mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229646 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			8423 lines
		
	
	
		
			322 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			8423 lines
		
	
	
		
			322 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the scalar evolution analysis
 | |
| // engine, which is used primarily to analyze expressions involving induction
 | |
| // variables in loops.
 | |
| //
 | |
| // There are several aspects to this library.  First is the representation of
 | |
| // scalar expressions, which are represented as subclasses of the SCEV class.
 | |
| // These classes are used to represent certain types of subexpressions that we
 | |
| // can handle. We only create one SCEV of a particular shape, so
 | |
| // pointer-comparisons for equality are legal.
 | |
| //
 | |
| // One important aspect of the SCEV objects is that they are never cyclic, even
 | |
| // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
 | |
| // the PHI node is one of the idioms that we can represent (e.g., a polynomial
 | |
| // recurrence) then we represent it directly as a recurrence node, otherwise we
 | |
| // represent it as a SCEVUnknown node.
 | |
| //
 | |
| // In addition to being able to represent expressions of various types, we also
 | |
| // have folders that are used to build the *canonical* representation for a
 | |
| // particular expression.  These folders are capable of using a variety of
 | |
| // rewrite rules to simplify the expressions.
 | |
| //
 | |
| // Once the folders are defined, we can implement the more interesting
 | |
| // higher-level code, such as the code that recognizes PHI nodes of various
 | |
| // types, computes the execution count of a loop, etc.
 | |
| //
 | |
| // TODO: We should use these routines and value representations to implement
 | |
| // dependence analysis!
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // There are several good references for the techniques used in this analysis.
 | |
| //
 | |
| //  Chains of recurrences -- a method to expedite the evaluation
 | |
| //  of closed-form functions
 | |
| //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
 | |
| //
 | |
| //  On computational properties of chains of recurrences
 | |
| //  Eugene V. Zima
 | |
| //
 | |
| //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
 | |
| //  Robert A. van Engelen
 | |
| //
 | |
| //  Efficient Symbolic Analysis for Optimizing Compilers
 | |
| //  Robert A. van Engelen
 | |
| //
 | |
| //  Using the chains of recurrences algebra for data dependence testing and
 | |
| //  induction variable substitution
 | |
| //  MS Thesis, Johnie Birch
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "scalar-evolution"
 | |
| 
 | |
| STATISTIC(NumArrayLenItCounts,
 | |
|           "Number of trip counts computed with array length");
 | |
| STATISTIC(NumTripCountsComputed,
 | |
|           "Number of loops with predictable loop counts");
 | |
| STATISTIC(NumTripCountsNotComputed,
 | |
|           "Number of loops without predictable loop counts");
 | |
| STATISTIC(NumBruteForceTripCountsComputed,
 | |
|           "Number of loops with trip counts computed by force");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
 | |
|                         cl::desc("Maximum number of iterations SCEV will "
 | |
|                                  "symbolically execute a constant "
 | |
|                                  "derived loop"),
 | |
|                         cl::init(100));
 | |
| 
 | |
| // FIXME: Enable this with XDEBUG when the test suite is clean.
 | |
| static cl::opt<bool>
 | |
| VerifySCEV("verify-scev",
 | |
|            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
 | |
|                 "Scalar Evolution Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
 | |
|                 "Scalar Evolution Analysis", false, true)
 | |
| char ScalarEvolution::ID = 0;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           SCEV class definitions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of the SCEV class.
 | |
| //
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void SCEV::dump() const {
 | |
|   print(dbgs());
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void SCEV::print(raw_ostream &OS) const {
 | |
|   switch (static_cast<SCEVTypes>(getSCEVType())) {
 | |
|   case scConstant:
 | |
|     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
 | |
|     return;
 | |
|   case scTruncate: {
 | |
|     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
 | |
|     const SCEV *Op = Trunc->getOperand();
 | |
|     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
 | |
|        << *Trunc->getType() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scZeroExtend: {
 | |
|     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
 | |
|     const SCEV *Op = ZExt->getOperand();
 | |
|     OS << "(zext " << *Op->getType() << " " << *Op << " to "
 | |
|        << *ZExt->getType() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scSignExtend: {
 | |
|     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
 | |
|     const SCEV *Op = SExt->getOperand();
 | |
|     OS << "(sext " << *Op->getType() << " " << *Op << " to "
 | |
|        << *SExt->getType() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scAddRecExpr: {
 | |
|     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
 | |
|     OS << "{" << *AR->getOperand(0);
 | |
|     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
 | |
|       OS << ",+," << *AR->getOperand(i);
 | |
|     OS << "}<";
 | |
|     if (AR->getNoWrapFlags(FlagNUW))
 | |
|       OS << "nuw><";
 | |
|     if (AR->getNoWrapFlags(FlagNSW))
 | |
|       OS << "nsw><";
 | |
|     if (AR->getNoWrapFlags(FlagNW) &&
 | |
|         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
 | |
|       OS << "nw><";
 | |
|     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|     OS << ">";
 | |
|     return;
 | |
|   }
 | |
|   case scAddExpr:
 | |
|   case scMulExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMaxExpr: {
 | |
|     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
 | |
|     const char *OpStr = nullptr;
 | |
|     switch (NAry->getSCEVType()) {
 | |
|     case scAddExpr: OpStr = " + "; break;
 | |
|     case scMulExpr: OpStr = " * "; break;
 | |
|     case scUMaxExpr: OpStr = " umax "; break;
 | |
|     case scSMaxExpr: OpStr = " smax "; break;
 | |
|     }
 | |
|     OS << "(";
 | |
|     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
 | |
|          I != E; ++I) {
 | |
|       OS << **I;
 | |
|       if (std::next(I) != E)
 | |
|         OS << OpStr;
 | |
|     }
 | |
|     OS << ")";
 | |
|     switch (NAry->getSCEVType()) {
 | |
|     case scAddExpr:
 | |
|     case scMulExpr:
 | |
|       if (NAry->getNoWrapFlags(FlagNUW))
 | |
|         OS << "<nuw>";
 | |
|       if (NAry->getNoWrapFlags(FlagNSW))
 | |
|         OS << "<nsw>";
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case scUDivExpr: {
 | |
|     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
 | |
|     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scUnknown: {
 | |
|     const SCEVUnknown *U = cast<SCEVUnknown>(this);
 | |
|     Type *AllocTy;
 | |
|     if (U->isSizeOf(AllocTy)) {
 | |
|       OS << "sizeof(" << *AllocTy << ")";
 | |
|       return;
 | |
|     }
 | |
|     if (U->isAlignOf(AllocTy)) {
 | |
|       OS << "alignof(" << *AllocTy << ")";
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Type *CTy;
 | |
|     Constant *FieldNo;
 | |
|     if (U->isOffsetOf(CTy, FieldNo)) {
 | |
|       OS << "offsetof(" << *CTy << ", ";
 | |
|       FieldNo->printAsOperand(OS, false);
 | |
|       OS << ")";
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise just print it normally.
 | |
|     U->getValue()->printAsOperand(OS, false);
 | |
|     return;
 | |
|   }
 | |
|   case scCouldNotCompute:
 | |
|     OS << "***COULDNOTCOMPUTE***";
 | |
|     return;
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| Type *SCEV::getType() const {
 | |
|   switch (static_cast<SCEVTypes>(getSCEVType())) {
 | |
|   case scConstant:
 | |
|     return cast<SCEVConstant>(this)->getType();
 | |
|   case scTruncate:
 | |
|   case scZeroExtend:
 | |
|   case scSignExtend:
 | |
|     return cast<SCEVCastExpr>(this)->getType();
 | |
|   case scAddRecExpr:
 | |
|   case scMulExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMaxExpr:
 | |
|     return cast<SCEVNAryExpr>(this)->getType();
 | |
|   case scAddExpr:
 | |
|     return cast<SCEVAddExpr>(this)->getType();
 | |
|   case scUDivExpr:
 | |
|     return cast<SCEVUDivExpr>(this)->getType();
 | |
|   case scUnknown:
 | |
|     return cast<SCEVUnknown>(this)->getType();
 | |
|   case scCouldNotCompute:
 | |
|     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| bool SCEV::isZero() const {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | |
|     return SC->getValue()->isZero();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEV::isOne() const {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | |
|     return SC->getValue()->isOne();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEV::isAllOnesValue() const {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | |
|     return SC->getValue()->isAllOnesValue();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isNonConstantNegative - Return true if the specified scev is negated, but
 | |
| /// not a constant.
 | |
| bool SCEV::isNonConstantNegative() const {
 | |
|   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
 | |
|   if (!Mul) return false;
 | |
| 
 | |
|   // If there is a constant factor, it will be first.
 | |
|   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
 | |
|   if (!SC) return false;
 | |
| 
 | |
|   // Return true if the value is negative, this matches things like (-42 * V).
 | |
|   return SC->getValue()->getValue().isNegative();
 | |
| }
 | |
| 
 | |
| SCEVCouldNotCompute::SCEVCouldNotCompute() :
 | |
|   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
 | |
| 
 | |
| bool SCEVCouldNotCompute::classof(const SCEV *S) {
 | |
|   return S->getSCEVType() == scCouldNotCompute;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scConstant);
 | |
|   ID.AddPointer(V);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
 | |
|   return getConstant(ConstantInt::get(getContext(), Val));
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
 | |
|   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
 | |
|   return getConstant(ConstantInt::get(ITy, V, isSigned));
 | |
| }
 | |
| 
 | |
| SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
 | |
|                            unsigned SCEVTy, const SCEV *op, Type *ty)
 | |
|   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
 | |
| 
 | |
| SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
 | |
|                                    const SCEV *op, Type *ty)
 | |
|   : SCEVCastExpr(ID, scTruncate, op, ty) {
 | |
|   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot truncate non-integer value!");
 | |
| }
 | |
| 
 | |
| SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
 | |
|                                        const SCEV *op, Type *ty)
 | |
|   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
 | |
|   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot zero extend non-integer value!");
 | |
| }
 | |
| 
 | |
| SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
 | |
|                                        const SCEV *op, Type *ty)
 | |
|   : SCEVCastExpr(ID, scSignExtend, op, ty) {
 | |
|   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot sign extend non-integer value!");
 | |
| }
 | |
| 
 | |
| void SCEVUnknown::deleted() {
 | |
|   // Clear this SCEVUnknown from various maps.
 | |
|   SE->forgetMemoizedResults(this);
 | |
| 
 | |
|   // Remove this SCEVUnknown from the uniquing map.
 | |
|   SE->UniqueSCEVs.RemoveNode(this);
 | |
| 
 | |
|   // Release the value.
 | |
|   setValPtr(nullptr);
 | |
| }
 | |
| 
 | |
| void SCEVUnknown::allUsesReplacedWith(Value *New) {
 | |
|   // Clear this SCEVUnknown from various maps.
 | |
|   SE->forgetMemoizedResults(this);
 | |
| 
 | |
|   // Remove this SCEVUnknown from the uniquing map.
 | |
|   SE->UniqueSCEVs.RemoveNode(this);
 | |
| 
 | |
|   // Update this SCEVUnknown to point to the new value. This is needed
 | |
|   // because there may still be outstanding SCEVs which still point to
 | |
|   // this SCEVUnknown.
 | |
|   setValPtr(New);
 | |
| }
 | |
| 
 | |
| bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
 | |
|   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
 | |
|     if (VCE->getOpcode() == Instruction::PtrToInt)
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
 | |
|         if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|             CE->getOperand(0)->isNullValue() &&
 | |
|             CE->getNumOperands() == 2)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
 | |
|             if (CI->isOne()) {
 | |
|               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
 | |
|                                  ->getElementType();
 | |
|               return true;
 | |
|             }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
 | |
|   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
 | |
|     if (VCE->getOpcode() == Instruction::PtrToInt)
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
 | |
|         if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|             CE->getOperand(0)->isNullValue()) {
 | |
|           Type *Ty =
 | |
|             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
 | |
|           if (StructType *STy = dyn_cast<StructType>(Ty))
 | |
|             if (!STy->isPacked() &&
 | |
|                 CE->getNumOperands() == 3 &&
 | |
|                 CE->getOperand(1)->isNullValue()) {
 | |
|               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
 | |
|                 if (CI->isOne() &&
 | |
|                     STy->getNumElements() == 2 &&
 | |
|                     STy->getElementType(0)->isIntegerTy(1)) {
 | |
|                   AllocTy = STy->getElementType(1);
 | |
|                   return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
 | |
|   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
 | |
|     if (VCE->getOpcode() == Instruction::PtrToInt)
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
 | |
|         if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|             CE->getNumOperands() == 3 &&
 | |
|             CE->getOperand(0)->isNullValue() &&
 | |
|             CE->getOperand(1)->isNullValue()) {
 | |
|           Type *Ty =
 | |
|             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
 | |
|           // Ignore vector types here so that ScalarEvolutionExpander doesn't
 | |
|           // emit getelementptrs that index into vectors.
 | |
|           if (Ty->isStructTy() || Ty->isArrayTy()) {
 | |
|             CTy = Ty;
 | |
|             FieldNo = CE->getOperand(2);
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               SCEV Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
 | |
|   /// than the complexity of the RHS.  This comparator is used to canonicalize
 | |
|   /// expressions.
 | |
|   class SCEVComplexityCompare {
 | |
|     const LoopInfo *const LI;
 | |
|   public:
 | |
|     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
 | |
| 
 | |
|     // Return true or false if LHS is less than, or at least RHS, respectively.
 | |
|     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
 | |
|       return compare(LHS, RHS) < 0;
 | |
|     }
 | |
| 
 | |
|     // Return negative, zero, or positive, if LHS is less than, equal to, or
 | |
|     // greater than RHS, respectively. A three-way result allows recursive
 | |
|     // comparisons to be more efficient.
 | |
|     int compare(const SCEV *LHS, const SCEV *RHS) const {
 | |
|       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
 | |
|       if (LHS == RHS)
 | |
|         return 0;
 | |
| 
 | |
|       // Primarily, sort the SCEVs by their getSCEVType().
 | |
|       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
 | |
|       if (LType != RType)
 | |
|         return (int)LType - (int)RType;
 | |
| 
 | |
|       // Aside from the getSCEVType() ordering, the particular ordering
 | |
|       // isn't very important except that it's beneficial to be consistent,
 | |
|       // so that (a + b) and (b + a) don't end up as different expressions.
 | |
|       switch (static_cast<SCEVTypes>(LType)) {
 | |
|       case scUnknown: {
 | |
|         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
 | |
|         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
 | |
| 
 | |
|         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
 | |
|         // not as complete as it could be.
 | |
|         const Value *LV = LU->getValue(), *RV = RU->getValue();
 | |
| 
 | |
|         // Order pointer values after integer values. This helps SCEVExpander
 | |
|         // form GEPs.
 | |
|         bool LIsPointer = LV->getType()->isPointerTy(),
 | |
|              RIsPointer = RV->getType()->isPointerTy();
 | |
|         if (LIsPointer != RIsPointer)
 | |
|           return (int)LIsPointer - (int)RIsPointer;
 | |
| 
 | |
|         // Compare getValueID values.
 | |
|         unsigned LID = LV->getValueID(),
 | |
|                  RID = RV->getValueID();
 | |
|         if (LID != RID)
 | |
|           return (int)LID - (int)RID;
 | |
| 
 | |
|         // Sort arguments by their position.
 | |
|         if (const Argument *LA = dyn_cast<Argument>(LV)) {
 | |
|           const Argument *RA = cast<Argument>(RV);
 | |
|           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
 | |
|           return (int)LArgNo - (int)RArgNo;
 | |
|         }
 | |
| 
 | |
|         // For instructions, compare their loop depth, and their operand
 | |
|         // count.  This is pretty loose.
 | |
|         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
 | |
|           const Instruction *RInst = cast<Instruction>(RV);
 | |
| 
 | |
|           // Compare loop depths.
 | |
|           const BasicBlock *LParent = LInst->getParent(),
 | |
|                            *RParent = RInst->getParent();
 | |
|           if (LParent != RParent) {
 | |
|             unsigned LDepth = LI->getLoopDepth(LParent),
 | |
|                      RDepth = LI->getLoopDepth(RParent);
 | |
|             if (LDepth != RDepth)
 | |
|               return (int)LDepth - (int)RDepth;
 | |
|           }
 | |
| 
 | |
|           // Compare the number of operands.
 | |
|           unsigned LNumOps = LInst->getNumOperands(),
 | |
|                    RNumOps = RInst->getNumOperands();
 | |
|           return (int)LNumOps - (int)RNumOps;
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       case scConstant: {
 | |
|         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
 | |
|         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
 | |
| 
 | |
|         // Compare constant values.
 | |
|         const APInt &LA = LC->getValue()->getValue();
 | |
|         const APInt &RA = RC->getValue()->getValue();
 | |
|         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
 | |
|         if (LBitWidth != RBitWidth)
 | |
|           return (int)LBitWidth - (int)RBitWidth;
 | |
|         return LA.ult(RA) ? -1 : 1;
 | |
|       }
 | |
| 
 | |
|       case scAddRecExpr: {
 | |
|         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
 | |
|         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
 | |
| 
 | |
|         // Compare addrec loop depths.
 | |
|         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
 | |
|         if (LLoop != RLoop) {
 | |
|           unsigned LDepth = LLoop->getLoopDepth(),
 | |
|                    RDepth = RLoop->getLoopDepth();
 | |
|           if (LDepth != RDepth)
 | |
|             return (int)LDepth - (int)RDepth;
 | |
|         }
 | |
| 
 | |
|         // Addrec complexity grows with operand count.
 | |
|         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
 | |
|         if (LNumOps != RNumOps)
 | |
|           return (int)LNumOps - (int)RNumOps;
 | |
| 
 | |
|         // Lexicographically compare.
 | |
|         for (unsigned i = 0; i != LNumOps; ++i) {
 | |
|           long X = compare(LA->getOperand(i), RA->getOperand(i));
 | |
|           if (X != 0)
 | |
|             return X;
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       case scAddExpr:
 | |
|       case scMulExpr:
 | |
|       case scSMaxExpr:
 | |
|       case scUMaxExpr: {
 | |
|         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
 | |
|         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
 | |
| 
 | |
|         // Lexicographically compare n-ary expressions.
 | |
|         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
 | |
|         if (LNumOps != RNumOps)
 | |
|           return (int)LNumOps - (int)RNumOps;
 | |
| 
 | |
|         for (unsigned i = 0; i != LNumOps; ++i) {
 | |
|           if (i >= RNumOps)
 | |
|             return 1;
 | |
|           long X = compare(LC->getOperand(i), RC->getOperand(i));
 | |
|           if (X != 0)
 | |
|             return X;
 | |
|         }
 | |
|         return (int)LNumOps - (int)RNumOps;
 | |
|       }
 | |
| 
 | |
|       case scUDivExpr: {
 | |
|         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
 | |
|         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
 | |
| 
 | |
|         // Lexicographically compare udiv expressions.
 | |
|         long X = compare(LC->getLHS(), RC->getLHS());
 | |
|         if (X != 0)
 | |
|           return X;
 | |
|         return compare(LC->getRHS(), RC->getRHS());
 | |
|       }
 | |
| 
 | |
|       case scTruncate:
 | |
|       case scZeroExtend:
 | |
|       case scSignExtend: {
 | |
|         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
 | |
|         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
 | |
| 
 | |
|         // Compare cast expressions by operand.
 | |
|         return compare(LC->getOperand(), RC->getOperand());
 | |
|       }
 | |
| 
 | |
|       case scCouldNotCompute:
 | |
|         llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | |
|       }
 | |
|       llvm_unreachable("Unknown SCEV kind!");
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// GroupByComplexity - Given a list of SCEV objects, order them by their
 | |
| /// complexity, and group objects of the same complexity together by value.
 | |
| /// When this routine is finished, we know that any duplicates in the vector are
 | |
| /// consecutive and that complexity is monotonically increasing.
 | |
| ///
 | |
| /// Note that we go take special precautions to ensure that we get deterministic
 | |
| /// results from this routine.  In other words, we don't want the results of
 | |
| /// this to depend on where the addresses of various SCEV objects happened to
 | |
| /// land in memory.
 | |
| ///
 | |
| static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                               LoopInfo *LI) {
 | |
|   if (Ops.size() < 2) return;  // Noop
 | |
|   if (Ops.size() == 2) {
 | |
|     // This is the common case, which also happens to be trivially simple.
 | |
|     // Special case it.
 | |
|     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
 | |
|     if (SCEVComplexityCompare(LI)(RHS, LHS))
 | |
|       std::swap(LHS, RHS);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Do the rough sort by complexity.
 | |
|   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
 | |
| 
 | |
|   // Now that we are sorted by complexity, group elements of the same
 | |
|   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
 | |
|   // be extremely short in practice.  Note that we take this approach because we
 | |
|   // do not want to depend on the addresses of the objects we are grouping.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
 | |
|     const SCEV *S = Ops[i];
 | |
|     unsigned Complexity = S->getSCEVType();
 | |
| 
 | |
|     // If there are any objects of the same complexity and same value as this
 | |
|     // one, group them.
 | |
|     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
 | |
|       if (Ops[j] == S) { // Found a duplicate.
 | |
|         // Move it to immediately after i'th element.
 | |
|         std::swap(Ops[i+1], Ops[j]);
 | |
|         ++i;   // no need to rescan it.
 | |
|         if (i == e-2) return;  // Done!
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct FindSCEVSize {
 | |
|   int Size;
 | |
|   FindSCEVSize() : Size(0) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     ++Size;
 | |
|     // Keep looking at all operands of S.
 | |
|     return true;
 | |
|   }
 | |
|   bool isDone() const {
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| // Returns the size of the SCEV S.
 | |
| static inline int sizeOfSCEV(const SCEV *S) {
 | |
|   FindSCEVSize F;
 | |
|   SCEVTraversal<FindSCEVSize> ST(F);
 | |
|   ST.visitAll(S);
 | |
|   return F.Size;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
 | |
| public:
 | |
|   // Computes the Quotient and Remainder of the division of Numerator by
 | |
|   // Denominator.
 | |
|   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
 | |
|                      const SCEV *Denominator, const SCEV **Quotient,
 | |
|                      const SCEV **Remainder) {
 | |
|     assert(Numerator && Denominator && "Uninitialized SCEV");
 | |
| 
 | |
|     SCEVDivision D(SE, Numerator, Denominator);
 | |
| 
 | |
|     // Check for the trivial case here to avoid having to check for it in the
 | |
|     // rest of the code.
 | |
|     if (Numerator == Denominator) {
 | |
|       *Quotient = D.One;
 | |
|       *Remainder = D.Zero;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (Numerator->isZero()) {
 | |
|       *Quotient = D.Zero;
 | |
|       *Remainder = D.Zero;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Split the Denominator when it is a product.
 | |
|     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
 | |
|       const SCEV *Q, *R;
 | |
|       *Quotient = Numerator;
 | |
|       for (const SCEV *Op : T->operands()) {
 | |
|         divide(SE, *Quotient, Op, &Q, &R);
 | |
|         *Quotient = Q;
 | |
| 
 | |
|         // Bail out when the Numerator is not divisible by one of the terms of
 | |
|         // the Denominator.
 | |
|         if (!R->isZero()) {
 | |
|           *Quotient = D.Zero;
 | |
|           *Remainder = Numerator;
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       *Remainder = D.Zero;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     D.visit(Numerator);
 | |
|     *Quotient = D.Quotient;
 | |
|     *Remainder = D.Remainder;
 | |
|   }
 | |
| 
 | |
|   // Except in the trivial case described above, we do not know how to divide
 | |
|   // Expr by Denominator for the following functions with empty implementation.
 | |
|   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
 | |
|   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
 | |
|   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
 | |
|   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
 | |
|   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
 | |
|   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
 | |
|   void visitUnknown(const SCEVUnknown *Numerator) {}
 | |
|   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
 | |
| 
 | |
|   void visitConstant(const SCEVConstant *Numerator) {
 | |
|     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
 | |
|       APInt NumeratorVal = Numerator->getValue()->getValue();
 | |
|       APInt DenominatorVal = D->getValue()->getValue();
 | |
|       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
 | |
|       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
 | |
| 
 | |
|       if (NumeratorBW > DenominatorBW)
 | |
|         DenominatorVal = DenominatorVal.sext(NumeratorBW);
 | |
|       else if (NumeratorBW < DenominatorBW)
 | |
|         NumeratorVal = NumeratorVal.sext(DenominatorBW);
 | |
| 
 | |
|       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
 | |
|       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
 | |
|       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
 | |
|       Quotient = SE.getConstant(QuotientVal);
 | |
|       Remainder = SE.getConstant(RemainderVal);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
 | |
|     const SCEV *StartQ, *StartR, *StepQ, *StepR;
 | |
|     assert(Numerator->isAffine() && "Numerator should be affine");
 | |
|     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
 | |
|     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
 | |
|     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
 | |
|                                 Numerator->getNoWrapFlags());
 | |
|     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
 | |
|                                  Numerator->getNoWrapFlags());
 | |
|   }
 | |
| 
 | |
|   void visitAddExpr(const SCEVAddExpr *Numerator) {
 | |
|     SmallVector<const SCEV *, 2> Qs, Rs;
 | |
|     Type *Ty = Denominator->getType();
 | |
| 
 | |
|     for (const SCEV *Op : Numerator->operands()) {
 | |
|       const SCEV *Q, *R;
 | |
|       divide(SE, Op, Denominator, &Q, &R);
 | |
| 
 | |
|       // Bail out if types do not match.
 | |
|       if (Ty != Q->getType() || Ty != R->getType()) {
 | |
|         Quotient = Zero;
 | |
|         Remainder = Numerator;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       Qs.push_back(Q);
 | |
|       Rs.push_back(R);
 | |
|     }
 | |
| 
 | |
|     if (Qs.size() == 1) {
 | |
|       Quotient = Qs[0];
 | |
|       Remainder = Rs[0];
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Quotient = SE.getAddExpr(Qs);
 | |
|     Remainder = SE.getAddExpr(Rs);
 | |
|   }
 | |
| 
 | |
|   void visitMulExpr(const SCEVMulExpr *Numerator) {
 | |
|     SmallVector<const SCEV *, 2> Qs;
 | |
|     Type *Ty = Denominator->getType();
 | |
| 
 | |
|     bool FoundDenominatorTerm = false;
 | |
|     for (const SCEV *Op : Numerator->operands()) {
 | |
|       // Bail out if types do not match.
 | |
|       if (Ty != Op->getType()) {
 | |
|         Quotient = Zero;
 | |
|         Remainder = Numerator;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (FoundDenominatorTerm) {
 | |
|         Qs.push_back(Op);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check whether Denominator divides one of the product operands.
 | |
|       const SCEV *Q, *R;
 | |
|       divide(SE, Op, Denominator, &Q, &R);
 | |
|       if (!R->isZero()) {
 | |
|         Qs.push_back(Op);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Bail out if types do not match.
 | |
|       if (Ty != Q->getType()) {
 | |
|         Quotient = Zero;
 | |
|         Remainder = Numerator;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       FoundDenominatorTerm = true;
 | |
|       Qs.push_back(Q);
 | |
|     }
 | |
| 
 | |
|     if (FoundDenominatorTerm) {
 | |
|       Remainder = Zero;
 | |
|       if (Qs.size() == 1)
 | |
|         Quotient = Qs[0];
 | |
|       else
 | |
|         Quotient = SE.getMulExpr(Qs);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (!isa<SCEVUnknown>(Denominator)) {
 | |
|       Quotient = Zero;
 | |
|       Remainder = Numerator;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
 | |
|     ValueToValueMap RewriteMap;
 | |
|     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
 | |
|         cast<SCEVConstant>(Zero)->getValue();
 | |
|     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
 | |
| 
 | |
|     if (Remainder->isZero()) {
 | |
|       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
 | |
|       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
 | |
|           cast<SCEVConstant>(One)->getValue();
 | |
|       Quotient =
 | |
|           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Quotient is (Numerator - Remainder) divided by Denominator.
 | |
|     const SCEV *Q, *R;
 | |
|     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
 | |
|     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
 | |
|       // This SCEV does not seem to simplify: fail the division here.
 | |
|       Quotient = Zero;
 | |
|       Remainder = Numerator;
 | |
|       return;
 | |
|     }
 | |
|     divide(SE, Diff, Denominator, &Q, &R);
 | |
|     assert(R == Zero &&
 | |
|            "(Numerator - Remainder) should evenly divide Denominator");
 | |
|     Quotient = Q;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
 | |
|                const SCEV *Denominator)
 | |
|       : SE(S), Denominator(Denominator) {
 | |
|     Zero = SE.getConstant(Denominator->getType(), 0);
 | |
|     One = SE.getConstant(Denominator->getType(), 1);
 | |
| 
 | |
|     // By default, we don't know how to divide Expr by Denominator.
 | |
|     // Providing the default here simplifies the rest of the code.
 | |
|     Quotient = Zero;
 | |
|     Remainder = Numerator;
 | |
|   }
 | |
| 
 | |
|   ScalarEvolution &SE;
 | |
|   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Simple SCEV method implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
 | |
| /// Assume, K > 0.
 | |
| static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
 | |
|                                        ScalarEvolution &SE,
 | |
|                                        Type *ResultTy) {
 | |
|   // Handle the simplest case efficiently.
 | |
|   if (K == 1)
 | |
|     return SE.getTruncateOrZeroExtend(It, ResultTy);
 | |
| 
 | |
|   // We are using the following formula for BC(It, K):
 | |
|   //
 | |
|   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
 | |
|   //
 | |
|   // Suppose, W is the bitwidth of the return value.  We must be prepared for
 | |
|   // overflow.  Hence, we must assure that the result of our computation is
 | |
|   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
 | |
|   // safe in modular arithmetic.
 | |
|   //
 | |
|   // However, this code doesn't use exactly that formula; the formula it uses
 | |
|   // is something like the following, where T is the number of factors of 2 in
 | |
|   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
 | |
|   // exponentiation:
 | |
|   //
 | |
|   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
 | |
|   //
 | |
|   // This formula is trivially equivalent to the previous formula.  However,
 | |
|   // this formula can be implemented much more efficiently.  The trick is that
 | |
|   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
 | |
|   // arithmetic.  To do exact division in modular arithmetic, all we have
 | |
|   // to do is multiply by the inverse.  Therefore, this step can be done at
 | |
|   // width W.
 | |
|   //
 | |
|   // The next issue is how to safely do the division by 2^T.  The way this
 | |
|   // is done is by doing the multiplication step at a width of at least W + T
 | |
|   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
 | |
|   // when we perform the division by 2^T (which is equivalent to a right shift
 | |
|   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
 | |
|   // truncated out after the division by 2^T.
 | |
|   //
 | |
|   // In comparison to just directly using the first formula, this technique
 | |
|   // is much more efficient; using the first formula requires W * K bits,
 | |
|   // but this formula less than W + K bits. Also, the first formula requires
 | |
|   // a division step, whereas this formula only requires multiplies and shifts.
 | |
|   //
 | |
|   // It doesn't matter whether the subtraction step is done in the calculation
 | |
|   // width or the input iteration count's width; if the subtraction overflows,
 | |
|   // the result must be zero anyway.  We prefer here to do it in the width of
 | |
|   // the induction variable because it helps a lot for certain cases; CodeGen
 | |
|   // isn't smart enough to ignore the overflow, which leads to much less
 | |
|   // efficient code if the width of the subtraction is wider than the native
 | |
|   // register width.
 | |
|   //
 | |
|   // (It's possible to not widen at all by pulling out factors of 2 before
 | |
|   // the multiplication; for example, K=2 can be calculated as
 | |
|   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
 | |
|   // extra arithmetic, so it's not an obvious win, and it gets
 | |
|   // much more complicated for K > 3.)
 | |
| 
 | |
|   // Protection from insane SCEVs; this bound is conservative,
 | |
|   // but it probably doesn't matter.
 | |
|   if (K > 1000)
 | |
|     return SE.getCouldNotCompute();
 | |
| 
 | |
|   unsigned W = SE.getTypeSizeInBits(ResultTy);
 | |
| 
 | |
|   // Calculate K! / 2^T and T; we divide out the factors of two before
 | |
|   // multiplying for calculating K! / 2^T to avoid overflow.
 | |
|   // Other overflow doesn't matter because we only care about the bottom
 | |
|   // W bits of the result.
 | |
|   APInt OddFactorial(W, 1);
 | |
|   unsigned T = 1;
 | |
|   for (unsigned i = 3; i <= K; ++i) {
 | |
|     APInt Mult(W, i);
 | |
|     unsigned TwoFactors = Mult.countTrailingZeros();
 | |
|     T += TwoFactors;
 | |
|     Mult = Mult.lshr(TwoFactors);
 | |
|     OddFactorial *= Mult;
 | |
|   }
 | |
| 
 | |
|   // We need at least W + T bits for the multiplication step
 | |
|   unsigned CalculationBits = W + T;
 | |
| 
 | |
|   // Calculate 2^T, at width T+W.
 | |
|   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
 | |
| 
 | |
|   // Calculate the multiplicative inverse of K! / 2^T;
 | |
|   // this multiplication factor will perform the exact division by
 | |
|   // K! / 2^T.
 | |
|   APInt Mod = APInt::getSignedMinValue(W+1);
 | |
|   APInt MultiplyFactor = OddFactorial.zext(W+1);
 | |
|   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
 | |
|   MultiplyFactor = MultiplyFactor.trunc(W);
 | |
| 
 | |
|   // Calculate the product, at width T+W
 | |
|   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
 | |
|                                                       CalculationBits);
 | |
|   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
 | |
|   for (unsigned i = 1; i != K; ++i) {
 | |
|     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
 | |
|     Dividend = SE.getMulExpr(Dividend,
 | |
|                              SE.getTruncateOrZeroExtend(S, CalculationTy));
 | |
|   }
 | |
| 
 | |
|   // Divide by 2^T
 | |
|   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
 | |
| 
 | |
|   // Truncate the result, and divide by K! / 2^T.
 | |
| 
 | |
|   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
 | |
|                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
 | |
| }
 | |
| 
 | |
| /// evaluateAtIteration - Return the value of this chain of recurrences at
 | |
| /// the specified iteration number.  We can evaluate this recurrence by
 | |
| /// multiplying each element in the chain by the binomial coefficient
 | |
| /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
 | |
| ///
 | |
| ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
 | |
| ///
 | |
| /// where BC(It, k) stands for binomial coefficient.
 | |
| ///
 | |
| const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
 | |
|                                                 ScalarEvolution &SE) const {
 | |
|   const SCEV *Result = getStart();
 | |
|   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|     // The computation is correct in the face of overflow provided that the
 | |
|     // multiplication is performed _after_ the evaluation of the binomial
 | |
|     // coefficient.
 | |
|     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
 | |
|     if (isa<SCEVCouldNotCompute>(Coeff))
 | |
|       return Coeff;
 | |
| 
 | |
|     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    SCEV Expression folder implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
 | |
|                                              Type *Ty) {
 | |
|   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
 | |
|          "This is not a truncating conversion!");
 | |
|   assert(isSCEVable(Ty) &&
 | |
|          "This is not a conversion to a SCEVable type!");
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scTruncate);
 | |
|   ID.AddPointer(Op);
 | |
|   ID.AddPointer(Ty);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
| 
 | |
|   // Fold if the operand is constant.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getConstant(
 | |
|       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
 | |
| 
 | |
|   // trunc(trunc(x)) --> trunc(x)
 | |
|   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
 | |
|     return getTruncateExpr(ST->getOperand(), Ty);
 | |
| 
 | |
|   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
 | |
|   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
 | |
|     return getTruncateOrSignExtend(SS->getOperand(), Ty);
 | |
| 
 | |
|   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
 | |
|   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | |
|     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
 | |
| 
 | |
|   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
 | |
|   // eliminate all the truncates.
 | |
|   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
 | |
|     SmallVector<const SCEV *, 4> Operands;
 | |
|     bool hasTrunc = false;
 | |
|     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
 | |
|       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
 | |
|       hasTrunc = isa<SCEVTruncateExpr>(S);
 | |
|       Operands.push_back(S);
 | |
|     }
 | |
|     if (!hasTrunc)
 | |
|       return getAddExpr(Operands);
 | |
|     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
 | |
|   }
 | |
| 
 | |
|   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
 | |
|   // eliminate all the truncates.
 | |
|   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
 | |
|     SmallVector<const SCEV *, 4> Operands;
 | |
|     bool hasTrunc = false;
 | |
|     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
 | |
|       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
 | |
|       hasTrunc = isa<SCEVTruncateExpr>(S);
 | |
|       Operands.push_back(S);
 | |
|     }
 | |
|     if (!hasTrunc)
 | |
|       return getMulExpr(Operands);
 | |
|     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
 | |
|   }
 | |
| 
 | |
|   // If the input value is a chrec scev, truncate the chrec's operands.
