC->getContext());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp pred (urem X, Y), Y
 | |
|   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
 | |
|     bool KnownNonNegative, KnownNegative;
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|       if (!KnownNonNegative)
 | |
|         break;
 | |
|       // fall-through
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getFalse(ITy);
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|       if (!KnownNonNegative)
 | |
|         break;
 | |
|       // fall-through
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       return getTrue(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp pred X, (urem Y, X)
 | |
|   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
 | |
|     bool KnownNonNegative, KnownNegative;
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|       if (!KnownNonNegative)
 | |
|         break;
 | |
|       // fall-through
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getTrue(ITy);
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
 | |
|                      Q.CxtI, Q.DT);
 | |
|       if (!KnownNonNegative)
 | |
|         break;
 | |
|       // fall-through
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // x udiv y <=u x.
 | |
|   if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
 | |
|     // icmp pred (X /u Y), X
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   // handle:
 | |
|   //   CI2 << X == CI
 | |
|   //   CI2 << X != CI
 | |
|   //
 | |
|   //   where CI2 is a power of 2 and CI isn't
 | |
|   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|     const APInt *CI2Val, *CIVal = &CI->getValue();
 | |
|     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
 | |
|         CI2Val->isPowerOf2()) {
 | |
|       if (!CIVal->isPowerOf2()) {
 | |
|         // CI2 << X can equal zero in some circumstances,
 | |
|         // this simplification is unsafe if CI is zero.
 | |
|         //
 | |
|         // We know it is safe if:
 | |
|         // - The shift is nsw, we can't shift out the one bit.
 | |
|         // - The shift is nuw, we can't shift out the one bit.
 | |
|         // - CI2 is one
 | |
|         // - CI isn't zero
 | |
|         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
 | |
|             *CI2Val == 1 || !CI->isZero()) {
 | |
|           if (Pred == ICmpInst::ICMP_EQ)
 | |
|             return ConstantInt::getFalse(RHS->getContext());
 | |
|           if (Pred == ICmpInst::ICMP_NE)
 | |
|             return ConstantInt::getTrue(RHS->getContext());
 | |
|         }
 | |
|       }
 | |
|       if (CIVal->isSignBit() && *CI2Val == 1) {
 | |
|         if (Pred == ICmpInst::ICMP_UGT)
 | |
|           return ConstantInt::getFalse(RHS->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_ULE)
 | |
|           return ConstantInt::getTrue(RHS->getContext());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
 | |
|       LBO->getOperand(1) == RBO->getOperand(1)) {
 | |
|     switch (LBO->getOpcode()) {
 | |
|     default: break;
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::LShr:
 | |
|       if (ICmpInst::isSigned(Pred))
 | |
|         break;
 | |
|       // fall-through
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::AShr:
 | |
|       if (!LBO->isExact() || !RBO->isExact())
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse-1))
 | |
|         return V;
 | |
|       break;
 | |
|     case Instruction::Shl: {
 | |
|       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
 | |
|       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
 | |
|       if (!NUW && !NSW)
 | |
|         break;
 | |
|       if (!NSW && ICmpInst::isSigned(Pred))
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse-1))
 | |
|         return V;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Simplify comparisons involving max/min.
 | |
|   Value *A, *B;
 | |
|   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
 | |
| 
 | |
|   // Signed variants on "max(a,b)>=a -> true".
 | |
|   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
 | |
|     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
 | |
|     // We analyze this as smax(A, B) pred A.
 | |
|     P = Pred;
 | |
|   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
 | |
|     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
 | |
|     // We analyze this as smax(A, B) swapped-pred A.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == RHS || B == RHS)) {
 | |
|     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
 | |
|     // We analyze this as smax(-A, -B) swapped-pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
 | |
|     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
 | |
|     // We analyze this as smax(-A, -B) pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = Pred;
 | |
|   }
 | |
|   if (P != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|     // Cases correspond to "max(A, B) p A".
