mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			693 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			693 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_STRATIFIEDSETS_H
 | |
| #define LLVM_ADT_STRATIFIEDSETS_H
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include <bitset>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <limits>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| // \brief An index into Stratified Sets.
 | |
| typedef unsigned StratifiedIndex;
 | |
| // NOTE: ^ This can't be a short -- bootstrapping clang has a case where
 | |
| // ~1M sets exist.
 | |
| 
 | |
| // \brief Container of information related to a value in a StratifiedSet.
 | |
| struct StratifiedInfo {
 | |
|   StratifiedIndex Index;
 | |
|   // For field sensitivity, etc. we can tack attributes on to this struct.
 | |
| };
 | |
| 
 | |
| // The number of attributes that StratifiedAttrs should contain. Attributes are
 | |
| // described below, and 32 was an arbitrary choice because it fits nicely in 32
 | |
| // bits (because we use a bitset for StratifiedAttrs).
 | |
| static const unsigned NumStratifiedAttrs = 32;
 | |
| 
 | |
| // These are attributes that the users of StratifiedSets/StratifiedSetBuilders
 | |
| // may use for various purposes. These also have the special property of that
 | |
| // they are merged down. So, if set A is above set B, and one decides to set an
 | |
| // attribute in set A, then the attribute will automatically be set in set B.
 | |
| typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
 | |
| 
 | |
| // \brief A "link" between two StratifiedSets.
 | |
| struct StratifiedLink {
 | |
|   // \brief This is a value used to signify "does not exist" where
 | |
|   // the StratifiedIndex type is used. This is used instead of
 | |
|   // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
 | |
|   // eat up a considerable amount of extra memory, after struct
 | |
|   // padding/alignment is taken into account.
 | |
|   static const StratifiedIndex SetSentinel;
 | |
| 
 | |
|   // \brief The index for the set "above" current
 | |
|   StratifiedIndex Above;
 | |
| 
 | |
|   // \brief The link for the set "below" current
 | |
|   StratifiedIndex Below;
 | |
| 
 | |
|   // \brief Attributes for these StratifiedSets.
 | |
|   StratifiedAttrs Attrs;
 | |
| 
 | |
|   StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
 | |
| 
 | |
|   bool hasBelow() const { return Below != SetSentinel; }
 | |
|   bool hasAbove() const { return Above != SetSentinel; }
 | |
| 
 | |
|   void clearBelow() { Below = SetSentinel; }
 | |
|   void clearAbove() { Above = SetSentinel; }
 | |
| };
 | |
| 
 | |
| // \brief These are stratified sets, as described in "Fast algorithms for
 | |
| // Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
 | |
| // R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
 | |
| // of Value*s. If two Value*s are in the same set, or if both sets have 
 | |
| // overlapping attributes, then the Value*s are said to alias.
 | |
| //
 | |
| // Sets may be related by position, meaning that one set may be considered as
 | |
| // above or below another. In CFL Alias Analysis, this gives us an indication
 | |
| // of how two variables are related; if the set of variable A is below a set
 | |
| // containing variable B, then at some point, a variable that has interacted
 | |
| // with B (or B itself) was either used in order to extract the variable A, or
 | |
| // was used as storage of variable A.
 | |
| //
 | |
| // Sets may also have attributes (as noted above). These attributes are
 | |
| // generally used for noting whether a variable in the set has interacted with
 | |
| // a variable whose origins we don't quite know (i.e. globals/arguments), or if
 | |
| // the variable may have had operations performed on it (modified in a function
 | |
| // call). All attributes that exist in a set A must exist in all sets marked as
 | |
| // below set A.
