mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	preferences interface on TTI now that all of TTI is per-function. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227741 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			512 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			512 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AArch64TargetTransformInfo.h"
 | |
| #include "MCTargetDesc/AArch64AddressingModes.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/BasicTTIImpl.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/CostTable.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "aarch64tti"
 | |
| 
 | |
| /// \brief Calculate the cost of materializing a 64-bit value. This helper
 | |
| /// method might only calculate a fraction of a larger immediate. Therefore it
 | |
| /// is valid to return a cost of ZERO.
 | |
| unsigned AArch64TTIImpl::getIntImmCost(int64_t Val) {
 | |
|   // Check if the immediate can be encoded within an instruction.
 | |
|   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
 | |
|     return 0;
 | |
| 
 | |
|   if (Val < 0)
 | |
|     Val = ~Val;
 | |
| 
 | |
|   // Calculate how many moves we will need to materialize this constant.
 | |
|   unsigned LZ = countLeadingZeros((uint64_t)Val);
 | |
|   return (64 - LZ + 15) / 16;
 | |
| }
 | |
| 
 | |
| /// \brief Calculate the cost of materializing the given constant.
 | |
| unsigned AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   if (BitSize == 0)
 | |
|     return ~0U;
 | |
| 
 | |
|   // Sign-extend all constants to a multiple of 64-bit.
 | |
|   APInt ImmVal = Imm;
 | |
|   if (BitSize & 0x3f)
 | |
|     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
 | |
| 
 | |
|   // Split the constant into 64-bit chunks and calculate the cost for each
 | |
|   // chunk.
 | |
|   unsigned Cost = 0;
 | |
|   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
 | |
|     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
 | |
|     int64_t Val = Tmp.getSExtValue();
 | |
|     Cost += getIntImmCost(Val);
 | |
|   }
 | |
|   // We need at least one instruction to materialze the constant.
 | |
|   return std::max(1U, Cost);
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
 | |
|                                        const APInt &Imm, Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   unsigned ImmIdx = ~0U;
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::GetElementPtr:
 | |
|     // Always hoist the base address of a GetElementPtr.
 | |
|     if (Idx == 0)
 | |
|       return 2 * TTI::TCC_Basic;
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::Store:
 | |
|     ImmIdx = 0;
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::ICmp:
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   // Always return TCC_Free for the shift value of a shift instruction.
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     if (Idx == 1)
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Select:
 | |
|   case Instruction::Ret:
 | |
|   case Instruction::Load:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Idx == ImmIdx) {
 | |
|     unsigned NumConstants = (BitSize + 63) / 64;
 | |
|     unsigned Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
 | |
|     return (Cost <= NumConstants * TTI::TCC_Basic)
 | |
|                ? static_cast<unsigned>(TTI::TCC_Free)
 | |
|                : Cost;
 | |
|   }
 | |
|   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
 | |
|                                        const APInt &Imm, Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     return TTI::TCC_Free;
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|     if (Idx == 1) {
 | |
|       unsigned NumConstants = (BitSize + 63) / 64;
 | |
|       unsigned Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
 | |
|       return (Cost <= NumConstants * TTI::TCC_Basic)
 | |
|                  ? static_cast<unsigned>(TTI::TCC_Free)
 | |
|                  : Cost;
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::experimental_stackmap:
 | |
|     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Intrinsic::experimental_patchpoint_void:
 | |
|   case Intrinsic::experimental_patchpoint_i64:
 | |
|     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   }
 | |
|   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| TargetTransformInfo::PopcntSupportKind
 | |
| AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
 | |
|   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | |
|   if (TyWidth == 32 || TyWidth == 64)
 | |
|     return TTI::PSK_FastHardware;
 | |
|   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
 | |
|   return TTI::PSK_Software;
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
 | |
|                                           Type *Src) {
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   EVT SrcTy = TLI->getValueType(Src);
 | |
|   EVT DstTy = TLI->getValueType(Dst);
 | |
| 
 | |
|   if (!SrcTy.isSimple() || !DstTy.isSimple())
 | |
|     return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
 | |
|     // LowerVectorINT_TO_FP:
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
 | |
| 
 | |
|     // Complex: to v2f32
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
 | |
| 
 | |
|     // Complex: to v4f32
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
 | |
| 
 | |
|     // Complex: to v2f64
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
 | |
| 
 | |
| 
 | |
|     // LowerVectorFP_TO_INT
 | |
|     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
 | |
| 
 | |
|     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
 | |
|     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
 | |
| 
 | |
|     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
 | |
|     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
 | |
|     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
 | |
| 
 | |
|     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
 | |
|     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
 | |
|   };
 | |
| 
 | |
|   int Idx = ConvertCostTableLookup<MVT>(
 | |
|       ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
 | |
|       SrcTy.getSimpleVT());
 | |
|   if (Idx != -1)
 | |
|     return ConversionTbl[Idx].Cost;
 | |
| 
 | |
|   return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                                             unsigned Index) {
 | |
|   assert(Val->isVectorTy() && "This must be a vector type");
 | |
| 
 | |
|   if (Index != -1U) {
 | |
|     // Legalize the type.