 | |
|     switch (P) {
 | |
|     default:
 | |
|       break;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::ICMP_SLE:
 | |
|       // Equivalent to "A EqP B".  This may be the same as the condition tested
 | |
|       // in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A EqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
 | |
|           return V;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|     case CmpInst::ICMP_SGT: {
 | |
|       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
 | |
|       // Equivalent to "A InvEqP B".  This may be the same as the condition
 | |
|       // tested in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A InvEqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
 | |
|           return V;
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_SGE:
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     case CmpInst::ICMP_SLT:
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Unsigned variants on "max(a,b)>=a -> true".
 | |
|   P = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
 | |
|     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
 | |
|     // We analyze this as umax(A, B) pred A.
 | |
|     P = Pred;
 | |
|   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
 | |
|     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
 | |
|     // We analyze this as umax(A, B) swapped-pred A.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == RHS || B == RHS)) {
 | |
|     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
 | |
|     // We analyze this as umax(-A, -B) swapped-pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
 | |
|     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
 | |
|     // We analyze this as umax(-A, -B) pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = Pred;
 | |
|   }
 | |
|   if (P != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|     // Cases correspond to "max(A, B) p A".
 | |
|     switch (P) {
 | |
|     default:
 | |
|       break;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::ICMP_ULE:
 | |
|       // Equivalent to "A EqP B".  This may be the same as the condition tested
 | |
|       // in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A EqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
 | |
|           return V;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|     case CmpInst::ICMP_UGT: {
 | |
|       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
 | |
|       // Equivalent to "A InvEqP B".  This may be the same as the condition
 | |
|       // tested in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A InvEqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
 | |
|           return V;
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_UGE:
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     case CmpInst::ICMP_ULT:
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Variants on "max(x,y) >= min(x,z)".
 | |
|   Value *C, *D;
 | |
|   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
 | |
|       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
 | |
|       (A == C || A == D || B == C || B == D)) {
 | |
|     // max(x, ?) pred min(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_SGE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_SLT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // min(x, ?) pred max(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_SLE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_SGT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // max(x, ?) pred min(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_UGE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_ULT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // min(x, ?) pred max(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_ULE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_UGT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   // Simplify comparisons of related pointers using a powerful, recursive
 | |
|   // GEP-walk when we have target data available..
 | |
|   if (LHS->getType()->isPointerTy())
 | |
|     if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
 | |
|       return C;
 | |
| 
 | |
|   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
 | |
|     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
 | |
|       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
 | |
|           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
 | |
|           (ICmpInst::isEquality(Pred) ||
 | |
|            (GLHS->isInBounds() && GRHS->isInBounds() &&
 | |
|             Pred == ICmpInst::getSignedPredicate(Pred)))) {
 | |
|         // The bases are equal and the indices are constant.  Build a constant
 | |
|         // expression GEP with the same indices and a null base pointer to see
 | |
|         // what constant folding can make out of it.
 | |
|         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
 | |
|         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
 | |
|         Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
 | |
| 
 | |
|         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
 | |
|         Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
 | |
|         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If a bit is known to be zero for A and known to be one for B,
 | |
|   // then A and B cannot be equal.
 | |
|   if (ICmpInst::isEquality(Pred)) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|       uint32_t BitWidth = CI->getBitWidth();
 | |
|       APInt LHSKnownZero(BitWidth, 0);
 | |
|       APInt LHSKnownOne(BitWidth, 0);
 | |
|       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
 | |
|                        Q.CxtI, Q.DT);
 | |
|       const APInt &RHSVal = CI->getValue();
 | |
|       if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
 | |
|         return Pred == ICmpInst::ICMP_EQ
 | |
|                    ? ConstantInt::getFalse(CI->getContext())
 | |
|                    : ConstantInt::getTrue(CI->getContext());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               Instruction *CxtI) {
 | |
|   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const Query &Q, unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // Fold trivial predicates.