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
 | |
|     SmallVector<const SCEV *, 4> Operands;
 | |
|     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | |
|       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
 | |
|     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
 | |
|   }
 | |
| 
 | |
|   // The cast wasn't folded; create an explicit cast node. We can reuse
 | |
|   // the existing insert position since if we get here, we won't have
 | |
|   // made any changes which would invalidate it.
 | |
|   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
 | |
|                                                  Op, Ty);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| // Get the limit of a recurrence such that incrementing by Step cannot cause
 | |
| // signed overflow as long as the value of the recurrence within the
 | |
| // loop does not exceed this limit before incrementing.
 | |
| static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
 | |
|                                                  ICmpInst::Predicate *Pred,
 | |
|                                                  ScalarEvolution *SE) {
 | |
|   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
 | |
|   if (SE->isKnownPositive(Step)) {
 | |
|     *Pred = ICmpInst::ICMP_SLT;
 | |
|     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
 | |
|                            SE->getSignedRange(Step).getSignedMax());
 | |
|   }
 | |
|   if (SE->isKnownNegative(Step)) {
 | |
|     *Pred = ICmpInst::ICMP_SGT;
 | |
|     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
 | |
|                            SE->getSignedRange(Step).getSignedMin());
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Get the limit of a recurrence such that incrementing by Step cannot cause
 | |
| // unsigned overflow as long as the value of the recurrence within the loop does
 | |
| // not exceed this limit before incrementing.
 | |
| static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
 | |
|                                                    ICmpInst::Predicate *Pred,
 | |
|                                                    ScalarEvolution *SE) {
 | |
|   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
 | |
|   *Pred = ICmpInst::ICMP_ULT;
 | |
| 
 | |
|   return SE->getConstant(APInt::getMinValue(BitWidth) -
 | |
|                          SE->getUnsignedRange(Step).getUnsignedMax());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct ExtendOpTraitsBase {
 | |
|   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
 | |
| };
 | |
| 
 | |
| // Used to make code generic over signed and unsigned overflow.
 | |
| template <typename ExtendOp> struct ExtendOpTraits {
 | |
|   // Members present:
 | |
|   //
 | |
|   // static const SCEV::NoWrapFlags WrapType;
 | |
|   //
 | |
|   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
 | |
|   //
 | |
|   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
 | |
|   //                                           ICmpInst::Predicate *Pred,
 | |
|   //                                           ScalarEvolution *SE);
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
 | |
|   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
 | |
| 
 | |
|   static const GetExtendExprTy GetExtendExpr;
 | |
| 
 | |
|   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
 | |
|                                              ICmpInst::Predicate *Pred,
 | |
|                                              ScalarEvolution *SE) {
 | |
|     return getSignedOverflowLimitForStep(Step, Pred, SE);
 | |
|   }
 | |
| };
 | |
| 
 | |
| const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
 | |
|     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
 | |
| 
 | |
| template <>
 | |
| struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
 | |
|   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
 | |
| 
 | |
|   static const GetExtendExprTy GetExtendExpr;
 | |
| 
 | |
|   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
 | |
|                                              ICmpInst::Predicate *Pred,
 | |
|                                              ScalarEvolution *SE) {
 | |
|     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
 | |
|   }
 | |
| };
 | |
| 
 | |
| const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
 | |
|     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
 | |
| }
 | |
| 
 | |
| // The recurrence AR has been shown to have no signed/unsigned wrap or something
 | |
| // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
 | |
| // easily prove NSW/NUW for its preincrement or postincrement sibling. This
 | |
| // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
 | |
| // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
 | |
| // expression "Step + sext/zext(PreIncAR)" is congruent with
 | |
| // "sext/zext(PostIncAR)"
 | |
| template <typename ExtendOpTy>
 | |
| static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
 | |
|                                         ScalarEvolution *SE) {
 | |
|   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
 | |
|   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
 | |
| 
 | |
|   const Loop *L = AR->getLoop();
 | |
|   const SCEV *Start = AR->getStart();
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|   // Check for a simple looking step prior to loop entry.
 | |
|   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
 | |
|   if (!SA)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
 | |
|   // subtraction is expensive. For this purpose, perform a quick and dirty
 | |
|   // difference, by checking for Step in the operand list.
 | |
|   SmallVector<const SCEV *, 4> DiffOps;
 | |
|   for (const SCEV *Op : SA->operands())
 | |
|     if (Op != Step)
 | |
|       DiffOps.push_back(Op);
 | |
| 
 | |
|   if (DiffOps.size() == SA->getNumOperands())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
 | |
|   // `Step`:
 | |
| 
 | |
|   // 1. NSW/NUW flags on the step increment.
 | |
|   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
 | |
|   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
 | |
|       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
 | |
| 
 | |
|   // WARNING: FIXME: the optimization below assumes that a sign/zero-overflowing
 | |
|   // nsw/nuw operation is undefined behavior.  This is strictly more aggressive
 | |
|   // than the interpretation of nsw in other parts of LLVM (for instance, they
 | |
|   // may unconditionally hoist nsw/nuw arithmetic through control flow).  This
 | |
|   // logic needs to be revisited once we have a consistent semantics for poison
 | |
|   // values.
 | |
|   //
 | |
|   // "{S,+,X} is <nsw>/<nuw>" and "{S,+,X} is evaluated at least once" implies
 | |
|   // "S+X does not sign/unsign-overflow" (we'd have undefined behavior if it
 | |
|   // did).  If `L->getExitingBlock() == L->getLoopLatch()` then `PreAR` (=
 | |
|   // {S,+,X}<nsw>/<nuw>) is evaluated every-time `AR` (= {S+X,+,X}) is
 | |
|   // evaluated, and hence within `AR` we are safe to assume that "S+X" will not
 | |
|   // sign/unsign-overflow.
 | |
|   //
 | |
| 
 | |
|   BasicBlock *ExitingBlock = L->getExitingBlock();
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   if (PreAR && PreAR->getNoWrapFlags(WrapType) && ExitingBlock != nullptr &&
 | |
|       ExitingBlock == LatchBlock)
 | |
|     return PreStart;
 | |
| 
 | |
|   // 2. Direct overflow check on the step operation's expression.
 | |
|   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
 | |
|   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
 | |
|   const SCEV *OperandExtendedStart =
 | |
|       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
 | |
|                      (SE->*GetExtendExpr)(Step, WideTy));
 | |
|   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
 | |
|     if (PreAR && AR->getNoWrapFlags(WrapType)) {
 | |
|       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
 | |
|       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
 | |
|       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
 | |
|       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
 | |
|     }
 | |
|     return PreStart;
 | |
|   }
 | |
| 
 | |
|   // 3. Loop precondition.
 | |
|   ICmpInst::Predicate Pred;
 | |
|   const SCEV *OverflowLimit =
 | |
|       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
 | |
| 
 | |
|   if (OverflowLimit &&
 | |
|       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
 | |
|     return PreStart;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Get the normalized zero or sign extended expression for this AddRec's Start.
 | |
| template <typename ExtendOpTy>
 | |
| static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
 | |
|                                         ScalarEvolution *SE) {
 | |
|   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
 | |
| 
 | |
|   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
 | |
|   if (!PreStart)
 | |
|     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
 | |
| 
 | |
|   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
 | |
|                         (SE->*GetExtendExpr)(PreStart, Ty));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
 | |
|                                                Type *Ty) {
 | |
|   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | |
|          "This is not an extending conversion!");
 | |
|   assert(isSCEVable(Ty) &&
 | |
|          "This is not a conversion to a SCEVable type!");
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   // Fold if the operand is constant.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getConstant(
 | |
|       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
 | |
| 
 | |
|   // zext(zext(x)) --> zext(x)
 | |
|   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | |
|     return getZeroExtendExpr(SZ->getOperand(), Ty);
 | |
| 
 | |
|   // Before doing any expensive analysis, check to see if we've already
 | |
|   // computed a SCEV for this Op and Ty.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scZeroExtend);
 | |
|   ID.AddPointer(Op);
 | |
|   ID.AddPointer(Ty);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
| 
 | |
|   // zext(trunc(x)) --> zext(x) or x or trunc(x)
 | |
|   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
 | |
|     // It's possible the bits taken off by the truncate were all zero bits. If
 | |
|     // so, we should be able to simplify this further.
 | |
|     const SCEV *X = ST->getOperand();
 | |
|     ConstantRange CR = getUnsignedRange(X);
 | |
|     unsigned TruncBits = getTypeSizeInBits(ST->getType());
 | |
|     unsigned NewBits = getTypeSizeInBits(Ty);
 | |
|     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
 | |
|             CR.zextOrTrunc(NewBits)))
 | |
|       return getTruncateOrZeroExtend(X, Ty);
 | |
|   }
 | |
| 
 | |
|   // If the input value is a chrec scev, and we can prove that the value
 | |
|   // did not overflow the old, smaller, value, we can zero extend all of the
 | |
|   // operands (often constants).  This allows analysis of something like
 | |
|   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
 | |
|     if (AR->isAffine()) {
 | |
|       const SCEV *Start = AR->getStart();
 | |
|       const SCEV *Step = AR->getStepRecurrence(*this);
 | |
|       unsigned BitWidth = getTypeSizeInBits(AR->getType());
 | |
|       const Loop *L = AR->getLoop();
 | |
| 
 | |
|       // If we have special knowledge that this addrec won't overflow,
 | |
|       // we don't need to do any further analysis.
 | |
|       if (AR->getNoWrapFlags(SCEV::FlagNUW))
 | |
|         return getAddRecExpr(
 | |
|             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
 | |
|             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
 | |
| 
 | |
|       // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | |
|       // Note that this serves two purposes: It filters out loops that are
 | |
|       // simply not analyzable, and it covers the case where this code is
 | |
|       // being called from within backedge-taken count analysis, such that
 | |
|       // attempting to ask for the backedge-taken count would likely result
 | |
|       // in infinite recursion. In the later case, the analysis code will
 | |
|       // cope with a conservative value, and it will take care to purge
 | |
|       // that value once it has finished.
 | |
|       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
 | |
|       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
 | |
|         // Manually compute the final value for AR, checking for
 | |
|         // overflow.
 | |
| 
 | |
|         // Check whether the backedge-taken count can be losslessly casted to
 | |
|         // the addrec's type. The count is always unsigned.
 | |
|         const SCEV *CastedMaxBECount =
 | |
|           getTruncateOrZeroExtend(MaxBECount, Start->getType());
 | |
|         const SCEV *RecastedMaxBECount =
 | |
|           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
 | |
|         if (MaxBECount == RecastedMaxBECount) {
 | |
|           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
 | |
|           // Check whether Start+Step*MaxBECount has no unsigned overflow.
 | |
|           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
 | |
|           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
 | |
|           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
 | |
|           const SCEV *WideMaxBECount =
 | |
|             getZeroExtendExpr(CastedMaxBECount, WideTy);
 | |
|           const SCEV *OperandExtendedAdd =
 | |
|             getAddExpr(WideStart,
 | |
|                        getMulExpr(WideMaxBECount,
 | |
|                                   getZeroExtendExpr(Step, WideTy)));
 | |
|           if (ZAdd == OperandExtendedAdd) {
 | |
|             // Cache knowledge of AR NUW, which is propagated to this AddRec.
 | |
|             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
 | |
|                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
 | |
|           }
 | |
|           // Similar to above, only this time treat the step value as signed.
 | |
|           // This covers loops that count down.
 | |
|           OperandExtendedAdd =
 | |
|             getAddExpr(WideStart,
 | |
|                        getMulExpr(WideMaxBECount,
 | |
|                                   getSignExtendExpr(Step, WideTy)));
 | |
|           if (ZAdd == OperandExtendedAdd) {
 | |
|             // Cache knowledge of AR NW, which is propagated to this AddRec.
 | |
|             // Negative step causes unsigned wrap, but it still can't self-wrap.
 | |
|             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
 | |
|                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If the backedge is guarded by a comparison with the pre-inc value
 | |
|         // the addrec is safe. Also, if the entry is guarded by a comparison
 | |
|         // with the start value and the backedge is guarded by a comparison
 | |
|         // with the post-inc value, the addrec is safe.
 | |
|         if (isKnownPositive(Step)) {
 | |
|           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
 | |
|                                       getUnsignedRange(Step).getUnsignedMax());
 | |
|           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
 | |
|               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
 | |
|                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
 | |
|                                            AR->getPostIncExpr(*this), N))) {
 | |
|             // Cache knowledge of AR NUW, which is propagated to this AddRec.
 | |
|             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
 | |
|                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
 | |
|           }
 | |
|         } else if (isKnownNegative(Step)) {
 | |
|           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
 | |
|                                       getSignedRange(Step).getSignedMin());
 | |
|           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
 | |
|               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
 | |
|                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
 | |
|                                            AR->getPostIncExpr(*this), N))) {
 | |
|             // Cache knowledge of AR NW, which is propagated to this AddRec.
 | |
|             // Negative step causes unsigned wrap, but it still can't self-wrap.
 | |
|             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
 | |
|                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // The cast wasn't folded; create an explicit cast node.
 | |
|   // Recompute the insert position, as it may have been invalidated.
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
 | |
|                                                    Op, Ty);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
 | |
|                                                Type *Ty) {
 | |
|   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | |
|          "This is not an extending conversion!");
 | |
|   assert(isSCEVable(Ty) &&
 | |
|          "This is not a conversion to a SCEVable type!");
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   // Fold if the operand is constant.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getConstant(
 | |
|       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
 | |
| 
 | |
|   // sext(sext(x)) --> sext(x)
 | |
|   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
 | |
|     return getSignExtendExpr(SS->getOperand(), Ty);
 | |
| 
 | |
|   // sext(zext(x)) --> zext(x)
 | |
|   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | |
|     return getZeroExtendExpr(SZ->getOperand(), Ty);
 | |
| 
 | |
|   // Before doing any expensive analysis, check to see if we've already
 | |
|   // computed a SCEV for this Op and Ty.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scSignExtend);
 | |
|   ID.AddPointer(Op);
 | |
|   ID.AddPointer(Ty);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
| 
 | |
|   // If the input value is provably positive, build a zext instead.
 | |
|   if (isKnownNonNegative(Op))
 | |
|     return getZeroExtendExpr(Op, Ty);
 | |
| 
 | |
|   // sext(trunc(x)) --> sext(x) or x or trunc(x)
 | |
|   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
 | |
|     // It's possible the bits taken off by the truncate were all sign bits. If
 | |
|     // so, we should be able to simplify this further.
 | |
|     const SCEV *X = ST->getOperand();
 | |
|     ConstantRange CR = getSignedRange(X);
 | |
|     unsigned TruncBits = getTypeSizeInBits(ST->getType());
 | |
|     unsigned NewBits = getTypeSizeInBits(Ty);
 | |
|     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
 | |
|             CR.sextOrTrunc(NewBits)))
 | |
|       return getTruncateOrSignExtend(X, Ty);
 | |
|   }
 | |
| 
 | |
|   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
 | |
|   if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
 | |
|     if (SA->getNumOperands() == 2) {
 | |
|       auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
 | |
|       auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
 | |
|       if (SMul && SC1) {
 | |
|         if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
 | |
|           const APInt &C1 = SC1->getValue()->getValue();
 | |
|           const APInt &C2 = SC2->getValue()->getValue();
 | |
|           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
 | |
|               C2.ugt(C1) && C2.isPowerOf2())
 | |
|             return getAddExpr(getSignExtendExpr(SC1, Ty),
 | |
|                               getSignExtendExpr(SMul, Ty));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // If the input value is a chrec scev, and we can prove that the value
 | |
|   // did not overflow the old, smaller, value, we can sign extend all of the
 | |
|   // operands (often constants).  This allows analysis of something like
 | |
|   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
 | |
|     if (AR->isAffine()) {
 | |
|       const SCEV *Start = AR->getStart();
 | |
|       const SCEV *Step = AR->getStepRecurrence(*this);
 | |
|       unsigned BitWidth = getTypeSizeInBits(AR->getType());
 | |
|       const Loop *L = AR->getLoop();
 | |
| 
 | |
|       // If we have special knowledge that this addrec won't overflow,
 | |
|       // we don't need to do any further analysis.
 | |
|       if (AR->getNoWrapFlags(SCEV::FlagNSW))
 | |
|         return getAddRecExpr(
 | |
|             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
 | |
|             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
 | |
| 
 | |
|       // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | |
|       // Note that this serves two purposes: It filters out loops that are
 | |
|       // simply not analyzable, and it covers the case where this code is
 | |
|       // being called from within backedge-taken count analysis, such that
 | |
|       // attempting to ask for the backedge-taken count would likely result
 | |
|       // in infinite recursion. In the later case, the analysis code will
 | |
|       // cope with a conservative value, and it will take care to purge
 | |
|       // that value once it has finished.
 | |
|       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
 | |
|       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
 | |
|         // Manually compute the final value for AR, checking for
 | |
|         // overflow.
 | |
| 
 | |
|         // Check whether the backedge-taken count can be losslessly casted to
 | |
|         // the addrec's type. The count is always unsigned.
 | |
|         const SCEV *CastedMaxBECount =
 | |
|           getTruncateOrZeroExtend(MaxBECount, Start->getType());
 | |
|         const SCEV *RecastedMaxBECount =
 | |
|           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
 | |
|         if (MaxBECount == RecastedMaxBECount) {
 | |
|           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
 | |
|           // Check whether Start+Step*MaxBECount has no signed overflow.
 | |
|           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
 | |
|           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
 | |
|           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
 | |
|           const SCEV *WideMaxBECount =
 | |
|             getZeroExtendExpr(CastedMaxBECount, WideTy);
 | |
|           const SCEV *OperandExtendedAdd =
 | |
|             getAddExpr(WideStart,
 | |
|                        getMulExpr(WideMaxBECount,
 | |
|                                   getSignExtendExpr(Step, WideTy)));
 | |
|           if (SAdd == OperandExtendedAdd) {
 | |
|             // Cache knowledge of AR NSW, which is propagated to this AddRec.
 | |
|             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
 | |
|                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
 | |
|           }
 | |
|           // Similar to above, only this time treat the step value as unsigned.
 | |
|           // This covers loops that count up with an unsigned step.
 | |
|           OperandExtendedAdd =
 | |
|             getAddExpr(WideStart,
 | |
|                        getMulExpr(WideMaxBECount,
 | |
|                                   getZeroExtendExpr(Step, WideTy)));
 | |
|           if (SAdd == OperandExtendedAdd) {
 | |
|             // If AR wraps around then
 | |
|             //
 | |
|             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
 | |
|             // => SAdd != OperandExtendedAdd
 | |
|             //
 | |
|             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
 | |
|             // (SAdd == OperandExtendedAdd => AR is NW)
 | |
| 
 | |
|             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
 | |
| 
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
 | |
|                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If the backedge is guarded by a comparison with the pre-inc value
 | |
|         // the addrec is safe. Also, if the entry is guarded by a comparison
 | |
|         // with the start value and the backedge is guarded by a comparison
 | |
|         // with the post-inc value, the addrec is safe.
 | |
|         ICmpInst::Predicate Pred;
 | |
|         const SCEV *OverflowLimit =
 | |
|             getSignedOverflowLimitForStep(Step, &Pred, this);
 | |
|         if (OverflowLimit &&
 | |
|             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
 | |
|              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
 | |
|               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
 | |
|                                           OverflowLimit)))) {
 | |
|           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
 | |
|           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
 | |
|           return getAddRecExpr(
 | |
|               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
 | |
|               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
 | |
|         }
 | |
|       }
 | |
|       // If Start and Step are constants, check if we can apply this
 | |
|       // transformation:
 | |
|       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
 | |
|       auto SC1 = dyn_cast<SCEVConstant>(Start);
 | |
|       auto SC2 = dyn_cast<SCEVConstant>(Step);
 | |
|       if (SC1 && SC2) {
 | |
|         const APInt &C1 = SC1->getValue()->getValue();
 | |
|         const APInt &C2 = SC2->getValue()->getValue();
 | |
|         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
 | |
|             C2.isPowerOf2()) {
 | |
|           Start = getSignExtendExpr(Start, Ty);
 | |
|           const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
 | |
|                                             L, AR->getNoWrapFlags());
 | |
|           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // The cast wasn't folded; create an explicit cast node.
 | |
|   // Recompute the insert position, as it may have been invalidated.
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
 | |
|                                                    Op, Ty);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// getAnyExtendExpr - Return a SCEV for the given operand extended with
 | |
| /// unspecified bits out to the given type.
 | |
| ///
 | |
| const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
 | |
|                                               Type *Ty) {
 | |
|   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | |
|          "This is not an extending conversion!");
 | |
|   assert(isSCEVable(Ty) &&
 | |
|          "This is not a conversion to a SCEVable type!");
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   // Sign-extend negative constants.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     if (SC->getValue()->getValue().isNegative())
 | |
|       return getSignExtendExpr(Op, Ty);
 | |
| 
 | |
|   // Peel off a truncate cast.
 | |
|   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
 | |
|     const SCEV *NewOp = T->getOperand();
 | |
|     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
 | |
|       return getAnyExtendExpr(NewOp, Ty);
 | |
|     return getTruncateOrNoop(NewOp, Ty);
 | |
|   }
 | |
| 
 | |
|   // Next try a zext cast. If the cast is folded, use it.
 | |
|   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
 | |
|   if (!isa<SCEVZeroExtendExpr>(ZExt))
 | |
|     return ZExt;
 | |
| 
 | |
|   // Next try a sext cast. If the cast is folded, use it.
 | |
|   const SCEV *SExt = getSignExtendExpr(Op, Ty);
 | |
|   if (!isa<SCEVSignExtendExpr>(SExt))
 | |
|     return SExt;
 | |
| 
 | |
|   // Force the cast to be folded into the operands of an addrec.
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
 | |
|     SmallVector<const SCEV *, 4> Ops;
 | |
|     for (const SCEV *Op : AR->operands())
 | |
|       Ops.push_back(getAnyExtendExpr(Op, Ty));
 | |
|     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
 | |
|   }
 | |
| 
 | |
|   // If the expression is obviously signed, use the sext cast value.
 | |
|   if (isa<SCEVSMaxExpr>(Op))
 | |
|     return SExt;
 | |
| 
 | |
|   // Absent any other information, use the zext cast value.
 | |
|   return ZExt;
 | |
| }
 | |
| 
 | |
| /// CollectAddOperandsWithScales - Process the given Ops list, which is
 | |
| /// a list of operands to be added under the given scale, update the given
 | |
| /// map. This is a helper function for getAddRecExpr. As an example of
 | |
| /// what it does, given a sequence of operands that would form an add
 | |
| /// expression like this:
 | |
| ///
 | |
| ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
 | |
| ///
 | |
| /// where A and B are constants, update the map with these values:
 | |
| ///
 | |
| ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
 | |
| ///
 | |
| /// and add 13 + A*B*29 to AccumulatedConstant.
 | |
| /// This will allow getAddRecExpr to produce this:
 | |
| ///
 | |
| ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
 | |
| ///
 | |
| /// This form often exposes folding opportunities that are hidden in
 | |
| /// the original operand list.
 | |
| ///
 | |
| /// Return true iff it appears that any interesting folding opportunities
 | |
| /// may be exposed. This helps getAddRecExpr short-circuit extra work in
 | |
| /// the common case where no interesting opportunities are present, and
 | |
| /// is also used as a check to avoid infinite recursion.
 | |
| ///
 | |
| static bool
 | |
| CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
 | |
|                              SmallVectorImpl<const SCEV *> &NewOps,
 | |
|                              APInt &AccumulatedConstant,
 | |
|                              const SCEV *const *Ops, size_t NumOperands,
 | |
|                              const APInt &Scale,
 | |
|                              ScalarEvolution &SE) {
 | |
|   bool Interesting = false;
 | |
| 
 | |
|   // Iterate over the add operands. They are sorted, with constants first.
 | |
|   unsigned i = 0;
 | |
|   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
 | |
|     ++i;
 | |
|     // Pull a buried constant out to the outside.
 | |
|     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
 | |
|       Interesting = true;
 | |
|     AccumulatedConstant += Scale * C->getValue()->getValue();
 | |
|   }
 | |
| 
 | |
|   // Next comes everything else. We're especially interested in multiplies
 | |
|   // here, but they're in the middle, so just visit the rest with one loop.
 | |
|   for (; i != NumOperands; ++i) {
 | |
|     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
 | |
|     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
 | |
|       APInt NewScale =
 | |
|         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
 | |
|       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
 | |
|         // A multiplication of a constant with another add; recurse.
 | |
|         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
 | |
|         Interesting |=
 | |
|           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
 | |
|                                        Add->op_begin(), Add->getNumOperands(),
 | |
|                                        NewScale, SE);
 | |
|       } else {
 | |
|         // A multiplication of a constant with some other value. Update
 | |
|         // the map.
 | |
|         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
 | |
|         const SCEV *Key = SE.getMulExpr(MulOps);
 | |
|         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
 | |
|           M.insert(std::make_pair(Key, NewScale));
 | |
|         if (Pair.second) {
 | |
|           NewOps.push_back(Pair.first->first);
 | |
|         } else {
 | |
|           Pair.first->second += NewScale;
 | |
|           // The map already had an entry for this value, which may indicate
 | |
|           // a folding opportunity.
 | |
|           Interesting = true;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // An ordinary operand. Update the map.
 | |
|       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
 | |
|         M.insert(std::make_pair(Ops[i], Scale));
 | |
|       if (Pair.second) {
 | |
|         NewOps.push_back(Pair.first->first);
 | |
|       } else {
 | |
|         Pair.first->second += Scale;
 | |
|         // The map already had an entry for this value, which may indicate
 | |
|         // a folding opportunity.
 | |
|         Interesting = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Interesting;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct APIntCompare {
 | |
|     bool operator()(const APInt &LHS, const APInt &RHS) const {
 | |
|       return LHS.ult(RHS);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
 | |
| // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
 | |
| // can't-overflow flags for the operation if possible.
 | |
| static SCEV::NoWrapFlags
 | |
| StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
 | |
|                       const SmallVectorImpl<const SCEV *> &Ops,
 | |
|                       SCEV::NoWrapFlags OldFlags) {
 | |
|   using namespace std::placeholders;
 | |
| 
 | |
|   bool CanAnalyze =
 | |
|       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
 | |
|   (void)CanAnalyze;
 | |
|   assert(CanAnalyze && "don't call from other places!");
 | |
| 
 | |
|   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
 | |
|   SCEV::NoWrapFlags SignOrUnsignWrap =
 | |
|       ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
 | |
| 
 | |
|   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
 | |
|   auto IsKnownNonNegative =
 | |
|     std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
 | |
| 
 | |
|   if (SignOrUnsignWrap == SCEV::FlagNSW &&
 | |
|       std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
 | |
|     return ScalarEvolution::setFlags(OldFlags,
 | |
|                                      (SCEV::NoWrapFlags)SignOrUnsignMask);
 | |
| 
 | |
|   return OldFlags;
 | |
| }
 | |
| 
 | |
| /// getAddExpr - Get a canonical add expression, or something simpler if
 | |
| /// possible.
 | |
| const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                                         SCEV::NoWrapFlags Flags) {
 | |
|   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
 | |
|          "only nuw or nsw allowed");
 | |
|   assert(!Ops.empty() && "Cannot get empty add!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
 | |
|            "SCEVAddExpr operand types don't match!");
 | |
| #endif
 | |
| 
 | |
|   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops, LI);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       Ops[0] = getConstant(LHSC->getValue()->getValue() +
 | |
|                            RHSC->getValue()->getValue());
 | |
|       if (Ops.size() == 2) return Ops[0];
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant zero being added, strip it off.
 | |
|     if (LHSC->getValue()->isZero()) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     }
 | |
| 
 | |
|     if (Ops.size() == 1) return Ops[0];
 | |
|   }
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list more than
 | |
|   // once.  If so, merge them together into an multiply expression.  Since we
 | |
|   // sorted the list, these values are required to be adjacent.
 | |
|   Type *Ty = Ops[0]->getType();
 | |
|   bool FoundMatch = false;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
 | |
|     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
 | |
|       // Scan ahead to count how many equal operands there are.
 | |
|       unsigned Count = 2;
 | |
|       while (i+Count != e && Ops[i+Count] == Ops[i])
 | |
|         ++Count;
 | |
|       // Merge the values into a multiply.
 | |
|       const SCEV *Scale = getConstant(Ty, Count);
 | |
|       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
 | |
|       if (Ops.size() == Count)
 | |
|         return Mul;
 | |
|       Ops[i] = Mul;
 | |
|       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
 | |
|       --i; e -= Count - 1;
 | |
|       FoundMatch = true;
 | |
|     }
 | |
|   if (FoundMatch)
 | |
|     return getAddExpr(Ops, Flags);
 | |
| 
 | |
|   // Check for truncates. If all the operands are truncated from the same
 | |
|   // type, see if factoring out the truncate would permit the result to be
 | |
|   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
 | |
|   // if the contents of the resulting outer trunc fold to something simple.
 | |
|   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
 | |
|     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
 | |
|     Type *DstType = Trunc->getType();
 | |
|     Type *SrcType = Trunc->getOperand()->getType();
 | |
|     SmallVector<const SCEV *, 8> LargeOps;
 | |
|     bool Ok = true;
 | |
|     // Check all the operands to see if they can be represented in the
 | |
|     // source type of the truncate.
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
 | |
|         if (T->getOperand()->getType() != SrcType) {
 | |
|           Ok = false;
 | |
|           break;
 | |
|         }
 | |
|         LargeOps.push_back(T->getOperand());
 | |
|       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
 | |
|         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
 | |
|       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
 | |
|         SmallVector<const SCEV *, 8> LargeMulOps;
 | |
|         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
 | |
|           if (const SCEVTruncateExpr *T =
 | |
|                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
 | |
|             if (T->getOperand()->getType() != SrcType) {
 | |
|               Ok = false;
 | |
|               break;
 | |
|             }
 | |
|             LargeMulOps.push_back(T->getOperand());
 | |
|           } else if (const SCEVConstant *C =
 | |
|                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
 | |
|             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
 | |
|           } else {
 | |
|             Ok = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (Ok)
 | |
|           LargeOps.push_back(getMulExpr(LargeMulOps));
 | |
|       } else {
 | |
|         Ok = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (Ok) {
 | |
|       // Evaluate the expression in the larger type.
 | |
|       const SCEV *Fold = getAddExpr(LargeOps, Flags);
 | |
|       // If it folds to something simple, use it. Otherwise, don't.
 | |
|       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
 | |
|         return getTruncateExpr(Fold, DstType);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Skip past any other cast SCEVs.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // If there are add operands they would be next.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedAdd = false;
 | |
|     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
 | |
|       // If we have an add, expand the add operands onto the end of the operands
 | |
|       // list.
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       Ops.append(Add->op_begin(), Add->op_end());
 | |
|       DeletedAdd = true;
 | |
|     }
 | |
| 
 | |
|     // If we deleted at least one add, we added operands to the end of the list,
 | |
|     // and they are not necessarily sorted.  Recurse to resort and resimplify
 | |
|     // any operands we just acquired.
 | |
|     if (DeletedAdd)
 | |
|       return getAddExpr(Ops);
 | |
|   }
 | |
| 
 | |
|   // Skip over the add expression until we get to a multiply.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Check to see if there are any folding opportunities present with
 | |
|   // operands multiplied by constant values.
 | |
|   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
 | |
|     uint64_t BitWidth = getTypeSizeInBits(Ty);
 | |
|     DenseMap<const SCEV *, APInt> M;
 | |
|     SmallVector<const SCEV *, 8> NewOps;
 | |
|     APInt AccumulatedConstant(BitWidth, 0);
 | |
|     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
 | |
|                                      Ops.data(), Ops.size(),
 | |
|                                      APInt(BitWidth, 1), *this)) {
 | |
|       // Some interesting folding opportunity is present, so its worthwhile to
 | |
|       // re-generate the operands list. Group the operands by constant scale,
 | |
|       // to avoid multiplying by the same constant scale multiple times.
 | |
|       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
 | |
|       for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
 | |
|            E = NewOps.end(); I != E; ++I)
 | |
|         MulOpLists[M.find(*I)->second].push_back(*I);
 | |
|       // Re-generate the operands list.
 | |
|       Ops.clear();
 | |
|       if (AccumulatedConstant != 0)
 | |
|         Ops.push_back(getConstant(AccumulatedConstant));
 | |
|       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
 | |
|            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
 | |
|         if (I->first != 0)
 | |
|           Ops.push_back(getMulExpr(getConstant(I->first),
 | |
|                                    getAddExpr(I->second)));
 | |
|       if (Ops.empty())
 | |
|         return getConstant(Ty, 0);
 | |
|       if (Ops.size() == 1)
 | |
|         return Ops[0];
 | |
|       return getAddExpr(Ops);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are adding something to a multiply expression, make sure the
 | |
|   // something is not already an operand of the multiply.  If so, merge it into
 | |
|   // the multiply.
 | |
|   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
 | |
|     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
 | |
|     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
 | |
|       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
 | |
|       if (isa<SCEVConstant>(MulOpSCEV))
 | |
|         continue;
 | |
|       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
 | |
|         if (MulOpSCEV == Ops[AddOp]) {
 | |
|           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
 | |
|           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
 | |
|           if (Mul->getNumOperands() != 2) {
 | |
|             // If the multiply has more than two operands, we must get the
 | |
|             // Y*Z term.
 | |
|             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
 | |
|                                                 Mul->op_begin()+MulOp);
 | |
|             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
 | |
|             InnerMul = getMulExpr(MulOps);
 | |
|           }
 | |
|           const SCEV *One = getConstant(Ty, 1);
 | |
|           const SCEV *AddOne = getAddExpr(One, InnerMul);
 | |
|           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
 | |
|           if (Ops.size() == 2) return OuterMul;
 | |
|           if (AddOp < Idx) {
 | |
|             Ops.erase(Ops.begin()+AddOp);
 | |
|             Ops.erase(Ops.begin()+Idx-1);
 | |
|           } else {
 | |
|             Ops.erase(Ops.begin()+Idx);
 | |
|             Ops.erase(Ops.begin()+AddOp-1);
 | |
|           }
 | |
|           Ops.push_back(OuterMul);
 | |
|           return getAddExpr(Ops);
 | |
|         }
 | |
| 
 | |
|       // Check this multiply against other multiplies being added together.
 | |
|       for (unsigned OtherMulIdx = Idx+1;
 | |
|            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
 | |
|            ++OtherMulIdx) {
 | |
|         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
 | |
|         // If MulOp occurs in OtherMul, we can fold the two multiplies
 | |
|         // together.
 | |
|         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
 | |
|              OMulOp != e; ++OMulOp)
 | |
|           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
 | |
|             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
 | |
|             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
 | |
|             if (Mul->getNumOperands() != 2) {
 | |
|               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
 | |
|                                                   Mul->op_begin()+MulOp);
 | |
|               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
 | |
|               InnerMul1 = getMulExpr(MulOps);
 | |
|             }
 | |
|             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
 | |
|             if (OtherMul->getNumOperands() != 2) {
 | |
|               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
 | |
|                                                   OtherMul->op_begin()+OMulOp);
 | |
|               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
 | |
|               InnerMul2 = getMulExpr(MulOps);
 | |
|             }
 | |
|             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
 | |
|             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
 | |
|             if (Ops.size() == 2) return OuterMul;
 | |
|             Ops.erase(Ops.begin()+Idx);
 | |
|             Ops.erase(Ops.begin()+OtherMulIdx-1);
 | |
|             Ops.push_back(OuterMul);
 | |
|             return getAddExpr(Ops);
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any add recurrences in the operands list, see if any other
 | |
|   // added values are loop invariant.  If so, we can fold them into the
 | |
|   // recurrence.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Scan over all recurrences, trying to fold loop invariants into them.
 | |
|   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | |
|     // Scan all of the other operands to this add and add them to the vector if
 | |
|     // they are loop invariant w.r.t. the recurrence.
 | |
|     SmallVector<const SCEV *, 8> LIOps;
 | |
|     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | |
|     const Loop *AddRecLoop = AddRec->getLoop();
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       if (isLoopInvariant(Ops[i], AddRecLoop)) {
 | |
|         LIOps.push_back(Ops[i]);
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|       }
 | |
| 
 | |
|     // If we found some loop invariants, fold them into the recurrence.
 | |
|     if (!LIOps.empty()) {
 | |
|       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
 | |
|       LIOps.push_back(AddRec->getStart());
 | |
| 
 | |
|       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
 | |
|                                              AddRec->op_end());
 | |
|       AddRecOps[0] = getAddExpr(LIOps);
 | |
| 
 | |
|       // Build the new addrec. Propagate the NUW and NSW flags if both the
 | |
|       // outer add and the inner addrec are guaranteed to have no overflow.
 | |
|       // Always propagate NW.
 | |
|       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
 | |
|       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
 | |
| 
 | |
|       // If all of the other operands were loop invariant, we are done.
 | |
|       if (Ops.size() == 1) return NewRec;
 | |
| 
 | |
|       // Otherwise, add the folded AddRec by the non-invariant parts.
 | |
|       for (unsigned i = 0;; ++i)
 | |
|         if (Ops[i] == AddRec) {
 | |
|           Ops[i] = NewRec;
 | |
|           break;
 | |
|         }
 | |
|       return getAddExpr(Ops);
 | |
|     }
 | |
| 
 | |
|     // Okay, if there weren't any loop invariants to be folded, check to see if
 | |
|     // there are multiple AddRec's with the same loop induction variable being
 | |
|     // added together.  If so, we can fold them.
 | |
|     for (unsigned OtherIdx = Idx+1;
 | |
|          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|          ++OtherIdx)
 | |
|       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
 | |
|         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
 | |
|         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
 | |
|                                                AddRec->op_end());
 | |
|         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|              ++OtherIdx)
 | |
|           if (const SCEVAddRecExpr *OtherAddRec =
 | |
|                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
 | |
|             if (OtherAddRec->getLoop() == AddRecLoop) {
 | |
|               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
 | |
|                    i != e; ++i) {
 | |
|                 if (i >= AddRecOps.size()) {
 | |
|                   AddRecOps.append(OtherAddRec->op_begin()+i,
 | |
|                                    OtherAddRec->op_end());
 | |
|                   break;
 | |
|                 }
 | |
|                 AddRecOps[i] = getAddExpr(AddRecOps[i],
 | |
|                                           OtherAddRec->getOperand(i));
 | |
|               }
 | |
|               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
 | |
|             }
 | |
|         // Step size has changed, so we cannot guarantee no self-wraparound.
 | |
|         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
 | |
|         return getAddExpr(Ops);
 | |
|       }
 | |
| 
 | |
|     // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | |
|     // next one.