 | |
| template <typename T> class StratifiedSets {
 | |
| public:
 | |
|   StratifiedSets() {}
 | |
| 
 | |
|   StratifiedSets(DenseMap<T, StratifiedInfo> Map,
 | |
|                  std::vector<StratifiedLink> Links)
 | |
|       : Values(std::move(Map)), Links(std::move(Links)) {}
 | |
| 
 | |
|   StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
 | |
| 
 | |
|   StratifiedSets &operator=(StratifiedSets<T> &&Other) {
 | |
|     Values = std::move(Other.Values);
 | |
|     Links = std::move(Other.Links);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   Optional<StratifiedInfo> find(const T &Elem) const {
 | |
|     auto Iter = Values.find(Elem);
 | |
|     if (Iter == Values.end()) {
 | |
|       return NoneType();
 | |
|     }
 | |
|     return Iter->second;
 | |
|   }
 | |
| 
 | |
|   const StratifiedLink &getLink(StratifiedIndex Index) const {
 | |
|     assert(inbounds(Index));
 | |
|     return Links[Index];
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   DenseMap<T, StratifiedInfo> Values;
 | |
|   std::vector<StratifiedLink> Links;
 | |
| 
 | |
|   bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
 | |
| };
 | |
| 
 | |
| // \brief Generic Builder class that produces StratifiedSets instances.
 | |
| //
 | |
| // The goal of this builder is to efficiently produce correct StratifiedSets
 | |
| // instances. To this end, we use a few tricks:
 | |
| //   > Set chains (A method for linking sets together)
 | |
| //   > Set remaps (A method for marking a set as an alias [irony?] of another)
 | |
| //
 | |
| // ==== Set chains ====
 | |
| // This builder has a notion of some value A being above, below, or with some
 | |
| // other value B:
 | |
| //   > The `A above B` relationship implies that there is a reference edge going
 | |
| //   from A to B. Namely, it notes that A can store anything in B's set.
 | |
| //   > The `A below B` relationship is the opposite of `A above B`. It implies
 | |
| //   that there's a dereference edge going from A to B.
 | |
| //   > The `A with B` relationship states that there's an assignment edge going
 | |
| //   from A to B, and that A and B should be treated as equals.
 | |
| //
 | |
| // As an example, take the following code snippet:
 | |
| //
 | |
| // %a = alloca i32, align 4
 | |
| // %ap = alloca i32*, align 8
 | |
| // %app = alloca i32**, align 8
 | |
| // store %a, %ap
 | |
| // store %ap, %app
 | |
| // %aw = getelementptr %ap, 0
 | |
| //
 | |
| // Given this, the follow relations exist:
 | |
| //   - %a below %ap & %ap above %a
 | |
| //   - %ap below %app & %app above %ap
 | |
| //   - %aw with %ap & %ap with %aw
 | |
| //
 | |
| // These relations produce the following sets:
 | |
| //   [{%a}, {%ap, %aw}, {%app}]
 | |
| //
 | |
| // ...Which states that the only MayAlias relationship in the above program is
 | |
| // between %ap and %aw.
 | |
| //
 | |
| // Life gets more complicated when we actually have logic in our programs. So,
 | |
| // we either must remove this logic from our programs, or make consessions for
 | |
| // it in our AA algorithms. In this case, we have decided to select the latter
 | |
| // option.
 | |
| //
 | |
| // First complication: Conditionals
 | |
| // Motivation:
 | |
| //  %ad = alloca int, align 4
 | |
| //  %a = alloca int*, align 8
 | |
| //  %b = alloca int*, align 8
 | |
| //  %bp = alloca int**, align 8
 | |
| //  %c = call i1 @SomeFunc()
 | |
| //  %k = select %c, %ad, %bp
 | |
| //  store %ad, %a
 | |
| //  store %b, %bp
 | |
| //
 | |
| // %k has 'with' edges to both %a and %b, which ordinarily would not be linked
 | |
| // together. So, we merge the set that contains %a with the set that contains
 | |
| // %b. We then recursively merge the set above %a with the set above %b, and
 | |
| // the set below  %a with the set below %b, etc. Ultimately, the sets for this
 | |
| // program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
 | |
| // {%a, %b, %c} is below {%ad}.
 | |
| //
 | |
| // Second complication: Arbitrary casts
 | |
| // Motivation:
 | |
| //  %ip = alloca int*, align 8
 | |
| //  %ipp = alloca int**, align 8
 | |
| //  %i = bitcast ipp to int
 | |
| //  store %ip, %ipp
 | |
| //  store %i, %ip
 | |
| //
 | |
| // This is impossible to construct with any of the rules above, because a set
 | |
| // containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
 | |
| // to be below the set with %ip, and the set with %ip is supposed to be below
 | |
| // the set with %ipp. Because we don't allow circular relationships like this,
 | |
| // we merge all concerned sets into one. So, the above code would generate a
 | |
| // single StratifiedSet: {%ip, %ipp, %i}.