 | |
|   if (Pred == FCmpInst::FCMP_FALSE)
 | |
|     return ConstantInt::get(GetCompareTy(LHS), 0);
 | |
|   if (Pred == FCmpInst::FCMP_TRUE)
 | |
|     return ConstantInt::get(GetCompareTy(LHS), 1);
 | |
| 
 | |
|   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
 | |
|     return UndefValue::get(GetCompareTy(LHS));
 | |
| 
 | |
|   // fcmp x,x -> true/false.  Not all compares are foldable.
 | |
|   if (LHS == RHS) {
 | |
|     if (CmpInst::isTrueWhenEqual(Pred))
 | |
|       return ConstantInt::get(GetCompareTy(LHS), 1);
 | |
|     if (CmpInst::isFalseWhenEqual(Pred))
 | |
|       return ConstantInt::get(GetCompareTy(LHS), 0);
 | |
|   }
 | |
| 
 | |
|   // Handle fcmp with constant RHS
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
 | |
|     // If the constant is a nan, see if we can fold the comparison based on it.
 | |
|     if (CFP->getValueAPF().isNaN()) {
 | |
|       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
 | |
|         return ConstantInt::getFalse(CFP->getContext());
 | |
|       assert(FCmpInst::isUnordered(Pred) &&
 | |
|              "Comparison must be either ordered or unordered!");
 | |
|       // True if unordered.
 | |
|       return ConstantInt::getTrue(CFP->getContext());
 | |
|     }
 | |
|     // Check whether the constant is an infinity.
 | |
|     if (CFP->getValueAPF().isInfinity()) {
 | |
|       if (CFP->getValueAPF().isNegative()) {
 | |
|         switch (Pred) {
 | |
|         case FCmpInst::FCMP_OLT:
 | |
|           // No value is ordered and less than negative infinity.
 | |
|           return ConstantInt::getFalse(CFP->getContext());
 | |
|         case FCmpInst::FCMP_UGE:
 | |
|           // All values are unordered with or at least negative infinity.
 | |
|           return ConstantInt::getTrue(CFP->getContext());
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       } else {
 | |
|         switch (Pred) {
 | |
|         case FCmpInst::FCMP_OGT:
 | |
|           // No value is ordered and greater than infinity.
 | |
|           return ConstantInt::getFalse(CFP->getContext());
 | |
|         case FCmpInst::FCMP_ULE:
 | |
|           // All values are unordered with and at most infinity.
 | |
|           return ConstantInt::getTrue(CFP->getContext());
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (CFP->getValueAPF().isZero()) {
 | |
|       switch (Pred) {
 | |
|       case FCmpInst::FCMP_UGE:
 | |
|         if (CannotBeOrderedLessThanZero(LHS))
 | |
|           return ConstantInt::getTrue(CFP->getContext());
 | |
|         break;
 | |
|       case FCmpInst::FCMP_OLT:
 | |
|         // X < 0
 | |
|         if (CannotBeOrderedLessThanZero(LHS))
 | |
|           return ConstantInt::getFalse(CFP->getContext());
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const DataLayout *DL,
 | |
|                               const TargetLibraryInfo *TLI,
 | |
|                               const DominatorTree *DT, AssumptionCache *AC,
 | |
|                               const Instruction *CxtI) {
 | |
|   return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
 | |
|                             RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
 | |
| /// the result.  If not, this returns null.