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an add expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scAddExpr);
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     ID.AddPointer(Ops[i]);
 | |
|   void *IP = nullptr;
 | |
|   SCEVAddExpr *S =
 | |
|     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
 | |
|   if (!S) {
 | |
|     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
 | |
|     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
 | |
|     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
 | |
|                                         O, Ops.size());
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|   }
 | |
|   S->setNoWrapFlags(Flags);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
 | |
|   uint64_t k = i*j;
 | |
|   if (j > 1 && k / j != i) Overflow = true;
 | |
|   return k;
 | |
| }
 | |
| 
 | |
| /// Compute the result of "n choose k", the binomial coefficient.  If an
 | |
| /// intermediate computation overflows, Overflow will be set and the return will
 | |
| /// be garbage. Overflow is not cleared on absence of overflow.
 | |
| static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
 | |
|   // We use the multiplicative formula:
 | |
|   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
 | |
|   // At each iteration, we take the n-th term of the numeral and divide by the
 | |
|   // (k-n)th term of the denominator.  This division will always produce an
 | |
|   // integral result, and helps reduce the chance of overflow in the
 | |
|   // intermediate computations. However, we can still overflow even when the
 | |
|   // final result would fit.
 | |
| 
 | |
|   if (n == 0 || n == k) return 1;
 | |
|   if (k > n) return 0;
 | |
| 
 | |
|   if (k > n/2)
 | |
|     k = n-k;
 | |
| 
 | |
|   uint64_t r = 1;
 | |
|   for (uint64_t i = 1; i <= k; ++i) {
 | |
|     r = umul_ov(r, n-(i-1), Overflow);
 | |
|     r /= i;
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /// Determine if any of the operands in this SCEV are a constant or if
 | |
| /// any of the add or multiply expressions in this SCEV contain a constant.
 | |
| static bool containsConstantSomewhere(const SCEV *StartExpr) {
 | |
|   SmallVector<const SCEV *, 4> Ops;
 | |
|   Ops.push_back(StartExpr);
 | |
|   while (!Ops.empty()) {
 | |
|     const SCEV *CurrentExpr = Ops.pop_back_val();
 | |
|     if (isa<SCEVConstant>(*CurrentExpr))
 | |
|       return true;
 | |
| 
 | |
|     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
 | |
|       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
 | |
|       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getMulExpr - Get a canonical multiply expression, or something simpler if
 | |
| /// possible.
 | |
| const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                                         SCEV::NoWrapFlags Flags) {
 | |
|   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
 | |
|          "only nuw or nsw allowed");
 | |
|   assert(!Ops.empty() && "Cannot get empty mul!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
 | |
|            "SCEVMulExpr operand types don't match!");
 | |
| #endif
 | |
| 
 | |
|   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops, LI);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
| 
 | |
|     // C1*(C2+V) -> C1*C2 + C1*V
 | |
|     if (Ops.size() == 2)
 | |
|         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
 | |
|           // If any of Add's ops are Adds or Muls with a constant,
 | |
|           // apply this transformation as well.
 | |
|           if (Add->getNumOperands() == 2)
 | |
|             if (containsConstantSomewhere(Add))
 | |
|               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
 | |
|                                 getMulExpr(LHSC, Add->getOperand(1)));
 | |
| 
 | |
|     ++Idx;
 | |
|     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       ConstantInt *Fold = ConstantInt::get(getContext(),
 | |
|                                            LHSC->getValue()->getValue() *
 | |
|                                            RHSC->getValue()->getValue());
 | |
|       Ops[0] = getConstant(Fold);
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       if (Ops.size() == 1) return Ops[0];
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant one being multiplied, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
 | |
|       // If we have a multiply of zero, it will always be zero.
 | |
|       return Ops[0];
 | |
|     } else if (Ops[0]->isAllOnesValue()) {
 | |
|       // If we have a mul by -1 of an add, try distributing the -1 among the
 | |
|       // add operands.
 | |
|       if (Ops.size() == 2) {
 | |
|         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
 | |
|           SmallVector<const SCEV *, 4> NewOps;
 | |
|           bool AnyFolded = false;
 | |
|           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
 | |
|                  E = Add->op_end(); I != E; ++I) {
 | |
|             const SCEV *Mul = getMulExpr(Ops[0], *I);
 | |
|             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
 | |
|             NewOps.push_back(Mul);
 | |
|           }
 | |
|           if (AnyFolded)
 | |
|             return getAddExpr(NewOps);
 | |
|         }
 | |
|         else if (const SCEVAddRecExpr *
 | |
|                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
 | |
|           // Negation preserves a recurrence's no self-wrap property.
 | |
|           SmallVector<const SCEV *, 4> Operands;
 | |
|           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
 | |
|                  E = AddRec->op_end(); I != E; ++I) {
 | |
|             Operands.push_back(getMulExpr(Ops[0], *I));
 | |
|           }
 | |
|           return getAddRecExpr(Operands, AddRec->getLoop(),
 | |
|                                AddRec->getNoWrapFlags(SCEV::FlagNW));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Ops.size() == 1)
 | |
|       return Ops[0];
 | |
|   }
 | |
| 
 | |
|   // Skip over the add expression until we get to a multiply.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // If there are mul operands inline them all into this expression.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedMul = false;
 | |
|     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
 | |
|       // If we have an mul, expand the mul operands onto the end of the operands
 | |
|       // list.
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       Ops.append(Mul->op_begin(), Mul->op_end());
 | |
|       DeletedMul = true;
 | |
|     }
 | |
| 
 | |
|     // If we deleted at least one mul, we added operands to the end of the list,
 | |
|     // and they are not necessarily sorted.  Recurse to resort and resimplify
 | |
|     // any operands we just acquired.
 | |
|     if (DeletedMul)
 | |
|       return getMulExpr(Ops);
 | |
|   }
 | |
| 
 | |
|   // If there are any add recurrences in the operands list, see if any other
 | |
|   // added values are loop invariant.  If so, we can fold them into the
 | |
|   // recurrence.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Scan over all recurrences, trying to fold loop invariants into them.
 | |
|   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | |
|     // Scan all of the other operands to this mul and add them to the vector if
 | |
|     // they are loop invariant w.r.t. the recurrence.
 | |
|     SmallVector<const SCEV *, 8> LIOps;
 | |
|     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | |
|     const Loop *AddRecLoop = AddRec->getLoop();
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       if (isLoopInvariant(Ops[i], AddRecLoop)) {
 | |
|         LIOps.push_back(Ops[i]);
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|       }
 | |
| 
 | |
|     // If we found some loop invariants, fold them into the recurrence.
 | |
|     if (!LIOps.empty()) {
 | |
|       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
 | |
|       SmallVector<const SCEV *, 4> NewOps;
 | |
|       NewOps.reserve(AddRec->getNumOperands());
 | |
|       const SCEV *Scale = getMulExpr(LIOps);
 | |
|       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | |
|         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
 | |
| 
 | |
|       // Build the new addrec. Propagate the NUW and NSW flags if both the
 | |
|       // outer mul and the inner addrec are guaranteed to have no overflow.
 | |
|       //
 | |
|       // No self-wrap cannot be guaranteed after changing the step size, but
 | |
|       // will be inferred if either NUW or NSW is true.
 | |
|       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
 | |
|       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
 | |
| 
 | |
|       // If all of the other operands were loop invariant, we are done.
 | |
|       if (Ops.size() == 1) return NewRec;
 | |
| 
 | |
|       // Otherwise, multiply the folded AddRec by the non-invariant parts.
 | |
|       for (unsigned i = 0;; ++i)
 | |
|         if (Ops[i] == AddRec) {
 | |
|           Ops[i] = NewRec;
 | |
|           break;
 | |
|         }
 | |
|       return getMulExpr(Ops);
 | |
|     }
 | |
| 
 | |
|     // Okay, if there weren't any loop invariants to be folded, check to see if
 | |
|     // there are multiple AddRec's with the same loop induction variable being
 | |
|     // multiplied together.  If so, we can fold them.
 | |
| 
 | |
|     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
 | |
|     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
 | |
|     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
 | |
|     //   ]]],+,...up to x=2n}.
 | |
|     // Note that the arguments to choose() are always integers with values
 | |
|     // known at compile time, never SCEV objects.
 | |
|     //
 | |
|     // The implementation avoids pointless extra computations when the two
 | |
|     // addrec's are of different length (mathematically, it's equivalent to
 | |
|     // an infinite stream of zeros on the right).
 | |
|     bool OpsModified = false;
 | |
|     for (unsigned OtherIdx = Idx+1;
 | |
|          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|          ++OtherIdx) {
 | |
|       const SCEVAddRecExpr *OtherAddRec =
 | |
|         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
 | |
|         continue;
 | |
| 
 | |
|       bool Overflow = false;
 | |
|       Type *Ty = AddRec->getType();
 | |
|       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
 | |
|       SmallVector<const SCEV*, 7> AddRecOps;
 | |
|       for (int x = 0, xe = AddRec->getNumOperands() +
 | |
|              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
 | |
|         const SCEV *Term = getConstant(Ty, 0);
 | |
|         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
 | |
|           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
 | |
|           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
 | |
|                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
 | |
|                z < ze && !Overflow; ++z) {
 | |
|             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
 | |
|             uint64_t Coeff;
 | |
|             if (LargerThan64Bits)
 | |
|               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
 | |
|             else
 | |
|               Coeff = Coeff1*Coeff2;
 | |
|             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
 | |
|             const SCEV *Term1 = AddRec->getOperand(y-z);
 | |
|             const SCEV *Term2 = OtherAddRec->getOperand(z);
 | |
|             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
 | |
|           }
 | |
|         }
 | |
|         AddRecOps.push_back(Term);
 | |
|       }
 | |
|       if (!Overflow) {
 | |
|         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
 | |
|                                               SCEV::FlagAnyWrap);
 | |
|         if (Ops.size() == 2) return NewAddRec;
 | |
|         Ops[Idx] = NewAddRec;
 | |
|         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
 | |
|         OpsModified = true;
 | |
|         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
 | |
|         if (!AddRec)
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     if (OpsModified)
 | |
|       return getMulExpr(Ops);
 | |
| 
 | |
|     // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | |
|     // next one.
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an mul expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scMulExpr);
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     ID.AddPointer(Ops[i]);
 | |
|   void *IP = nullptr;
 | |
|   SCEVMulExpr *S =
 | |
|     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
 | |
|   if (!S) {
 | |
|     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
 | |
|     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
 | |
|     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
 | |
|                                         O, Ops.size());
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|   }
 | |
|   S->setNoWrapFlags(Flags);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// getUDivExpr - Get a canonical unsigned division expression, or something
 | |
| /// simpler if possible.
 | |
| const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   assert(getEffectiveSCEVType(LHS->getType()) ==
 | |
|          getEffectiveSCEVType(RHS->getType()) &&
 | |
|          "SCEVUDivExpr operand types don't match!");
 | |
| 
 | |
|   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     if (RHSC->getValue()->equalsInt(1))
 | |
|       return LHS;                               // X udiv 1 --> x
 | |
|     // If the denominator is zero, the result of the udiv is undefined. Don't
 | |
|     // try to analyze it, because the resolution chosen here may differ from
 | |
|     // the resolution chosen in other parts of the compiler.
 | |
|     if (!RHSC->getValue()->isZero()) {
 | |
|       // Determine if the division can be folded into the operands of
 | |
|       // its operands.
 | |
|       // TODO: Generalize this to non-constants by using known-bits information.
 | |
|       Type *Ty = LHS->getType();
 | |
|       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
 | |
|       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
 | |
|       // For non-power-of-two values, effectively round the value up to the
 | |
|       // nearest power of two.
 | |
|       if (!RHSC->getValue()->getValue().isPowerOf2())
 | |
|         ++MaxShiftAmt;
 | |
|       IntegerType *ExtTy =
 | |
|         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
 | |
|       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
 | |
|         if (const SCEVConstant *Step =
 | |
|             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
 | |
|           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
 | |
|           const APInt &StepInt = Step->getValue()->getValue();
 | |
|           const APInt &DivInt = RHSC->getValue()->getValue();
 | |
|           if (!StepInt.urem(DivInt) &&
 | |
|               getZeroExtendExpr(AR, ExtTy) ==
 | |
|               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
 | |
|                             getZeroExtendExpr(Step, ExtTy),
 | |
|                             AR->getLoop(), SCEV::FlagAnyWrap)) {
 | |
|             SmallVector<const SCEV *, 4> Operands;
 | |
|             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
 | |
|               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
 | |
|             return getAddRecExpr(Operands, AR->getLoop(),
 | |
|                                  SCEV::FlagNW);
 | |
|           }
 | |
|           /// Get a canonical UDivExpr for a recurrence.
 | |
|           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
 | |
|           // We can currently only fold X%N if X is constant.
 | |
|           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
 | |
|           if (StartC && !DivInt.urem(StepInt) &&
 | |
|               getZeroExtendExpr(AR, ExtTy) ==
 | |
|               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
 | |
|                             getZeroExtendExpr(Step, ExtTy),
 | |
|                             AR->getLoop(), SCEV::FlagAnyWrap)) {
 | |
|             const APInt &StartInt = StartC->getValue()->getValue();
 | |
|             const APInt &StartRem = StartInt.urem(StepInt);
 | |
|             if (StartRem != 0)
 | |
|               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
 | |
|                                   AR->getLoop(), SCEV::FlagNW);
 | |
|           }
 | |
|         }
 | |
|       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
 | |
|       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
 | |
|         SmallVector<const SCEV *, 4> Operands;
 | |
|         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
 | |
|           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
 | |
|         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
 | |
|           // Find an operand that's safely divisible.
 | |
|           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
 | |
|             const SCEV *Op = M->getOperand(i);
 | |
|             const SCEV *Div = getUDivExpr(Op, RHSC);
 | |
|             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
 | |
|               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
 | |
|                                                       M->op_end());
 | |
|               Operands[i] = Div;
 | |
|               return getMulExpr(Operands);
 | |
|             }
 | |
|           }
 | |
|       }
 | |
|       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
 | |
|       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
 | |
|         SmallVector<const SCEV *, 4> Operands;
 | |
|         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
 | |
|           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
 | |
|         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
 | |
|           Operands.clear();
 | |
|           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
 | |
|             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
 | |
|             if (isa<SCEVUDivExpr>(Op) ||
 | |
|                 getMulExpr(Op, RHS) != A->getOperand(i))
 | |
|               break;
 | |
|             Operands.push_back(Op);
 | |
|           }
 | |
|           if (Operands.size() == A->getNumOperands())
 | |
|             return getAddExpr(Operands);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Fold if both operands are constant.
 | |
|       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
 | |
|         Constant *LHSCV = LHSC->getValue();
 | |
|         Constant *RHSCV = RHSC->getValue();
 | |
|         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
 | |
|                                                                    RHSCV)));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scUDivExpr);
 | |
|   ID.AddPointer(LHS);
 | |
|   ID.AddPointer(RHS);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
 | |
|                                              LHS, RHS);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
 | |
|   APInt A = C1->getValue()->getValue().abs();
 | |
|   APInt B = C2->getValue()->getValue().abs();
 | |
|   uint32_t ABW = A.getBitWidth();
 | |
|   uint32_t BBW = B.getBitWidth();
 | |
| 
 | |
|   if (ABW > BBW)
 | |
|     B = B.zext(ABW);
 | |
|   else if (ABW < BBW)
 | |
|     A = A.zext(BBW);
 | |
| 
 | |
|   return APIntOps::GreatestCommonDivisor(A, B);
 | |
| }
 | |
| 
 | |
| /// getUDivExactExpr - Get a canonical unsigned division expression, or
 | |
| /// something simpler if possible. There is no representation for an exact udiv
 | |
| /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
 | |
| /// We can't do this when it's not exact because the udiv may be clearing bits.
 | |
| const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
 | |
|                                               const SCEV *RHS) {
 | |
|   // TODO: we could try to find factors in all sorts of things, but for now we
 | |
|   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
 | |
|   // end of this file for inspiration.
 | |
| 
 | |
|   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
 | |
|   if (!Mul)
 | |
|     return getUDivExpr(LHS, RHS);
 | |
| 
 | |
|   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     // If the mulexpr multiplies by a constant, then that constant must be the
 | |
|     // first element of the mulexpr.
 | |
|     if (const SCEVConstant *LHSCst =
 | |
|             dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
 | |
|       if (LHSCst == RHSCst) {
 | |
|         SmallVector<const SCEV *, 2> Operands;
 | |
|         Operands.append(Mul->op_begin() + 1, Mul->op_end());
 | |
|         return getMulExpr(Operands);
 | |
|       }
 | |
| 
 | |
|       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
 | |
|       // that there's a factor provided by one of the other terms. We need to
 | |
|       // check.
 | |
|       APInt Factor = gcd(LHSCst, RHSCst);
 | |
|       if (!Factor.isIntN(1)) {
 | |
|         LHSCst = cast<SCEVConstant>(
 | |
|             getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
 | |
|         RHSCst = cast<SCEVConstant>(
 | |
|             getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
 | |
|         SmallVector<const SCEV *, 2> Operands;
 | |
|         Operands.push_back(LHSCst);
 | |
|         Operands.append(Mul->op_begin() + 1, Mul->op_end());
 | |
|         LHS = getMulExpr(Operands);
 | |
|         RHS = RHSCst;
 | |
|         Mul = dyn_cast<SCEVMulExpr>(LHS);
 | |
|         if (!Mul)
 | |
|           return getUDivExactExpr(LHS, RHS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
 | |
|     if (Mul->getOperand(i) == RHS) {
 | |
|       SmallVector<const SCEV *, 2> Operands;
 | |
|       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
 | |
|       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
 | |
|       return getMulExpr(Operands);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return getUDivExpr(LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// getAddRecExpr - Get an add recurrence expression for the specified loop.
 | |
| /// Simplify the expression as much as possible.
 | |
| const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
 | |
|                                            const Loop *L,
 | |
|                                            SCEV::NoWrapFlags Flags) {
 | |
|   SmallVector<const SCEV *, 4> Operands;
 | |
|   Operands.push_back(Start);
 | |
|   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
 | |
|     if (StepChrec->getLoop() == L) {
 | |
|       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
 | |
|       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
 | |
|     }
 | |
| 
 | |
|   Operands.push_back(Step);
 | |
|   return getAddRecExpr(Operands, L, Flags);
 | |
| }
 | |
| 
 | |
| /// getAddRecExpr - Get an add recurrence expression for the specified loop.
 | |
| /// Simplify the expression as much as possible.
 | |
| const SCEV *
 | |
| ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
 | |
|                                const Loop *L, SCEV::NoWrapFlags Flags) {
 | |
|   if (Operands.size() == 1) return Operands[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
 | |
|   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
 | |
|            "SCEVAddRecExpr operand types don't match!");
 | |
|   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | |
|     assert(isLoopInvariant(Operands[i], L) &&
 | |
|            "SCEVAddRecExpr operand is not loop-invariant!");
 | |
| #endif
 | |
| 
 | |
|   if (Operands.back()->isZero()) {
 | |
|     Operands.pop_back();
 | |
|     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
 | |
|   }
 | |
| 
 | |
|   // It's tempting to want to call getMaxBackedgeTakenCount count here and
 | |
|   // use that information to infer NUW and NSW flags. However, computing a
 | |
|   // BE count requires calling getAddRecExpr, so we may not yet have a
 | |
|   // meaningful BE count at this point (and if we don't, we'd be stuck
 | |
|   // with a SCEVCouldNotCompute as the cached BE count).
 | |
| 
 | |
|   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
 | |
| 
 | |
|   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
 | |
|   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
 | |
|     const Loop *NestedLoop = NestedAR->getLoop();
 | |
|     if (L->contains(NestedLoop) ?
 | |
|         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
 | |
|         (!NestedLoop->contains(L) &&
 | |
|          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
 | |
|       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
 | |
|                                                   NestedAR->op_end());
 | |
|       Operands[0] = NestedAR->getStart();
 | |
|       // AddRecs require their operands be loop-invariant with respect to their
 | |
|       // loops. Don't perform this transformation if it would break this
 | |
|       // requirement.
 | |
|       bool AllInvariant = true;
 | |
|       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | |
|         if (!isLoopInvariant(Operands[i], L)) {
 | |
|           AllInvariant = false;
 | |
|           break;
 | |
|         }
 | |
|       if (AllInvariant) {
 | |
|         // Create a recurrence for the outer loop with the same step size.
 | |
|         //
 | |
|         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
 | |
|         // inner recurrence has the same property.
 | |
|         SCEV::NoWrapFlags OuterFlags =
 | |
|           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
 | |
| 
 | |
|         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
 | |
|         AllInvariant = true;
 | |
|         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
 | |
|           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
 | |
|             AllInvariant = false;
 | |
|             break;
 | |
|           }
 | |
|         if (AllInvariant) {
 | |
|           // Ok, both add recurrences are valid after the transformation.
 | |
|           //
 | |
|           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
 | |
|           // the outer recurrence has the same property.
 | |
|           SCEV::NoWrapFlags InnerFlags =
 | |
|             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
 | |
|           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
 | |
|         }
 | |
|       }
 | |
|       // Reset Operands to its original state.
 | |
|       Operands[0] = NestedAR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scAddRecExpr);
 | |
|   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | |
|     ID.AddPointer(Operands[i]);
 | |
|   ID.AddPointer(L);
 | |
|   void *IP = nullptr;
 | |
|   SCEVAddRecExpr *S =
 | |
|     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
 | |
|   if (!S) {
 | |
|     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
 | |
|     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
 | |
|     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
 | |
|                                            O, Operands.size(), L);
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|   }
 | |
|   S->setNoWrapFlags(Flags);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   SmallVector<const SCEV *, 2> Ops;
 | |
|   Ops.push_back(LHS);
 | |
|   Ops.push_back(RHS);
 | |
|   return getSMaxExpr(Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty smax!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
 | |
|            "SCEVSMaxExpr operand types don't match!");
 | |
| #endif
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops, LI);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       ConstantInt *Fold = ConstantInt::get(getContext(),
 | |
|                               APIntOps::smax(LHSC->getValue()->getValue(),
 | |
|                                              RHSC->getValue()->getValue()));
 | |
|       Ops[0] = getConstant(Fold);
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       if (Ops.size() == 1) return Ops[0];
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant minimum-int, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
 | |
|       // If we have an smax with a constant maximum-int, it will always be
 | |
|       // maximum-int.
 | |
|       return Ops[0];
 | |
|     }
 | |
| 
 | |
|     if (Ops.size() == 1) return Ops[0];
 | |
|   }
 | |
| 
 | |
|   // Find the first SMax
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Check to see if one of the operands is an SMax. If so, expand its operands
 | |
|   // onto our operand list, and recurse to simplify.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedSMax = false;
 | |
|     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       Ops.append(SMax->op_begin(), SMax->op_end());
 | |
|       DeletedSMax = true;
 | |
|     }
 | |
| 
 | |
|     if (DeletedSMax)
 | |
|       return getSMaxExpr(Ops);
 | |
|   }
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list twice.  If
 | |
|   // so, delete one.  Since we sorted the list, these values are required to
 | |
|   // be adjacent.
 | |
|   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | |
|     //  X smax Y smax Y  -->  X smax Y
 | |
|     //  X smax Y         -->  X, if X is always greater than Y
 | |
|     if (Ops[i] == Ops[i+1] ||
 | |
|         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
 | |
|       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
 | |
|       --i; --e;
 | |
|     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
 | |
|       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
 | |
|       --i; --e;
 | |
|     }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   assert(!Ops.empty() && "Reduced smax down to nothing!");
 | |
| 
 | |
|   // Okay, it looks like we really DO need an smax expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scSMaxExpr);
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     ID.AddPointer(Ops[i]);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
 | |
|   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
 | |
|   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
 | |
|                                              O, Ops.size());
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   SmallVector<const SCEV *, 2> Ops;
 | |
|   Ops.push_back(LHS);
 | |
|   Ops.push_back(RHS);
 | |
|   return getUMaxExpr(Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty umax!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
 | |
|            "SCEVUMaxExpr operand types don't match!");
 | |
| #endif
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops, LI);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       ConstantInt *Fold = ConstantInt::get(getContext(),
 | |
|                               APIntOps::umax(LHSC->getValue()->getValue(),
 | |
|                                              RHSC->getValue()->getValue()));
 | |
|       Ops[0] = getConstant(Fold);
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       if (Ops.size() == 1) return Ops[0];
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant minimum-int, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
 | |
|       // If we have an umax with a constant maximum-int, it will always be
 | |
|       // maximum-int.
 | |
|       return Ops[0];
 | |
|     }
 | |
| 
 | |
|     if (Ops.size() == 1) return Ops[0];
 | |
|   }
 | |
| 
 | |
|   // Find the first UMax
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Check to see if one of the operands is a UMax. If so, expand its operands
 | |
|   // onto our operand list, and recurse to simplify.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedUMax = false;
 | |
|     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       Ops.append(UMax->op_begin(), UMax->op_end());
 | |
|       DeletedUMax = true;
 | |
|     }
 | |
| 
 | |
|     if (DeletedUMax)
 | |
|       return getUMaxExpr(Ops);
 | |
|   }
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list twice.  If
 | |
|   // so, delete one.  Since we sorted the list, these values are required to
 | |
|   // be adjacent.
 | |
|   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | |
|     //  X umax Y umax Y  -->  X umax Y
 | |
|     //  X umax Y         -->  X, if X is always greater than Y
 | |
|     if (Ops[i] == Ops[i+1] ||
 | |
|         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
 | |
|       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
 | |
|       --i; --e;
 | |
|     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
 | |
|       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
 | |
|       --i; --e;
 | |
|     }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   assert(!Ops.empty() && "Reduced umax down to nothing!");
 | |
| 
 | |
|   // Okay, it looks like we really DO need a umax expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scUMaxExpr);
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     ID.AddPointer(Ops[i]);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
 | |
|   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
 | |
|   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
 | |
|                                              O, Ops.size());
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   // ~smax(~x, ~y) == smin(x, y).
 | |
|   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   // ~umax(~x, ~y) == umin(x, y)
 | |
|   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
 | |
|   // If we have DataLayout, we can bypass creating a target-independent
 | |
|   // constant expression and then folding it back into a ConstantInt.
 | |
|   // This is just a compile-time optimization.
 | |
|   if (DL)
 | |
|     return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
 | |
| 
 | |
|   Constant *C = ConstantExpr::getSizeOf(AllocTy);
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
 | |
|       C = Folded;
 | |
|   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
 | |
|   assert(Ty == IntTy && "Effective SCEV type doesn't match");
 | |
|   return getTruncateOrZeroExtend(getSCEV(C), Ty);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
 | |
|                                              StructType *STy,
 | |
|                                              unsigned FieldNo) {
 | |
|   // If we have DataLayout, we can bypass creating a target-independent
 | |
|   // constant expression and then folding it back into a ConstantInt.
 | |
|   // This is just a compile-time optimization.
 | |
|   if (DL) {
 | |
|     return getConstant(IntTy,
 | |
|                        DL->getStructLayout(STy)->getElementOffset(FieldNo));
 | |
|   }
 | |
| 
 | |
|   Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
 | |
|       C = Folded;
 | |
| 
 | |
|   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
 | |
|   return getTruncateOrZeroExtend(getSCEV(C), Ty);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUnknown(Value *V) {
 | |
|   // Don't attempt to do anything other than create a SCEVUnknown object
 | |
|   // here.  createSCEV only calls getUnknown after checking for all other
 | |
|   // interesting possibilities, and any other code that calls getUnknown
 | |
|   // is doing so in order to hide a value from SCEV canonicalization.
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scUnknown);
 | |
|   ID.AddPointer(V);
 | |
|   void *IP = nullptr;
 | |
|   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
 | |
|     assert(cast<SCEVUnknown>(S)->getValue() == V &&
 | |
|            "Stale SCEVUnknown in uniquing map!");
 | |
|     return S;
 | |
|   }
 | |
|   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
 | |
|                                             FirstUnknown);
 | |
|   FirstUnknown = cast<SCEVUnknown>(S);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //            Basic SCEV Analysis and PHI Idiom Recognition Code
 | |
| //
 | |
| 
 | |
| /// isSCEVable - Test if values of the given type are analyzable within
 | |
| /// the SCEV framework. This primarily includes integer types, and it
 | |
| /// can optionally include pointer types if the ScalarEvolution class
 | |
| /// has access to target-specific information.
 | |
| bool ScalarEvolution::isSCEVable(Type *Ty) const {
 | |
|   // Integers and pointers are always SCEVable.
 | |
|   return Ty->isIntegerTy() || Ty->isPointerTy();
 | |
| }
 | |
| 
 | |
| /// getTypeSizeInBits - Return the size in bits of the specified type,
 | |
| /// for which isSCEVable must return true.
 | |
| uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
 | |
|   assert(isSCEVable(Ty) && "Type is not SCEVable!");
 | |
| 
 | |
|   // If we have a DataLayout, use it!
 | |
|   if (DL)
 | |
|     return DL->getTypeSizeInBits(Ty);
 | |
| 
 | |
|   // Integer types have fixed sizes.
 | |
|   if (Ty->isIntegerTy())
 | |
|     return Ty->getPrimitiveSizeInBits();
 | |
| 
 | |
|   // The only other support type is pointer. Without DataLayout, conservatively
 | |
|   // assume pointers are 64-bit.
 | |
|   assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
 | |
|   return 64;
 | |
| }
 | |
| 
 | |
| /// getEffectiveSCEVType - Return a type with the same bitwidth as
 | |
| /// the given type and which represents how SCEV will treat the given
 | |
| /// type, for which isSCEVable must return true. For pointer types,
 | |
| /// this is the pointer-sized integer type.
 | |
| Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
 | |
|   assert(isSCEVable(Ty) && "Type is not SCEVable!");
 | |
| 
 | |
|   if (Ty->isIntegerTy()) {
 | |
|     return Ty;
 | |
|   }
 | |
| 
 | |
|   // The only other support type is pointer.
 | |
|   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
 | |
| 
 | |
|   if (DL)
 | |
|     return DL->getIntPtrType(Ty);
 | |
| 
 | |
|   // Without DataLayout, conservatively assume pointers are 64-bit.
 | |
|   return Type::getInt64Ty(getContext());
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getCouldNotCompute() {
 | |
|   return &CouldNotCompute;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Helper class working with SCEVTraversal to figure out if a SCEV contains
 | |
|   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
 | |
|   // is set iff if find such SCEVUnknown.
 | |
|   //
 | |
|   struct FindInvalidSCEVUnknown {
 | |
|     bool FindOne;
 | |
|     FindInvalidSCEVUnknown() { FindOne = false; }
 | |
|     bool follow(const SCEV *S) {
 | |
|       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
 | |
|       case scConstant:
 | |
|         return false;
 | |
|       case scUnknown:
 | |
|         if (!cast<SCEVUnknown>(S)->getValue())
 | |
|           FindOne = true;
 | |
|         return false;
 | |
|       default:
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     bool isDone() const { return FindOne; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::checkValidity(const SCEV *S) const {
 | |
|   FindInvalidSCEVUnknown F;
 | |
|   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
 | |
|   ST.visitAll(S);
 | |
| 
 | |
|   return !F.FindOne;
 | |
| }
 | |
| 
 | |
| /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
 | |
| /// expression and create a new one.
 | |
| const SCEV *ScalarEvolution::getSCEV(Value *V) {
 | |
|   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
 | |
| 
 | |
|   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
 | |
|   if (I != ValueExprMap.end()) {
 | |
|     const SCEV *S = I->second;
 | |
|     if (checkValidity(S))
 | |
|       return S;
 | |
|     else
 | |
|       ValueExprMap.erase(I);
 | |
|   }
 | |
|   const SCEV *S = createSCEV(V);
 | |
| 
 | |
|   // The process of creating a SCEV for V may have caused other SCEVs
 | |
|   // to have been created, so it's necessary to insert the new entry
 | |
|   // from scratch, rather than trying to remember the insert position
 | |
|   // above.
 | |
|   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
 | |
| ///
 | |
| const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
 | |
|   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | |
|     return getConstant(
 | |
|                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
 | |
| 
 | |
|   Type *Ty = V->getType();
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
|   return getMulExpr(V,
 | |
|                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
 | |
| }
 | |
| 
 | |
| /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
 | |
| const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
 | |
|   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | |
|     return getConstant(
 | |
|                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
 | |
| 
 | |
|   Type *Ty = V->getType();
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
|   const SCEV *AllOnes =
 | |
|                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
 | |
|   return getMinusSCEV(AllOnes, V);
 | |
| }
 | |
| 
 | |
| /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
 | |
| const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
 | |
|                                           SCEV::NoWrapFlags Flags) {
 | |
|   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
 | |
| 
 | |
|   // Fast path: X - X --> 0.
 | |
|   if (LHS == RHS)
 | |
|     return getConstant(LHS->getType(), 0);
 | |
| 
 | |
|   // X - Y --> X + -Y.
 | |
|   // X -(nsw || nuw) Y --> X + -Y.