 | |
| //
 | |
| // ==== Set remaps ====
 | |
| // More of an implementation detail than anything -- when merging sets, we need
 | |
| // to update the numbers of all of the elements mapped to those sets. Rather
 | |
| // than doing this at each merge, we note in the BuilderLink structure that a
 | |
| // remap has occurred, and use this information so we can defer renumbering set
 | |
| // elements until build time.
 | |
| template <typename T> class StratifiedSetsBuilder {
 | |
|   // \brief Represents a Stratified Set, with information about the Stratified
 | |
|   // Set above it, the set below it, and whether the current set has been
 | |
|   // remapped to another.
 | |
|   struct BuilderLink {
 | |
|     const StratifiedIndex Number;
 | |
| 
 | |
|     BuilderLink(StratifiedIndex N) : Number(N) {
 | |
|       Remap = StratifiedLink::SetSentinel;
 | |
|     }
 | |
| 
 | |
|     bool hasAbove() const {
 | |
|       assert(!isRemapped());
 | |
|       return Link.hasAbove();
 | |
|     }
 | |
| 
 | |
|     bool hasBelow() const {
 | |
|       assert(!isRemapped());
 | |
|       return Link.hasBelow();
 | |
|     }
 | |
| 
 | |
|     void setBelow(StratifiedIndex I) {
 | |
|       assert(!isRemapped());
 | |
|       Link.Below = I;
 | |
|     }
 | |
| 
 | |
|     void setAbove(StratifiedIndex I) {
 | |
|       assert(!isRemapped());
 | |
|       Link.Above = I;
 | |
|     }
 | |
| 
 | |
|     void clearBelow() {
 | |
|       assert(!isRemapped());
 | |
|       Link.clearBelow();
 | |
|     }
 | |
| 
 | |
|     void clearAbove() {
 | |
|       assert(!isRemapped());
 | |
|       Link.clearAbove();
 | |
|     }
 | |
| 
 | |
|     StratifiedIndex getBelow() const {
 | |
|       assert(!isRemapped());
 | |
|       assert(hasBelow());
 | |
|       return Link.Below;
 | |
|     }
 | |
| 
 | |
|     StratifiedIndex getAbove() const {
 | |
|       assert(!isRemapped());
 | |
|       assert(hasAbove());
 | |
|       return Link.Above;
 | |
|     }
 | |
| 
 | |
|     StratifiedAttrs &getAttrs() {
 | |
|       assert(!isRemapped());
 | |
|       return Link.Attrs;
 | |
|     }
 | |
| 
 | |
|     void setAttr(unsigned index) {
 | |
|       assert(!isRemapped());
 | |
|       assert(index < NumStratifiedAttrs);
 | |
|       Link.Attrs.set(index);
 | |
|     }
 | |
| 
 | |
|     void setAttrs(const StratifiedAttrs &other) {
 | |
|       assert(!isRemapped());
 | |
|       Link.Attrs |= other;
 | |
|     }
 | |
| 
 | |
|     bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
 | |
| 
 | |
|     // \brief For initial remapping to another set
 | |
|     void remapTo(StratifiedIndex Other) {
 | |
|       assert(!isRemapped());
 | |
|       Remap = Other;
 | |
|     }
 | |
| 
 | |
|     StratifiedIndex getRemapIndex() const {
 | |
|       assert(isRemapped());
 | |
|       return Remap;
 | |
|     }
 | |
| 
 | |
|     // \brief Should only be called when we're already remapped.
 | |
|     void updateRemap(StratifiedIndex Other) {
 | |
|       assert(isRemapped());
 | |
|       Remap = Other;
 | |
|     }
 | |
| 
 | |
|     // \brief Prefer the above functions to calling things directly on what's
 | |
|     // returned from this -- they guard against unexpected calls when the
 | |
|     // current BuilderLink is remapped.
