mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229163 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2312 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2312 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the PowerPC-specific support for the FastISel class. Some
 | |
| // of the target-specific code is generated by tablegen in the file
 | |
| // PPCGenFastISel.inc, which is #included here.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPC.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "PPCCallingConv.h"
 | |
| #include "PPCISelLowering.h"
 | |
| #include "PPCMachineFunctionInfo.h"
 | |
| #include "PPCSubtarget.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // TBD:
 | |
| //   fastLowerArguments: Handle simple cases.
 | |
| //   PPCMaterializeGV: Handle TLS.
 | |
| //   SelectCall: Handle function pointers.
 | |
| //   SelectCall: Handle multi-register return values.
 | |
| //   SelectCall: Optimize away nops for local calls.
 | |
| //   processCallArgs: Handle bit-converted arguments.
 | |
| //   finishCall: Handle multi-register return values.
 | |
| //   PPCComputeAddress: Handle parameter references as FrameIndex's.
 | |
| //   PPCEmitCmp: Handle immediate as operand 1.
 | |
| //   SelectCall: Handle small byval arguments.
 | |
| //   SelectIntrinsicCall: Implement.
 | |
| //   SelectSelect: Implement.
 | |
| //   Consider factoring isTypeLegal into the base class.
 | |
| //   Implement switches and jump tables.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ppcfastisel"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| typedef struct Address {
 | |
|   enum {
 | |
|     RegBase,
 | |
|     FrameIndexBase
 | |
|   } BaseType;
 | |
| 
 | |
|   union {
 | |
|     unsigned Reg;
 | |
|     int FI;
 | |
|   } Base;
 | |
| 
 | |
|   long Offset;
 | |
| 
 | |
|   // Innocuous defaults for our address.
 | |
|   Address()
 | |
|    : BaseType(RegBase), Offset(0) {
 | |
|      Base.Reg = 0;
 | |
|    }
 | |
| } Address;
 | |
| 
 | |
| class PPCFastISel final : public FastISel {
 | |
| 
 | |
|   const TargetMachine &TM;
 | |
|   const PPCSubtarget *PPCSubTarget;
 | |
|   PPCFunctionInfo *PPCFuncInfo;
 | |
|   const TargetInstrInfo &TII;
 | |
|   const TargetLowering &TLI;
 | |
|   LLVMContext *Context;
 | |
| 
 | |
|   public:
 | |
|     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
 | |
|                          const TargetLibraryInfo *LibInfo)
 | |
|         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
 | |
|           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
 | |
|           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
 | |
|           TII(*PPCSubTarget->getInstrInfo()),
 | |
|           TLI(*PPCSubTarget->getTargetLowering()),
 | |
|           Context(&FuncInfo.Fn->getContext()) {}
 | |
| 
 | |
|   // Backend specific FastISel code.
 | |
|   private:
 | |
|     bool fastSelectInstruction(const Instruction *I) override;
 | |
|     unsigned fastMaterializeConstant(const Constant *C) override;
 | |
|     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
 | |
|     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
 | |
|                              const LoadInst *LI) override;
 | |
|     bool fastLowerArguments() override;
 | |
|     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
 | |
|     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
 | |
|                              const TargetRegisterClass *RC,
 | |
|                              unsigned Op0, bool Op0IsKill,
 | |
|                              uint64_t Imm);
 | |
|     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
 | |
|                             const TargetRegisterClass *RC,
 | |
|                             unsigned Op0, bool Op0IsKill);
 | |
|     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
 | |
|                              const TargetRegisterClass *RC,
 | |
|                              unsigned Op0, bool Op0IsKill,
 | |
|                              unsigned Op1, bool Op1IsKill);
 | |
| 
 | |
|     bool fastLowerCall(CallLoweringInfo &CLI) override;
 | |
| 
 | |
|   // Instruction selection routines.