 | |
| static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
 | |
|                                  Value *FalseVal, const Query &Q,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   // select true, X, Y  -> X
 | |
|   // select false, X, Y -> Y
 | |
|   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
 | |
|     if (CB->isAllOnesValue())
 | |
|       return TrueVal;
 | |
|     if (CB->isNullValue())
 | |
|       return FalseVal;
 | |
|   }
 | |
| 
 | |
|   // select C, X, X -> X
 | |
|   if (TrueVal == FalseVal)
 | |
|     return TrueVal;
 | |
| 
 | |
|   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | |
|     if (isa<Constant>(TrueVal))
 | |
|       return TrueVal;
 | |
|     return FalseVal;
 | |
|   }
 | |
|   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | |
|     return FalseVal;
 | |
|   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | |
|     return TrueVal;
 | |
| 
 | |
|   const auto *ICI = dyn_cast<ICmpInst>(CondVal);
 | |
|   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
 | |
|   if (ICI && BitWidth) {
 | |
|     ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|     APInt MinSignedValue = APInt::getSignBit(BitWidth);
 | |
|     Value *X;
 | |
|     const APInt *Y;
 | |
|     bool TrueWhenUnset;
 | |
|     bool IsBitTest = false;
 | |
|     if (ICmpInst::isEquality(Pred) &&
 | |
|         match(ICI->getOperand(0), m_And(m_Value(X), m_APInt(Y))) &&
 | |
|         match(ICI->getOperand(1), m_Zero())) {
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
 | |
|     } else if (Pred == ICmpInst::ICMP_SLT &&
 | |
|                match(ICI->getOperand(1), m_Zero())) {
 | |
|       X = ICI->getOperand(0);
 | |
|       Y = &MinSignedValue;
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = false;
 | |
|     } else if (Pred == ICmpInst::ICMP_SGT &&
 | |
|                match(ICI->getOperand(1), m_AllOnes())) {
 | |
|       X = ICI->getOperand(0);
 | |
|       Y = &MinSignedValue;
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = true;
 | |
|     }
 | |
|     if (IsBitTest) {
 | |
|       const APInt *C;
 | |
|       // (X & Y) == 0 ? X & ~Y : X  --> X
 | |
|       // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
 | |
|       if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
 | |
|           *Y == ~*C)
 | |
|         return TrueWhenUnset ? FalseVal : TrueVal;
 | |
|       // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
 | |
|       // (X & Y) != 0 ? X : X & ~Y  --> X
 | |
|       if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
 | |
|           *Y == ~*C)
 | |
|         return TrueWhenUnset ? FalseVal : TrueVal;
 | |
| 
 | |
|       if (Y->isPowerOf2()) {
 | |
|         // (X & Y) == 0 ? X | Y : X  --> X | Y
 | |
|         // (X & Y) != 0 ? X | Y : X  --> X
 | |
|         if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
 | |
|             *Y == *C)
 | |
|           return TrueWhenUnset ? TrueVal : FalseVal;
 | |
|         // (X & Y) == 0 ? X : X | Y  --> X
 | |
|         // (X & Y) != 0 ? X : X | Y  --> X | Y
 | |
|         if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
 | |
|             *Y == *C)
 | |
|           return TrueWhenUnset ? TrueVal : FalseVal;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                                 const DataLayout *DL,
 | |
|                                 const TargetLibraryInfo *TLI,
 | |
|                                 const DominatorTree *DT, AssumptionCache *AC,
 | |
|                                 const Instruction *CxtI) {
 | |
|   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
 | |
|                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
 | |
|   // The type of the GEP pointer operand.
 | |
|   PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType());
 | |
|   unsigned AS = PtrTy->getAddressSpace();
 | |
| 
 | |
|   // getelementptr P -> P.
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   // Compute the (pointer) type returned by the GEP instruction.
 | |
|   Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
 | |
|   Type *GEPTy = PointerType::get(LastType, AS);
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
 | |
|     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
 | |
| 
 | |
|   if (isa<UndefValue>(Ops[0]))
 | |
|     return UndefValue::get(GEPTy);
 | |
| 
 | |
|   if (Ops.size() == 2) {
 | |
|     // getelementptr P, 0 -> P.
 | |
|     if (match(Ops[1], m_Zero()))
 | |
|       return Ops[0];
 | |
| 
 | |
|     Type *Ty = PtrTy->getElementType();
 | |
|     if (Q.DL && Ty->isSized()) {
 | |
|       Value *P;
 | |
|       uint64_t C;
 | |
|       uint64_t TyAllocSize = Q.DL->getTypeAllocSize(Ty);
 | |
|       // getelementptr P, N -> P if P points to a type of zero size.