 | |
|     const StratifiedLink &getLink() const { return Link; }
 | |
| 
 | |
|   private:
 | |
|     StratifiedLink Link;
 | |
|     StratifiedIndex Remap;
 | |
|   };
 | |
| 
 | |
|   // \brief This function performs all of the set unioning/value renumbering
 | |
|   // that we've been putting off, and generates a vector<StratifiedLink> that
 | |
|   // may be placed in a StratifiedSets instance.
 | |
|   void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
 | |
|     DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
 | |
|     for (auto &Link : Links) {
 | |
|       if (Link.isRemapped()) {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       StratifiedIndex Number = StratLinks.size();
 | |
|       Remaps.insert(std::make_pair(Link.Number, Number));
 | |
|       StratLinks.push_back(Link.getLink());
 | |
|     }
 | |
| 
 | |
|     for (auto &Link : StratLinks) {
 | |
|       if (Link.hasAbove()) {
 | |
|         auto &Above = linksAt(Link.Above);
 | |
|         auto Iter = Remaps.find(Above.Number);
 | |
|         assert(Iter != Remaps.end());
 | |
|         Link.Above = Iter->second;
 | |
|       }
 | |
| 
 | |
|       if (Link.hasBelow()) {
 | |
|         auto &Below = linksAt(Link.Below);
 | |
|         auto Iter = Remaps.find(Below.Number);
 | |
|         assert(Iter != Remaps.end());
 | |
|         Link.Below = Iter->second;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (auto &Pair : Values) {
 | |
|       auto &Info = Pair.second;
 | |
|       auto &Link = linksAt(Info.Index);
 | |
|       auto Iter = Remaps.find(Link.Number);
 | |
|       assert(Iter != Remaps.end());
 | |
|       Info.Index = Iter->second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // \brief There's a guarantee in StratifiedLink where all bits set in a
 | |
|   // Link.externals will be set in all Link.externals "below" it.
 | |
|   static void propagateAttrs(std::vector<StratifiedLink> &Links) {
 | |
|     const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
 | |
|       const auto *Link = &Links[Idx];
 | |
|       while (Link->hasAbove()) {
 | |
|         Idx = Link->Above;
 | |
|         Link = &Links[Idx];
 | |
|       }
 | |
|       return Idx;
 | |
|     };
 | |
| 
 | |
|     SmallSet<StratifiedIndex, 16> Visited;
 | |
|     for (unsigned I = 0, E = Links.size(); I < E; ++I) {
 | |
|       auto CurrentIndex = getHighestParentAbove(I);
 | |
|       if (!Visited.insert(CurrentIndex).second) {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       while (Links[CurrentIndex].hasBelow()) {
 | |
|         auto &CurrentBits = Links[CurrentIndex].Attrs;
 | |
|         auto NextIndex = Links[CurrentIndex].Below;
 | |
|         auto &NextBits = Links[NextIndex].Attrs;
 | |
|         NextBits |= CurrentBits;
 | |
|         CurrentIndex = NextIndex;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   // \brief Builds a StratifiedSet from the information we've been given since
 | |
|   // either construction or the prior build() call.
 | |
|   StratifiedSets<T> build() {
 | |
|     std::vector<StratifiedLink> StratLinks;
 | |
|     finalizeSets(StratLinks);
 | |
|     propagateAttrs(StratLinks);
 | |
|     Links.clear();
 | |
|     return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
 | |
|   }
 | |
| 
 | |
|   std::size_t size() const { return Values.size(); }
 | |
|   std::size_t numSets() const { return Links.size(); }
 | |
| 
 | |
|   bool has(const T &Elem) const { return get(Elem).hasValue(); }
 | |
| 
 | |
|   bool add(const T &Main) {
 | |
|     if (get(Main).hasValue())
 | |
|       return false;
 | |
| 
 | |
|     auto NewIndex = getNewUnlinkedIndex();
 | |
|     return addAtMerging(Main, NewIndex);
 | |
|   }
 | |
| 
 | |
|   // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
 | |
|   // set above "Main". There are some cases where this is not possible (see
 | |
|   // above), so we merge them such that ToAdd and Main are in the same set.