 | |
|   return getAddExpr(LHS, getNegativeSCEV(RHS));
 | |
| }
 | |
| 
 | |
| /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
 | |
| /// input value to the specified type.  If the type must be extended, it is zero
 | |
| /// extended.
 | |
| const SCEV *
 | |
| ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot truncate or zero extend with non-integer arguments!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
 | |
|     return getTruncateExpr(V, Ty);
 | |
|   return getZeroExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
 | |
| /// input value to the specified type.  If the type must be extended, it is sign
 | |
| /// extended.
 | |
| const SCEV *
 | |
| ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
 | |
|                                          Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot truncate or zero extend with non-integer arguments!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
 | |
|     return getTruncateExpr(V, Ty);
 | |
|   return getSignExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
 | |
| /// input value to the specified type.  If the type must be extended, it is zero
 | |
| /// extended.  The conversion must not be narrowing.
 | |
| const SCEV *
 | |
| ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot noop or zero extend with non-integer arguments!");
 | |
|   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | |
|          "getNoopOrZeroExtend cannot truncate!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   return getZeroExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
 | |
| /// input value to the specified type.  If the type must be extended, it is sign
 | |
| /// extended.  The conversion must not be narrowing.
 | |
| const SCEV *
 | |
| ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot noop or sign extend with non-integer arguments!");
 | |
|   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | |
|          "getNoopOrSignExtend cannot truncate!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   return getSignExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
 | |
| /// the input value to the specified type. If the type must be extended,
 | |
| /// it is extended with unspecified bits. The conversion must not be
 | |
| /// narrowing.
 | |
| const SCEV *
 | |
| ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot noop or any extend with non-integer arguments!");
 | |
|   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | |
|          "getNoopOrAnyExtend cannot truncate!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   return getAnyExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
 | |
| /// input value to the specified type.  The conversion must not be widening.
 | |
| const SCEV *
 | |
| ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
 | |
|          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
 | |
|          "Cannot truncate or noop with non-integer arguments!");
 | |
|   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
 | |
|          "getTruncateOrNoop cannot extend!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   return getTruncateExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
 | |
| /// the types using zero-extension, and then perform a umax operation
 | |
| /// with them.
 | |
| const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
 | |
|                                                         const SCEV *RHS) {
 | |
|   const SCEV *PromotedLHS = LHS;
 | |
|   const SCEV *PromotedRHS = RHS;
 | |
| 
 | |
|   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
 | |
|     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
 | |
|   else
 | |
|     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
 | |
| 
 | |
|   return getUMaxExpr(PromotedLHS, PromotedRHS);
 | |
| }
 | |
| 
 | |
| /// getUMinFromMismatchedTypes - Promote the operands to the wider of
 | |
| /// the types using zero-extension, and then perform a umin operation
 | |
| /// with them.
 | |
| const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
 | |
|                                                         const SCEV *RHS) {
 | |
|   const SCEV *PromotedLHS = LHS;
 | |
|   const SCEV *PromotedRHS = RHS;
 | |
| 
 | |
|   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
 | |
|     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
 | |
|   else
 | |
|     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
 | |
| 
 | |
|   return getUMinExpr(PromotedLHS, PromotedRHS);
 | |
| }
 | |
| 
 | |
| /// getPointerBase - Transitively follow the chain of pointer-type operands
 | |
| /// until reaching a SCEV that does not have a single pointer operand. This
 | |
| /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
 | |
| /// but corner cases do exist.
 | |
| const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
 | |
|   // A pointer operand may evaluate to a nonpointer expression, such as null.
 | |
|   if (!V->getType()->isPointerTy())
 | |
|     return V;
 | |
| 
 | |
|   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
 | |
|     return getPointerBase(Cast->getOperand());
 | |
|   }
 | |
|   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
 | |
|     const SCEV *PtrOp = nullptr;
 | |
|     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
 | |
|          I != E; ++I) {
 | |
|       if ((*I)->getType()->isPointerTy()) {
 | |
|         // Cannot find the base of an expression with multiple pointer operands.
 | |
|         if (PtrOp)
 | |
|           return V;
 | |
|         PtrOp = *I;
 | |
|       }
 | |
|     }
 | |
|     if (!PtrOp)
 | |
|       return V;
 | |
|     return getPointerBase(PtrOp);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// PushDefUseChildren - Push users of the given Instruction
 | |
| /// onto the given Worklist.
 | |
| static void
 | |
| PushDefUseChildren(Instruction *I,
 | |
|                    SmallVectorImpl<Instruction *> &Worklist) {
 | |
|   // Push the def-use children onto the Worklist stack.
 | |
|   for (User *U : I->users())
 | |
|     Worklist.push_back(cast<Instruction>(U));
 | |
| }
 | |
| 
 | |
| /// ForgetSymbolicValue - This looks up computed SCEV values for all
 | |
| /// instructions that depend on the given instruction and removes them from
 | |
| /// the ValueExprMapType map if they reference SymName. This is used during PHI
 | |
| /// resolution.
 | |
| void
 | |
| ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
 | |
|   SmallVector<Instruction *, 16> Worklist;
 | |
|   PushDefUseChildren(PN, Worklist);
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   Visited.insert(PN);
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.pop_back_val();
 | |
|     if (!Visited.insert(I).second)
 | |
|       continue;
 | |
| 
 | |
|     ValueExprMapType::iterator It =
 | |
|       ValueExprMap.find_as(static_cast<Value *>(I));
 | |
|     if (It != ValueExprMap.end()) {
 | |
|       const SCEV *Old = It->second;
 | |
| 
 | |
|       // Short-circuit the def-use traversal if the symbolic name
 | |
|       // ceases to appear in expressions.
 | |
|       if (Old != SymName && !hasOperand(Old, SymName))
 | |
|         continue;
 | |
| 
 | |
|       // SCEVUnknown for a PHI either means that it has an unrecognized
 | |
|       // structure, it's a PHI that's in the progress of being computed
 | |
|       // by createNodeForPHI, or it's a single-value PHI. In the first case,
 | |
|       // additional loop trip count information isn't going to change anything.
 | |
|       // In the second case, createNodeForPHI will perform the necessary
 | |
|       // updates on its own when it gets to that point. In the third, we do
 | |
|       // want to forget the SCEVUnknown.
 | |
|       if (!isa<PHINode>(I) ||
 | |
|           !isa<SCEVUnknown>(Old) ||
 | |
|           (I != PN && Old == SymName)) {
 | |
|         forgetMemoizedResults(Old);
 | |
|         ValueExprMap.erase(It);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PushDefUseChildren(I, Worklist);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
 | |
| /// a loop header, making it a potential recurrence, or it doesn't.
 | |
| ///
 | |
| const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
 | |
|   if (const Loop *L = LI->getLoopFor(PN->getParent()))
 | |
|     if (L->getHeader() == PN->getParent()) {
 | |
|       // The loop may have multiple entrances or multiple exits; we can analyze
 | |
|       // this phi as an addrec if it has a unique entry value and a unique
 | |
|       // backedge value.
 | |
|       Value *BEValueV = nullptr, *StartValueV = nullptr;
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         Value *V = PN->getIncomingValue(i);
 | |
|         if (L->contains(PN->getIncomingBlock(i))) {
 | |
|           if (!BEValueV) {
 | |
|             BEValueV = V;
 | |
|           } else if (BEValueV != V) {
 | |
|             BEValueV = nullptr;
 | |
|             break;
 | |
|           }
 | |
|         } else if (!StartValueV) {
 | |
|           StartValueV = V;
 | |
|         } else if (StartValueV != V) {
 | |
|           StartValueV = nullptr;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (BEValueV && StartValueV) {
 | |
|         // While we are analyzing this PHI node, handle its value symbolically.
 | |
|         const SCEV *SymbolicName = getUnknown(PN);
 | |
|         assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
 | |
|                "PHI node already processed?");
 | |
|         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
 | |
| 
 | |
|         // Using this symbolic name for the PHI, analyze the value coming around
 | |
|         // the back-edge.
 | |
|         const SCEV *BEValue = getSCEV(BEValueV);
 | |
| 
 | |
|         // NOTE: If BEValue is loop invariant, we know that the PHI node just
 | |
|         // has a special value for the first iteration of the loop.
 | |
| 
 | |
|         // If the value coming around the backedge is an add with the symbolic
 | |
|         // value we just inserted, then we found a simple induction variable!
 | |
|         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
 | |
|           // If there is a single occurrence of the symbolic value, replace it
 | |
|           // with a recurrence.
 | |
|           unsigned FoundIndex = Add->getNumOperands();
 | |
|           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|             if (Add->getOperand(i) == SymbolicName)
 | |
|               if (FoundIndex == e) {
 | |
|                 FoundIndex = i;
 | |
|                 break;
 | |
|               }
 | |
| 
 | |
|           if (FoundIndex != Add->getNumOperands()) {
 | |
|             // Create an add with everything but the specified operand.
 | |
|             SmallVector<const SCEV *, 8> Ops;
 | |
|             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|               if (i != FoundIndex)
 | |
|                 Ops.push_back(Add->getOperand(i));
 | |
|             const SCEV *Accum = getAddExpr(Ops);
 | |
| 
 | |
|             // This is not a valid addrec if the step amount is varying each
 | |
|             // loop iteration, but is not itself an addrec in this loop.
 | |
|             if (isLoopInvariant(Accum, L) ||
 | |
|                 (isa<SCEVAddRecExpr>(Accum) &&
 | |
|                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
 | |
|               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
 | |
| 
 | |
|               // If the increment doesn't overflow, then neither the addrec nor
 | |
|               // the post-increment will overflow.
 | |
|               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
 | |
|                 if (OBO->hasNoUnsignedWrap())
 | |
|                   Flags = setFlags(Flags, SCEV::FlagNUW);
 | |
|                 if (OBO->hasNoSignedWrap())
 | |
|                   Flags = setFlags(Flags, SCEV::FlagNSW);
 | |
|               } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
 | |
|                 // If the increment is an inbounds GEP, then we know the address
 | |
|                 // space cannot be wrapped around. We cannot make any guarantee
 | |
|                 // about signed or unsigned overflow because pointers are
 | |
|                 // unsigned but we may have a negative index from the base
 | |
|                 // pointer. We can guarantee that no unsigned wrap occurs if the
 | |
|                 // indices form a positive value.
 | |
|                 if (GEP->isInBounds()) {
 | |
|                   Flags = setFlags(Flags, SCEV::FlagNW);
 | |
| 
 | |
|                   const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
 | |
|                   if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
 | |
|                     Flags = setFlags(Flags, SCEV::FlagNUW);
 | |
|                 }
 | |
| 
 | |
|                 // We cannot transfer nuw and nsw flags from subtraction
 | |
|                 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
 | |
|                 // for instance.
 | |
|               }
 | |
| 
 | |
|               const SCEV *StartVal = getSCEV(StartValueV);
 | |
|               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
 | |
| 
 | |
|               // Since the no-wrap flags are on the increment, they apply to the
 | |
|               // post-incremented value as well.
 | |
|               if (isLoopInvariant(Accum, L))
 | |
|                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
 | |
|                                     Accum, L, Flags);
 | |
| 
 | |
|               // Okay, for the entire analysis of this edge we assumed the PHI
 | |
|               // to be symbolic.  We now need to go back and purge all of the
 | |
|               // entries for the scalars that use the symbolic expression.
 | |
|               ForgetSymbolicName(PN, SymbolicName);
 | |
|               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
 | |
|               return PHISCEV;
 | |
|             }
 | |
|           }
 | |
|         } else if (const SCEVAddRecExpr *AddRec =
 | |
|                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
 | |
|           // Otherwise, this could be a loop like this:
 | |
|           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
 | |
|           // In this case, j = {1,+,1}  and BEValue is j.
 | |
|           // Because the other in-value of i (0) fits the evolution of BEValue
 | |
|           // i really is an addrec evolution.
 | |
|           if (AddRec->getLoop() == L && AddRec->isAffine()) {
 | |
|             const SCEV *StartVal = getSCEV(StartValueV);
 | |
| 
 | |
|             // If StartVal = j.start - j.stride, we can use StartVal as the
 | |
|             // initial step of the addrec evolution.
 | |
|             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
 | |
|                                          AddRec->getOperand(1))) {
 | |
|               // FIXME: For constant StartVal, we should be able to infer
 | |
|               // no-wrap flags.
 | |
|               const SCEV *PHISCEV =
 | |
|                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
 | |
|                               SCEV::FlagAnyWrap);
 | |
| 
 | |
|               // Okay, for the entire analysis of this edge we assumed the PHI
 | |
|               // to be symbolic.  We now need to go back and purge all of the
 | |
|               // entries for the scalars that use the symbolic expression.
 | |
|               ForgetSymbolicName(PN, SymbolicName);
 | |
|               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
 | |
|               return PHISCEV;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // If the PHI has a single incoming value, follow that value, unless the
 | |
|   // PHI's incoming blocks are in a different loop, in which case doing so
 | |
|   // risks breaking LCSSA form. Instcombine would normally zap these, but
 | |
|   // it doesn't have DominatorTree information, so it may miss cases.
 | |
|   if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC))
 | |
|     if (LI->replacementPreservesLCSSAForm(PN, V))
 | |
|       return getSCEV(V);
 | |
| 
 | |
|   // If it's not a loop phi, we can't handle it yet.
 | |
|   return getUnknown(PN);
 | |
| }
 | |
| 
 | |
| /// createNodeForGEP - Expand GEP instructions into add and multiply
 | |
| /// operations. This allows them to be analyzed by regular SCEV code.
 | |
| ///
 | |
| const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
 | |
|   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
 | |
|   Value *Base = GEP->getOperand(0);
 | |
|   // Don't attempt to analyze GEPs over unsized objects.
 | |
|   if (!Base->getType()->getPointerElementType()->isSized())
 | |
|     return getUnknown(GEP);
 | |
| 
 | |
|   // Don't blindly transfer the inbounds flag from the GEP instruction to the
 | |
|   // Add expression, because the Instruction may be guarded by control flow
 | |
|   // and the no-overflow bits may not be valid for the expression in any
 | |
|   // context.
 | |
|   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
 | |
| 
 | |
|   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
 | |
|                                       E = GEP->op_end();
 | |
|        I != E; ++I) {
 | |
|     Value *Index = *I;
 | |
|     // Compute the (potentially symbolic) offset in bytes for this index.
 | |
|     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
 | |
|       // For a struct, add the member offset.
 | |
|       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
 | |
|       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
 | |
| 
 | |
|       // Add the field offset to the running total offset.
 | |
|       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
 | |
|     } else {
 | |
|       // For an array, add the element offset, explicitly scaled.
 | |
|       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
 | |
|       const SCEV *IndexS = getSCEV(Index);
 | |
|       // Getelementptr indices are signed.
 | |
|       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
 | |
| 
 | |
|       // Multiply the index by the element size to compute the element offset.
 | |
|       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
 | |
| 
 | |
|       // Add the element offset to the running total offset.
 | |
|       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get the SCEV for the GEP base.
 | |
|   const SCEV *BaseS = getSCEV(Base);
 | |
| 
 | |
|   // Add the total offset from all the GEP indices to the base.
 | |
|   return getAddExpr(BaseS, TotalOffset, Wrap);
 | |
| }
 | |
| 
 | |
| /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
 | |
| /// guaranteed to end in (at every loop iteration).  It is, at the same time,
 | |
| /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
 | |
| /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
 | |
| uint32_t
 | |
| ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | |
|     return C->getValue()->getValue().countTrailingZeros();
 | |
| 
 | |
|   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
 | |
|     return std::min(GetMinTrailingZeros(T->getOperand()),
 | |
|                     (uint32_t)getTypeSizeInBits(T->getType()));
 | |
| 
 | |
|   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | |
|     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
 | |
|     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
 | |
|              getTypeSizeInBits(E->getType()) : OpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
 | |
|     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
 | |
|     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
 | |
|              getTypeSizeInBits(E->getType()) : OpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
 | |
|     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     // The result is the sum of all operands results.
 | |
|     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     uint32_t BitWidth = getTypeSizeInBits(M->getType());
 | |
|     for (unsigned i = 1, e = M->getNumOperands();
 | |
|          SumOpRes != BitWidth && i != e; ++i)
 | |
|       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
 | |
|                           BitWidth);
 | |
|     return SumOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
 | |
|     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | |
|     // For a SCEVUnknown, ask ValueTracking.
 | |
|     unsigned BitWidth = getTypeSizeInBits(U->getType());
 | |
|     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
 | |
|     computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
 | |
|     return Zeros.countTrailingOnes();
 | |
|   }
 | |
| 
 | |
|   // SCEVUDivExpr
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GetRangeFromMetadata - Helper method to assign a range to V from
 | |
| /// metadata present in the IR.
 | |
| static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
 | |
|       ConstantRange TotalRange(
 | |
|           cast<IntegerType>(I->getType())->getBitWidth(), false);
 | |
| 
 | |
|       unsigned NumRanges = MD->getNumOperands() / 2;
 | |
|       assert(NumRanges >= 1);
 | |
| 
 | |
|       for (unsigned i = 0; i < NumRanges; ++i) {
 | |
|         ConstantInt *Lower =
 | |
|             mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
 | |
|         ConstantInt *Upper =
 | |
|             mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
 | |
|         ConstantRange Range(Lower->getValue(), Upper->getValue());
 | |
|         TotalRange = TotalRange.unionWith(Range);
 | |
|       }
 | |
| 
 | |
|       return TotalRange;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
 | |
| ///
 | |
| ConstantRange
 | |
| ScalarEvolution::getUnsignedRange(const SCEV *S) {
 | |
|   // See if we've computed this range already.
 | |
|   DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
 | |
|   if (I != UnsignedRanges.end())
 | |
|     return I->second;
 | |
| 
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | |
|     return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(S->getType());
 | |
|   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
 | |
| 
 | |
|   // If the value has known zeros, the maximum unsigned value will have those
 | |
|   // known zeros as well.
 | |
|   uint32_t TZ = GetMinTrailingZeros(S);
 | |
|   if (TZ != 0)
 | |
|     ConservativeResult =
 | |
|       ConstantRange(APInt::getMinValue(BitWidth),
 | |
|                     APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
 | |
| 
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     ConstantRange X = getUnsignedRange(Add->getOperand(0));
 | |
|     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
 | |
|       X = X.add(getUnsignedRange(Add->getOperand(i)));
 | |
|     return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     ConstantRange X = getUnsignedRange(Mul->getOperand(0));
 | |
|     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
 | |
|       X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
 | |
|     return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
 | |
|     ConstantRange X = getUnsignedRange(SMax->getOperand(0));
 | |
|     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
 | |
|       X = X.smax(getUnsignedRange(SMax->getOperand(i)));
 | |
|     return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
 | |
|     ConstantRange X = getUnsignedRange(UMax->getOperand(0));
 | |
|     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
 | |
|       X = X.umax(getUnsignedRange(UMax->getOperand(i)));
 | |
|     return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
 | |
|     ConstantRange X = getUnsignedRange(UDiv->getLHS());
 | |
|     ConstantRange Y = getUnsignedRange(UDiv->getRHS());
 | |
|     return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | |
|     ConstantRange X = getUnsignedRange(ZExt->getOperand());
 | |
|     return setUnsignedRange(ZExt,
 | |
|       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
 | |
|     ConstantRange X = getUnsignedRange(SExt->getOperand());
 | |
|     return setUnsignedRange(SExt,
 | |
|       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
 | |
|     ConstantRange X = getUnsignedRange(Trunc->getOperand());
 | |
|     return setUnsignedRange(Trunc,
 | |
|       ConservativeResult.intersectWith(X.truncate(BitWidth)));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     // If there's no unsigned wrap, the value will never be less than its
 | |
|     // initial value.
 | |
|     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
 | |
|       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
 | |
|         if (!C->getValue()->isZero())
 | |
|           ConservativeResult =
 | |
|             ConservativeResult.intersectWith(
 | |
|               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
 | |
| 
 | |
|     // TODO: non-affine addrec
 | |
|     if (AddRec->isAffine()) {
 | |
|       Type *Ty = AddRec->getType();
 | |
|       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
 | |
|       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
 | |
|           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
 | |
|         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
 | |
| 
 | |
|         const SCEV *Start = AddRec->getStart();
 | |
|         const SCEV *Step = AddRec->getStepRecurrence(*this);
 | |
| 
 | |
|         ConstantRange StartRange = getUnsignedRange(Start);
 | |
|         ConstantRange StepRange = getSignedRange(Step);
 | |
|         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
 | |
|         ConstantRange EndRange =
 | |
|           StartRange.add(MaxBECountRange.multiply(StepRange));
 | |
| 
 | |
|         // Check for overflow. This must be done with ConstantRange arithmetic
 | |
|         // because we could be called from within the ScalarEvolution overflow
 | |
|         // checking code.
 | |
|         ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
 | |
|         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
 | |
|         ConstantRange ExtMaxBECountRange =
 | |
|           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
 | |
|         ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
 | |
|         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
 | |
|             ExtEndRange)
 | |
|           return setUnsignedRange(AddRec, ConservativeResult);
 | |
| 
 | |
|         APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
 | |
|                                    EndRange.getUnsignedMin());
 | |
|         APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
 | |
|                                    EndRange.getUnsignedMax());
 | |
|         if (Min.isMinValue() && Max.isMaxValue())
 | |
|           return setUnsignedRange(AddRec, ConservativeResult);
 | |
|         return setUnsignedRange(AddRec,
 | |
|           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return setUnsignedRange(AddRec, ConservativeResult);
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | |
|     // Check if the IR explicitly contains !range metadata.
 | |
|     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
 | |
|     if (MDRange.hasValue())
 | |
|       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
 | |
| 
 | |
|     // For a SCEVUnknown, ask ValueTracking.
 | |
|     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
 | |
|     computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
 | |
|     if (Ones == ~Zeros + 1)
 | |
|       return setUnsignedRange(U, ConservativeResult);
 | |
|     return setUnsignedRange(U,
 | |
|       ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
 | |
|   }
 | |
| 
 | |
|   return setUnsignedRange(S, ConservativeResult);
 | |
| }
 | |
| 
 | |
| /// getSignedRange - Determine the signed range for a particular SCEV.
 | |
| ///
 | |
| ConstantRange
 | |
| ScalarEvolution::getSignedRange(const SCEV *S) {
 | |
|   // See if we've computed this range already.
 | |
|   DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
 | |
|   if (I != SignedRanges.end())
 | |
|     return I->second;
 | |
| 
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | |
|     return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(S->getType());
 | |
|   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
 | |
| 
 | |
|   // If the value has known zeros, the maximum signed value will have those
 | |
|   // known zeros as well.
 | |
|   uint32_t TZ = GetMinTrailingZeros(S);
 | |
|   if (TZ != 0)
 | |
|     ConservativeResult =
 | |
|       ConstantRange(APInt::getSignedMinValue(BitWidth),
 | |
|                     APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
 | |
| 
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     ConstantRange X = getSignedRange(Add->getOperand(0));
 | |
|     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
 | |
|       X = X.add(getSignedRange(Add->getOperand(i)));
 | |
|     return setSignedRange(Add, ConservativeResult.intersectWith(X));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     ConstantRange X = getSignedRange(Mul->getOperand(0));
 | |
|     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
 | |
|       X = X.multiply(getSignedRange(Mul->getOperand(i)));
 | |
|     return setSignedRange(Mul, ConservativeResult.intersectWith(X));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
 | |
|     ConstantRange X = getSignedRange(SMax->getOperand(0));
 | |
|     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
 | |
|       X = X.smax(getSignedRange(SMax->getOperand(i)));
 | |
|     return setSignedRange(SMax, ConservativeResult.intersectWith(X));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
 | |
|     ConstantRange X = getSignedRange(UMax->getOperand(0));
 | |
|     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
 | |
|       X = X.umax(getSignedRange(UMax->getOperand(i)));
 | |
|     return setSignedRange(UMax, ConservativeResult.intersectWith(X));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
 | |
|     ConstantRange X = getSignedRange(UDiv->getLHS());
 | |
|     ConstantRange Y = getSignedRange(UDiv->getRHS());
 | |
|     return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | |
|     ConstantRange X = getSignedRange(ZExt->getOperand());
 | |
|     return setSignedRange(ZExt,
 | |
|       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
 | |
|     ConstantRange X = getSignedRange(SExt->getOperand());
 | |
|     return setSignedRange(SExt,
 | |
|       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
 | |
|     ConstantRange X = getSignedRange(Trunc->getOperand());
 | |
|     return setSignedRange(Trunc,
 | |
|       ConservativeResult.intersectWith(X.truncate(BitWidth)));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     // If there's no signed wrap, and all the operands have the same sign or
 | |
|     // zero, the value won't ever change sign.
 | |
|     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
 | |
|       bool AllNonNeg = true;
 | |
|       bool AllNonPos = true;
 | |
|       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
 | |
|         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
 | |
|         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
 | |
|       }
 | |
|       if (AllNonNeg)
 | |
|         ConservativeResult = ConservativeResult.intersectWith(
 | |
|           ConstantRange(APInt(BitWidth, 0),
 | |
|                         APInt::getSignedMinValue(BitWidth)));
 | |
|       else if (AllNonPos)
 | |
|         ConservativeResult = ConservativeResult.intersectWith(
 | |
|           ConstantRange(APInt::getSignedMinValue(BitWidth),
 | |
|                         APInt(BitWidth, 1)));
 | |
|     }
 | |
| 
 | |
|     // TODO: non-affine addrec
 | |
|     if (AddRec->isAffine()) {
 | |
|       Type *Ty = AddRec->getType();
 | |
|       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
 | |
|       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
 | |
|           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
 | |
|         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
 | |
| 
 | |
|         const SCEV *Start = AddRec->getStart();
 | |
|         const SCEV *Step = AddRec->getStepRecurrence(*this);
 | |
| 
 | |
|         ConstantRange StartRange = getSignedRange(Start);
 | |
|         ConstantRange StepRange = getSignedRange(Step);
 | |
|         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
 | |
|         ConstantRange EndRange =
 | |
|           StartRange.add(MaxBECountRange.multiply(StepRange));
 | |
| 
 | |
|         // Check for overflow. This must be done with ConstantRange arithmetic
 | |
|         // because we could be called from within the ScalarEvolution overflow
 | |
|         // checking code.
 | |
|         ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
 | |
|         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
 | |
|         ConstantRange ExtMaxBECountRange =
 | |
|           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
 | |
|         ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
 | |
|         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
 | |
|             ExtEndRange)
 | |
|           return setSignedRange(AddRec, ConservativeResult);
 | |
| 
 | |
|         APInt Min = APIntOps::smin(StartRange.getSignedMin(),
 | |
|                                    EndRange.getSignedMin());
 | |
|         APInt Max = APIntOps::smax(StartRange.getSignedMax(),
 | |
|                                    EndRange.getSignedMax());
 | |
|         if (Min.isMinSignedValue() && Max.isMaxSignedValue())
 | |
|           return setSignedRange(AddRec, ConservativeResult);
 | |
|         return setSignedRange(AddRec,
 | |
|           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return setSignedRange(AddRec, ConservativeResult);
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | |
|     // Check if the IR explicitly contains !range metadata.
 | |
|     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
 | |
|     if (MDRange.hasValue())
 | |
|       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
 | |
| 
 | |
|     // For a SCEVUnknown, ask ValueTracking.
 | |
|     if (!U->getValue()->getType()->isIntegerTy() && !DL)
 | |
|       return setSignedRange(U, ConservativeResult);
 | |
|     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
 | |
|     if (NS <= 1)
 | |
|       return setSignedRange(U, ConservativeResult);
 | |
|     return setSignedRange(U, ConservativeResult.intersectWith(
 | |
|       ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
 | |
|                     APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
 | |
|   }
 | |
| 
 | |
|   return setSignedRange(S, ConservativeResult);
 | |
| }
 | |
| 
 | |
| /// createSCEV - We know that there is no SCEV for the specified value.
 | |
| /// Analyze the expression.
 | |
| ///
 | |
| const SCEV *ScalarEvolution::createSCEV(Value *V) {
 | |
|   if (!isSCEVable(V->getType()))
 | |
|     return getUnknown(V);
 | |
| 
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     Opcode = I->getOpcode();
 | |
| 
 | |
|     // Don't attempt to analyze instructions in blocks that aren't
 | |
|     // reachable. Such instructions don't matter, and they aren't required
 | |
|     // to obey basic rules for definitions dominating uses which this
 | |
|     // analysis depends on.
 | |
|     if (!DT->isReachableFromEntry(I->getParent()))
 | |
|       return getUnknown(V);
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     Opcode = CE->getOpcode();
 | |
|   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|     return getConstant(CI);
 | |
|   else if (isa<ConstantPointerNull>(V))
 | |
|     return getConstant(V->getType(), 0);
 | |
|   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | |
|     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
 | |
|   else
 | |
|     return getUnknown(V);
 | |
| 
 | |
|   Operator *U = cast<Operator>(V);
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add: {
 | |
|     // The simple thing to do would be to just call getSCEV on both operands
 | |
|     // and call getAddExpr with the result. However if we're looking at a
 | |
|     // bunch of things all added together, this can be quite inefficient,
 | |
|     // because it leads to N-1 getAddExpr calls for N ultimate operands.
 | |
|     // Instead, gather up all the operands and make a single getAddExpr call.
 | |
|     // LLVM IR canonical form means we need only traverse the left operands.
 | |
|     //
 | |
|     // Don't apply this instruction's NSW or NUW flags to the new
 | |
|     // expression. The instruction may be guarded by control flow that the
 | |
|     // no-wrap behavior depends on. Non-control-equivalent instructions can be
 | |
|     // mapped to the same SCEV expression, and it would be incorrect to transfer
 | |
|     // NSW/NUW semantics to those operations.
 | |
|     SmallVector<const SCEV *, 4> AddOps;
 | |
|     AddOps.push_back(getSCEV(U->getOperand(1)));
 | |
|     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
 | |
|       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
 | |
|       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
 | |
|         break;
 | |
|       U = cast<Operator>(Op);
 | |
|       const SCEV *Op1 = getSCEV(U->getOperand(1));
 | |
|       if (Opcode == Instruction::Sub)
 | |
|         AddOps.push_back(getNegativeSCEV(Op1));
 | |
|       else
 | |
|         AddOps.push_back(Op1);
 | |
|     }
 | |
|     AddOps.push_back(getSCEV(U->getOperand(0)));
 | |
|     return getAddExpr(AddOps);
 | |
|   }
 | |
|   case Instruction::Mul: {
 | |
|     // Don't transfer NSW/NUW for the same reason as AddExpr.
 | |
|     SmallVector<const SCEV *, 4> MulOps;
 | |
|     MulOps.push_back(getSCEV(U->getOperand(1)));
 | |
|     for (Value *Op = U->getOperand(0);
 | |
|          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
 | |
|          Op = U->getOperand(0)) {
 | |
|       U = cast<Operator>(Op);
 | |
|       MulOps.push_back(getSCEV(U->getOperand(1)));
 | |
|     }
 | |
|     MulOps.push_back(getSCEV(U->getOperand(0)));
 | |
|     return getMulExpr(MulOps);
 | |
|   }
 | |
|   case Instruction::UDiv:
 | |
|     return getUDivExpr(getSCEV(U->getOperand(0)),
 | |
|                        getSCEV(U->getOperand(1)));
 | |
|   case Instruction::Sub:
 | |
|     return getMinusSCEV(getSCEV(U->getOperand(0)),
 | |
|                         getSCEV(U->getOperand(1)));
 | |
|   case Instruction::And:
 | |
|     // For an expression like x&255 that merely masks off the high bits,
 | |
|     // use zext(trunc(x)) as the SCEV expression.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       if (CI->isNullValue())
 | |
|         return getSCEV(U->getOperand(1));
 | |
|       if (CI->isAllOnesValue())
 | |
|         return getSCEV(U->getOperand(0));
 | |
|       const APInt &A = CI->getValue();
 | |
| 
 | |
|       // Instcombine's ShrinkDemandedConstant may strip bits out of
 | |
|       // constants, obscuring what would otherwise be a low-bits mask.
 | |
|       // Use computeKnownBits to compute what ShrinkDemandedConstant
 | |
|       // knew about to reconstruct a low-bits mask value.
 | |
|       unsigned LZ = A.countLeadingZeros();
 | |
|       unsigned TZ = A.countTrailingZeros();
 | |
|       unsigned BitWidth = A.getBitWidth();
 | |
|       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|       computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC,
 | |
|                        nullptr, DT);
 | |
| 
 | |
|       APInt EffectiveMask =
 | |
|           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
 | |
|       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
 | |
|         const SCEV *MulCount = getConstant(
 | |
|             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
 | |
|         return getMulExpr(
 | |
|             getZeroExtendExpr(
 | |
|                 getTruncateExpr(
 | |
|                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
 | |
|                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
 | |
|                 U->getType()),
 | |
|             MulCount);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Or:
 | |
|     // If the RHS of the Or is a constant, we may have something like:
 | |
|     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
 | |
|     // optimizations will transparently handle this case.
 | |
|     //
 | |
|     // In order for this transformation to be safe, the LHS must be of the
 | |
|     // form X*(2^n) and the Or constant must be less than 2^n.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       const SCEV *LHS = getSCEV(U->getOperand(0));
 | |
|       const APInt &CIVal = CI->getValue();
 | |
|       if (GetMinTrailingZeros(LHS) >=
 | |
|           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
 | |
|         // Build a plain add SCEV.
 | |
|         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
 | |
|         // If the LHS of the add was an addrec and it has no-wrap flags,
 | |
|         // transfer the no-wrap flags, since an or won't introduce a wrap.
 | |
|         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
 | |
|           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
 | |
|             OldAR->getNoWrapFlags());
 | |
|         }
 | |
|         return S;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       // If the RHS of the xor is a signbit, then this is just an add.
 | |
|       // Instcombine turns add of signbit into xor as a strength reduction step.
 | |
|       if (CI->getValue().isSignBit())
 | |
|         return getAddExpr(getSCEV(U->getOperand(0)),
 | |
|                           getSCEV(U->getOperand(1)));
 | |
| 
 | |
|       // If the RHS of xor is -1, then this is a not operation.
 | |
|       if (CI->isAllOnesValue())
 | |
|         return getNotSCEV(getSCEV(U->getOperand(0)));
 | |
| 
 | |
|       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
 | |
|       // This is a variant of the check for xor with -1, and it handles
 | |
|       // the case where instcombine has trimmed non-demanded bits out
 | |
|       // of an xor with -1.
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
 | |
|         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
 | |
|           if (BO->getOpcode() == Instruction::And &&
 | |
|               LCI->getValue() == CI->getValue())
 | |
|             if (const SCEVZeroExtendExpr *Z =
 | |
|                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
 | |
|               Type *UTy = U->getType();
 | |
|               const SCEV *Z0 = Z->getOperand();
 | |
|               Type *Z0Ty = Z0->getType();
 | |
|               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
 | |
| 
 | |
|               // If C is a low-bits mask, the zero extend is serving to
 | |
|               // mask off the high bits. Complement the operand and
 | |
|               // re-apply the zext.
 | |
|               if (APIntOps::isMask(Z0TySize, CI->getValue()))
 | |
|                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
 | |
| 
 | |
|               // If C is a single bit, it may be in the sign-bit position
 | |
|               // before the zero-extend. In this case, represent the xor
 | |
|               // using an add, which is equivalent, and re-apply the zext.
 | |
|               APInt Trunc = CI->getValue().trunc(Z0TySize);
 | |
|               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
 | |
|                   Trunc.isSignBit())
 | |
|                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
 | |
|                                          UTy);
 | |
|             }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl:
 | |
|     // Turn shift left of a constant amount into a multiply.
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
 | |
| 
 | |
|       // If the shift count is not less than the bitwidth, the result of
 | |
|       // the shift is undefined. Don't try to analyze it, because the
 | |
|       // resolution chosen here may differ from the resolution chosen in
 | |
|       // other parts of the compiler.
 | |
|       if (SA->getValue().uge(BitWidth))
 | |
|         break;
 | |
| 
 | |
|       Constant *X = ConstantInt::get(getContext(),
 | |
|         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
 | |
|       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::LShr:
 | |
|     // Turn logical shift right of a constant into a unsigned divide.