 | |
|       if (TyAllocSize == 0)
 | |
|         return Ops[0];
 | |
| 
 | |
|       // The following transforms are only safe if the ptrtoint cast
 | |
|       // doesn't truncate the pointers.
 | |
|       if (Ops[1]->getType()->getScalarSizeInBits() ==
 | |
|           Q.DL->getPointerSizeInBits(AS)) {
 | |
|         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
 | |
|           if (match(P, m_Zero()))
 | |
|             return Constant::getNullValue(GEPTy);
 | |
|           Value *Temp;
 | |
|           if (match(P, m_PtrToInt(m_Value(Temp))))
 | |
|             if (Temp->getType() == GEPTy)
 | |
|               return Temp;
 | |
|           return nullptr;
 | |
|         };
 | |
| 
 | |
|         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
 | |
|         if (TyAllocSize == 1 &&
 | |
|             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
 | |
|           if (Value *R = PtrToIntOrZero(P))
 | |
|             return R;
 | |
| 
 | |
|         // getelementptr V, (ashr (sub P, V), C) -> Q
 | |
|         // if P points to a type of size 1 << C.
 | |
|         if (match(Ops[1],
 | |
|                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
 | |
|                          m_ConstantInt(C))) &&
 | |
|             TyAllocSize == 1ULL << C)
 | |
|           if (Value *R = PtrToIntOrZero(P))
 | |
|             return R;
 | |
| 
 | |
|         // getelementptr V, (sdiv (sub P, V), C) -> Q
 | |
|         // if P points to a type of size C.
 | |
|         if (match(Ops[1],
 | |
|                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
 | |
|                          m_SpecificInt(TyAllocSize))))
 | |
|           if (Value *R = PtrToIntOrZero(P))
 | |
|             return R;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is constant foldable.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     if (!isa<Constant>(Ops[i]))
 | |
|       return nullptr;
 | |
| 
 | |
|   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
 | |
|                              const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifyGEPInst(Ops, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
 | |
| /// can fold the result.  If not, this returns null.
 | |
| static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
 | |
|                                       ArrayRef<unsigned> Idxs, const Query &Q,
 | |
|                                       unsigned) {
 | |
|   if (Constant *CAgg = dyn_cast<Constant>(Agg))
 | |
|     if (Constant *CVal = dyn_cast<Constant>(Val))
 | |
|       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
 | |
| 
 | |
|   // insertvalue x, undef, n -> x
 | |
|   if (match(Val, m_Undef()))
 | |
|     return Agg;
 | |
| 
 | |
|   // insertvalue x, (extractvalue y, n), n
 | |
|   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
 | |
|     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
 | |
|         EV->getIndices() == Idxs) {
 | |
|       // insertvalue undef, (extractvalue y, n), n -> y
 | |
|       if (match(Agg, m_Undef()))
 | |
|         return EV->getAggregateOperand();
 | |
| 
 | |
|       // insertvalue y, (extractvalue y, n), n -> y
 | |
|       if (Agg == EV->getAggregateOperand())
 | |
|         return Agg;
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyInsertValueInst(
 | |
|     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout *DL,
 | |
|     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
 | |
|     const Instruction *CxtI) {
 | |
|   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
 | |
|                                    RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
 | |
| static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
 | |
|   // If all of the PHI's incoming values are the same then replace the PHI node
 | |
|   // with the common value.
 | |
|   Value *CommonValue = nullptr;
 | |
|   bool HasUndefInput = false;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PN->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PN) continue;
 | |
|     if (isa<UndefValue>(Incoming)) {
 | |
|       // Remember that we saw an undef value, but otherwise ignore them.
 | |
|       HasUndefInput = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (CommonValue && Incoming != CommonValue)
 | |
|       return nullptr;  // Not the same, bail out.
 | |
|     CommonValue = Incoming;
 | |
|   }
 | |
| 
 | |
|   // If CommonValue is null then all of the incoming values were either undef or
 | |
|   // equal to the phi node itself.