 | |
|     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
 | |
| 
 | |
|     // This type is legalized to a scalar type.
 | |
|     if (!LT.second.isVector())
 | |
|       return 0;
 | |
| 
 | |
|     // The type may be split. Normalize the index to the new type.
 | |
|     unsigned Width = LT.second.getVectorNumElements();
 | |
|     Index = Index % Width;
 | |
| 
 | |
|     // The element at index zero is already inside the vector.
 | |
|     if (Index == 0)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // All other insert/extracts cost this much.
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getArithmeticInstrCost(
 | |
|     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
 | |
|     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
 | |
|     TTI::OperandValueProperties Opd2PropInfo) {
 | |
|   // Legalize the type.
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
| 
 | |
|   if (ISD == ISD::SDIV &&
 | |
|       Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
 | |
|     // On AArch64, scalar signed division by constants power-of-two are
 | |
|     // normally expanded to the sequence ADD + CMP + SELECT + SRA.
 | |
|     // The OperandValue properties many not be same as that of previous
 | |
|     // operation; conservatively assume OP_None.
 | |
|     unsigned Cost =
 | |
|       getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
 | |
|                              TargetTransformInfo::OP_None,
 | |
|                              TargetTransformInfo::OP_None);
 | |
|     Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
 | |
|                                    TargetTransformInfo::OP_None,
 | |
|                                    TargetTransformInfo::OP_None);
 | |
|     Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
 | |
|                                    TargetTransformInfo::OP_None,
 | |
|                                    TargetTransformInfo::OP_None);
 | |
|     Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
 | |
|                                    TargetTransformInfo::OP_None,
 | |
|                                    TargetTransformInfo::OP_None);
 | |
|     return Cost;
 | |
|   }
 | |
| 
 | |
|   switch (ISD) {
 | |
|   default:
 | |
|     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
 | |
|                                          Opd1PropInfo, Opd2PropInfo);
 | |
|   case ISD::ADD:
 | |
|   case ISD::MUL:
 | |
|   case ISD::XOR:
 | |
|   case ISD::OR:
 | |
|   case ISD::AND:
 | |
|     // These nodes are marked as 'custom' for combining purposes only.
 | |
|     // We know that they are legal. See LowerAdd in ISelLowering.
 | |
|     return 1 * LT.first;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
 | |
|   // Address computations in vectorized code with non-consecutive addresses will
 | |
|   // likely result in more instructions compared to scalar code where the
 | |
|   // computation can more often be merged into the index mode. The resulting
 | |
|   // extra micro-ops can significantly decrease throughput.
 | |
|   unsigned NumVectorInstToHideOverhead = 10;
 | |
| 
 | |
|   if (Ty->isVectorTy() && IsComplex)
 | |
|     return NumVectorInstToHideOverhead;
 | |
| 
 | |
|   // In many cases the address computation is not merged into the instruction
 | |
|   // addressing mode.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                             Type *CondTy) {
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   // We don't lower vector selects well that are wider than the register width.
 | |
|   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
 | |
|     // We would need this many instructions to hide the scalarization happening.
 | |
|     unsigned AmortizationCost = 20;
 | |
|     static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|     VectorSelectTbl[] = {
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
 | |
|     };
 | |
| 
 | |
|     EVT SelCondTy = TLI->getValueType(CondTy);
 | |
|     EVT SelValTy = TLI->getValueType(ValTy);
 | |
|     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
 | |
|       int Idx =
 | |
|           ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
 | |
|                                  SelValTy.getSimpleVT());
 | |
|       if (Idx != -1)
 | |
|         return VectorSelectTbl[Idx].Cost;
 | |
|     }
 | |
|   }
 | |
|   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
 | |
|                                          unsigned Alignment,
 | |
|                                          unsigned AddressSpace) {
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
 | |
| 
 | |
|   if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
 | |
|       Src->getVectorElementType()->isIntegerTy(64)) {
 | |
|     // Unaligned stores are extremely inefficient. We don't split
 | |
|     // unaligned v2i64 stores because the negative impact that has shown in
 | |
|     // practice on inlined memcpy code.