 | |
|   bool addAbove(const T &Main, const T &ToAdd) {
 | |
|     assert(has(Main));
 | |
|     auto Index = *indexOf(Main);
 | |
|     if (!linksAt(Index).hasAbove())
 | |
|       addLinkAbove(Index);
 | |
| 
 | |
|     auto Above = linksAt(Index).getAbove();
 | |
|     return addAtMerging(ToAdd, Above);
 | |
|   }
 | |
| 
 | |
|   // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
 | |
|   // set below "Main". There are some cases where this is not possible (see
 | |
|   // above), so we merge them such that ToAdd and Main are in the same set.
 | |
|   bool addBelow(const T &Main, const T &ToAdd) {
 | |
|     assert(has(Main));
 | |
|     auto Index = *indexOf(Main);
 | |
|     if (!linksAt(Index).hasBelow())
 | |
|       addLinkBelow(Index);
 | |
| 
 | |
|     auto Below = linksAt(Index).getBelow();
 | |
|     return addAtMerging(ToAdd, Below);
 | |
|   }
 | |
| 
 | |
|   bool addWith(const T &Main, const T &ToAdd) {
 | |
|     assert(has(Main));
 | |
|     auto MainIndex = *indexOf(Main);
 | |
|     return addAtMerging(ToAdd, MainIndex);
 | |
|   }
 | |
| 
 | |
|   void noteAttribute(const T &Main, unsigned AttrNum) {
 | |
|     assert(has(Main));
 | |
|     assert(AttrNum < StratifiedLink::SetSentinel);
 | |
|     auto *Info = *get(Main);
 | |
|     auto &Link = linksAt(Info->Index);
 | |
|     Link.setAttr(AttrNum);
 | |
|   }
 | |
| 
 | |
|   void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
 | |
|     assert(has(Main));
 | |
|     auto *Info = *get(Main);
 | |
|     auto &Link = linksAt(Info->Index);
 | |
|     Link.setAttrs(NewAttrs);
 | |
|   }
 | |
| 
 | |
|   StratifiedAttrs getAttributes(const T &Main) {
 | |
|     assert(has(Main));
 | |
|     auto *Info = *get(Main);
 | |
|     auto *Link = &linksAt(Info->Index);
 | |
|     auto Attrs = Link->getAttrs();
 | |
|     while (Link->hasAbove()) {
 | |
|       Link = &linksAt(Link->getAbove());
 | |
|       Attrs |= Link->getAttrs();
 | |
|     }
 | |
| 
 | |
|     return Attrs;
 | |
|   }
 | |
| 
 | |
|   bool getAttribute(const T &Main, unsigned AttrNum) {
 | |
|     assert(AttrNum < StratifiedLink::SetSentinel);
 | |
|     auto Attrs = getAttributes(Main);
 | |
|     return Attrs[AttrNum];
 | |
|   }
 | |
| 
 | |
|   // \brief Gets the attributes that have been applied to the set that Main
 | |
|   // belongs to. It ignores attributes in any sets above the one that Main
 | |
|   // resides in.
 | |
|   StratifiedAttrs getRawAttributes(const T &Main) {
 | |
|     assert(has(Main));
 | |
|     auto *Info = *get(Main);
 | |
|     auto &Link = linksAt(Info->Index);
 | |
|     return Link.getAttrs();
 | |
|   }
 | |
| 
 | |
|   // \brief Gets an attribute from the attributes that have been applied to the
 | |
|   // set that Main belongs to. It ignores attributes in any sets above the one
 | |
|   // that Main resides in.
 | |
|   bool getRawAttribute(const T &Main, unsigned AttrNum) {
 | |
|     assert(AttrNum < StratifiedLink::SetSentinel);
 | |
|     auto Attrs = getRawAttributes(Main);
 | |
|     return Attrs[AttrNum];
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   DenseMap<T, StratifiedInfo> Values;
 | |
|   std::vector<BuilderLink> Links;
 | |
| 
 | |
|   // \brief Adds the given element at the given index, merging sets if
 | |
|   // necessary.