 | |
|   if (!CommonValue)
 | |
|     return UndefValue::get(PN->getType());
 | |
| 
 | |
|   // If we have a PHI node like phi(X, undef, X), where X is defined by some
 | |
|   // instruction, we cannot return X as the result of the PHI node unless it
 | |
|   // dominates the PHI block.
 | |
|   if (HasUndefInput)
 | |
|     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
 | |
|   if (Constant *C = dyn_cast<Constant>(Op))
 | |
|     return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
 | |
|                                const TargetLibraryInfo *TLI,
 | |
|                                const DominatorTree *DT, AssumptionCache *AC,
 | |
|                                const Instruction *CxtI) {
 | |
|   return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
 | |
|                              RecursionLimit);
 | |
| }
 | |
| 
 | |
| //=== Helper functions for higher up the class hierarchy.
 | |
| 
 | |
| /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                             const Query &Q, unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | |
|                            Q, MaxRecurse);
 | |
|   case Instruction::FAdd:
 | |
|     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
| 
 | |
|   case Instruction::Sub:
 | |
|     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | |
|                            Q, MaxRecurse);
 | |
|   case Instruction::FSub:
 | |
|     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
| 
 | |
|   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::FMul:
 | |
|     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::Shl:
 | |
|     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | |
|                            Q, MaxRecurse);
 | |
|   case Instruction::LShr:
 | |
|     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
 | |
|   case Instruction::AShr:
 | |
|     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
 | |
|   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
 | |
|   default:
 | |
|     if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | |
|       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
 | |
|         Constant *COps[] = {CLHS, CRHS};
 | |
|         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
 | |
|                                         Q.TLI);
 | |
|       }
 | |
| 
 | |
|     // If the operation is associative, try some generic simplifications.
 | |
|     if (Instruction::isAssociative(Opcode))
 | |
|       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
 | |
|         return V;
 | |
| 
 | |
|     // If the operation is with the result of a select instruction check whether
 | |
|     // operating on either branch of the select always yields the same value.
 | |
|     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
 | |
|         return V;
 | |
| 
 | |
|     // If the operation is with the result of a phi instruction, check whether
 | |
|     // operating on all incoming values of the phi always yields the same value.
 | |
|     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
 | |
|         return V;
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SimplifyFPBinOp - Given operands for a BinaryOperator, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
 | |
| /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
 | |
| static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                               const FastMathFlags &FMF, const Query &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::FAdd:
 | |
|     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   case Instruction::FSub:
 | |
|     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   case Instruction::FMul:
 | |
|     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   default:
 | |
|     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                            const DataLayout *DL, const TargetLibraryInfo *TLI,
 | |
|                            const DominatorTree *DT, AssumptionCache *AC,
 | |
|                            const Instruction *CxtI) {
 | |
|   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
 | |
|                          RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                              const FastMathFlags &FMF, const DataLayout *DL,
 | |
|                              const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
 | |
|                            RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
 | |
| /// fold the result.