 | |
|   private:
 | |
|     bool SelectLoad(const Instruction *I);
 | |
|     bool SelectStore(const Instruction *I);
 | |
|     bool SelectBranch(const Instruction *I);
 | |
|     bool SelectIndirectBr(const Instruction *I);
 | |
|     bool SelectFPExt(const Instruction *I);
 | |
|     bool SelectFPTrunc(const Instruction *I);
 | |
|     bool SelectIToFP(const Instruction *I, bool IsSigned);
 | |
|     bool SelectFPToI(const Instruction *I, bool IsSigned);
 | |
|     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
 | |
|     bool SelectRet(const Instruction *I);
 | |
|     bool SelectTrunc(const Instruction *I);
 | |
|     bool SelectIntExt(const Instruction *I);
 | |
| 
 | |
|   // Utility routines.
 | |
|   private:
 | |
|     bool isTypeLegal(Type *Ty, MVT &VT);
 | |
|     bool isLoadTypeLegal(Type *Ty, MVT &VT);
 | |
|     bool isVSFRCRegister(unsigned Register) const {
 | |
|       return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID;
 | |
|     }
 | |
|     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
 | |
|                     bool isZExt, unsigned DestReg);
 | |
|     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
 | |
|                      const TargetRegisterClass *RC, bool IsZExt = true,
 | |
|                      unsigned FP64LoadOpc = PPC::LFD);
 | |
|     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
 | |
|     bool PPCComputeAddress(const Value *Obj, Address &Addr);
 | |
|     void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
 | |
|                             unsigned &IndexReg);
 | |
|     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
 | |
|                            unsigned DestReg, bool IsZExt);
 | |
|     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
 | |
|     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
 | |
|     unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true);
 | |
|     unsigned PPCMaterialize32BitInt(int64_t Imm,
 | |
|                                     const TargetRegisterClass *RC);
 | |
|     unsigned PPCMaterialize64BitInt(int64_t Imm,
 | |
|                                     const TargetRegisterClass *RC);
 | |
|     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
 | |
|                              unsigned SrcReg, bool IsSigned);
 | |
|     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
 | |
| 
 | |
|   // Call handling routines.
 | |
|   private:
 | |
|     bool processCallArgs(SmallVectorImpl<Value*> &Args,
 | |
|                          SmallVectorImpl<unsigned> &ArgRegs,
 | |
|                          SmallVectorImpl<MVT> &ArgVTs,
 | |
|                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
 | |
|                          SmallVectorImpl<unsigned> &RegArgs,
 | |
|                          CallingConv::ID CC,
 | |
|                          unsigned &NumBytes,
 | |
|                          bool IsVarArg);
 | |
|     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
 | |
|     CCAssignFn *usePPC32CCs(unsigned Flag);
 | |
| 
 | |
|   private:
 | |
|   #include "PPCGenFastISel.inc"
 | |
| 
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| #include "PPCGenCallingConv.inc"
 | |
| 
 | |
| // Function whose sole purpose is to kill compiler warnings 
 | |
| // stemming from unused functions included from PPCGenCallingConv.inc.
 | |
| CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
 | |
|   if (Flag == 1)
 | |
|     return CC_PPC32_SVR4;
 | |
|   else if (Flag == 2)
 | |
|     return CC_PPC32_SVR4_ByVal;
 | |
|   else if (Flag == 3)
 | |
|     return CC_PPC32_SVR4_VarArg;
 | |
|   else
 | |
|     return RetCC_PPC;
 | |
| }
 | |
| 
 | |
| static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
 | |
|   switch (Pred) {
 | |
|     // These are not representable with any single compare.