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
 | |
| 
 | |
|       // If the shift count is not less than the bitwidth, the result of
 | |
|       // the shift is undefined. Don't try to analyze it, because the
 | |
|       // resolution chosen here may differ from the resolution chosen in
 | |
|       // other parts of the compiler.
 | |
|       if (SA->getValue().uge(BitWidth))
 | |
|         break;
 | |
| 
 | |
|       Constant *X = ConstantInt::get(getContext(),
 | |
|         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
 | |
|       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::AShr:
 | |
|     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
 | |
|       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
 | |
|         if (L->getOpcode() == Instruction::Shl &&
 | |
|             L->getOperand(1) == U->getOperand(1)) {
 | |
|           uint64_t BitWidth = getTypeSizeInBits(U->getType());
 | |
| 
 | |
|           // If the shift count is not less than the bitwidth, the result of
 | |
|           // the shift is undefined. Don't try to analyze it, because the
 | |
|           // resolution chosen here may differ from the resolution chosen in
 | |
|           // other parts of the compiler.
 | |
|           if (CI->getValue().uge(BitWidth))
 | |
|             break;
 | |
| 
 | |
|           uint64_t Amt = BitWidth - CI->getZExtValue();
 | |
|           if (Amt == BitWidth)
 | |
|             return getSCEV(L->getOperand(0));       // shift by zero --> noop
 | |
|           return
 | |
|             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
 | |
|                                               IntegerType::get(getContext(),
 | |
|                                                                Amt)),
 | |
|                               U->getType());
 | |
|         }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Trunc:
 | |
|     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::ZExt:
 | |
|     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::SExt:
 | |
|     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::BitCast:
 | |
|     // BitCasts are no-op casts so we just eliminate the cast.
 | |
|     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
 | |
|       return getSCEV(U->getOperand(0));
 | |
|     break;
 | |
| 
 | |
|   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
 | |
|   // lead to pointer expressions which cannot safely be expanded to GEPs,
 | |
|   // because ScalarEvolution doesn't respect the GEP aliasing rules when
 | |
|   // simplifying integer expressions.
 | |
| 
 | |
|   case Instruction::GetElementPtr:
 | |
|     return createNodeForGEP(cast<GEPOperator>(U));
 | |
| 
 | |
|   case Instruction::PHI:
 | |
|     return createNodeForPHI(cast<PHINode>(U));
 | |
| 
 | |
|   case Instruction::Select:
 | |
|     // This could be a smax or umax that was lowered earlier.
 | |
|     // Try to recover it.
 | |
|     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
 | |
|       Value *LHS = ICI->getOperand(0);
 | |
|       Value *RHS = ICI->getOperand(1);
 | |
|       switch (ICI->getPredicate()) {
 | |
|       case ICmpInst::ICMP_SLT:
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|         std::swap(LHS, RHS);
 | |
|         // fall through
 | |
|       case ICmpInst::ICMP_SGT:
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|         // a >s b ? a+x : b+x  ->  smax(a, b)+x
 | |
|         // a >s b ? b+x : a+x  ->  smin(a, b)+x
 | |
|         if (getTypeSizeInBits(LHS->getType()) <=
 | |
|             getTypeSizeInBits(U->getType())) {
 | |
|           const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
 | |
|           const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
 | |
|           const SCEV *LA = getSCEV(U->getOperand(1));
 | |
|           const SCEV *RA = getSCEV(U->getOperand(2));
 | |
|           const SCEV *LDiff = getMinusSCEV(LA, LS);
 | |
|           const SCEV *RDiff = getMinusSCEV(RA, RS);
 | |
|           if (LDiff == RDiff)
 | |
|             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
 | |
|           LDiff = getMinusSCEV(LA, RS);
 | |
|           RDiff = getMinusSCEV(RA, LS);
 | |
|           if (LDiff == RDiff)
 | |
|             return getAddExpr(getSMinExpr(LS, RS), LDiff);
 | |
|         }
 | |
|         break;
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|         std::swap(LHS, RHS);
 | |
|         // fall through
 | |
|       case ICmpInst::ICMP_UGT:
 | |
|       case ICmpInst::ICMP_UGE:
 | |
|         // a >u b ? a+x : b+x  ->  umax(a, b)+x
 | |
|         // a >u b ? b+x : a+x  ->  umin(a, b)+x
 | |
|         if (getTypeSizeInBits(LHS->getType()) <=
 | |
|             getTypeSizeInBits(U->getType())) {
 | |
|           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
 | |
|           const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
 | |
|           const SCEV *LA = getSCEV(U->getOperand(1));
 | |
|           const SCEV *RA = getSCEV(U->getOperand(2));
 | |
|           const SCEV *LDiff = getMinusSCEV(LA, LS);
 | |
|           const SCEV *RDiff = getMinusSCEV(RA, RS);
 | |
|           if (LDiff == RDiff)
 | |
|             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
 | |
|           LDiff = getMinusSCEV(LA, RS);
 | |
|           RDiff = getMinusSCEV(RA, LS);
 | |
|           if (LDiff == RDiff)
 | |
|             return getAddExpr(getUMinExpr(LS, RS), LDiff);
 | |
|         }
 | |
|         break;
 | |
|       case ICmpInst::ICMP_NE:
 | |
|         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
 | |
|         if (getTypeSizeInBits(LHS->getType()) <=
 | |
|                 getTypeSizeInBits(U->getType()) &&
 | |
|             isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
 | |
|           const SCEV *One = getConstant(U->getType(), 1);
 | |
|           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
 | |
|           const SCEV *LA = getSCEV(U->getOperand(1));
 | |
|           const SCEV *RA = getSCEV(U->getOperand(2));
 | |
|           const SCEV *LDiff = getMinusSCEV(LA, LS);
 | |
|           const SCEV *RDiff = getMinusSCEV(RA, One);
 | |
|           if (LDiff == RDiff)
 | |
|             return getAddExpr(getUMaxExpr(One, LS), LDiff);
 | |
|         }
 | |
|         break;
 | |
|       case ICmpInst::ICMP_EQ:
 | |
|         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
 | |
|         if (getTypeSizeInBits(LHS->getType()) <=
 | |
|                 getTypeSizeInBits(U->getType()) &&
 | |
|             isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
 | |
|           const SCEV *One = getConstant(U->getType(), 1);
 | |
|           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
 | |
|           const SCEV *LA = getSCEV(U->getOperand(1));
 | |
|           const SCEV *RA = getSCEV(U->getOperand(2));
 | |
|           const SCEV *LDiff = getMinusSCEV(LA, One);
 | |
|           const SCEV *RDiff = getMinusSCEV(RA, LS);
 | |
|           if (LDiff == RDiff)
 | |
|             return getAddExpr(getUMaxExpr(One, LS), LDiff);
 | |
|         }
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   default: // We cannot analyze this expression.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return getUnknown(V);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   Iteration Count Computation Code
 | |
| //
 | |
| 
 | |
| unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
 | |
|   if (BasicBlock *ExitingBB = L->getExitingBlock())
 | |
|     return getSmallConstantTripCount(L, ExitingBB);
 | |
| 
 | |
|   // No trip count information for multiple exits.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
 | |
| /// normal unsigned value. Returns 0 if the trip count is unknown or not
 | |
| /// constant. Will also return 0 if the maximum trip count is very large (>=
 | |
| /// 2^32).
 | |
| ///
 | |
| /// This "trip count" assumes that control exits via ExitingBlock. More
 | |
| /// precisely, it is the number of times that control may reach ExitingBlock
 | |
| /// before taking the branch. For loops with multiple exits, it may not be the
 | |
| /// number times that the loop header executes because the loop may exit
 | |
| /// prematurely via another branch.
 | |
| unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
 | |
|                                                     BasicBlock *ExitingBlock) {
 | |
|   assert(ExitingBlock && "Must pass a non-null exiting block!");
 | |
|   assert(L->isLoopExiting(ExitingBlock) &&
 | |
|          "Exiting block must actually branch out of the loop!");
 | |
|   const SCEVConstant *ExitCount =
 | |
|       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
 | |
|   if (!ExitCount)
 | |
|     return 0;
 | |
| 
 | |
|   ConstantInt *ExitConst = ExitCount->getValue();
 | |
| 
 | |
|   // Guard against huge trip counts.
 | |
|   if (ExitConst->getValue().getActiveBits() > 32)
 | |
|     return 0;
 | |
| 
 | |
|   // In case of integer overflow, this returns 0, which is correct.
 | |
|   return ((unsigned)ExitConst->getZExtValue()) + 1;
 | |
| }
 | |
| 
 | |
| unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
 | |
|   if (BasicBlock *ExitingBB = L->getExitingBlock())
 | |
|     return getSmallConstantTripMultiple(L, ExitingBB);
 | |
| 
 | |
|   // No trip multiple information for multiple exits.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
 | |
| /// trip count of this loop as a normal unsigned value, if possible. This
 | |
| /// means that the actual trip count is always a multiple of the returned
 | |
| /// value (don't forget the trip count could very well be zero as well!).
 | |
| ///
 | |
| /// Returns 1 if the trip count is unknown or not guaranteed to be the
 | |
| /// multiple of a constant (which is also the case if the trip count is simply
 | |
| /// constant, use getSmallConstantTripCount for that case), Will also return 1
 | |
| /// if the trip count is very large (>= 2^32).
 | |
| ///
 | |
| /// As explained in the comments for getSmallConstantTripCount, this assumes
 | |
| /// that control exits the loop via ExitingBlock.
 | |
| unsigned
 | |
| ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
 | |
|                                               BasicBlock *ExitingBlock) {
 | |
|   assert(ExitingBlock && "Must pass a non-null exiting block!");
 | |
|   assert(L->isLoopExiting(ExitingBlock) &&
 | |
|          "Exiting block must actually branch out of the loop!");
 | |
|   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
 | |
|   if (ExitCount == getCouldNotCompute())
 | |
|     return 1;
 | |
| 
 | |
|   // Get the trip count from the BE count by adding 1.
 | |
|   const SCEV *TCMul = getAddExpr(ExitCount,
 | |
|                                  getConstant(ExitCount->getType(), 1));
 | |
|   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
 | |
|   // to factor simple cases.
 | |
|   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
 | |
|     TCMul = Mul->getOperand(0);
 | |
| 
 | |
|   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
 | |
|   if (!MulC)
 | |
|     return 1;
 | |
| 
 | |
|   ConstantInt *Result = MulC->getValue();
 | |
| 
 | |
|   // Guard against huge trip counts (this requires checking
 | |
|   // for zero to handle the case where the trip count == -1 and the
 | |
|   // addition wraps).
 | |
|   if (!Result || Result->getValue().getActiveBits() > 32 ||
 | |
|       Result->getValue().getActiveBits() == 0)
 | |
|     return 1;
 | |
| 
 | |
|   return (unsigned)Result->getZExtValue();
 | |
| }
 | |
| 
 | |
| // getExitCount - Get the expression for the number of loop iterations for which
 | |
| // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
 | |
| // SCEVCouldNotCompute.
 | |
| const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
 | |
|   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
 | |
| }
 | |
| 
 | |
| /// getBackedgeTakenCount - If the specified loop has a predictable
 | |
| /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
 | |
| /// object. The backedge-taken count is the number of times the loop header
 | |
| /// will be branched to from within the loop. This is one less than the
 | |
| /// trip count of the loop, since it doesn't count the first iteration,
 | |
| /// when the header is branched to from outside the loop.
 | |
| ///
 | |
| /// Note that it is not valid to call this method on a loop without a
 | |
| /// loop-invariant backedge-taken count (see
 | |
| /// hasLoopInvariantBackedgeTakenCount).
 | |
| ///
 | |
| const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
 | |
|   return getBackedgeTakenInfo(L).getExact(this);
 | |
| }
 | |
| 
 | |
| /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
 | |
| /// return the least SCEV value that is known never to be less than the
 | |
| /// actual backedge taken count.
 | |
| const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
 | |
|   return getBackedgeTakenInfo(L).getMax(this);
 | |
| }
 | |
| 
 | |
| /// PushLoopPHIs - Push PHI nodes in the header of the given loop
 | |
| /// onto the given Worklist.
 | |
| static void
 | |
| PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   // Push all Loop-header PHIs onto the Worklist stack.
 | |
|   for (BasicBlock::iterator I = Header->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     Worklist.push_back(PN);
 | |
| }
 | |
| 
 | |
| const ScalarEvolution::BackedgeTakenInfo &
 | |
| ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
 | |
|   // Initially insert an invalid entry for this loop. If the insertion
 | |
|   // succeeds, proceed to actually compute a backedge-taken count and
 | |
|   // update the value. The temporary CouldNotCompute value tells SCEV
 | |
|   // code elsewhere that it shouldn't attempt to request a new
 | |
|   // backedge-taken count, which could result in infinite recursion.
 | |
|   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
 | |
|     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
 | |
|   if (!Pair.second)
 | |
|     return Pair.first->second;
 | |
| 
 | |
|   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
 | |
|   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
 | |
|   // must be cleared in this scope.
 | |
|   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
 | |
| 
 | |
|   if (Result.getExact(this) != getCouldNotCompute()) {
 | |
|     assert(isLoopInvariant(Result.getExact(this), L) &&
 | |
|            isLoopInvariant(Result.getMax(this), L) &&
 | |
|            "Computed backedge-taken count isn't loop invariant for loop!");
 | |
|     ++NumTripCountsComputed;
 | |
|   }
 | |
|   else if (Result.getMax(this) == getCouldNotCompute() &&
 | |
|            isa<PHINode>(L->getHeader()->begin())) {
 | |
|     // Only count loops that have phi nodes as not being computable.
 | |
|     ++NumTripCountsNotComputed;
 | |
|   }
 | |
| 
 | |
|   // Now that we know more about the trip count for this loop, forget any
 | |
|   // existing SCEV values for PHI nodes in this loop since they are only
 | |
|   // conservative estimates made without the benefit of trip count
 | |
|   // information. This is similar to the code in forgetLoop, except that
 | |
|   // it handles SCEVUnknown PHI nodes specially.
 | |
|   if (Result.hasAnyInfo()) {
 | |
|     SmallVector<Instruction *, 16> Worklist;
 | |
|     PushLoopPHIs(L, Worklist);
 | |
| 
 | |
|     SmallPtrSet<Instruction *, 8> Visited;
 | |
|     while (!Worklist.empty()) {
 | |
|       Instruction *I = Worklist.pop_back_val();
 | |
|       if (!Visited.insert(I).second)
 | |
|         continue;
 | |
| 
 | |
|       ValueExprMapType::iterator It =
 | |
|         ValueExprMap.find_as(static_cast<Value *>(I));
 | |
|       if (It != ValueExprMap.end()) {
 | |
|         const SCEV *Old = It->second;
 | |
| 
 | |
|         // SCEVUnknown for a PHI either means that it has an unrecognized
 | |
|         // structure, or it's a PHI that's in the progress of being computed
 | |
|         // by createNodeForPHI.  In the former case, additional loop trip
 | |
|         // count information isn't going to change anything. In the later
 | |
|         // case, createNodeForPHI will perform the necessary updates on its
 | |
|         // own when it gets to that point.
 | |
|         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
 | |
|           forgetMemoizedResults(Old);
 | |
|           ValueExprMap.erase(It);
 | |
|         }
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|           ConstantEvolutionLoopExitValue.erase(PN);
 | |
|       }
 | |
| 
 | |
|       PushDefUseChildren(I, Worklist);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Re-lookup the insert position, since the call to
 | |
|   // ComputeBackedgeTakenCount above could result in a
 | |
|   // recusive call to getBackedgeTakenInfo (on a different
 | |
|   // loop), which would invalidate the iterator computed
 | |
|   // earlier.
 | |
|   return BackedgeTakenCounts.find(L)->second = Result;
 | |
| }
 | |
| 
 | |
| /// forgetLoop - This method should be called by the client when it has
 | |
| /// changed a loop in a way that may effect ScalarEvolution's ability to
 | |
| /// compute a trip count, or if the loop is deleted.
 | |
| void ScalarEvolution::forgetLoop(const Loop *L) {
 | |
|   // Drop any stored trip count value.
 | |
|   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
 | |
|     BackedgeTakenCounts.find(L);
 | |
|   if (BTCPos != BackedgeTakenCounts.end()) {
 | |
|     BTCPos->second.clear();
 | |
|     BackedgeTakenCounts.erase(BTCPos);
 | |
|   }
 | |
| 
 | |
|   // Drop information about expressions based on loop-header PHIs.
 | |
|   SmallVector<Instruction *, 16> Worklist;
 | |
|   PushLoopPHIs(L, Worklist);
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.pop_back_val();
 | |
|     if (!Visited.insert(I).second)
 | |
|       continue;
 | |
| 
 | |
|     ValueExprMapType::iterator It =
 | |
|       ValueExprMap.find_as(static_cast<Value *>(I));
 | |
|     if (It != ValueExprMap.end()) {
 | |
|       forgetMemoizedResults(It->second);
 | |
|       ValueExprMap.erase(It);
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|         ConstantEvolutionLoopExitValue.erase(PN);
 | |
|     }
 | |
| 
 | |
|     PushDefUseChildren(I, Worklist);
 | |
|   }
 | |
| 
 | |
|   // Forget all contained loops too, to avoid dangling entries in the
 | |
|   // ValuesAtScopes map.
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     forgetLoop(*I);
 | |
| }
 | |
| 
 | |
| /// forgetValue - This method should be called by the client when it has
 | |
| /// changed a value in a way that may effect its value, or which may
 | |
| /// disconnect it from a def-use chain linking it to a loop.
 | |
| void ScalarEvolution::forgetValue(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return;
 | |
| 
 | |
|   // Drop information about expressions based on loop-header PHIs.
 | |
|   SmallVector<Instruction *, 16> Worklist;
 | |
|   Worklist.push_back(I);
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   while (!Worklist.empty()) {
 | |
|     I = Worklist.pop_back_val();
 | |
|     if (!Visited.insert(I).second)
 | |
|       continue;
 | |
| 
 | |
|     ValueExprMapType::iterator It =
 | |
|       ValueExprMap.find_as(static_cast<Value *>(I));
 | |
|     if (It != ValueExprMap.end()) {
 | |
|       forgetMemoizedResults(It->second);
 | |
|       ValueExprMap.erase(It);
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|         ConstantEvolutionLoopExitValue.erase(PN);
 | |
|     }
 | |
| 
 | |
|     PushDefUseChildren(I, Worklist);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getExact - Get the exact loop backedge taken count considering all loop
 | |
| /// exits. A computable result can only be return for loops with a single exit.
 | |
| /// Returning the minimum taken count among all exits is incorrect because one
 | |
| /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
 | |
| /// the limit of each loop test is never skipped. This is a valid assumption as
 | |
| /// long as the loop exits via that test. For precise results, it is the
 | |
| /// caller's responsibility to specify the relevant loop exit using
 | |
| /// getExact(ExitingBlock, SE).
 | |
| const SCEV *
 | |
| ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
 | |
|   // If any exits were not computable, the loop is not computable.
 | |
|   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
 | |
| 
 | |
|   // We need exactly one computable exit.
 | |
|   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
 | |
|   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
 | |
| 
 | |
|   const SCEV *BECount = nullptr;
 | |
|   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
 | |
|        ENT != nullptr; ENT = ENT->getNextExit()) {
 | |
| 
 | |
|     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
 | |
| 
 | |
|     if (!BECount)
 | |
|       BECount = ENT->ExactNotTaken;
 | |
|     else if (BECount != ENT->ExactNotTaken)
 | |
|       return SE->getCouldNotCompute();
 | |
|   }
 | |
|   assert(BECount && "Invalid not taken count for loop exit");
 | |
|   return BECount;
 | |
| }
 | |
| 
 | |
| /// getExact - Get the exact not taken count for this loop exit.
 | |
| const SCEV *
 | |
| ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
 | |
|                                              ScalarEvolution *SE) const {
 | |
|   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
 | |
|        ENT != nullptr; ENT = ENT->getNextExit()) {
 | |
| 
 | |
|     if (ENT->ExitingBlock == ExitingBlock)
 | |
|       return ENT->ExactNotTaken;
 | |
|   }
 | |
|   return SE->getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| /// getMax - Get the max backedge taken count for the loop.
 | |
| const SCEV *
 | |
| ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
 | |
|   return Max ? Max : SE->getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
 | |
|                                                     ScalarEvolution *SE) const {
 | |
|   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
 | |
|     return true;
 | |
| 
 | |
|   if (!ExitNotTaken.ExitingBlock)
 | |
|     return false;
 | |
| 
 | |
|   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
 | |
|        ENT != nullptr; ENT = ENT->getNextExit()) {
 | |
| 
 | |
|     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
 | |
|         && SE->hasOperand(ENT->ExactNotTaken, S)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
 | |
| /// computable exit into a persistent ExitNotTakenInfo array.
 | |
| ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
 | |
|   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
 | |
|   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
 | |
| 
 | |
|   if (!Complete)
 | |
|     ExitNotTaken.setIncomplete();
 | |
| 
 | |
|   unsigned NumExits = ExitCounts.size();
 | |
|   if (NumExits == 0) return;
 | |
| 
 | |
|   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
 | |
|   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
 | |
|   if (NumExits == 1) return;
 | |
| 
 | |
|   // Handle the rare case of multiple computable exits.
 | |
|   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
 | |
| 
 | |
|   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
 | |
|   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
 | |
|     PrevENT->setNextExit(ENT);
 | |
|     ENT->ExitingBlock = ExitCounts[i].first;
 | |
|     ENT->ExactNotTaken = ExitCounts[i].second;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// clear - Invalidate this result and free the ExitNotTakenInfo array.
 | |
| void ScalarEvolution::BackedgeTakenInfo::clear() {
 | |
|   ExitNotTaken.ExitingBlock = nullptr;
 | |
|   ExitNotTaken.ExactNotTaken = nullptr;
 | |
|   delete[] ExitNotTaken.getNextExit();
 | |
| }
 | |
| 
 | |
| /// ComputeBackedgeTakenCount - Compute the number of times the backedge
 | |
| /// of the specified loop will execute.
 | |
| ScalarEvolution::BackedgeTakenInfo
 | |
| ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
 | |
|   SmallVector<BasicBlock *, 8> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
| 
 | |
|   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
 | |
|   bool CouldComputeBECount = true;
 | |
|   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
 | |
|   const SCEV *MustExitMaxBECount = nullptr;
 | |
|   const SCEV *MayExitMaxBECount = nullptr;
 | |
| 
 | |
|   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
 | |
|   // and compute maxBECount.
 | |
|   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBB = ExitingBlocks[i];
 | |
|     ExitLimit EL = ComputeExitLimit(L, ExitBB);
 | |
| 
 | |
|     // 1. For each exit that can be computed, add an entry to ExitCounts.
 | |
|     // CouldComputeBECount is true only if all exits can be computed.
 | |
|     if (EL.Exact == getCouldNotCompute())
 | |
|       // We couldn't compute an exact value for this exit, so
 | |
|       // we won't be able to compute an exact value for the loop.
 | |
|       CouldComputeBECount = false;
 | |
|     else
 | |
|       ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
 | |
| 
 | |
|     // 2. Derive the loop's MaxBECount from each exit's max number of
 | |
|     // non-exiting iterations. Partition the loop exits into two kinds:
 | |
|     // LoopMustExits and LoopMayExits.
 | |
|     //
 | |
|     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
 | |
|     // is a LoopMayExit.  If any computable LoopMustExit is found, then
 | |
|     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
 | |
|     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
 | |
|     // considered greater than any computable EL.Max.
 | |
|     if (EL.Max != getCouldNotCompute() && Latch &&
 | |
|         DT->dominates(ExitBB, Latch)) {
 | |
|       if (!MustExitMaxBECount)
 | |
|         MustExitMaxBECount = EL.Max;
 | |
|       else {
 | |
|         MustExitMaxBECount =
 | |
|           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
 | |
|       }
 | |
|     } else if (MayExitMaxBECount != getCouldNotCompute()) {
 | |
|       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
 | |
|         MayExitMaxBECount = EL.Max;
 | |
|       else {
 | |
|         MayExitMaxBECount =
 | |
|           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
 | |
|     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
 | |
|   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
 | |
| }
 | |
| 
 | |
| /// ComputeExitLimit - Compute the number of times the backedge of the specified
 | |
| /// loop will execute if it exits via the specified block.
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
 | |
| 
 | |
|   // Okay, we've chosen an exiting block.  See what condition causes us to
 | |
|   // exit at this block and remember the exit block and whether all other targets
 | |
|   // lead to the loop header.
 | |
|   bool MustExecuteLoopHeader = true;
 | |
|   BasicBlock *Exit = nullptr;
 | |
|   for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
 | |
|        SI != SE; ++SI)
 | |
|     if (!L->contains(*SI)) {
 | |
|       if (Exit) // Multiple exit successors.
 | |
|         return getCouldNotCompute();
 | |
|       Exit = *SI;
 | |
|     } else if (*SI != L->getHeader()) {
 | |
|       MustExecuteLoopHeader = false;
 | |
|     }
 | |
| 
 | |
|   // At this point, we know we have a conditional branch that determines whether
 | |
|   // the loop is exited.  However, we don't know if the branch is executed each
 | |
|   // time through the loop.  If not, then the execution count of the branch will
 | |
|   // not be equal to the trip count of the loop.
 | |
|   //
 | |
|   // Currently we check for this by checking to see if the Exit branch goes to
 | |
|   // the loop header.  If so, we know it will always execute the same number of
 | |
|   // times as the loop.  We also handle the case where the exit block *is* the
 | |
|   // loop header.  This is common for un-rotated loops.
 | |
|   //
 | |
|   // If both of those tests fail, walk up the unique predecessor chain to the
 | |
|   // header, stopping if there is an edge that doesn't exit the loop. If the
 | |
|   // header is reached, the execution count of the branch will be equal to the
 | |
|   // trip count of the loop.
 | |
|   //
 | |
|   //  More extensive analysis could be done to handle more cases here.
 | |
|   //
 | |
|   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
 | |
|     // The simple checks failed, try climbing the unique predecessor chain
 | |
|     // up to the header.
 | |
|     bool Ok = false;
 | |
|     for (BasicBlock *BB = ExitingBlock; BB; ) {
 | |
|       BasicBlock *Pred = BB->getUniquePredecessor();
 | |
|       if (!Pred)
 | |
|         return getCouldNotCompute();
 | |
|       TerminatorInst *PredTerm = Pred->getTerminator();
 | |
|       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
 | |
|         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
 | |
|         if (PredSucc == BB)
 | |
|           continue;
 | |
|         // If the predecessor has a successor that isn't BB and isn't
 | |
|         // outside the loop, assume the worst.
 | |
|         if (L->contains(PredSucc))
 | |
|           return getCouldNotCompute();
 | |
|       }
 | |
|       if (Pred == L->getHeader()) {
 | |
|         Ok = true;
 | |
|         break;
 | |
|       }
 | |
|       BB = Pred;
 | |
|     }
 | |
|     if (!Ok)
 | |
|       return getCouldNotCompute();
 | |
|   }
 | |
| 
 | |
|   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
 | |
|   TerminatorInst *Term = ExitingBlock->getTerminator();
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
 | |
|     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
 | |
|     // Proceed to the next level to examine the exit condition expression.
 | |
|     return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
 | |
|                                     BI->getSuccessor(1),
 | |
|                                     /*ControlsExit=*/IsOnlyExit);
 | |
|   }
 | |
| 
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
 | |
|     return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
 | |
|                                                 /*ControlsExit=*/IsOnlyExit);
 | |
| 
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| /// ComputeExitLimitFromCond - Compute the number of times the
 | |
| /// backedge of the specified loop will execute if its exit condition
 | |
| /// were a conditional branch of ExitCond, TBB, and FBB.
 | |
| ///
 | |
| /// @param ControlsExit is true if ExitCond directly controls the exit
 | |
| /// branch. In this case, we can assume that the loop exits only if the
 | |
| /// condition is true and can infer that failing to meet the condition prior to
 | |
| /// integer wraparound results in undefined behavior.
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
 | |
|                                           Value *ExitCond,
 | |
|                                           BasicBlock *TBB,
 | |
|                                           BasicBlock *FBB,
 | |
|                                           bool ControlsExit) {
 | |
|   // Check if the controlling expression for this loop is an And or Or.
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
 | |
|     if (BO->getOpcode() == Instruction::And) {
 | |
|       // Recurse on the operands of the and.
 | |
|       bool EitherMayExit = L->contains(TBB);
 | |
|       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
 | |
|                                                ControlsExit && !EitherMayExit);
 | |
|       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
 | |
|                                                ControlsExit && !EitherMayExit);
 | |
|       const SCEV *BECount = getCouldNotCompute();
 | |
|       const SCEV *MaxBECount = getCouldNotCompute();
 | |
|       if (EitherMayExit) {
 | |
|         // Both conditions must be true for the loop to continue executing.
 | |
|         // Choose the less conservative count.
 | |
|         if (EL0.Exact == getCouldNotCompute() ||
 | |
|             EL1.Exact == getCouldNotCompute())
 | |
|           BECount = getCouldNotCompute();
 | |
|         else
 | |
|           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
 | |
|         if (EL0.Max == getCouldNotCompute())
 | |
|           MaxBECount = EL1.Max;
 | |
|         else if (EL1.Max == getCouldNotCompute())
 | |
|           MaxBECount = EL0.Max;
 | |
|         else
 | |
|           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
 | |
|       } else {
 | |
|         // Both conditions must be true at the same time for the loop to exit.
 | |
|         // For now, be conservative.
 | |
|         assert(L->contains(FBB) && "Loop block has no successor in loop!");
 | |
|         if (EL0.Max == EL1.Max)
 | |
|           MaxBECount = EL0.Max;
 | |
|         if (EL0.Exact == EL1.Exact)
 | |
|           BECount = EL0.Exact;
 | |
|       }
 | |
| 
 | |
|       return ExitLimit(BECount, MaxBECount);
 | |
|     }
 | |
|     if (BO->getOpcode() == Instruction::Or) {
 | |
|       // Recurse on the operands of the or.
 | |
|       bool EitherMayExit = L->contains(FBB);
 | |
|       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
 | |
|                                                ControlsExit && !EitherMayExit);
 | |
|       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
 | |
|                                                ControlsExit && !EitherMayExit);
 | |
|       const SCEV *BECount = getCouldNotCompute();
 | |
|       const SCEV *MaxBECount = getCouldNotCompute();
 | |
|       if (EitherMayExit) {
 | |
|         // Both conditions must be false for the loop to continue executing.
 | |
|         // Choose the less conservative count.
 | |
|         if (EL0.Exact == getCouldNotCompute() ||
 | |
|             EL1.Exact == getCouldNotCompute())
 | |
|           BECount = getCouldNotCompute();
 | |
|         else
 | |
|           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
 | |
|         if (EL0.Max == getCouldNotCompute())
 | |
|           MaxBECount = EL1.Max;
 | |
|         else if (EL1.Max == getCouldNotCompute())
 | |
|           MaxBECount = EL0.Max;
 | |
|         else
 | |
|           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
 | |
|       } else {
 | |
|         // Both conditions must be false at the same time for the loop to exit.
 | |
|         // For now, be conservative.
 | |
|         assert(L->contains(TBB) && "Loop block has no successor in loop!");
 | |
|         if (EL0.Max == EL1.Max)
 | |
|           MaxBECount = EL0.Max;
 | |
|         if (EL0.Exact == EL1.Exact)
 | |
|           BECount = EL0.Exact;
 | |
|       }
 | |
| 
 | |
|       return ExitLimit(BECount, MaxBECount);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // With an icmp, it may be feasible to compute an exact backedge-taken count.
 | |
|   // Proceed to the next level to examine the icmp.
 | |
|   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
 | |
|     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
 | |
| 
 | |
|   // Check for a constant condition. These are normally stripped out by
 | |
|   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
 | |
|   // preserve the CFG and is temporarily leaving constant conditions
 | |
|   // in place.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
 | |
|     if (L->contains(FBB) == !CI->getZExtValue())
 | |
|       // The backedge is always taken.
 | |
|       return getCouldNotCompute();
 | |
|     else
 | |
|       // The backedge is never taken.
 | |
|       return getConstant(CI->getType(), 0);
 | |
|   }
 | |
| 
 | |
|   // If it's not an integer or pointer comparison then compute it the hard way.
 | |
|   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
 | |
| }
 | |
| 
 | |
| /// ComputeExitLimitFromICmp - Compute the number of times the
 | |
| /// backedge of the specified loop will execute if its exit condition
 | |
| /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
 | |
|                                           ICmpInst *ExitCond,
 | |
|                                           BasicBlock *TBB,
 | |
|                                           BasicBlock *FBB,
 | |
|                                           bool ControlsExit) {
 | |
| 
 | |
|   // If the condition was exit on true, convert the condition to exit on false
 | |
|   ICmpInst::Predicate Cond;
 | |
|   if (!L->contains(FBB))
 | |
|     Cond = ExitCond->getPredicate();
 | |
|   else
 | |
|     Cond = ExitCond->getInversePredicate();
 | |
| 
 | |
|   // Handle common loops like: for (X = "string"; *X; ++X)
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
 | |
|     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
 | |
|       ExitLimit ItCnt =
 | |
|         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
 | |
|       if (ItCnt.hasAnyInfo())
 | |
|         return ItCnt;
 | |
|     }
 | |
| 
 | |
|   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
 | |
|   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
 | |
| 
 | |
|   // Try to evaluate any dependencies out of the loop.
 | |
|   LHS = getSCEVAtScope(LHS, L);
 | |
|   RHS = getSCEVAtScope(RHS, L);
 | |
| 
 | |
|   // At this point, we would like to compute how many iterations of the
 | |
|   // loop the predicate will return true for these inputs.
 | |
|   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
 | |
|     // If there is a loop-invariant, force it into the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Cond = ICmpInst::getSwappedPredicate(Cond);
 | |
|   }
 | |
| 
 | |
|   // Simplify the operands before analyzing them.
 | |
|   (void)SimplifyICmpOperands(Cond, LHS, RHS);
 | |
| 
 | |
|   // If we have a comparison of a chrec against a constant, try to use value
 | |
|   // ranges to answer this query.
 | |
|   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
 | |
|     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
 | |
|       if (AddRec->getLoop() == L) {
 | |
|         // Form the constant range.
 | |
|         ConstantRange CompRange(
 | |
|             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
 | |
| 
 | |
|         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
 | |
|         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
 | |
|       }
 | |
| 
 | |
|   switch (Cond) {
 | |
|   case ICmpInst::ICMP_NE: {                     // while (X != Y)
 | |
|     // Convert to: while (X-Y != 0)
 | |
|     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
 | |
|     if (EL.hasAnyInfo()) return EL;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
 | |
|     // Convert to: while (X-Y == 0)
 | |
|     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
 | |
|     if (EL.hasAnyInfo()) return EL;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
 | |
|     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
 | |
|     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
 | |
|     if (EL.hasAnyInfo()) return EL;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
 | |
|     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
 | |
|     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
 | |
|     if (EL.hasAnyInfo()) return EL;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
| #if 0
 | |
|     dbgs() << "ComputeBackedgeTakenCount ";
 | |
|     if (ExitCond->getOperand(0)->getType()->isUnsigned())
 | |
|       dbgs() << "[unsigned] ";
 | |
|     dbgs() << *LHS << "   "
 | |
|          << Instruction::getOpcodeName(Instruction::ICmp)
 | |
|          << "   " << *RHS << "\n";
 | |
| #endif
 | |
|     break;
 | |
|   }
 | |
|   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
 | |
|                                                       SwitchInst *Switch,
 | |
|                                                       BasicBlock *ExitingBlock,
 | |
|                                                       bool ControlsExit) {
 | |
|   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
 | |
| 
 | |
|   // Give up if the exit is the default dest of a switch.
 | |
|   if (Switch->getDefaultDest() == ExitingBlock)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   assert(L->contains(Switch->getDefaultDest()) &&
 | |
|          "Default case must not exit the loop!");
 | |
|   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
 | |
|   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
 | |
| 
 | |
|   // while (X != Y) --> while (X-Y != 0)
 | |
|   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
 | |
|   if (EL.hasAnyInfo())
 | |
|     return EL;
 | |
| 
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| static ConstantInt *
 | |
| EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
 | |
|                                 ScalarEvolution &SE) {
 | |
|   const SCEV *InVal = SE.getConstant(C);
 | |
|   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
 | |
|   assert(isa<SCEVConstant>(Val) &&
 | |
|          "Evaluation of SCEV at constant didn't fold correctly?");
 | |
|   return cast<SCEVConstant>(Val)->getValue();
 | |
| }
 | |
| 
 | |
| /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
 | |
| /// 'icmp op load X, cst', try to see if we can compute the backedge
 | |
| /// execution count.