 | |
| static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const Query &Q, unsigned MaxRecurse) {
 | |
|   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
 | |
|     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
 | |
|   return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                              const DataLayout *DL, const TargetLibraryInfo *TLI,
 | |
|                              const DominatorTree *DT, AssumptionCache *AC,
 | |
|                              const Instruction *CxtI) {
 | |
|   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
 | |
|                            RecursionLimit);
 | |
| }
 | |
| 
 | |
| static bool IsIdempotent(Intrinsic::ID ID) {
 | |
|   switch (ID) {
 | |
|   default: return false;
 | |
| 
 | |
|   // Unary idempotent: f(f(x)) = f(x)
 | |
|   case Intrinsic::fabs:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::rint:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::round:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename IterTy>
 | |
| static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
 | |
|                                 const Query &Q, unsigned MaxRecurse) {
 | |
|   // Perform idempotent optimizations
 | |
|   if (!IsIdempotent(IID))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Unary Ops
 | |
|   if (std::distance(ArgBegin, ArgEnd) == 1)
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
 | |
|       if (II->getIntrinsicID() == IID)
 | |
|         return II;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| template <typename IterTy>
 | |
| static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
 | |
|                            const Query &Q, unsigned MaxRecurse) {
 | |
|   Type *Ty = V->getType();
 | |
|   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
 | |
|     Ty = PTy->getElementType();
 | |
|   FunctionType *FTy = cast<FunctionType>(Ty);
 | |
| 
 | |
|   // call undef -> undef
 | |
|   if (isa<UndefValue>(V))
 | |
|     return UndefValue::get(FTy->getReturnType());
 | |
| 
 | |
|   Function *F = dyn_cast<Function>(V);
 | |
|   if (!F)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (unsigned IID = F->getIntrinsicID())
 | |
|     if (Value *Ret =
 | |
|         SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
 | |
|       return Ret;
 | |
| 
 | |
|   if (!canConstantFoldCallTo(F))
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallVector<Constant *, 4> ConstantArgs;
 | |
|   ConstantArgs.reserve(ArgEnd - ArgBegin);
 | |
|   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
 | |
|     Constant *C = dyn_cast<Constant>(*I);
 | |
|     if (!C)
 | |
|       return nullptr;
 | |
|     ConstantArgs.push_back(C);
 | |
|   }
 | |
| 
 | |
|   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
 | |
|                           User::op_iterator ArgEnd, const DataLayout *DL,
 | |
|                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
 | |
|                           AssumptionCache *AC, const Instruction *CxtI) {
 | |
|   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
 | |
|                         RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
 | |
|                           const DataLayout *DL, const TargetLibraryInfo *TLI,
 | |
|                           const DominatorTree *DT, AssumptionCache *AC,
 | |
|                           const Instruction *CxtI) {
 | |
|   return ::SimplifyCall(V, Args.begin(), Args.end(),
 | |
|                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyInstruction - See if we can compute a simplified version of this
 | |
| /// instruction.  If not, this returns null.
 | |
| Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
 | |
|                                  const TargetLibraryInfo *TLI,
 | |
|                                  const DominatorTree *DT, AssumptionCache *AC) {
 | |
|   Value *Result;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     Result = ConstantFoldInstruction(I, DL, TLI);
 | |
|     break;
 | |
|   case Instruction::FAdd:
 | |
|     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
 | |
|                              TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::FSub:
 | |
|     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::Sub:
 | |
|     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
 | |
|                              TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::FMul:
 | |
|     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     Result =
 | |
|         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::SDiv:
 | |
|     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
 | |
|                               AC, I);
 | |
|     break;
 | |
|   case Instruction::UDiv:
 | |
|     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
 | |
|                               AC, I);
 | |
|     break;
 | |
|   case Instruction::FDiv:
 | |
|     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
 | |
|                               AC, I);
 | |
|     break;
 | |
|   case Instruction::SRem:
 | |
|     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
 | |
|                               AC, I);
 | |
|     break;
 | |
|   case Instruction::URem:
 | |
|     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
 | |
|                               AC, I);
 | |
|     break;
 | |
|   case Instruction::FRem:
 | |
|     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
 | |
|                               AC, I);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
 | |
|                              TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
 | |
|                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
 | |
|                               AC, I);
 | |
|     break;
 | |
|   case Instruction::AShr:
 | |
|     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
 | |
|                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
 | |
|                               AC, I);
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     Result =
 | |
|         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     Result =
 | |
|         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     Result =
 | |
|         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     Result =
 | |
|         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
 | |
|                          I->getOperand(1), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::FCmp:
 | |
|     Result =
 | |
|         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
 | |
|                          I->getOperand(1), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::Select:
 | |
|     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
 | |
|                                 I->getOperand(2), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   case Instruction::GetElementPtr: {
 | |
|     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
 | |
|     Result = SimplifyGEPInst(Ops, DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::InsertValue: {
 | |
|     InsertValueInst *IV = cast<InsertValueInst>(I);
 | |
|     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
 | |
|                                      IV->getInsertedValueOperand(),
 | |
|                                      IV->getIndices(), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI:
 | |
|     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
 | |
|     break;
 | |
|   case Instruction::Call: {
 | |
|     CallSite CS(cast<CallInst>(I));
 | |
|     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
 | |
|                           TLI, DT, AC, I);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Trunc:
 | |
|     Result =
 | |
|         SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /// If called on unreachable code, the above logic may report that the
 | |
|   /// instruction simplified to itself.  Make life easier for users by
 | |
|   /// detecting that case here, returning a safe value instead.