 | |
|   bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
 | |
|     StratifiedInfo Info = {Index};
 | |
|     auto Pair = Values.insert(std::make_pair(ToAdd, Info));
 | |
|     if (Pair.second)
 | |
|       return true;
 | |
| 
 | |
|     auto &Iter = Pair.first;
 | |
|     auto &IterSet = linksAt(Iter->second.Index);
 | |
|     auto &ReqSet = linksAt(Index);
 | |
| 
 | |
|     // Failed to add where we wanted to. Merge the sets.
 | |
|     if (&IterSet != &ReqSet)
 | |
|       merge(IterSet.Number, ReqSet.Number);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // \brief Gets the BuilderLink at the given index, taking set remapping into
 | |
|   // account.
 | |
|   BuilderLink &linksAt(StratifiedIndex Index) {
 | |
|     auto *Start = &Links[Index];
 | |
|     if (!Start->isRemapped())
 | |
|       return *Start;
 | |
| 
 | |
|     auto *Current = Start;
 | |
|     while (Current->isRemapped())
 | |
|       Current = &Links[Current->getRemapIndex()];
 | |
| 
 | |
|     auto NewRemap = Current->Number;
 | |
| 
 | |
|     // Run through everything that has yet to be updated, and update them to
 | |
|     // remap to NewRemap
 | |
|     Current = Start;
 | |
|     while (Current->isRemapped()) {
 | |
|       auto *Next = &Links[Current->getRemapIndex()];
 | |
|       Current->updateRemap(NewRemap);
 | |
|       Current = Next;
 | |
|     }
 | |
| 
 | |
|     return *Current;
 | |
|   }
 | |
| 
 | |
|   // \brief Merges two sets into one another. Assumes that these sets are not
 | |
|   // already one in the same
 | |
|   void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
 | |
|     assert(inbounds(Idx1) && inbounds(Idx2));
 | |
|     assert(&linksAt(Idx1) != &linksAt(Idx2) &&
 | |
|            "Merging a set into itself is not allowed");
 | |
| 
 | |
|     // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
 | |
|     // both the
 | |
|     // given sets, and all sets between them, into one.
 | |
|     if (tryMergeUpwards(Idx1, Idx2))
 | |
|       return;
 | |
| 
 | |
|     if (tryMergeUpwards(Idx2, Idx1))
 | |
|       return;
 | |
| 
 | |
|     // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
 | |
|     // We therefore need to merge the two chains together.
 | |
|     mergeDirect(Idx1, Idx2);
 | |
|   }
 | |
| 
 | |
|   // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
 | |
|   // traversing above or below the set at `Idx2`.
 | |
|   void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
 | |
|     assert(inbounds(Idx1) && inbounds(Idx2));
 | |
| 
 | |
|     auto *LinksInto = &linksAt(Idx1);
 | |
|     auto *LinksFrom = &linksAt(Idx2);
 | |
|     // Merging everything above LinksInto then proceeding to merge everything
 | |
|     // below LinksInto becomes problematic, so we go as far "up" as possible!
 | |
|     while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
 | |
|       LinksInto = &linksAt(LinksInto->getAbove());
 | |
|       LinksFrom = &linksAt(LinksFrom->getAbove());
 | |
|     }
 | |
| 
 | |
|     if (LinksFrom->hasAbove()) {
 | |
|       LinksInto->setAbove(LinksFrom->getAbove());
 | |
|       auto &NewAbove = linksAt(LinksInto->getAbove());
 | |
|       NewAbove.setBelow(LinksInto->Number);
 | |
|     }
 | |
| 
 | |
|     // Merging strategy:
 | |
|     //  > If neither has links below, stop.
 | |
|     //  > If only `LinksInto` has links below, stop.
 | |
|     //  > If only `LinksFrom` has links below, reset `LinksInto.Below` to
 | |
|     //  match `LinksFrom.Below`
 | |
|     //  > If both have links above, deal with those next.