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::ComputeLoadConstantCompareExitLimit(
 | |
|   LoadInst *LI,
 | |
|   Constant *RHS,
 | |
|   const Loop *L,
 | |
|   ICmpInst::Predicate predicate) {
 | |
| 
 | |
|   if (LI->isVolatile()) return getCouldNotCompute();
 | |
| 
 | |
|   // Check to see if the loaded pointer is a getelementptr of a global.
 | |
|   // TODO: Use SCEV instead of manually grubbing with GEPs.
 | |
|   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
 | |
|   if (!GEP) return getCouldNotCompute();
 | |
| 
 | |
|   // Make sure that it is really a constant global we are gepping, with an
 | |
|   // initializer, and make sure the first IDX is really 0.
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
 | |
|   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
 | |
|       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
 | |
|       !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Okay, we allow one non-constant index into the GEP instruction.
 | |
|   Value *VarIdx = nullptr;
 | |
|   std::vector<Constant*> Indexes;
 | |
|   unsigned VarIdxNum = 0;
 | |
|   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | |
|       Indexes.push_back(CI);
 | |
|     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
 | |
|       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
 | |
|       VarIdx = GEP->getOperand(i);
 | |
|       VarIdxNum = i-2;
 | |
|       Indexes.push_back(nullptr);
 | |
|     }
 | |
| 
 | |
|   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
 | |
|   if (!VarIdx)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
 | |
|   // Check to see if X is a loop variant variable value now.
 | |
|   const SCEV *Idx = getSCEV(VarIdx);
 | |
|   Idx = getSCEVAtScope(Idx, L);
 | |
| 
 | |
|   // We can only recognize very limited forms of loop index expressions, in
 | |
|   // particular, only affine AddRec's like {C1,+,C2}.
 | |
|   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
 | |
|   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
 | |
|       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
 | |
|       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   unsigned MaxSteps = MaxBruteForceIterations;
 | |
|   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
 | |
|     ConstantInt *ItCst = ConstantInt::get(
 | |
|                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
 | |
|     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
 | |
| 
 | |
|     // Form the GEP offset.
 | |
|     Indexes[VarIdxNum] = Val;
 | |
| 
 | |
|     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
 | |
|                                                          Indexes);
 | |
|     if (!Result) break;  // Cannot compute!
 | |
| 
 | |
|     // Evaluate the condition for this iteration.
 | |
|     Result = ConstantExpr::getICmp(predicate, Result, RHS);
 | |
|     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
 | |
|     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
 | |
| #if 0
 | |
|       dbgs() << "\n***\n*** Computed loop count " << *ItCst
 | |
|              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
 | |
|              << "***\n";
 | |
| #endif
 | |
|       ++NumArrayLenItCounts;
 | |
|       return getConstant(ItCst);   // Found terminating iteration!
 | |
|     }
 | |
|   }
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CanConstantFold - Return true if we can constant fold an instruction of the
 | |
| /// specified type, assuming that all operands were constants.
 | |
| static bool CanConstantFold(const Instruction *I) {
 | |
|   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
 | |
|       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
 | |
|       isa<LoadInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     if (const Function *F = CI->getCalledFunction())
 | |
|       return canConstantFoldCallTo(F);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determine whether this instruction can constant evolve within this loop
 | |
| /// assuming its operands can all constant evolve.
 | |
| static bool canConstantEvolve(Instruction *I, const Loop *L) {
 | |
|   // An instruction outside of the loop can't be derived from a loop PHI.
 | |
|   if (!L->contains(I)) return false;
 | |
| 
 | |
|   if (isa<PHINode>(I)) {
 | |
|     if (L->getHeader() == I->getParent())
 | |
|       return true;
 | |
|     else
 | |
|       // We don't currently keep track of the control flow needed to evaluate
 | |
|       // PHIs, so we cannot handle PHIs inside of loops.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If we won't be able to constant fold this expression even if the operands
 | |
|   // are constants, bail early.
 | |
|   return CanConstantFold(I);
 | |
| }
 | |
| 
 | |
| /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
 | |
| /// recursing through each instruction operand until reaching a loop header phi.
 | |
| static PHINode *
 | |
| getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
 | |
|                                DenseMap<Instruction *, PHINode *> &PHIMap) {
 | |
| 
 | |
|   // Otherwise, we can evaluate this instruction if all of its operands are
 | |
|   // constant or derived from a PHI node themselves.
 | |
|   PHINode *PHI = nullptr;
 | |
|   for (Instruction::op_iterator OpI = UseInst->op_begin(),
 | |
|          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
 | |
| 
 | |
|     if (isa<Constant>(*OpI)) continue;
 | |
| 
 | |
|     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
 | |
|     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
 | |
| 
 | |
|     PHINode *P = dyn_cast<PHINode>(OpInst);
 | |
|     if (!P)
 | |
|       // If this operand is already visited, reuse the prior result.
 | |
|       // We may have P != PHI if this is the deepest point at which the
 | |
|       // inconsistent paths meet.
 | |
|       P = PHIMap.lookup(OpInst);
 | |
|     if (!P) {
 | |
|       // Recurse and memoize the results, whether a phi is found or not.
 | |
|       // This recursive call invalidates pointers into PHIMap.
 | |
|       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
 | |
|       PHIMap[OpInst] = P;
 | |
|     }
 | |
|     if (!P)
 | |
|       return nullptr;  // Not evolving from PHI
 | |
|     if (PHI && PHI != P)
 | |
|       return nullptr;  // Evolving from multiple different PHIs.
 | |
|     PHI = P;
 | |
|   }
 | |
|   // This is a expression evolving from a constant PHI!
 | |
|   return PHI;
 | |
| }
 | |
| 
 | |
| /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
 | |
| /// in the loop that V is derived from.  We allow arbitrary operations along the
 | |
| /// way, but the operands of an operation must either be constants or a value
 | |
| /// derived from a constant PHI.  If this expression does not fit with these
 | |
| /// constraints, return null.
 | |
| static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !canConstantEvolve(I, L)) return nullptr;
 | |
| 
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|     return PN;
 | |
|   }
 | |
| 
 | |
|   // Record non-constant instructions contained by the loop.
 | |
|   DenseMap<Instruction *, PHINode *> PHIMap;
 | |
|   return getConstantEvolvingPHIOperands(I, L, PHIMap);
 | |
| }
 | |
| 
 | |
| /// EvaluateExpression - Given an expression that passes the
 | |
| /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
 | |
| /// in the loop has the value PHIVal.  If we can't fold this expression for some
 | |
| /// reason, return null.
 | |
| static Constant *EvaluateExpression(Value *V, const Loop *L,
 | |
|                                     DenseMap<Instruction *, Constant *> &Vals,
 | |
|                                     const DataLayout *DL,
 | |
|                                     const TargetLibraryInfo *TLI) {
 | |
|   // Convenient constant check, but redundant for recursive calls.
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) return C;
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return nullptr;
 | |
| 
 | |
|   if (Constant *C = Vals.lookup(I)) return C;
 | |
| 
 | |
|   // An instruction inside the loop depends on a value outside the loop that we
 | |
|   // weren't given a mapping for, or a value such as a call inside the loop.
 | |
|   if (!canConstantEvolve(I, L)) return nullptr;
 | |
| 
 | |
|   // An unmapped PHI can be due to a branch or another loop inside this loop,
 | |
|   // or due to this not being the initial iteration through a loop where we
 | |
|   // couldn't compute the evolution of this particular PHI last time.
 | |
|   if (isa<PHINode>(I)) return nullptr;
 | |
| 
 | |
|   std::vector<Constant*> Operands(I->getNumOperands());
 | |
| 
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
 | |
|     if (!Operand) {
 | |
|       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
 | |
|       if (!Operands[i]) return nullptr;
 | |
|       continue;
 | |
|     }
 | |
|     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
 | |
|     Vals[Operand] = C;
 | |
|     if (!C) return nullptr;
 | |
|     Operands[i] = C;
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
 | |
|                                            Operands[1], DL, TLI);
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (!LI->isVolatile())
 | |
|       return ConstantFoldLoadFromConstPtr(Operands[0], DL);
 | |
|   }
 | |
|   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
 | |
|                                   TLI);
 | |
| }
 | |
| 
 | |
| /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | |
| /// in the header of its containing loop, we know the loop executes a
 | |
| /// constant number of times, and the PHI node is just a recurrence
 | |
| /// involving constants, fold it.
 | |
| Constant *
 | |
| ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
 | |
|                                                    const APInt &BEs,
 | |
|                                                    const Loop *L) {
 | |
|   DenseMap<PHINode*, Constant*>::const_iterator I =
 | |
|     ConstantEvolutionLoopExitValue.find(PN);
 | |
|   if (I != ConstantEvolutionLoopExitValue.end())
 | |
|     return I->second;
 | |
| 
 | |
|   if (BEs.ugt(MaxBruteForceIterations))
 | |
|     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
 | |
| 
 | |
|   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
 | |
| 
 | |
|   DenseMap<Instruction *, Constant *> CurrentIterVals;
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
 | |
| 
 | |
|   // Since the loop is canonicalized, the PHI node must have two entries.  One
 | |
|   // entry must be a constant (coming in from outside of the loop), and the
 | |
|   // second must be derived from the same PHI.
 | |
|   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | |
|   PHINode *PHI = nullptr;
 | |
|   for (BasicBlock::iterator I = Header->begin();
 | |
|        (PHI = dyn_cast<PHINode>(I)); ++I) {
 | |
|     Constant *StartCST =
 | |
|       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
 | |
|     if (!StartCST) continue;
 | |
|     CurrentIterVals[PHI] = StartCST;
 | |
|   }
 | |
|   if (!CurrentIterVals.count(PN))
 | |
|     return RetVal = nullptr;
 | |
| 
 | |
|   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | |
| 
 | |
|   // Execute the loop symbolically to determine the exit value.
 | |
|   if (BEs.getActiveBits() >= 32)
 | |
|     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
 | |
| 
 | |
|   unsigned NumIterations = BEs.getZExtValue(); // must be in range
 | |
|   unsigned IterationNum = 0;
 | |
|   for (; ; ++IterationNum) {
 | |
|     if (IterationNum == NumIterations)
 | |
|       return RetVal = CurrentIterVals[PN];  // Got exit value!
 | |
| 
 | |
|     // Compute the value of the PHIs for the next iteration.
 | |
|     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
 | |
|     DenseMap<Instruction *, Constant *> NextIterVals;
 | |
|     Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
 | |
|                                            TLI);
 | |
|     if (!NextPHI)
 | |
|       return nullptr;        // Couldn't evaluate!
 | |
|     NextIterVals[PN] = NextPHI;
 | |
| 
 | |
|     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
 | |
| 
 | |
|     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
 | |
|     // cease to be able to evaluate one of them or if they stop evolving,
 | |
|     // because that doesn't necessarily prevent us from computing PN.
 | |
|     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
 | |
|     for (DenseMap<Instruction *, Constant *>::const_iterator
 | |
|            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
 | |
|       PHINode *PHI = dyn_cast<PHINode>(I->first);
 | |
|       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
 | |
|       PHIsToCompute.push_back(std::make_pair(PHI, I->second));
 | |
|     }
 | |
|     // We use two distinct loops because EvaluateExpression may invalidate any
 | |
|     // iterators into CurrentIterVals.
 | |
|     for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
 | |
|              I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
 | |
|       PHINode *PHI = I->first;
 | |
|       Constant *&NextPHI = NextIterVals[PHI];
 | |
|       if (!NextPHI) {   // Not already computed.
 | |
|         Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
 | |
|         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
 | |
|       }
 | |
|       if (NextPHI != I->second)
 | |
|         StoppedEvolving = false;
 | |
|     }
 | |
| 
 | |
|     // If all entries in CurrentIterVals == NextIterVals then we can stop
 | |
|     // iterating, the loop can't continue to change.
 | |
|     if (StoppedEvolving)
 | |
|       return RetVal = CurrentIterVals[PN];
 | |
| 
 | |
|     CurrentIterVals.swap(NextIterVals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ComputeExitCountExhaustively - If the loop is known to execute a
 | |
| /// constant number of times (the condition evolves only from constants),
 | |
| /// try to evaluate a few iterations of the loop until we get the exit
 | |
| /// condition gets a value of ExitWhen (true or false).  If we cannot
 | |
| /// evaluate the trip count of the loop, return getCouldNotCompute().
 | |
| const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
 | |
|                                                           Value *Cond,
 | |
|                                                           bool ExitWhen) {
 | |
|   PHINode *PN = getConstantEvolvingPHI(Cond, L);
 | |
|   if (!PN) return getCouldNotCompute();
 | |
| 
 | |
|   // If the loop is canonicalized, the PHI will have exactly two entries.
 | |
|   // That's the only form we support here.
 | |
|   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
 | |
| 
 | |
|   DenseMap<Instruction *, Constant *> CurrentIterVals;
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
 | |
| 
 | |
|   // One entry must be a constant (coming in from outside of the loop), and the
 | |
|   // second must be derived from the same PHI.
 | |
|   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | |
|   PHINode *PHI = nullptr;
 | |
|   for (BasicBlock::iterator I = Header->begin();
 | |
|        (PHI = dyn_cast<PHINode>(I)); ++I) {
 | |
|     Constant *StartCST =
 | |
|       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
 | |
|     if (!StartCST) continue;
 | |
|     CurrentIterVals[PHI] = StartCST;
 | |
|   }
 | |
|   if (!CurrentIterVals.count(PN))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
 | |
|   // the loop symbolically to determine when the condition gets a value of
 | |
|   // "ExitWhen".
 | |
| 
 | |
|   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
 | |
|   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
 | |
|     ConstantInt *CondVal =
 | |
|       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
 | |
|                                                        DL, TLI));
 | |
| 
 | |
|     // Couldn't symbolically evaluate.
 | |
|     if (!CondVal) return getCouldNotCompute();
 | |
| 
 | |
|     if (CondVal->getValue() == uint64_t(ExitWhen)) {
 | |
|       ++NumBruteForceTripCountsComputed;
 | |
|       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
 | |
|     }
 | |
| 
 | |
|     // Update all the PHI nodes for the next iteration.
 | |
|     DenseMap<Instruction *, Constant *> NextIterVals;
 | |
| 
 | |
|     // Create a list of which PHIs we need to compute. We want to do this before
 | |
|     // calling EvaluateExpression on them because that may invalidate iterators
 | |
|     // into CurrentIterVals.
 | |
|     SmallVector<PHINode *, 8> PHIsToCompute;
 | |
|     for (DenseMap<Instruction *, Constant *>::const_iterator
 | |
|            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
 | |
|       PHINode *PHI = dyn_cast<PHINode>(I->first);
 | |
|       if (!PHI || PHI->getParent() != Header) continue;
 | |
|       PHIsToCompute.push_back(PHI);
 | |
|     }
 | |
|     for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
 | |
|              E = PHIsToCompute.end(); I != E; ++I) {
 | |
|       PHINode *PHI = *I;
 | |
|       Constant *&NextPHI = NextIterVals[PHI];
 | |
|       if (NextPHI) continue;    // Already computed!
 | |
| 
 | |
|       Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
 | |
|       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
 | |
|     }
 | |
|     CurrentIterVals.swap(NextIterVals);
 | |
|   }
 | |
| 
 | |
|   // Too many iterations were needed to evaluate.
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| /// getSCEVAtScope - Return a SCEV expression for the specified value
 | |
| /// at the specified scope in the program.  The L value specifies a loop
 | |
| /// nest to evaluate the expression at, where null is the top-level or a
 | |
| /// specified loop is immediately inside of the loop.
 | |
| ///
 | |
| /// This method can be used to compute the exit value for a variable defined
 | |
| /// in a loop by querying what the value will hold in the parent loop.
 | |
| ///
 | |
| /// In the case that a relevant loop exit value cannot be computed, the
 | |
| /// original value V is returned.
 | |
| const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
 | |
|   // Check to see if we've folded this expression at this loop before.
 | |
|   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
 | |
|   for (unsigned u = 0; u < Values.size(); u++) {
 | |
|     if (Values[u].first == L)
 | |
|       return Values[u].second ? Values[u].second : V;
 | |
|   }
 | |
|   Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
 | |
|   // Otherwise compute it.
 | |
|   const SCEV *C = computeSCEVAtScope(V, L);
 | |
|   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
 | |
|   for (unsigned u = Values2.size(); u > 0; u--) {
 | |
|     if (Values2[u - 1].first == L) {
 | |
|       Values2[u - 1].second = C;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// This builds up a Constant using the ConstantExpr interface.  That way, we
 | |
| /// will return Constants for objects which aren't represented by a
 | |
| /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
 | |
| /// Returns NULL if the SCEV isn't representable as a Constant.
 | |
| static Constant *BuildConstantFromSCEV(const SCEV *V) {
 | |
|   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
 | |
|     case scCouldNotCompute:
 | |
|     case scAddRecExpr:
 | |
|       break;
 | |
|     case scConstant:
 | |
|       return cast<SCEVConstant>(V)->getValue();
 | |
|     case scUnknown:
 | |
|       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
 | |
|     case scSignExtend: {
 | |
|       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
 | |
|       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
 | |
|         return ConstantExpr::getSExt(CastOp, SS->getType());
 | |
|       break;
 | |
|     }
 | |
|     case scZeroExtend: {
 | |
|       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
 | |
|       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
 | |
|         return ConstantExpr::getZExt(CastOp, SZ->getType());
 | |
|       break;
 | |
|     }
 | |
|     case scTruncate: {
 | |
|       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
 | |
|       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
 | |
|         return ConstantExpr::getTrunc(CastOp, ST->getType());
 | |
|       break;
 | |
|     }
 | |
|     case scAddExpr: {
 | |
|       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
 | |
|       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
 | |
|         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
 | |
|           unsigned AS = PTy->getAddressSpace();
 | |
|           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
 | |
|           C = ConstantExpr::getBitCast(C, DestPtrTy);
 | |
|         }
 | |
|         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
 | |
|           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
 | |
|           if (!C2) return nullptr;
 | |
| 
 | |
|           // First pointer!
 | |
|           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
 | |
|             unsigned AS = C2->getType()->getPointerAddressSpace();
 | |
|             std::swap(C, C2);
 | |
|             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
 | |
|             // The offsets have been converted to bytes.  We can add bytes to an
 | |
|             // i8* by GEP with the byte count in the first index.
 | |
|             C = ConstantExpr::getBitCast(C, DestPtrTy);
 | |
|           }
 | |
| 
 | |
|           // Don't bother trying to sum two pointers. We probably can't
 | |
|           // statically compute a load that results from it anyway.
 | |
|           if (C2->getType()->isPointerTy())
 | |
|             return nullptr;
 | |
| 
 | |
|           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
 | |
|             if (PTy->getElementType()->isStructTy())
 | |
|               C2 = ConstantExpr::getIntegerCast(
 | |
|                   C2, Type::getInt32Ty(C->getContext()), true);
 | |
|             C = ConstantExpr::getGetElementPtr(C, C2);
 | |
|           } else
 | |
|             C = ConstantExpr::getAdd(C, C2);
 | |
|         }
 | |
|         return C;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case scMulExpr: {
 | |
|       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
 | |
|       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
 | |
|         // Don't bother with pointers at all.
 | |
|         if (C->getType()->isPointerTy()) return nullptr;
 | |
|         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
 | |
|           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
 | |
|           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
 | |
|           C = ConstantExpr::getMul(C, C2);
 | |
|         }
 | |
|         return C;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case scUDivExpr: {
 | |
|       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
 | |
|       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
 | |
|         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
 | |
|           if (LHS->getType() == RHS->getType())
 | |
|             return ConstantExpr::getUDiv(LHS, RHS);
 | |
|       break;
 | |
|     }
 | |
|     case scSMaxExpr:
 | |
|     case scUMaxExpr:
 | |
|       break; // TODO: smax, umax.
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
 | |
|   if (isa<SCEVConstant>(V)) return V;
 | |
| 
 | |
|   // If this instruction is evolved from a constant-evolving PHI, compute the
 | |
|   // exit value from the loop without using SCEVs.
 | |
|   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
 | |
|     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
 | |
|       const Loop *LI = (*this->LI)[I->getParent()];
 | |
|       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|           if (PN->getParent() == LI->getHeader()) {
 | |
|             // Okay, there is no closed form solution for the PHI node.  Check
 | |
|             // to see if the loop that contains it has a known backedge-taken
 | |
|             // count.  If so, we may be able to force computation of the exit
 | |
|             // value.
 | |
|             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
 | |
|             if (const SCEVConstant *BTCC =
 | |
|                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
 | |
|               // Okay, we know how many times the containing loop executes.  If
 | |
|               // this is a constant evolving PHI node, get the final value at
 | |
|               // the specified iteration number.
 | |
|               Constant *RV = getConstantEvolutionLoopExitValue(PN,
 | |
|                                                    BTCC->getValue()->getValue(),
 | |
|                                                                LI);
 | |
|               if (RV) return getSCEV(RV);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|       // Okay, this is an expression that we cannot symbolically evaluate
 | |
|       // into a SCEV.  Check to see if it's possible to symbolically evaluate
 | |
|       // the arguments into constants, and if so, try to constant propagate the
 | |
|       // result.  This is particularly useful for computing loop exit values.
 | |
|       if (CanConstantFold(I)) {
 | |
|         SmallVector<Constant *, 4> Operands;
 | |
|         bool MadeImprovement = false;
 | |
|         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|           Value *Op = I->getOperand(i);
 | |
|           if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|             Operands.push_back(C);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           // If any of the operands is non-constant and if they are
 | |
|           // non-integer and non-pointer, don't even try to analyze them
 | |
|           // with scev techniques.
 | |
|           if (!isSCEVable(Op->getType()))
 | |
|             return V;
 | |
| 
 | |
|           const SCEV *OrigV = getSCEV(Op);
 | |
|           const SCEV *OpV = getSCEVAtScope(OrigV, L);
 | |
|           MadeImprovement |= OrigV != OpV;
 | |
| 
 | |
|           Constant *C = BuildConstantFromSCEV(OpV);
 | |
|           if (!C) return V;
 | |
|           if (C->getType() != Op->getType())
 | |
|             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | |
|                                                               Op->getType(),
 | |
|                                                               false),
 | |
|                                       C, Op->getType());
 | |
|           Operands.push_back(C);
 | |
|         }
 | |
| 
 | |
|         // Check to see if getSCEVAtScope actually made an improvement.
 | |
|         if (MadeImprovement) {
 | |
|           Constant *C = nullptr;
 | |
|           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|             C = ConstantFoldCompareInstOperands(CI->getPredicate(),
 | |
|                                                 Operands[0], Operands[1], DL,
 | |
|                                                 TLI);
 | |
|           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|             if (!LI->isVolatile())
 | |
|               C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
 | |
|           } else
 | |
|             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | |
|                                          Operands, DL, TLI);
 | |
|           if (!C) return V;
 | |
|           return getSCEV(C);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // This is some other type of SCEVUnknown, just return it.
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
 | |
|     // Avoid performing the look-up in the common case where the specified
 | |
|     // expression has no loop-variant portions.
 | |
|     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
 | |
|       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | |
|       if (OpAtScope != Comm->getOperand(i)) {
 | |
|         // Okay, at least one of these operands is loop variant but might be
 | |
|         // foldable.  Build a new instance of the folded commutative expression.
 | |
|         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
 | |
|                                             Comm->op_begin()+i);
 | |
|         NewOps.push_back(OpAtScope);
 | |
| 
 | |
|         for (++i; i != e; ++i) {
 | |
|           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | |
|           NewOps.push_back(OpAtScope);
 | |
|         }
 | |
|         if (isa<SCEVAddExpr>(Comm))
 | |
|           return getAddExpr(NewOps);
 | |
|         if (isa<SCEVMulExpr>(Comm))
 | |
|           return getMulExpr(NewOps);
 | |
|         if (isa<SCEVSMaxExpr>(Comm))
 | |
|           return getSMaxExpr(NewOps);
 | |
|         if (isa<SCEVUMaxExpr>(Comm))
 | |
|           return getUMaxExpr(NewOps);
 | |
|         llvm_unreachable("Unknown commutative SCEV type!");
 | |
|       }
 | |
|     }
 | |
|     // If we got here, all operands are loop invariant.
 | |
|     return Comm;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
 | |
|     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
 | |
|     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
 | |
|     if (LHS == Div->getLHS() && RHS == Div->getRHS())
 | |
|       return Div;   // must be loop invariant
 | |
|     return getUDivExpr(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   // If this is a loop recurrence for a loop that does not contain L, then we
 | |
|   // are dealing with the final value computed by the loop.
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
 | |
|     // First, attempt to evaluate each operand.
 | |
|     // Avoid performing the look-up in the common case where the specified
 | |
|     // expression has no loop-variant portions.
 | |
|     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
 | |
|       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
 | |
|       if (OpAtScope == AddRec->getOperand(i))
 | |
|         continue;
 | |
| 
 | |
|       // Okay, at least one of these operands is loop variant but might be
 | |
|       // foldable.  Build a new instance of the folded commutative expression.
 | |
|       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
 | |
|                                           AddRec->op_begin()+i);
 | |
|       NewOps.push_back(OpAtScope);
 | |
|       for (++i; i != e; ++i)
 | |
|         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
 | |
| 
 | |
|       const SCEV *FoldedRec =
 | |
|         getAddRecExpr(NewOps, AddRec->getLoop(),
 | |
|                       AddRec->getNoWrapFlags(SCEV::FlagNW));
 | |
|       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
 | |
|       // The addrec may be folded to a nonrecurrence, for example, if the
 | |
|       // induction variable is multiplied by zero after constant folding. Go
 | |
|       // ahead and return the folded value.
 | |
|       if (!AddRec)
 | |
|         return FoldedRec;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If the scope is outside the addrec's loop, evaluate it by using the
 | |
|     // loop exit value of the addrec.
 | |
|     if (!AddRec->getLoop()->contains(L)) {
 | |
|       // To evaluate this recurrence, we need to know how many times the AddRec
 | |
|       // loop iterates.  Compute this now.
 | |
|       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
 | |
|       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
 | |
| 
 | |
|       // Then, evaluate the AddRec.
 | |
|       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
 | |
|     }
 | |
| 
 | |
|     return AddRec;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
 | |
|     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | |
|     if (Op == Cast->getOperand())
 | |
|       return Cast;  // must be loop invariant
 | |
|     return getZeroExtendExpr(Op, Cast->getType());
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
 | |
|     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | |
|     if (Op == Cast->getOperand())
 | |
|       return Cast;  // must be loop invariant
 | |
|     return getSignExtendExpr(Op, Cast->getType());
 | |
|   }
 | |
| 
 | |
|   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
 | |
|     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | |
|     if (Op == Cast->getOperand())
 | |
|       return Cast;  // must be loop invariant
 | |
|     return getTruncateExpr(Op, Cast->getType());
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown SCEV type!");
 | |
| }
 | |
| 
 | |
| /// getSCEVAtScope - This is a convenience function which does
 | |
| /// getSCEVAtScope(getSCEV(V), L).
 | |
| const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
 | |
|   return getSCEVAtScope(getSCEV(V), L);
 | |
| }
 | |
| 
 | |
| /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
 | |
| /// following equation:
 | |
| ///
 | |
| ///     A * X = B (mod N)
 | |
| ///
 | |
| /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
 | |
| /// A and B isn't important.
 | |
| ///
 | |
| /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
 | |
| static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
 | |
|                                                ScalarEvolution &SE) {
 | |
|   uint32_t BW = A.getBitWidth();
 | |
|   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
 | |
|   assert(A != 0 && "A must be non-zero.");
 | |
| 
 | |
|   // 1. D = gcd(A, N)
 | |
|   //
 | |
|   // The gcd of A and N may have only one prime factor: 2. The number of
 | |
|   // trailing zeros in A is its multiplicity
 | |
|   uint32_t Mult2 = A.countTrailingZeros();
 | |
|   // D = 2^Mult2
 | |
| 
 | |
|   // 2. Check if B is divisible by D.
 | |
|   //
 | |
|   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
 | |
|   // is not less than multiplicity of this prime factor for D.
 | |
|   if (B.countTrailingZeros() < Mult2)
 | |
|     return SE.getCouldNotCompute();
 | |
| 
 | |
|   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
 | |
|   // modulo (N / D).
 | |
|   //
 | |
|   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
 | |
|   // bit width during computations.
 | |
|   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
 | |
|   APInt Mod(BW + 1, 0);
 | |
|   Mod.setBit(BW - Mult2);  // Mod = N / D
 | |
|   APInt I = AD.multiplicativeInverse(Mod);
 | |
| 
 | |
|   // 4. Compute the minimum unsigned root of the equation:
 | |
|   // I * (B / D) mod (N / D)
 | |
|   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
 | |
| 
 | |
|   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
 | |
|   // bits.
 | |
|   return SE.getConstant(Result.trunc(BW));
 | |
| }
 | |
| 
 | |
| /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
 | |
| /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
 | |
| /// might be the same) or two SCEVCouldNotCompute objects.
 | |
| ///
 | |
| static std::pair<const SCEV *,const SCEV *>
 | |
| SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
 | |
|   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
 | |
|   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
 | |
|   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
 | |
|   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
 | |
| 
 | |
|   // We currently can only solve this if the coefficients are constants.
 | |
|   if (!LC || !MC || !NC) {
 | |
|     const SCEV *CNC = SE.getCouldNotCompute();
 | |
|     return std::make_pair(CNC, CNC);
 | |
|   }
 | |
| 
 | |
|   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
 | |
|   const APInt &L = LC->getValue()->getValue();
 | |
|   const APInt &M = MC->getValue()->getValue();
 | |
|   const APInt &N = NC->getValue()->getValue();
 | |
|   APInt Two(BitWidth, 2);
 | |
|   APInt Four(BitWidth, 4);
 | |
| 
 | |
|   {
 | |
|     using namespace APIntOps;
 | |
|     const APInt& C = L;
 | |
|     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
 | |
|     // The B coefficient is M-N/2
 | |
|     APInt B(M);
 | |
|     B -= sdiv(N,Two);
 | |
| 
 | |
|     // The A coefficient is N/2
 | |
|     APInt A(N.sdiv(Two));
 | |
| 
 | |
|     // Compute the B^2-4ac term.
 | |
|     APInt SqrtTerm(B);
 | |
|     SqrtTerm *= B;
 | |
|     SqrtTerm -= Four * (A * C);
 | |
| 
 | |
|     if (SqrtTerm.isNegative()) {
 | |
|       // The loop is provably infinite.
 | |
|       const SCEV *CNC = SE.getCouldNotCompute();
 | |
|       return std::make_pair(CNC, CNC);
 | |
|     }
 | |
| 
 | |
|     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
 | |
|     // integer value or else APInt::sqrt() will assert.
 | |
|     APInt SqrtVal(SqrtTerm.sqrt());
 | |
| 
 | |
|     // Compute the two solutions for the quadratic formula.
 | |
|     // The divisions must be performed as signed divisions.
 | |
|     APInt NegB(-B);
 | |
|     APInt TwoA(A << 1);
 | |
|     if (TwoA.isMinValue()) {
 | |
|       const SCEV *CNC = SE.getCouldNotCompute();
 | |
|       return std::make_pair(CNC, CNC);
 | |
|     }
 | |
| 
 | |
|     LLVMContext &Context = SE.getContext();
 | |
| 
 | |
|     ConstantInt *Solution1 =
 | |
|       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
 | |
|     ConstantInt *Solution2 =
 | |
|       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
 | |
| 
 | |
|     return std::make_pair(SE.getConstant(Solution1),
 | |
|                           SE.getConstant(Solution2));
 | |
|   } // end APIntOps namespace
 | |
| }
 | |
| 
 | |
| /// HowFarToZero - Return the number of times a backedge comparing the specified
 | |
| /// value to zero will execute.  If not computable, return CouldNotCompute.
 | |
| ///
 | |
| /// This is only used for loops with a "x != y" exit test. The exit condition is
 | |
| /// now expressed as a single expression, V = x-y. So the exit test is
 | |
| /// effectively V != 0.  We know and take advantage of the fact that this
 | |
| /// expression only being used in a comparison by zero context.
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
 | |
|   // If the value is a constant
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | |
|     // If the value is already zero, the branch will execute zero times.
 | |
|     if (C->getValue()->isZero()) return C;
 | |
|     return getCouldNotCompute();  // Otherwise it will loop infinitely.
 | |
|   }
 | |
| 
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
 | |
|   if (!AddRec || AddRec->getLoop() != L)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
 | |
|   // the quadratic equation to solve it.
 | |
|   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
 | |
|     std::pair<const SCEV *,const SCEV *> Roots =
 | |
|       SolveQuadraticEquation(AddRec, *this);
 | |
|     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | |
|     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | |
|     if (R1 && R2) {
 | |
| #if 0
 | |
|       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
 | |
|              << "  sol#2: " << *R2 << "\n";
 | |
| #endif
 | |
|       // Pick the smallest positive root value.
 | |
|       if (ConstantInt *CB =
 | |
|           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
 | |
|                                                       R1->getValue(),
 | |
|                                                       R2->getValue()))) {
 | |
|         if (CB->getZExtValue() == false)
 | |
|           std::swap(R1, R2);   // R1 is the minimum root now.
 | |
| 
 | |
|         // We can only use this value if the chrec ends up with an exact zero
 | |
|         // value at this index.  When solving for "X*X != 5", for example, we
 | |
|         // should not accept a root of 2.
 | |
|         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
 | |
|         if (Val->isZero())
 | |
|           return R1;  // We found a quadratic root!
 | |
|       }
 | |
|     }
 | |
|     return getCouldNotCompute();
 | |
|   }
 | |
| 
 | |
|   // Otherwise we can only handle this if it is affine.
 | |
|   if (!AddRec->isAffine())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // If this is an affine expression, the execution count of this branch is
 | |
|   // the minimum unsigned root of the following equation:
 | |
|   //
 | |
|   //     Start + Step*N = 0 (mod 2^BW)
 | |
|   //
 | |
|   // equivalent to:
 | |
|   //
 | |
|   //             Step*N = -Start (mod 2^BW)
 | |
|   //
 | |
|   // where BW is the common bit width of Start and Step.
 | |
| 
 | |
|   // Get the initial value for the loop.
 | |
|   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
 | |
|   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
 | |
| 
 | |
|   // For now we handle only constant steps.
 | |
|   //
 | |
|   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
 | |
|   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
 | |
|   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
 | |
|   // We have not yet seen any such cases.
 | |
|   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!StepC || StepC->getValue()->equalsInt(0))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // For positive steps (counting up until unsigned overflow):
 | |
|   //   N = -Start/Step (as unsigned)
 | |
|   // For negative steps (counting down to zero):
 | |
|   //   N = Start/-Step
 | |
|   // First compute the unsigned distance from zero in the direction of Step.
 | |
|   bool CountDown = StepC->getValue()->getValue().isNegative();
 | |
|   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
 | |
| 
 | |
|   // Handle unitary steps, which cannot wraparound.
 | |
|   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
 | |
|   //   N = Distance (as unsigned)
 | |
|   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
 | |
|     ConstantRange CR = getUnsignedRange(Start);
 | |
|     const SCEV *MaxBECount;
 | |
|     if (!CountDown && CR.getUnsignedMin().isMinValue())
 | |
|       // When counting up, the worst starting value is 1, not 0.
 | |
|       MaxBECount = CR.getUnsignedMax().isMinValue()
 | |
|         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
 | |
|         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
 | |
|     else
 | |
|       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
 | |
|                                          : -CR.getUnsignedMin());
 | |
|     return ExitLimit(Distance, MaxBECount);
 | |
|   }
 | |
| 
 | |
|   // As a special case, handle the instance where Step is a positive power of
 | |
|   // two. In this case, determining whether Step divides Distance evenly can be
 | |
|   // done by counting and comparing the number of trailing zeros of Step and
 | |
|   // Distance.
 | |
|   if (!CountDown) {
 | |
|     const APInt &StepV = StepC->getValue()->getValue();
 | |
|     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
 | |
|     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
 | |
|     // case is not handled as this code is guarded by !CountDown.
 | |
|     if (StepV.isPowerOf2() &&
 | |
|         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
 | |
|       return getUDivExactExpr(Distance, Step);
 | |
|   }
 | |
| 
 | |
|   // If the condition controls loop exit (the loop exits only if the expression
 | |
|   // is true) and the addition is no-wrap we can use unsigned divide to
 | |
|   // compute the backedge count.  In this case, the step may not divide the
 | |
|   // distance, but we don't care because if the condition is "missed" the loop
 | |
|   // will have undefined behavior due to wrapping.
 | |
|   if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
 | |
|     const SCEV *Exact =
 | |
|         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
 | |
|     return ExitLimit(Exact, Exact);
 | |
|   }
 | |
| 
 | |
|   // Then, try to solve the above equation provided that Start is constant.
 | |
|   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
 | |
|     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
 | |
|                                         -StartC->getValue()->getValue(),
 | |
|                                         *this);
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| /// HowFarToNonZero - Return the number of times a backedge checking the
 | |
| /// specified value for nonzero will execute.  If not computable, return
 | |
| /// CouldNotCompute
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
 | |
|   // Loops that look like: while (X == 0) are very strange indeed.  We don't
 | |
|   // handle them yet except for the trivial case.  This could be expanded in the
 | |
|   // future as needed.
 | |
| 
 | |
|   // If the value is a constant, check to see if it is known to be non-zero
 | |
|   // already.  If so, the backedge will execute zero times.