 | |
|   return Result == I ? UndefValue::get(I->getType()) : Result;
 | |
| }
 | |
| 
 | |
| /// \brief Implementation of recursive simplification through an instructions
 | |
| /// uses.
 | |
| ///
 | |
| /// This is the common implementation of the recursive simplification routines.
 | |
| /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
 | |
| /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
 | |
| /// instructions to process and attempt to simplify it using
 | |
| /// InstructionSimplify.
 | |
| ///
 | |
| /// This routine returns 'true' only when *it* simplifies something. The passed
 | |
| /// in simplified value does not count toward this.
 | |
| static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
 | |
|                                               const DataLayout *DL,
 | |
|                                               const TargetLibraryInfo *TLI,
 | |
|                                               const DominatorTree *DT,
 | |
|                                               AssumptionCache *AC) {
 | |
|   bool Simplified = false;
 | |
|   SmallSetVector<Instruction *, 8> Worklist;
 | |
| 
 | |
|   // If we have an explicit value to collapse to, do that round of the
 | |
|   // simplification loop by hand initially.
 | |
|   if (SimpleV) {
 | |
|     for (User *U : I->users())
 | |
|       if (U != I)
 | |
|         Worklist.insert(cast<Instruction>(U));
 | |
| 
 | |
|     // Replace the instruction with its simplified value.
 | |
|     I->replaceAllUsesWith(SimpleV);
 | |
| 
 | |
|     // Gracefully handle edge cases where the instruction is not wired into any
 | |
|     // parent block.
 | |
|     if (I->getParent())
 | |
|       I->eraseFromParent();
 | |
|   } else {
 | |
|     Worklist.insert(I);
 | |
|   }
 | |
| 
 | |
|   // Note that we must test the size on each iteration, the worklist can grow.
 | |
|   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
 | |
|     I = Worklist[Idx];
 | |
| 
 | |
|     // See if this instruction simplifies.
 | |
|     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
 | |
|     if (!SimpleV)
 | |
|       continue;
 | |
| 
 | |
|     Simplified = true;
 | |
| 
 | |
|     // Stash away all the uses of the old instruction so we can check them for
 | |
|     // recursive simplifications after a RAUW. This is cheaper than checking all
 | |
|     // uses of To on the recursive step in most cases.
 | |
|     for (User *U : I->users())
 | |
|       Worklist.insert(cast<Instruction>(U));
 | |
| 
 | |
|     // Replace the instruction with its simplified value.
 | |
|     I->replaceAllUsesWith(SimpleV);
 | |
| 
 | |
|     // Gracefully handle edge cases where the instruction is not wired into any
 | |
|     // parent block.
 | |
|     if (I->getParent())
 | |
|       I->eraseFromParent();
 | |
|   }
 | |
|   return Simplified;
 | |
| }
 | |
| 
 | |
| bool llvm::recursivelySimplifyInstruction(Instruction *I, const DataLayout *DL,
 | |
|                                           const TargetLibraryInfo *TLI,
 | |
|                                           const DominatorTree *DT,
 | |
|                                           AssumptionCache *AC) {
 | |
|   return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT, AC);
 | |
| }
 | |
| 
 | |
| bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
 | |
|                                          const DataLayout *DL,
 | |
|                                          const TargetLibraryInfo *TLI,
 | |
|                                          const DominatorTree *DT,
 | |
|                                          AssumptionCache *AC) {
 | |
|   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
 | |
|   assert(SimpleV && "Must provide a simplified value.");
 | |
|   return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT, AC);
 | |
| }
 |