 | |
|     while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
 | |
|       auto &FromAttrs = LinksFrom->getAttrs();
 | |
|       LinksInto->setAttrs(FromAttrs);
 | |
| 
 | |
|       // Remap needs to happen after getBelow(), but before
 | |
|       // assignment of LinksFrom
 | |
|       auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
 | |
|       LinksFrom->remapTo(LinksInto->Number);
 | |
|       LinksFrom = NewLinksFrom;
 | |
|       LinksInto = &linksAt(LinksInto->getBelow());
 | |
|     }
 | |
| 
 | |
|     if (LinksFrom->hasBelow()) {
 | |
|       LinksInto->setBelow(LinksFrom->getBelow());
 | |
|       auto &NewBelow = linksAt(LinksInto->getBelow());
 | |
|       NewBelow.setAbove(LinksInto->Number);
 | |
|     }
 | |
| 
 | |
|     LinksFrom->remapTo(LinksInto->Number);
 | |
|   }
 | |
| 
 | |
|   // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
 | |
|   // If so, it will merge lowerIndex with upperIndex (and all of the sets
 | |
|   // between) and return true. Otherwise, it will return false.
 | |
|   bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
 | |
|     assert(inbounds(LowerIndex) && inbounds(UpperIndex));
 | |
|     auto *Lower = &linksAt(LowerIndex);
 | |
|     auto *Upper = &linksAt(UpperIndex);
 | |
|     if (Lower == Upper)
 | |
|       return true;
 | |
| 
 | |
|     SmallVector<BuilderLink *, 8> Found;
 | |
|     auto *Current = Lower;
 | |
|     auto Attrs = Current->getAttrs();
 | |
|     while (Current->hasAbove() && Current != Upper) {
 | |
|       Found.push_back(Current);
 | |
|       Attrs |= Current->getAttrs();
 | |
|       Current = &linksAt(Current->getAbove());
 | |
|     }
 | |
| 
 | |
|     if (Current != Upper)
 | |
|       return false;
 | |
| 
 | |
|     Upper->setAttrs(Attrs);
 | |
| 
 | |
|     if (Lower->hasBelow()) {
 | |
|       auto NewBelowIndex = Lower->getBelow();
 | |
|       Upper->setBelow(NewBelowIndex);
 | |
|       auto &NewBelow = linksAt(NewBelowIndex);
 | |
|       NewBelow.setAbove(UpperIndex);
 | |
|     } else {
 | |
|       Upper->clearBelow();
 | |
|     }
 | |
| 
 | |
|     for (const auto &Ptr : Found)
 | |
|       Ptr->remapTo(Upper->Number);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Optional<const StratifiedInfo *> get(const T &Val) const {
 | |
|     auto Result = Values.find(Val);
 | |
|     if (Result == Values.end())
 | |
|       return NoneType();
 | |
|     return &Result->second;
 | |
|   }
 | |
| 
 | |
|   Optional<StratifiedInfo *> get(const T &Val) {
 | |
|     auto Result = Values.find(Val);
 | |
|     if (Result == Values.end())
 | |
|       return NoneType();
 | |
|     return &Result->second;
 | |
|   }
 | |
| 
 | |
|   Optional<StratifiedIndex> indexOf(const T &Val) {
 | |
|     auto MaybeVal = get(Val);
 | |
|     if (!MaybeVal.hasValue())
 | |
|       return NoneType();
 | |
|     auto *Info = *MaybeVal;
 | |
|     auto &Link = linksAt(Info->Index);
 | |
|     return Link.Number;
 | |
|   }
 | |
| 
 | |
|   StratifiedIndex addLinkBelow(StratifiedIndex Set) {
 | |
|     auto At = addLinks();
 | |
|     Links[Set].setBelow(At);
 | |
|     Links[At].setAbove(Set);
 | |
|     return At;
 | |
|   }
 | |
| 
 | |
|   StratifiedIndex addLinkAbove(StratifiedIndex Set) {
 | |
|     auto At = addLinks();
 | |
|     Links[At].setBelow(Set);
 | |
|     Links[Set].setAbove(At);
 | |
|     return At;
 | |
|   }
 | |
| 
 | |
|   StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
 | |
| 
 | |
|   StratifiedIndex addLinks() {
 | |
|     auto Link = Links.size();
 | |
|     Links.push_back(BuilderLink(Link));
 | |
|     return Link;
 | |
|   }
 | |
| 
 | |
|   bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
 | |
| };
 | |
| }
 | |
| #endif // LLVM_ADT_STRATIFIEDSETS_H
 |