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | |
|     if (!C->getValue()->isNullValue())
 | |
|       return getConstant(C->getType(), 0);
 | |
|     return getCouldNotCompute();  // Otherwise it will loop infinitely.
 | |
|   }
 | |
| 
 | |
|   // We could implement others, but I really doubt anyone writes loops like
 | |
|   // this, and if they did, they would already be constant folded.
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
 | |
| /// (which may not be an immediate predecessor) which has exactly one
 | |
| /// successor from which BB is reachable, or null if no such block is
 | |
| /// found.
 | |
| ///
 | |
| std::pair<BasicBlock *, BasicBlock *>
 | |
| ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
 | |
|   // If the block has a unique predecessor, then there is no path from the
 | |
|   // predecessor to the block that does not go through the direct edge
 | |
|   // from the predecessor to the block.
 | |
|   if (BasicBlock *Pred = BB->getSinglePredecessor())
 | |
|     return std::make_pair(Pred, BB);
 | |
| 
 | |
|   // A loop's header is defined to be a block that dominates the loop.
 | |
|   // If the header has a unique predecessor outside the loop, it must be
 | |
|   // a block that has exactly one successor that can reach the loop.
 | |
|   if (Loop *L = LI->getLoopFor(BB))
 | |
|     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
 | |
| 
 | |
|   return std::pair<BasicBlock *, BasicBlock *>();
 | |
| }
 | |
| 
 | |
| /// HasSameValue - SCEV structural equivalence is usually sufficient for
 | |
| /// testing whether two expressions are equal, however for the purposes of
 | |
| /// looking for a condition guarding a loop, it can be useful to be a little
 | |
| /// more general, since a front-end may have replicated the controlling
 | |
| /// expression.
 | |
| ///
 | |
| static bool HasSameValue(const SCEV *A, const SCEV *B) {
 | |
|   // Quick check to see if they are the same SCEV.
 | |
|   if (A == B) return true;
 | |
| 
 | |
|   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
 | |
|   // two different instructions with the same value. Check for this case.
 | |
|   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
 | |
|     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
 | |
|       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
 | |
|         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
 | |
|           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
 | |
|             return true;
 | |
| 
 | |
|   // Otherwise assume they may have a different value.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
 | |
| /// predicate Pred. Return true iff any changes were made.
 | |
| ///
 | |
| bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
 | |
|                                            const SCEV *&LHS, const SCEV *&RHS,
 | |
|                                            unsigned Depth) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If we hit the max recursion limit bail out.
 | |
|   if (Depth >= 3)
 | |
|     return false;
 | |
| 
 | |
|   // Canonicalize a constant to the right side.
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
 | |
|     // Check for both operands constant.
 | |
|     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|       if (ConstantExpr::getICmp(Pred,
 | |
|                                 LHSC->getValue(),
 | |
|                                 RHSC->getValue())->isNullValue())
 | |
|         goto trivially_false;
 | |
|       else
 | |
|         goto trivially_true;
 | |
|     }
 | |
|     // Otherwise swap the operands to put the constant on the right.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // If we're comparing an addrec with a value which is loop-invariant in the
 | |
|   // addrec's loop, put the addrec on the left. Also make a dominance check,
 | |
|   // as both operands could be addrecs loop-invariant in each other's loop.
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
 | |
|     const Loop *L = AR->getLoop();
 | |
|     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
 | |
|       std::swap(LHS, RHS);
 | |
|       Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there's a constant operand, canonicalize comparisons with boundary
 | |
|   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
 | |
|   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     const APInt &RA = RC->getValue()->getValue();
 | |
|     switch (Pred) {
 | |
|     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
 | |
|       if (!RA)
 | |
|         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
 | |
|           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
 | |
|             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
 | |
|                 ME->getOperand(0)->isAllOnesValue()) {
 | |
|               RHS = AE->getOperand(1);
 | |
|               LHS = ME->getOperand(1);
 | |
|               Changed = true;
 | |
|             }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       if ((RA - 1).isMinValue()) {
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|         RHS = getConstant(RA - 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMaxValue()) {
 | |
|         Pred = ICmpInst::ICMP_EQ;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMinValue()) goto trivially_true;
 | |
| 
 | |
|       Pred = ICmpInst::ICMP_UGT;
 | |
|       RHS = getConstant(RA - 1);
 | |
|       Changed = true;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       if ((RA + 1).isMaxValue()) {
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|         RHS = getConstant(RA + 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMinValue()) {
 | |
|         Pred = ICmpInst::ICMP_EQ;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMaxValue()) goto trivially_true;
 | |
| 
 | |
|       Pred = ICmpInst::ICMP_ULT;
 | |
|       RHS = getConstant(RA + 1);
 | |
|       Changed = true;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       if ((RA - 1).isMinSignedValue()) {
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|         RHS = getConstant(RA - 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMaxSignedValue()) {
 | |
|         Pred = ICmpInst::ICMP_EQ;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMinSignedValue()) goto trivially_true;
 | |
| 
 | |
|       Pred = ICmpInst::ICMP_SGT;
 | |
|       RHS = getConstant(RA - 1);
 | |
|       Changed = true;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       if ((RA + 1).isMaxSignedValue()) {
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|         RHS = getConstant(RA + 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMinSignedValue()) {
 | |
|         Pred = ICmpInst::ICMP_EQ;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMaxSignedValue()) goto trivially_true;
 | |
| 
 | |
|       Pred = ICmpInst::ICMP_SLT;
 | |
|       RHS = getConstant(RA + 1);
 | |
|       Changed = true;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       if (RA.isMinValue()) {
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if ((RA + 1).isMaxValue()) {
 | |
|         Pred = ICmpInst::ICMP_EQ;
 | |
|         RHS = getConstant(RA + 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMaxValue()) goto trivially_false;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       if (RA.isMaxValue()) {
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if ((RA - 1).isMinValue()) {
 | |
|         Pred = ICmpInst::ICMP_EQ;
 | |
|         RHS = getConstant(RA - 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMinValue()) goto trivially_false;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       if (RA.isMinSignedValue()) {
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if ((RA + 1).isMaxSignedValue()) {
 | |
|         Pred = ICmpInst::ICMP_EQ;
 | |
|         RHS = getConstant(RA + 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (RA.isMaxSignedValue()) goto trivially_false;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       if (RA.isMaxSignedValue()) {
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if ((RA - 1).isMinSignedValue()) {
 | |
|        Pred = ICmpInst::ICMP_EQ;
 | |
|        RHS = getConstant(RA - 1);
 | |
|         Changed = true;
 | |
|        break;
 | |
|       }
 | |
|       if (RA.isMinSignedValue()) goto trivially_false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for obvious equality.
 | |
|   if (HasSameValue(LHS, RHS)) {
 | |
|     if (ICmpInst::isTrueWhenEqual(Pred))
 | |
|       goto trivially_true;
 | |
|     if (ICmpInst::isFalseWhenEqual(Pred))
 | |
|       goto trivially_false;
 | |
|   }
 | |
| 
 | |
|   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
 | |
|   // adding or subtracting 1 from one of the operands.
 | |
|   switch (Pred) {
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
 | |
|       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
 | |
|                        SCEV::FlagNSW);
 | |
|       Pred = ICmpInst::ICMP_SLT;
 | |
|       Changed = true;
 | |
|     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
 | |
|       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
 | |
|                        SCEV::FlagNSW);
 | |
|       Pred = ICmpInst::ICMP_SLT;
 | |
|       Changed = true;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
 | |
|       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
 | |
|                        SCEV::FlagNSW);
 | |
|       Pred = ICmpInst::ICMP_SGT;
 | |
|       Changed = true;
 | |
|     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
 | |
|       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
 | |
|                        SCEV::FlagNSW);
 | |
|       Pred = ICmpInst::ICMP_SGT;
 | |
|       Changed = true;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
 | |
|       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
 | |
|                        SCEV::FlagNUW);
 | |
|       Pred = ICmpInst::ICMP_ULT;
 | |
|       Changed = true;
 | |
|     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
 | |
|       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
 | |
|                        SCEV::FlagNUW);
 | |
|       Pred = ICmpInst::ICMP_ULT;
 | |
|       Changed = true;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
 | |
|       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
 | |
|                        SCEV::FlagNUW);
 | |
|       Pred = ICmpInst::ICMP_UGT;
 | |
|       Changed = true;
 | |
|     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
 | |
|       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
 | |
|                        SCEV::FlagNUW);
 | |
|       Pred = ICmpInst::ICMP_UGT;
 | |
|       Changed = true;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // TODO: More simplifications are possible here.
 | |
| 
 | |
|   // Recursively simplify until we either hit a recursion limit or nothing
 | |
|   // changes.
 | |
|   if (Changed)
 | |
|     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
 | |
| 
 | |
|   return Changed;
 | |
| 
 | |
| trivially_true:
 | |
|   // Return 0 == 0.
 | |
|   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
 | |
|   Pred = ICmpInst::ICMP_EQ;
 | |
|   return true;
 | |
| 
 | |
| trivially_false:
 | |
|   // Return 0 != 0.
 | |
|   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
 | |
|   Pred = ICmpInst::ICMP_NE;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownNegative(const SCEV *S) {
 | |
|   return getSignedRange(S).getSignedMax().isNegative();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownPositive(const SCEV *S) {
 | |
|   return getSignedRange(S).getSignedMin().isStrictlyPositive();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
 | |
|   return !getSignedRange(S).getSignedMin().isNegative();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
 | |
|   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
 | |
|   return isKnownNegative(S) || isKnownPositive(S);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
 | |
|                                        const SCEV *LHS, const SCEV *RHS) {
 | |
|   // Canonicalize the inputs first.
 | |
|   (void)SimplifyICmpOperands(Pred, LHS, RHS);
 | |
| 
 | |
|   // If LHS or RHS is an addrec, check to see if the condition is true in
 | |
|   // every iteration of the loop.
 | |
|   // If LHS and RHS are both addrec, both conditions must be true in
 | |
|   // every iteration of the loop.
 | |
|   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
|   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
 | |
|   bool LeftGuarded = false;
 | |
|   bool RightGuarded = false;
 | |
|   if (LAR) {
 | |
|     const Loop *L = LAR->getLoop();
 | |
|     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
 | |
|         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
 | |
|       if (!RAR) return true;
 | |
|       LeftGuarded = true;
 | |
|     }
 | |
|   }
 | |
|   if (RAR) {
 | |
|     const Loop *L = RAR->getLoop();
 | |
|     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
 | |
|         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
 | |
|       if (!LAR) return true;
 | |
|       RightGuarded = true;
 | |
|     }
 | |
|   }
 | |
|   if (LeftGuarded && RightGuarded)
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise see what can be done with known constant ranges.
 | |
|   return isKnownPredicateWithRanges(Pred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| bool
 | |
| ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
 | |
|                                             const SCEV *LHS, const SCEV *RHS) {
 | |
|   if (HasSameValue(LHS, RHS))
 | |
|     return ICmpInst::isTrueWhenEqual(Pred);
 | |
| 
 | |
|   // This code is split out from isKnownPredicate because it is called from
 | |
|   // within isLoopEntryGuardedByCond.
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     std::swap(LHS, RHS);
 | |
|   case ICmpInst::ICMP_SLT: {
 | |
|     ConstantRange LHSRange = getSignedRange(LHS);
 | |
|     ConstantRange RHSRange = getSignedRange(RHS);
 | |
|     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
 | |
|       return true;
 | |
|     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     std::swap(LHS, RHS);
 | |
|   case ICmpInst::ICMP_SLE: {
 | |
|     ConstantRange LHSRange = getSignedRange(LHS);
 | |
|     ConstantRange RHSRange = getSignedRange(RHS);
 | |
|     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
 | |
|       return true;
 | |
|     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     std::swap(LHS, RHS);
 | |
|   case ICmpInst::ICMP_ULT: {
 | |
|     ConstantRange LHSRange = getUnsignedRange(LHS);
 | |
|     ConstantRange RHSRange = getUnsignedRange(RHS);
 | |
|     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
 | |
|       return true;
 | |
|     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     std::swap(LHS, RHS);
 | |
|   case ICmpInst::ICMP_ULE: {
 | |
|     ConstantRange LHSRange = getUnsignedRange(LHS);
 | |
|     ConstantRange RHSRange = getUnsignedRange(RHS);
 | |
|     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
 | |
|       return true;
 | |
|     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_NE: {
 | |
|     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
 | |
|       return true;
 | |
|     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
 | |
|       return true;
 | |
| 
 | |
|     const SCEV *Diff = getMinusSCEV(LHS, RHS);
 | |
|     if (isKnownNonZero(Diff))
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     // The check at the top of the function catches the case where
 | |
|     // the values are known to be equal.
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
 | |
| /// protected by a conditional between LHS and RHS.  This is used to
 | |
| /// to eliminate casts.
 | |
| bool
 | |
| ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
 | |
|                                              ICmpInst::Predicate Pred,
 | |
|                                              const SCEV *LHS, const SCEV *RHS) {
 | |
|   // Interpret a null as meaning no loop, where there is obviously no guard
 | |
|   // (interprocedural conditions notwithstanding).
 | |
|   if (!L) return true;
 | |
| 
 | |
|   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
 | |
| 
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch)
 | |
|     return false;
 | |
| 
 | |
|   BranchInst *LoopContinuePredicate =
 | |
|     dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
 | |
|       isImpliedCond(Pred, LHS, RHS,
 | |
|                     LoopContinuePredicate->getCondition(),
 | |
|                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
 | |
|     return true;
 | |
| 
 | |
|   // Check conditions due to any @llvm.assume intrinsics.
 | |
|   for (auto &AssumeVH : AC->assumptions()) {
 | |
|     if (!AssumeVH)
 | |
|       continue;
 | |
|     auto *CI = cast<CallInst>(AssumeVH);
 | |
|     if (!DT->dominates(CI, Latch->getTerminator()))
 | |
|       continue;
 | |
| 
 | |
|     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
 | |
| /// by a conditional between LHS and RHS.  This is used to help avoid max
 | |
| /// expressions in loop trip counts, and to eliminate casts.
 | |
| bool
 | |
| ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
 | |
|                                           ICmpInst::Predicate Pred,
 | |
|                                           const SCEV *LHS, const SCEV *RHS) {
 | |
|   // Interpret a null as meaning no loop, where there is obviously no guard
 | |
|   // (interprocedural conditions notwithstanding).
 | |
|   if (!L) return false;
 | |
| 
 | |
|   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
 | |
| 
 | |
|   // Starting at the loop predecessor, climb up the predecessor chain, as long
 | |
|   // as there are predecessors that can be found that have unique successors
 | |
|   // leading to the original header.
 | |
|   for (std::pair<BasicBlock *, BasicBlock *>
 | |
|          Pair(L->getLoopPredecessor(), L->getHeader());
 | |
|        Pair.first;
 | |
|        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
 | |
| 
 | |
|     BranchInst *LoopEntryPredicate =
 | |
|       dyn_cast<BranchInst>(Pair.first->getTerminator());
 | |
|     if (!LoopEntryPredicate ||
 | |
|         LoopEntryPredicate->isUnconditional())
 | |
|       continue;
 | |
| 
 | |
|     if (isImpliedCond(Pred, LHS, RHS,
 | |
|                       LoopEntryPredicate->getCondition(),
 | |
|                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Check conditions due to any @llvm.assume intrinsics.
 | |
|   for (auto &AssumeVH : AC->assumptions()) {
 | |
|     if (!AssumeVH)
 | |
|       continue;
 | |
|     auto *CI = cast<CallInst>(AssumeVH);
 | |
|     if (!DT->dominates(CI, L->getHeader()))
 | |
|       continue;
 | |
| 
 | |
|     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RAII wrapper to prevent recursive application of isImpliedCond.
 | |
| /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
 | |
| /// currently evaluating isImpliedCond.
 | |
| struct MarkPendingLoopPredicate {
 | |
|   Value *Cond;
 | |
|   DenseSet<Value*> &LoopPreds;
 | |
|   bool Pending;
 | |
| 
 | |
|   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
 | |
|     : Cond(C), LoopPreds(LP) {
 | |
|     Pending = !LoopPreds.insert(Cond).second;
 | |
|   }
 | |
|   ~MarkPendingLoopPredicate() {
 | |
|     if (!Pending)
 | |
|       LoopPreds.erase(Cond);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// isImpliedCond - Test whether the condition described by Pred, LHS,
 | |
| /// and RHS is true whenever the given Cond value evaluates to true.
 | |
| bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
 | |
|                                     const SCEV *LHS, const SCEV *RHS,
 | |
|                                     Value *FoundCondValue,
 | |
|                                     bool Inverse) {
 | |
|   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
 | |
|   if (Mark.Pending)
 | |
|     return false;
 | |
| 
 | |
|   // Recursively handle And and Or conditions.
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
 | |
|     if (BO->getOpcode() == Instruction::And) {
 | |
|       if (!Inverse)
 | |
|         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
 | |
|                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
 | |
|     } else if (BO->getOpcode() == Instruction::Or) {
 | |
|       if (Inverse)
 | |
|         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
 | |
|                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
 | |
|   if (!ICI) return false;
 | |
| 
 | |
|   // Bail if the ICmp's operands' types are wider than the needed type
 | |
|   // before attempting to call getSCEV on them. This avoids infinite
 | |
|   // recursion, since the analysis of widening casts can require loop
 | |
|   // exit condition information for overflow checking, which would
 | |
|   // lead back here.
 | |
|   if (getTypeSizeInBits(LHS->getType()) <
 | |
|       getTypeSizeInBits(ICI->getOperand(0)->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Now that we found a conditional branch that dominates the loop or controls
 | |
|   // the loop latch. Check to see if it is the comparison we are looking for.
 | |
|   ICmpInst::Predicate FoundPred;
 | |
|   if (Inverse)
 | |
|     FoundPred = ICI->getInversePredicate();
 | |
|   else
 | |
|     FoundPred = ICI->getPredicate();
 | |
| 
 | |
|   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
 | |
|   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
 | |
| 
 | |
|   // Balance the types. The case where FoundLHS' type is wider than
 | |
|   // LHS' type is checked for above.
 | |
|   if (getTypeSizeInBits(LHS->getType()) >
 | |
|       getTypeSizeInBits(FoundLHS->getType())) {
 | |
|     if (CmpInst::isSigned(FoundPred)) {
 | |
|       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
 | |
|       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
 | |
|     } else {
 | |
|       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
 | |
|       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Canonicalize the query to match the way instcombine will have
 | |
|   // canonicalized the comparison.
 | |
|   if (SimplifyICmpOperands(Pred, LHS, RHS))
 | |
|     if (LHS == RHS)
 | |
|       return CmpInst::isTrueWhenEqual(Pred);
 | |
|   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
 | |
|     if (FoundLHS == FoundRHS)
 | |
|       return CmpInst::isFalseWhenEqual(FoundPred);
 | |
| 
 | |
|   // Check to see if we can make the LHS or RHS match.
 | |
|   if (LHS == FoundRHS || RHS == FoundLHS) {
 | |
|     if (isa<SCEVConstant>(RHS)) {
 | |
|       std::swap(FoundLHS, FoundRHS);
 | |
|       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
 | |
|     } else {
 | |
|       std::swap(LHS, RHS);
 | |
|       Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check whether the found predicate is the same as the desired predicate.
 | |
|   if (FoundPred == Pred)
 | |
|     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
 | |
| 
 | |
|   // Check whether swapping the found predicate makes it the same as the
 | |
|   // desired predicate.
 | |
|   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
 | |
|     if (isa<SCEVConstant>(RHS))
 | |
|       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
 | |
|     else
 | |
|       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
 | |
|                                    RHS, LHS, FoundLHS, FoundRHS);
 | |
|   }
 | |
| 
 | |
|   // Check if we can make progress by sharpening ranges.
 | |
|   if (FoundPred == ICmpInst::ICMP_NE &&
 | |
|       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
 | |
| 
 | |
|     const SCEVConstant *C = nullptr;
 | |
|     const SCEV *V = nullptr;
 | |
| 
 | |
|     if (isa<SCEVConstant>(FoundLHS)) {
 | |
|       C = cast<SCEVConstant>(FoundLHS);
 | |
|       V = FoundRHS;
 | |
|     } else {
 | |
|       C = cast<SCEVConstant>(FoundRHS);
 | |
|       V = FoundLHS;
 | |
|     }
 | |
| 
 | |
|     // The guarding predicate tells us that C != V. If the known range
 | |
|     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
 | |
|     // range we consider has to correspond to same signedness as the
 | |
|     // predicate we're interested in folding.
 | |
| 
 | |
|     APInt Min = ICmpInst::isSigned(Pred) ?
 | |
|         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
 | |
| 
 | |
|     if (Min == C->getValue()->getValue()) {
 | |
|       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
 | |
|       // This is true even if (Min + 1) wraps around -- in case of
 | |
|       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
 | |
| 
 | |
|       APInt SharperMin = Min + 1;
 | |
| 
 | |
|       switch (Pred) {
 | |
|         case ICmpInst::ICMP_SGE:
 | |
|         case ICmpInst::ICMP_UGE:
 | |
|           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
 | |
|           // RHS, we're done.
 | |
|           if (isImpliedCondOperands(Pred, LHS, RHS, V,
 | |
|                                     getConstant(SharperMin)))
 | |
|             return true;
 | |
| 
 | |
|         case ICmpInst::ICMP_SGT:
 | |
|         case ICmpInst::ICMP_UGT:
 | |
|           // We know from the range information that (V `Pred` Min ||
 | |
|           // V == Min).  We know from the guarding condition that !(V
 | |
|           // == Min).  This gives us
 | |
|           //
 | |
|           //       V `Pred` Min || V == Min && !(V == Min)
 | |
|           //   =>  V `Pred` Min
 | |
|           //
 | |
|           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
 | |
| 
 | |
|           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
 | |
|             return true;
 | |
| 
 | |
|         default:
 | |
|           // No change
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check whether the actual condition is beyond sufficient.
 | |
|   if (FoundPred == ICmpInst::ICMP_EQ)
 | |
|     if (ICmpInst::isTrueWhenEqual(Pred))
 | |
|       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
 | |
|         return true;
 | |
|   if (Pred == ICmpInst::ICMP_NE)
 | |
|     if (!ICmpInst::isTrueWhenEqual(FoundPred))
 | |
|       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
 | |
|         return true;
 | |
| 
 | |
|   // Otherwise assume the worst.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isImpliedCondOperands - Test whether the condition described by Pred,
 | |
| /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
 | |
| /// and FoundRHS is true.
 | |
| bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
 | |
|                                             const SCEV *LHS, const SCEV *RHS,
 | |
|                                             const SCEV *FoundLHS,
 | |
|                                             const SCEV *FoundRHS) {
 | |
|   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
 | |
|                                      FoundLHS, FoundRHS) ||
 | |
|          // ~x < ~y --> x > y
 | |
|          isImpliedCondOperandsHelper(Pred, LHS, RHS,
 | |
|                                      getNotSCEV(FoundRHS),
 | |
|                                      getNotSCEV(FoundLHS));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// If Expr computes ~A, return A else return nullptr
 | |
| static const SCEV *MatchNotExpr(const SCEV *Expr) {
 | |
|   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
 | |
|   if (!Add || Add->getNumOperands() != 2) return nullptr;
 | |
| 
 | |
|   const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
 | |
|   if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
 | |
|     return nullptr;
 | |
| 
 | |
|   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
 | |
|   if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
 | |
| 
 | |
|   const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
 | |
|   if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
 | |
|     return nullptr;
 | |
| 
 | |
|   return AddRHS->getOperand(1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
 | |
| template<typename MaxExprType>
 | |
| static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
 | |
|                               const SCEV *Candidate) {
 | |
|   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
 | |
|   if (!MaxExpr) return false;
 | |
| 
 | |
|   auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
 | |
|   return It != MaxExpr->op_end();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
 | |
| template<typename MaxExprType>
 | |
| static bool IsMinConsistingOf(ScalarEvolution &SE,
 | |
|                               const SCEV *MaybeMinExpr,
 | |
|                               const SCEV *Candidate) {
 | |
|   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
 | |
|   if (!MaybeMaxExpr)
 | |
|     return false;
 | |
| 
 | |
|   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
 | |
| /// expression?
 | |
| static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
 | |
|                                         ICmpInst::Predicate Pred,
 | |
|                                         const SCEV *LHS, const SCEV *RHS) {
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     // fall through
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     return
 | |
|       // min(A, ...) <= A
 | |
|       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
 | |
|       // A <= max(A, ...)
 | |
|       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
 | |
| 
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     // fall through
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     return
 | |
|       // min(A, ...) <= A
 | |
|       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
 | |
|       // A <= max(A, ...)
 | |
|       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("covered switch fell through?!");
 | |
| }
 | |
| 
 | |
| /// isImpliedCondOperandsHelper - Test whether the condition described by
 | |
| /// Pred, LHS, and RHS is true whenever the condition described by Pred,
 | |
| /// FoundLHS, and FoundRHS is true.
 | |
| bool
 | |
| ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
 | |
|                                              const SCEV *LHS, const SCEV *RHS,
 | |
|                                              const SCEV *FoundLHS,
 | |
|                                              const SCEV *FoundRHS) {
 | |
|   auto IsKnownPredicateFull =
 | |
|       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
 | |
|     return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
 | |
|         IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
 | |
|   };
 | |
| 
 | |
|   switch (Pred) {
 | |
|   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
 | |
|         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
 | |
|         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
 | |
|         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
 | |
|         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Verify if an linear IV with positive stride can overflow when in a
 | |
| // less-than comparison, knowing the invariant term of the comparison, the
 | |
| // stride and the knowledge of NSW/NUW flags on the recurrence.
 | |
| bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
 | |
|                                          bool IsSigned, bool NoWrap) {
 | |
|   if (NoWrap) return false;
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
 | |
|   const SCEV *One = getConstant(Stride->getType(), 1);
 | |
| 
 | |
|   if (IsSigned) {
 | |
|     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
 | |
|     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
 | |
|     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
 | |
|                                 .getSignedMax();
 | |
| 
 | |
|     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
 | |
|     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
 | |
|   }
 | |
| 
 | |
|   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
 | |
|   APInt MaxValue = APInt::getMaxValue(BitWidth);
 | |
|   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
 | |
|                               .getUnsignedMax();
 | |
| 
 | |
|   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
 | |
|   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
 | |
| }
 | |
| 
 | |
| // Verify if an linear IV with negative stride can overflow when in a
 | |
| // greater-than comparison, knowing the invariant term of the comparison,
 | |
| // the stride and the knowledge of NSW/NUW flags on the recurrence.
 | |
| bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
 | |
|                                          bool IsSigned, bool NoWrap) {
 | |
|   if (NoWrap) return false;
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
 | |
|   const SCEV *One = getConstant(Stride->getType(), 1);
 | |
| 
 | |
|   if (IsSigned) {
 | |
|     APInt MinRHS = getSignedRange(RHS).getSignedMin();
 | |
|     APInt MinValue = APInt::getSignedMinValue(BitWidth);
 | |
|     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
 | |
|                                .getSignedMax();
 | |
| 
 | |
|     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
 | |
|     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
 | |
|   }
 | |
| 
 | |
|   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
 | |
|   APInt MinValue = APInt::getMinValue(BitWidth);
 | |
|   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
 | |
|                             .getUnsignedMax();
 | |
| 
 | |
|   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
 | |
|   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
 | |
| }
 | |
| 
 | |
| // Compute the backedge taken count knowing the interval difference, the
 | |
| // stride and presence of the equality in the comparison.
 | |
| const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
 | |
|                                             bool Equality) {
 | |
|   const SCEV *One = getConstant(Step->getType(), 1);
 | |
|   Delta = Equality ? getAddExpr(Delta, Step)
 | |
|                    : getAddExpr(Delta, getMinusSCEV(Step, One));
 | |
|   return getUDivExpr(Delta, Step);
 | |
| }
 | |
| 
 | |
| /// HowManyLessThans - Return the number of times a backedge containing the
 | |
| /// specified less-than comparison will execute.  If not computable, return
 | |
| /// CouldNotCompute.
 | |
| ///
 | |
| /// @param ControlsExit is true when the LHS < RHS condition directly controls
 | |
| /// the branch (loops exits only if condition is true). In this case, we can use
 | |
| /// NoWrapFlags to skip overflow checks.
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
 | |
|                                   const Loop *L, bool IsSigned,
 | |
|                                   bool ControlsExit) {
 | |
|   // We handle only IV < Invariant
 | |
|   if (!isLoopInvariant(RHS, L))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
| 
 | |
|   // Avoid weird loops
 | |
|   if (!IV || IV->getLoop() != L || !IV->isAffine())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   bool NoWrap = ControlsExit &&
 | |
|                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
 | |
| 
 | |
|   const SCEV *Stride = IV->getStepRecurrence(*this);
 | |
| 
 | |
|   // Avoid negative or zero stride values
 | |
|   if (!isKnownPositive(Stride))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Avoid proven overflow cases: this will ensure that the backedge taken count
 | |
|   // will not generate any unsigned overflow. Relaxed no-overflow conditions
 | |
|   // exploit NoWrapFlags, allowing to optimize in presence of undefined
 | |
|   // behaviors like the case of C language.
 | |
|   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
 | |
|                                       : ICmpInst::ICMP_ULT;
 | |
|   const SCEV *Start = IV->getStart();
 | |
|   const SCEV *End = RHS;
 | |
|   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
 | |
|     const SCEV *Diff = getMinusSCEV(RHS, Start);
 | |
|     // If we have NoWrap set, then we can assume that the increment won't
 | |
|     // overflow, in which case if RHS - Start is a constant, we don't need to
 | |
|     // do a max operation since we can just figure it out statically
 | |
|     if (NoWrap && isa<SCEVConstant>(Diff)) {
 | |
|       APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
 | |
|       if (D.isNegative())
 | |
|         End = Start;
 | |
|     } else
 | |
|       End = IsSigned ? getSMaxExpr(RHS, Start)
 | |
|                      : getUMaxExpr(RHS, Start);
 | |
|   }
 | |
| 
 | |
|   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
 | |
| 
 | |
|   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
 | |
|                             : getUnsignedRange(Start).getUnsignedMin();
 | |
| 
 | |
|   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
 | |
|                              : getUnsignedRange(Stride).getUnsignedMin();
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
 | |
|   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
 | |
|                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
 | |
| 
 | |
|   // Although End can be a MAX expression we estimate MaxEnd considering only
 | |
|   // the case End = RHS. This is safe because in the other case (End - Start)
 | |
|   // is zero, leading to a zero maximum backedge taken count.
 | |
|   APInt MaxEnd =
 | |
|     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
 | |
|              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
 | |
| 
 | |
|   const SCEV *MaxBECount;
 | |
|   if (isa<SCEVConstant>(BECount))
 | |
|     MaxBECount = BECount;
 | |
|   else
 | |
|     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
 | |
|                                 getConstant(MinStride), false);
 | |
| 
 | |
|   if (isa<SCEVCouldNotCompute>(MaxBECount))
 | |
|     MaxBECount = BECount;
 | |
| 
 | |
|   return ExitLimit(BECount, MaxBECount);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
 | |
|                                      const Loop *L, bool IsSigned,
 | |
|                                      bool ControlsExit) {
 | |
|   // We handle only IV > Invariant
 | |
|   if (!isLoopInvariant(RHS, L))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
| 
 | |
|   // Avoid weird loops
 | |
|   if (!IV || IV->getLoop() != L || !IV->isAffine())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   bool NoWrap = ControlsExit &&
 | |
|                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
 | |
| 
 | |
|   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
 | |
| 
 | |
|   // Avoid negative or zero stride values
 | |
|   if (!isKnownPositive(Stride))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Avoid proven overflow cases: this will ensure that the backedge taken count
 | |
|   // will not generate any unsigned overflow. Relaxed no-overflow conditions
 | |
|   // exploit NoWrapFlags, allowing to optimize in presence of undefined
 | |
|   // behaviors like the case of C language.
 | |
|   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
 | |
|                                       : ICmpInst::ICMP_UGT;
 | |
| 
 | |
|   const SCEV *Start = IV->getStart();
 | |
|   const SCEV *End = RHS;
 | |
|   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
 | |
|     const SCEV *Diff = getMinusSCEV(RHS, Start);
 | |
|     // If we have NoWrap set, then we can assume that the increment won't
 | |
|     // overflow, in which case if RHS - Start is a constant, we don't need to
 | |
|     // do a max operation since we can just figure it out statically
 | |
|     if (NoWrap && isa<SCEVConstant>(Diff)) {
 | |
|       APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
 | |
|       if (!D.isNegative())
 | |
|         End = Start;
 | |
|     } else
 | |
|       End = IsSigned ? getSMinExpr(RHS, Start)
 | |
|                      : getUMinExpr(RHS, Start);
 | |
|   }
 | |
| 
 | |
|   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
 | |
| 
 | |
|   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
 | |
|                             : getUnsignedRange(Start).getUnsignedMax();
 | |
| 
 | |
|   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
 | |
|                              : getUnsignedRange(Stride).getUnsignedMin();
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
 | |
|   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
 | |
|                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
 | |
| 
 | |
|   // Although End can be a MIN expression we estimate MinEnd considering only
 | |
|   // the case End = RHS. This is safe because in the other case (Start - End)
 | |
|   // is zero, leading to a zero maximum backedge taken count.
 | |
|   APInt MinEnd =
 | |
|     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
 | |
|              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
 | |
| 
 | |
| 
 | |
|   const SCEV *MaxBECount = getCouldNotCompute();
 | |
|   if (isa<SCEVConstant>(BECount))
 | |
|     MaxBECount = BECount;
 | |
|   else
 | |
|     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
 | |
|                                 getConstant(MinStride), false);
 | |
| 
 | |
|   if (isa<SCEVCouldNotCompute>(MaxBECount))
 | |
|     MaxBECount = BECount;
 | |
| 
 | |
|   return ExitLimit(BECount, MaxBECount);
 | |
| }
 | |
| 
 | |
| /// getNumIterationsInRange - Return the number of iterations of this loop that
 | |
| /// produce values in the specified constant range.  Another way of looking at
 | |
| /// this is that it returns the first iteration number where the value is not in
 | |
| /// the condition, thus computing the exit count. If the iteration count can't
 | |
| /// be computed, an instance of SCEVCouldNotCompute is returned.
 | |
| const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
 | |
|                                                     ScalarEvolution &SE) const {
 | |
|   if (Range.isFullSet())  // Infinite loop.
 | |
|     return SE.getCouldNotCompute();
 | |
| 
 | |
|   // If the start is a non-zero constant, shift the range to simplify things.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
 | |
|     if (!SC->getValue()->isZero()) {
 | |
|       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
 | |
|       Operands[0] = SE.getConstant(SC->getType(), 0);
 | |
|       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
 | |
|                                              getNoWrapFlags(FlagNW));
 | |
|       if (const SCEVAddRecExpr *ShiftedAddRec =
 | |
|             dyn_cast<SCEVAddRecExpr>(Shifted))
 | |
|         return ShiftedAddRec->getNumIterationsInRange(
 | |
|                            Range.subtract(SC->getValue()->getValue()), SE);
 | |
|       // This is strange and shouldn't happen.
 | |
|       return SE.getCouldNotCompute();
 | |
|     }
 | |
| 
 | |
|   // The only time we can solve this is when we have all constant indices.
 | |
|   // Otherwise, we cannot determine the overflow conditions.