 | |
|     // We make v2i64 stores expensive so that we will only vectorize if there
 | |
|     // are 6 other instructions getting vectorized.
 | |
|     unsigned AmortizationCost = 6;
 | |
| 
 | |
|     return LT.first * 2 * AmortizationCost;
 | |
|   }
 | |
| 
 | |
|   if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
 | |
|       Src->getVectorNumElements() < 8) {
 | |
|     // We scalarize the loads/stores because there is not v.4b register and we
 | |
|     // have to promote the elements to v.4h.
 | |
|     unsigned NumVecElts = Src->getVectorNumElements();
 | |
|     unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
 | |
|     // We generate 2 instructions per vector element.
 | |
|     return NumVectorizableInstsToAmortize * NumVecElts * 2;
 | |
|   }
 | |
| 
 | |
|   return LT.first;
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
 | |
|   unsigned Cost = 0;
 | |
|   for (auto *I : Tys) {
 | |
|     if (!I->isVectorTy())
 | |
|       continue;
 | |
|     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
 | |
|       Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
 | |
|         getMemoryOpCost(Instruction::Load, I, 128, 0);
 | |
|   }
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getMaxInterleaveFactor() {
 | |
|   if (ST->isCortexA57())
 | |
|     return 4;
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
 | |
|                                              TTI::UnrollingPreferences &UP) {
 | |
|   // Disable partial & runtime unrolling on -Os.
 | |
|   UP.PartialOptSizeThreshold = 0;
 | |
| }
 | |
| 
 | |
| Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
 | |
|                                                          Type *ExpectedType) {
 | |
|   switch (Inst->getIntrinsicID()) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|   case Intrinsic::aarch64_neon_st2:
 | |
|   case Intrinsic::aarch64_neon_st3:
 | |
|   case Intrinsic::aarch64_neon_st4: {
 | |
|     // Create a struct type
 | |
|     StructType *ST = dyn_cast<StructType>(ExpectedType);
 | |
|     if (!ST)
 | |
|       return nullptr;
 | |
|     unsigned NumElts = Inst->getNumArgOperands() - 1;
 | |
|     if (ST->getNumElements() != NumElts)
 | |
|       return nullptr;
 | |
|     for (unsigned i = 0, e = NumElts; i != e; ++i) {
 | |
|       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
 | |
|         return nullptr;
 | |
|     }
 | |
|     Value *Res = UndefValue::get(ExpectedType);
 | |
|     IRBuilder<> Builder(Inst);
 | |
|     for (unsigned i = 0, e = NumElts; i != e; ++i) {
 | |
|       Value *L = Inst->getArgOperand(i);
 | |
|       Res = Builder.CreateInsertValue(Res, L, i);
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
|   case Intrinsic::aarch64_neon_ld2:
 | |
|   case Intrinsic::aarch64_neon_ld3:
 | |
|   case Intrinsic::aarch64_neon_ld4:
 | |
|     if (Inst->getType() == ExpectedType)
 | |
|       return Inst;
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
 | |
|                                         MemIntrinsicInfo &Info) {
 | |
|   switch (Inst->getIntrinsicID()) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_ld2:
 | |
|   case Intrinsic::aarch64_neon_ld3:
 | |
|   case Intrinsic::aarch64_neon_ld4:
 | |
|     Info.ReadMem = true;
 | |
|     Info.WriteMem = false;
 | |
|     Info.Vol = false;
 | |
|     Info.NumMemRefs = 1;
 | |
|     Info.PtrVal = Inst->getArgOperand(0);
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_st2:
 | |
|   case Intrinsic::aarch64_neon_st3:
 | |
|   case Intrinsic::aarch64_neon_st4:
 | |
|     Info.ReadMem = false;
 | |
|     Info.WriteMem = true;
 | |
|     Info.Vol = false;
 | |
|     Info.NumMemRefs = 1;
 | |
|     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (Inst->getIntrinsicID()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Intrinsic::aarch64_neon_ld2:
 | |
|   case Intrinsic::aarch64_neon_st2:
 | |
|     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_ld3:
 | |
|   case Intrinsic::aarch64_neon_st3:
 | |
|     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_ld4:
 | |
|   case Intrinsic::aarch64_neon_st4:
 | |
|     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
 | |
|     break;
 | |
|   }
 | |
|   return true;
 | |
| }
 |