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (!isa<SCEVConstant>(getOperand(i)))
 | |
|       return SE.getCouldNotCompute();
 | |
| 
 | |
| 
 | |
|   // Okay at this point we know that all elements of the chrec are constants and
 | |
|   // that the start element is zero.
 | |
| 
 | |
|   // First check to see if the range contains zero.  If not, the first
 | |
|   // iteration exits.
 | |
|   unsigned BitWidth = SE.getTypeSizeInBits(getType());
 | |
|   if (!Range.contains(APInt(BitWidth, 0)))
 | |
|     return SE.getConstant(getType(), 0);
 | |
| 
 | |
|   if (isAffine()) {
 | |
|     // If this is an affine expression then we have this situation:
 | |
|     //   Solve {0,+,A} in Range  ===  Ax in Range
 | |
| 
 | |
|     // We know that zero is in the range.  If A is positive then we know that
 | |
|     // the upper value of the range must be the first possible exit value.
 | |
|     // If A is negative then the lower of the range is the last possible loop
 | |
|     // value.  Also note that we already checked for a full range.
 | |
|     APInt One(BitWidth,1);
 | |
|     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
 | |
|     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
 | |
| 
 | |
|     // The exit value should be (End+A)/A.
 | |
|     APInt ExitVal = (End + A).udiv(A);
 | |
|     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
 | |
| 
 | |
|     // Evaluate at the exit value.  If we really did fall out of the valid
 | |
|     // range, then we computed our trip count, otherwise wrap around or other
 | |
|     // things must have happened.
 | |
|     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
 | |
|     if (Range.contains(Val->getValue()))
 | |
|       return SE.getCouldNotCompute();  // Something strange happened
 | |
| 
 | |
|     // Ensure that the previous value is in the range.  This is a sanity check.
 | |
|     assert(Range.contains(
 | |
|            EvaluateConstantChrecAtConstant(this,
 | |
|            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
 | |
|            "Linear scev computation is off in a bad way!");
 | |
|     return SE.getConstant(ExitValue);
 | |
|   } else if (isQuadratic()) {
 | |
|     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
 | |
|     // quadratic equation to solve it.  To do this, we must frame our problem in
 | |
|     // terms of figuring out when zero is crossed, instead of when
 | |
|     // Range.getUpper() is crossed.
 | |
|     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
 | |
|     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
 | |
|     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
 | |
|                                              // getNoWrapFlags(FlagNW)
 | |
|                                              FlagAnyWrap);
 | |
| 
 | |
|     // Next, solve the constructed addrec
 | |
|     std::pair<const SCEV *,const SCEV *> Roots =
 | |
|       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
 | |
|     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | |
|     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | |
|     if (R1) {
 | |
|       // Pick the smallest positive root value.
 | |
|       if (ConstantInt *CB =
 | |
|           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
 | |
|                          R1->getValue(), R2->getValue()))) {
 | |
|         if (CB->getZExtValue() == false)
 | |
|           std::swap(R1, R2);   // R1 is the minimum root now.
 | |
| 
 | |
|         // Make sure the root is not off by one.  The returned iteration should
 | |
|         // not be in the range, but the previous one should be.  When solving
 | |
|         // for "X*X < 5", for example, we should not return a root of 2.
 | |
|         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
 | |
|                                                              R1->getValue(),
 | |
|                                                              SE);
 | |
|         if (Range.contains(R1Val->getValue())) {
 | |
|           // The next iteration must be out of the range...
 | |
|           ConstantInt *NextVal =
 | |
|                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
 | |
| 
 | |
|           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
 | |
|           if (!Range.contains(R1Val->getValue()))
 | |
|             return SE.getConstant(NextVal);
 | |
|           return SE.getCouldNotCompute();  // Something strange happened
 | |
|         }
 | |
| 
 | |
|         // If R1 was not in the range, then it is a good return value.  Make
 | |
|         // sure that R1-1 WAS in the range though, just in case.
 | |
|         ConstantInt *NextVal =
 | |
|                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
 | |
|         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
 | |
|         if (Range.contains(R1Val->getValue()))
 | |
|           return R1;
 | |
|         return SE.getCouldNotCompute();  // Something strange happened
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SE.getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct FindUndefs {
 | |
|   bool Found;
 | |
|   FindUndefs() : Found(false) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
 | |
|       if (isa<UndefValue>(C->getValue()))
 | |
|         Found = true;
 | |
|     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
 | |
|       if (isa<UndefValue>(C->getValue()))
 | |
|         Found = true;
 | |
|     }
 | |
| 
 | |
|     // Keep looking if we haven't found it yet.
 | |
|     return !Found;
 | |
|   }
 | |
|   bool isDone() const {
 | |
|     // Stop recursion if we have found an undef.
 | |
|     return Found;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| // Return true when S contains at least an undef value.
 | |
| static inline bool
 | |
| containsUndefs(const SCEV *S) {
 | |
|   FindUndefs F;
 | |
|   SCEVTraversal<FindUndefs> ST(F);
 | |
|   ST.visitAll(S);
 | |
| 
 | |
|   return F.Found;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Collect all steps of SCEV expressions.
 | |
| struct SCEVCollectStrides {
 | |
|   ScalarEvolution &SE;
 | |
|   SmallVectorImpl<const SCEV *> &Strides;
 | |
| 
 | |
|   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
 | |
|       : SE(SE), Strides(S) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
 | |
|       Strides.push_back(AR->getStepRecurrence(SE));
 | |
|     return true;
 | |
|   }
 | |
|   bool isDone() const { return false; }
 | |
| };
 | |
| 
 | |
| // Collect all SCEVUnknown and SCEVMulExpr expressions.
 | |
| struct SCEVCollectTerms {
 | |
|   SmallVectorImpl<const SCEV *> &Terms;
 | |
| 
 | |
|   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
 | |
|       : Terms(T) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
 | |
|       if (!containsUndefs(S))
 | |
|         Terms.push_back(S);
 | |
| 
 | |
|       // Stop recursion: once we collected a term, do not walk its operands.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Keep looking.
 | |
|     return true;
 | |
|   }
 | |
|   bool isDone() const { return false; }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// Find parametric terms in this SCEVAddRecExpr.
 | |
| void SCEVAddRecExpr::collectParametricTerms(
 | |
|     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
 | |
|   SmallVector<const SCEV *, 4> Strides;
 | |
|   SCEVCollectStrides StrideCollector(SE, Strides);
 | |
|   visitAll(this, StrideCollector);
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "Strides:\n";
 | |
|       for (const SCEV *S : Strides)
 | |
|         dbgs() << *S << "\n";
 | |
|     });
 | |
| 
 | |
|   for (const SCEV *S : Strides) {
 | |
|     SCEVCollectTerms TermCollector(Terms);
 | |
|     visitAll(S, TermCollector);
 | |
|   }
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "Terms:\n";
 | |
|       for (const SCEV *T : Terms)
 | |
|         dbgs() << *T << "\n";
 | |
|     });
 | |
| }
 | |
| 
 | |
| static bool findArrayDimensionsRec(ScalarEvolution &SE,
 | |
|                                    SmallVectorImpl<const SCEV *> &Terms,
 | |
|                                    SmallVectorImpl<const SCEV *> &Sizes) {
 | |
|   int Last = Terms.size() - 1;
 | |
|   const SCEV *Step = Terms[Last];
 | |
| 
 | |
|   // End of recursion.
 | |
|   if (Last == 0) {
 | |
|     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
 | |
|       SmallVector<const SCEV *, 2> Qs;
 | |
|       for (const SCEV *Op : M->operands())
 | |
|         if (!isa<SCEVConstant>(Op))
 | |
|           Qs.push_back(Op);
 | |
| 
 | |
|       Step = SE.getMulExpr(Qs);
 | |
|     }
 | |
| 
 | |
|     Sizes.push_back(Step);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   for (const SCEV *&Term : Terms) {
 | |
|     // Normalize the terms before the next call to findArrayDimensionsRec.
 | |
|     const SCEV *Q, *R;
 | |
|     SCEVDivision::divide(SE, Term, Step, &Q, &R);
 | |
| 
 | |
|     // Bail out when GCD does not evenly divide one of the terms.
 | |
|     if (!R->isZero())
 | |
|       return false;
 | |
| 
 | |
|     Term = Q;
 | |
|   }
 | |
| 
 | |
|   // Remove all SCEVConstants.
 | |
|   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
 | |
|                 return isa<SCEVConstant>(E);
 | |
|               }),
 | |
|               Terms.end());
 | |
| 
 | |
|   if (Terms.size() > 0)
 | |
|     if (!findArrayDimensionsRec(SE, Terms, Sizes))
 | |
|       return false;
 | |
| 
 | |
|   Sizes.push_back(Step);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct FindParameter {
 | |
|   bool FoundParameter;
 | |
|   FindParameter() : FoundParameter(false) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (isa<SCEVUnknown>(S)) {
 | |
|       FoundParameter = true;
 | |
|       // Stop recursion: we found a parameter.
 | |
|       return false;
 | |
|     }
 | |
|     // Keep looking.
 | |
|     return true;
 | |
|   }
 | |
|   bool isDone() const {
 | |
|     // Stop recursion if we have found a parameter.
 | |
|     return FoundParameter;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| // Returns true when S contains at least a SCEVUnknown parameter.
 | |
| static inline bool
 | |
| containsParameters(const SCEV *S) {
 | |
|   FindParameter F;
 | |
|   SCEVTraversal<FindParameter> ST(F);
 | |
|   ST.visitAll(S);
 | |
| 
 | |
|   return F.FoundParameter;
 | |
| }
 | |
| 
 | |
| // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
 | |
| static inline bool
 | |
| containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
 | |
|   for (const SCEV *T : Terms)
 | |
|     if (containsParameters(T))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return the number of product terms in S.
 | |
| static inline int numberOfTerms(const SCEV *S) {
 | |
|   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
 | |
|     return Expr->getNumOperands();
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
 | |
|   if (isa<SCEVConstant>(T))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (isa<SCEVUnknown>(T))
 | |
|     return T;
 | |
| 
 | |
|   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
 | |
|     SmallVector<const SCEV *, 2> Factors;
 | |
|     for (const SCEV *Op : M->operands())
 | |
|       if (!isa<SCEVConstant>(Op))
 | |
|         Factors.push_back(Op);
 | |
| 
 | |
|     return SE.getMulExpr(Factors);
 | |
|   }
 | |
| 
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| /// Return the size of an element read or written by Inst.
 | |
| const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
 | |
|   Type *Ty;
 | |
|   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
 | |
|     Ty = Store->getValueOperand()->getType();
 | |
|   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
 | |
|     Ty = Load->getType();
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
 | |
|   return getSizeOfExpr(ETy, Ty);
 | |
| }
 | |
| 
 | |
| /// Second step of delinearization: compute the array dimensions Sizes from the
 | |
| /// set of Terms extracted from the memory access function of this SCEVAddRec.
 | |
| void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
 | |
|                                           SmallVectorImpl<const SCEV *> &Sizes,
 | |
|                                           const SCEV *ElementSize) const {
 | |
| 
 | |
|   if (Terms.size() < 1 || !ElementSize)
 | |
|     return;
 | |
| 
 | |
|   // Early return when Terms do not contain parameters: we do not delinearize
 | |
|   // non parametric SCEVs.
 | |
|   if (!containsParameters(Terms))
 | |
|     return;
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "Terms:\n";
 | |
|       for (const SCEV *T : Terms)
 | |
|         dbgs() << *T << "\n";
 | |
|     });
 | |
| 
 | |
|   // Remove duplicates.
 | |
|   std::sort(Terms.begin(), Terms.end());
 | |
|   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
 | |
| 
 | |
|   // Put larger terms first.
 | |
|   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
 | |
|     return numberOfTerms(LHS) > numberOfTerms(RHS);
 | |
|   });
 | |
| 
 | |
|   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
 | |
| 
 | |
|   // Divide all terms by the element size.
 | |
|   for (const SCEV *&Term : Terms) {
 | |
|     const SCEV *Q, *R;
 | |
|     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
 | |
|     Term = Q;
 | |
|   }
 | |
| 
 | |
|   SmallVector<const SCEV *, 4> NewTerms;
 | |
| 
 | |
|   // Remove constant factors.
 | |
|   for (const SCEV *T : Terms)
 | |
|     if (const SCEV *NewT = removeConstantFactors(SE, T))
 | |
|       NewTerms.push_back(NewT);
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "Terms after sorting:\n";
 | |
|       for (const SCEV *T : NewTerms)
 | |
|         dbgs() << *T << "\n";
 | |
|     });
 | |
| 
 | |
|   if (NewTerms.empty() ||
 | |
|       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
 | |
|     Sizes.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The last element to be pushed into Sizes is the size of an element.
 | |
|   Sizes.push_back(ElementSize);
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "Sizes:\n";
 | |
|       for (const SCEV *S : Sizes)
 | |
|         dbgs() << *S << "\n";
 | |
|     });
 | |
| }
 | |
| 
 | |
| /// Third step of delinearization: compute the access functions for the
 | |
| /// Subscripts based on the dimensions in Sizes.
 | |
| void SCEVAddRecExpr::computeAccessFunctions(
 | |
|     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
 | |
|     SmallVectorImpl<const SCEV *> &Sizes) const {
 | |
| 
 | |
|   // Early exit in case this SCEV is not an affine multivariate function.
 | |
|   if (Sizes.empty() || !this->isAffine())
 | |
|     return;
 | |
| 
 | |
|   const SCEV *Res = this;
 | |
|   int Last = Sizes.size() - 1;
 | |
|   for (int i = Last; i >= 0; i--) {
 | |
|     const SCEV *Q, *R;
 | |
|     SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
 | |
| 
 | |
|     DEBUG({
 | |
|         dbgs() << "Res: " << *Res << "\n";
 | |
|         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
 | |
|         dbgs() << "Res divided by Sizes[i]:\n";
 | |
|         dbgs() << "Quotient: " << *Q << "\n";
 | |
|         dbgs() << "Remainder: " << *R << "\n";
 | |
|       });
 | |
| 
 | |
|     Res = Q;
 | |
| 
 | |
|     // Do not record the last subscript corresponding to the size of elements in
 | |
|     // the array.
 | |
|     if (i == Last) {
 | |
| 
 | |
|       // Bail out if the remainder is too complex.
 | |
|       if (isa<SCEVAddRecExpr>(R)) {
 | |
|         Subscripts.clear();
 | |
|         Sizes.clear();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Record the access function for the current subscript.
 | |
|     Subscripts.push_back(R);
 | |
|   }
 | |
| 
 | |
|   // Also push in last position the remainder of the last division: it will be
 | |
|   // the access function of the innermost dimension.
 | |
|   Subscripts.push_back(Res);
 | |
| 
 | |
|   std::reverse(Subscripts.begin(), Subscripts.end());
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "Subscripts:\n";
 | |
|       for (const SCEV *S : Subscripts)
 | |
|         dbgs() << *S << "\n";
 | |
|     });
 | |
| }
 | |
| 
 | |
| /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
 | |
| /// sizes of an array access. Returns the remainder of the delinearization that
 | |
| /// is the offset start of the array.  The SCEV->delinearize algorithm computes
 | |
| /// the multiples of SCEV coefficients: that is a pattern matching of sub
 | |
| /// expressions in the stride and base of a SCEV corresponding to the
 | |
| /// computation of a GCD (greatest common divisor) of base and stride.  When
 | |
| /// SCEV->delinearize fails, it returns the SCEV unchanged.
 | |
| ///
 | |
| /// For example: when analyzing the memory access A[i][j][k] in this loop nest
 | |
| ///
 | |
| ///  void foo(long n, long m, long o, double A[n][m][o]) {
 | |
| ///
 | |
| ///    for (long i = 0; i < n; i++)
 | |
| ///      for (long j = 0; j < m; j++)
 | |
| ///        for (long k = 0; k < o; k++)
 | |
| ///          A[i][j][k] = 1.0;
 | |
| ///  }
 | |
| ///
 | |
| /// the delinearization input is the following AddRec SCEV:
 | |
| ///
 | |
| ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
 | |
| ///
 | |
| /// From this SCEV, we are able to say that the base offset of the access is %A
 | |
| /// because it appears as an offset that does not divide any of the strides in
 | |
| /// the loops:
 | |
| ///
 | |
| ///  CHECK: Base offset: %A
 | |
| ///
 | |
| /// and then SCEV->delinearize determines the size of some of the dimensions of
 | |
| /// the array as these are the multiples by which the strides are happening:
 | |
| ///
 | |
| ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
 | |
| ///
 | |
| /// Note that the outermost dimension remains of UnknownSize because there are
 | |
| /// no strides that would help identifying the size of the last dimension: when
 | |
| /// the array has been statically allocated, one could compute the size of that
 | |
| /// dimension by dividing the overall size of the array by the size of the known
 | |
| /// dimensions: %m * %o * 8.
 | |
| ///
 | |
| /// Finally delinearize provides the access functions for the array reference
 | |
| /// that does correspond to A[i][j][k] of the above C testcase:
 | |
| ///
 | |
| ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
 | |
| ///
 | |
| /// The testcases are checking the output of a function pass:
 | |
| /// DelinearizationPass that walks through all loads and stores of a function
 | |
| /// asking for the SCEV of the memory access with respect to all enclosing
 | |
| /// loops, calling SCEV->delinearize on that and printing the results.
 | |
| 
 | |
| void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
 | |
|                                  SmallVectorImpl<const SCEV *> &Subscripts,
 | |
|                                  SmallVectorImpl<const SCEV *> &Sizes,
 | |
|                                  const SCEV *ElementSize) const {
 | |
|   // First step: collect parametric terms.
 | |
|   SmallVector<const SCEV *, 4> Terms;
 | |
|   collectParametricTerms(SE, Terms);
 | |
| 
 | |
|   if (Terms.empty())
 | |
|     return;
 | |
| 
 | |
|   // Second step: find subscript sizes.
 | |
|   SE.findArrayDimensions(Terms, Sizes, ElementSize);
 | |
| 
 | |
|   if (Sizes.empty())
 | |
|     return;
 | |
| 
 | |
|   // Third step: compute the access functions for each subscript.
 | |
|   computeAccessFunctions(SE, Subscripts, Sizes);
 | |
| 
 | |
|   if (Subscripts.empty())
 | |
|     return;
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "succeeded to delinearize " << *this << "\n";
 | |
|       dbgs() << "ArrayDecl[UnknownSize]";
 | |
|       for (const SCEV *S : Sizes)
 | |
|         dbgs() << "[" << *S << "]";
 | |
| 
 | |
|       dbgs() << "\nArrayRef";
 | |
|       for (const SCEV *S : Subscripts)
 | |
|         dbgs() << "[" << *S << "]";
 | |
|       dbgs() << "\n";
 | |
|     });
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   SCEVCallbackVH Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ScalarEvolution::SCEVCallbackVH::deleted() {
 | |
|   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
 | |
|     SE->ConstantEvolutionLoopExitValue.erase(PN);
 | |
|   SE->ValueExprMap.erase(getValPtr());
 | |
|   // this now dangles!
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
 | |
|   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
 | |
| 
 | |
|   // Forget all the expressions associated with users of the old value,
 | |
|   // so that future queries will recompute the expressions using the new
 | |
|   // value.
 | |
|   Value *Old = getValPtr();
 | |
|   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
 | |
|   SmallPtrSet<User *, 8> Visited;
 | |
|   while (!Worklist.empty()) {
 | |
|     User *U = Worklist.pop_back_val();
 | |
|     // Deleting the Old value will cause this to dangle. Postpone
 | |
|     // that until everything else is done.
 | |
|     if (U == Old)
 | |
|       continue;
 | |
|     if (!Visited.insert(U).second)
 | |
|       continue;
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(U))
 | |
|       SE->ConstantEvolutionLoopExitValue.erase(PN);
 | |
|     SE->ValueExprMap.erase(U);
 | |
|     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
 | |
|   }
 | |
|   // Delete the Old value.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(Old))
 | |
|     SE->ConstantEvolutionLoopExitValue.erase(PN);
 | |
|   SE->ValueExprMap.erase(Old);
 | |
|   // this now dangles!
 | |
| }
 | |
| 
 | |
| ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
 | |
|   : CallbackVH(V), SE(se) {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   ScalarEvolution Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ScalarEvolution::ScalarEvolution()
 | |
|   : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
 | |
|     BlockDispositions(64), FirstUnknown(nullptr) {
 | |
|   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::runOnFunction(Function &F) {
 | |
|   this->F = &F;
 | |
|   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|   DL = DLP ? &DLP->getDataLayout() : nullptr;
 | |
|   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::releaseMemory() {
 | |
|   // Iterate through all the SCEVUnknown instances and call their
 | |
|   // destructors, so that they release their references to their values.
 | |
|   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
 | |
|     U->~SCEVUnknown();
 | |
|   FirstUnknown = nullptr;
 | |
| 
 | |
|   ValueExprMap.clear();
 | |
| 
 | |
|   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
 | |
|   // that a loop had multiple computable exits.
 | |
|   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
 | |
|          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
 | |
|        I != E; ++I) {
 | |
|     I->second.clear();
 | |
|   }
 | |
| 
 | |
|   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
 | |
| 
 | |
|   BackedgeTakenCounts.clear();
 | |
|   ConstantEvolutionLoopExitValue.clear();
 | |
|   ValuesAtScopes.clear();
 | |
|   LoopDispositions.clear();
 | |
|   BlockDispositions.clear();
 | |
|   UnsignedRanges.clear();
 | |
|   SignedRanges.clear();
 | |
|   UniqueSCEVs.clear();
 | |
|   SCEVAllocator.Reset();
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<AssumptionCacheTracker>();
 | |
|   AU.addRequiredTransitive<LoopInfoWrapperPass>();
 | |
|   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
 | |
|   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
 | |
| }
 | |
| 
 | |
| static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
 | |
|                           const Loop *L) {
 | |
|   // Print all inner loops first
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     PrintLoopInfo(OS, SE, *I);
 | |
| 
 | |
|   OS << "Loop ";
 | |
|   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|   OS << ": ";
 | |
| 
 | |
|   SmallVector<BasicBlock *, 8> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() != 1)
 | |
|     OS << "<multiple exits> ";
 | |
| 
 | |
|   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
 | |
|     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
 | |
|   } else {
 | |
|     OS << "Unpredictable backedge-taken count. ";
 | |
|   }
 | |
| 
 | |
|   OS << "\n"
 | |
|         "Loop ";
 | |
|   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|   OS << ": ";
 | |
| 
 | |
|   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
 | |
|     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
 | |
|   } else {
 | |
|     OS << "Unpredictable max backedge-taken count. ";
 | |
|   }
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
 | |
|   // ScalarEvolution's implementation of the print method is to print
 | |
|   // out SCEV values of all instructions that are interesting. Doing
 | |
|   // this potentially causes it to create new SCEV objects though,
 | |
|   // which technically conflicts with the const qualifier. This isn't
 | |
|   // observable from outside the class though, so casting away the
 | |
|   // const isn't dangerous.
 | |
|   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
 | |
| 
 | |
|   OS << "Classifying expressions for: ";
 | |
|   F->printAsOperand(OS, /*PrintType=*/false);
 | |
|   OS << "\n";
 | |
|   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
 | |
|     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
 | |
|       OS << *I << '\n';
 | |
|       OS << "  -->  ";
 | |
|       const SCEV *SV = SE.getSCEV(&*I);
 | |
|       SV->print(OS);
 | |
| 
 | |
|       const Loop *L = LI->getLoopFor((*I).getParent());
 | |
| 
 | |
|       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
 | |
|       if (AtUse != SV) {
 | |
|         OS << "  -->  ";
 | |
|         AtUse->print(OS);
 | |
|       }
 | |
| 
 | |
|       if (L) {
 | |
|         OS << "\t\t" "Exits: ";
 | |
|         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
 | |
|         if (!SE.isLoopInvariant(ExitValue, L)) {
 | |
|           OS << "<<Unknown>>";
 | |
|         } else {
 | |
|           OS << *ExitValue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       OS << "\n";
 | |
|     }
 | |
| 
 | |
|   OS << "Determining loop execution counts for: ";
 | |
|   F->printAsOperand(OS, /*PrintType=*/false);
 | |
|   OS << "\n";
 | |
|   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | |
|     PrintLoopInfo(OS, &SE, *I);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::LoopDisposition
 | |
| ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
 | |
|   auto &Values = LoopDispositions[S];
 | |
|   for (auto &V : Values) {
 | |
|     if (V.getPointer() == L)
 | |
|       return V.getInt();
 | |
|   }
 | |
|   Values.emplace_back(L, LoopVariant);
 | |
|   LoopDisposition D = computeLoopDisposition(S, L);
 | |
|   auto &Values2 = LoopDispositions[S];
 | |
|   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
 | |
|     if (V.getPointer() == L) {
 | |
|       V.setInt(D);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::LoopDisposition
 | |
| ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
 | |
|   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
 | |
|   case scConstant:
 | |
|     return LoopInvariant;
 | |
|   case scTruncate:
 | |
|   case scZeroExtend:
 | |
|   case scSignExtend:
 | |
|     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
 | |
|   case scAddRecExpr: {
 | |
|     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
 | |
| 
 | |
|     // If L is the addrec's loop, it's computable.
 | |
|     if (AR->getLoop() == L)
 | |
|       return LoopComputable;
 | |
| 
 | |
|     // Add recurrences are never invariant in the function-body (null loop).
 | |
|     if (!L)
 | |
|       return LoopVariant;
 | |
| 
 | |
|     // This recurrence is variant w.r.t. L if L contains AR's loop.
 | |
|     if (L->contains(AR->getLoop()))
 | |
|       return LoopVariant;
 | |
| 
 | |
|     // This recurrence is invariant w.r.t. L if AR's loop contains L.
 | |
|     if (AR->getLoop()->contains(L))
 | |
|       return LoopInvariant;
 | |
| 
 | |
|     // This recurrence is variant w.r.t. L if any of its operands
 | |
|     // are variant.
 | |
|     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
 | |
|          I != E; ++I)
 | |
|       if (!isLoopInvariant(*I, L))
 | |
|         return LoopVariant;
 | |
| 
 | |
|     // Otherwise it's loop-invariant.
 | |
|     return LoopInvariant;
 | |
|   }
 | |
|   case scAddExpr:
 | |
|   case scMulExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMaxExpr: {
 | |
|     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
 | |
|     bool HasVarying = false;
 | |
|     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
 | |
|          I != E; ++I) {
 | |
|       LoopDisposition D = getLoopDisposition(*I, L);
 | |
|       if (D == LoopVariant)
 | |
|         return LoopVariant;
 | |
|       if (D == LoopComputable)
 | |
|         HasVarying = true;
 | |
|     }
 | |
|     return HasVarying ? LoopComputable : LoopInvariant;
 | |
|   }
 | |
|   case scUDivExpr: {
 | |
|     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
 | |
|     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
 | |
|     if (LD == LoopVariant)
 | |
|       return LoopVariant;
 | |
|     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
 | |
|     if (RD == LoopVariant)
 | |
|       return LoopVariant;
 | |
|     return (LD == LoopInvariant && RD == LoopInvariant) ?
 | |
|            LoopInvariant : LoopComputable;
 | |
|   }
 | |
|   case scUnknown:
 | |
|     // All non-instruction values are loop invariant.  All instructions are loop
 | |
|     // invariant if they are not contained in the specified loop.
 | |
|     // Instructions are never considered invariant in the function body
 | |
|     // (null loop) because they are defined within the "loop".
 | |
|     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
 | |
|       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
 | |
|     return LoopInvariant;
 | |
|   case scCouldNotCompute:
 | |
|     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
 | |
|   return getLoopDisposition(S, L) == LoopInvariant;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
 | |
|   return getLoopDisposition(S, L) == LoopComputable;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::BlockDisposition
 | |
| ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
 | |
|   auto &Values = BlockDispositions[S];
 | |
|   for (auto &V : Values) {
 | |
|     if (V.getPointer() == BB)
 | |
|       return V.getInt();
 | |
|   }
 | |
|   Values.emplace_back(BB, DoesNotDominateBlock);
 | |
|   BlockDisposition D = computeBlockDisposition(S, BB);
 | |
|   auto &Values2 = BlockDispositions[S];
 | |
|   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
 | |
|     if (V.getPointer() == BB) {
 | |
|       V.setInt(D);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::BlockDisposition
 | |
| ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
 | |
|   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
 | |
|   case scConstant:
 | |
|     return ProperlyDominatesBlock;
 | |
|   case scTruncate:
 | |
|   case scZeroExtend:
 | |
|   case scSignExtend:
 | |
|     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
 | |
|   case scAddRecExpr: {
 | |
|     // This uses a "dominates" query instead of "properly dominates" query
 | |
|     // to test for proper dominance too, because the instruction which
 | |
|     // produces the addrec's value is a PHI, and a PHI effectively properly
 | |
|     // dominates its entire containing block.
 | |
|     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
 | |
|     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
 | |
|       return DoesNotDominateBlock;
 | |
|   }
 | |
|   // FALL THROUGH into SCEVNAryExpr handling.
 | |
|   case scAddExpr:
 | |
|   case scMulExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMaxExpr: {
 | |
|     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
 | |
|     bool Proper = true;
 | |
|     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
 | |
|          I != E; ++I) {
 | |
|       BlockDisposition D = getBlockDisposition(*I, BB);
 | |
|       if (D == DoesNotDominateBlock)
 | |
|         return DoesNotDominateBlock;
 | |
|       if (D == DominatesBlock)
 | |
|         Proper = false;
 | |
|     }
 | |
|     return Proper ? ProperlyDominatesBlock : DominatesBlock;
 | |
|   }
 | |
|   case scUDivExpr: {
 | |
|     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
 | |
|     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
 | |
|     BlockDisposition LD = getBlockDisposition(LHS, BB);
 | |
|     if (LD == DoesNotDominateBlock)
 | |
|       return DoesNotDominateBlock;
 | |
|     BlockDisposition RD = getBlockDisposition(RHS, BB);
 | |
|     if (RD == DoesNotDominateBlock)
 | |
|       return DoesNotDominateBlock;
 | |
|     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
 | |
|       ProperlyDominatesBlock : DominatesBlock;
 | |
|   }
 | |
|   case scUnknown:
 | |
|     if (Instruction *I =
 | |
|           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
 | |
|       if (I->getParent() == BB)
 | |
|         return DominatesBlock;
 | |
|       if (DT->properlyDominates(I->getParent(), BB))
 | |
|         return ProperlyDominatesBlock;
 | |
|       return DoesNotDominateBlock;
 | |
|     }
 | |
|     return ProperlyDominatesBlock;
 | |
|   case scCouldNotCompute:
 | |
|     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
 | |
|   return getBlockDisposition(S, BB) >= DominatesBlock;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
 | |
|   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Search for a SCEV expression node within an expression tree.
 | |
| // Implements SCEVTraversal::Visitor.
 | |
| struct SCEVSearch {
 | |
|   const SCEV *Node;
 | |
|   bool IsFound;
 | |
| 
 | |
|   SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     IsFound |= (S == Node);
 | |
|     return !IsFound;
 | |
|   }
 | |
|   bool isDone() const { return IsFound; }
 | |
| };
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
 | |
|   SCEVSearch Search(Op);
 | |
|   visitAll(S, Search);
 | |
|   return Search.IsFound;
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
 | |
|   ValuesAtScopes.erase(S);
 | |
|   LoopDispositions.erase(S);
 | |
|   BlockDispositions.erase(S);
 | |
|   UnsignedRanges.erase(S);
 | |
|   SignedRanges.erase(S);
 | |
| 
 | |
|   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
 | |
|          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
 | |
|     BackedgeTakenInfo &BEInfo = I->second;
 | |
|     if (BEInfo.hasOperand(S, this)) {
 | |
|       BEInfo.clear();
 | |
|       BackedgeTakenCounts.erase(I++);
 | |
|     }
 | |
|     else
 | |
|       ++I;
 | |
|   }
 | |
| }
 | |
| 
 | |
| typedef DenseMap<const Loop *, std::string> VerifyMap;
 | |
| 
 | |
| /// replaceSubString - Replaces all occurrences of From in Str with To.
 | |
| static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
 | |
|   size_t Pos = 0;
 | |
|   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
 | |
|     Str.replace(Pos, From.size(), To.data(), To.size());
 | |
|     Pos += To.size();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
 | |
| static void
 | |
| getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
 | |
|   for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
 | |
|     getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
 | |
| 
 | |
|     std::string &S = Map[L];
 | |
|     if (S.empty()) {
 | |
|       raw_string_ostream OS(S);
 | |
|       SE.getBackedgeTakenCount(L)->print(OS);
 | |
| 
 | |
|       // false and 0 are semantically equivalent. This can happen in dead loops.
 | |
|       replaceSubString(OS.str(), "false", "0");
 | |
|       // Remove wrap flags, their use in SCEV is highly fragile.
 | |
|       // FIXME: Remove this when SCEV gets smarter about them.
 | |
|       replaceSubString(OS.str(), "<nw>", "");
 | |
|       replaceSubString(OS.str(), "<nsw>", "");
 | |
|       replaceSubString(OS.str(), "<nuw>", "");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::verifyAnalysis() const {
 | |
|   if (!VerifySCEV)
 | |
|     return;
 | |
| 
 | |
|   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
 | |
| 
 | |
|   // Gather stringified backedge taken counts for all loops using SCEV's caches.
 | |
|   // FIXME: It would be much better to store actual values instead of strings,
 | |
|   //        but SCEV pointers will change if we drop the caches.
 | |
|   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
 | |
|   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
 | |
|     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
 | |
| 
 | |
|   // Gather stringified backedge taken counts for all loops without using
 | |
|   // SCEV's caches.
 | |
|   SE.releaseMemory();
 | |
|   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
 | |
|     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
 | |
| 
 | |
|   // Now compare whether they're the same with and without caches. This allows
 | |
|   // verifying that no pass changed the cache.
 | |
|   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
 | |
|          "New loops suddenly appeared!");
 | |
| 
 | |
|   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
 | |
|                            OldE = BackedgeDumpsOld.end(),
 | |
|                            NewI = BackedgeDumpsNew.begin();
 | |
|        OldI != OldE; ++OldI, ++NewI) {
 | |
|     assert(OldI->first == NewI->first && "Loop order changed!");
 | |
| 
 | |
|     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
 | |
|     // changes.
 | |
|     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
 | |
|     // means that a pass is buggy or SCEV has to learn a new pattern but is
 | |
|     // usually not harmful.
 | |
|     if (OldI->second != NewI->second &&
 | |
|         OldI->second.find("undef") == std::string::npos &&
 | |
|         NewI->second.find("undef") == std::string::npos &&
 | |
|         OldI->second != "***COULDNOTCOMPUTE***" &&
 | |
|         NewI->second != "***COULDNOTCOMPUTE***") {
 | |
|       dbgs() << "SCEVValidator: SCEV for loop '"
 | |
|              << OldI->first->getHeader()->getName()
 | |
|              << "' changed from '" << OldI->second
 | |
|              << "' to '" << NewI->second << "'!\n";
 | |
|       std::abort();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: Verify more things.
 | |
| }
 |