 | |
|     case CmpInst::FCMP_FALSE:
 | |
|     case CmpInst::FCMP_UEQ:
 | |
|     case CmpInst::FCMP_UGT:
 | |
|     case CmpInst::FCMP_UGE:
 | |
|     case CmpInst::FCMP_ULT:
 | |
|     case CmpInst::FCMP_ULE:
 | |
|     case CmpInst::FCMP_UNE:
 | |
|     case CmpInst::FCMP_TRUE:
 | |
|     default:
 | |
|       return Optional<PPC::Predicate>();
 | |
| 
 | |
|     case CmpInst::FCMP_OEQ:
 | |
|     case CmpInst::ICMP_EQ:
 | |
|       return PPC::PRED_EQ;
 | |
| 
 | |
|     case CmpInst::FCMP_OGT:
 | |
|     case CmpInst::ICMP_UGT:
 | |
|     case CmpInst::ICMP_SGT:
 | |
|       return PPC::PRED_GT;
 | |
| 
 | |
|     case CmpInst::FCMP_OGE:
 | |
|     case CmpInst::ICMP_UGE:
 | |
|     case CmpInst::ICMP_SGE:
 | |
|       return PPC::PRED_GE;
 | |
| 
 | |
|     case CmpInst::FCMP_OLT:
 | |
|     case CmpInst::ICMP_ULT:
 | |
|     case CmpInst::ICMP_SLT:
 | |
|       return PPC::PRED_LT;
 | |
| 
 | |
|     case CmpInst::FCMP_OLE:
 | |
|     case CmpInst::ICMP_ULE:
 | |
|     case CmpInst::ICMP_SLE:
 | |
|       return PPC::PRED_LE;
 | |
| 
 | |
|     case CmpInst::FCMP_ONE:
 | |
|     case CmpInst::ICMP_NE:
 | |
|       return PPC::PRED_NE;
 | |
| 
 | |
|     case CmpInst::FCMP_ORD:
 | |
|       return PPC::PRED_NU;
 | |
| 
 | |
|     case CmpInst::FCMP_UNO:
 | |
|       return PPC::PRED_UN;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Determine whether the type Ty is simple enough to be handled by
 | |
| // fast-isel, and return its equivalent machine type in VT.
 | |
| // FIXME: Copied directly from ARM -- factor into base class?
 | |
| bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
 | |
|   EVT Evt = TLI.getValueType(Ty, true);
 | |
| 
 | |
|   // Only handle simple types.
 | |
|   if (Evt == MVT::Other || !Evt.isSimple()) return false;
 | |
|   VT = Evt.getSimpleVT();
 | |
| 
 | |
|   // Handle all legal types, i.e. a register that will directly hold this
 | |
|   // value.
 | |
|   return TLI.isTypeLegal(VT);
 | |
| }
 | |
| 
 | |
| // Determine whether the type Ty is simple enough to be handled by
 | |
| // fast-isel as a load target, and return its equivalent machine type in VT.
 | |
| bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
 | |
|   if (isTypeLegal(Ty, VT)) return true;
 | |
| 
 | |
|   // If this is a type than can be sign or zero-extended to a basic operation
 | |
|   // go ahead and accept it now.
 | |
|   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Given a value Obj, create an Address object Addr that represents its
 | |
| // address.  Return false if we can't handle it.
 | |
| bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
 | |
|   const User *U = nullptr;
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
 | |
|     // Don't walk into other basic blocks unless the object is an alloca from
 | |
|     // another block, otherwise it may not have a virtual register assigned.
 | |
|     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
 | |
|         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
 | |
|       Opcode = I->getOpcode();
 | |
|       U = I;
 | |
|     }
 | |
|   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
 | |
|     Opcode = C->getOpcode();
 | |
|     U = C;
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|     default:
 | |
|       break;
 | |
|     case Instruction::BitCast:
 | |
|       // Look through bitcasts.
 | |
|       return PPCComputeAddress(U->getOperand(0), Addr);
 | |
|     case Instruction::IntToPtr:
 | |
|       // Look past no-op inttoptrs.
 | |
|       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
 | |
|         return PPCComputeAddress(U->getOperand(0), Addr);
 | |
|       break;
 | |
|     case Instruction::PtrToInt:
 | |
|       // Look past no-op ptrtoints.
 | |
|       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
 | |
|         return PPCComputeAddress(U->getOperand(0), Addr);
 | |
|       break;
 | |
|     case Instruction::GetElementPtr: {
 | |
|       Address SavedAddr = Addr;
 | |
|       long TmpOffset = Addr.Offset;
 | |
| 
 | |
|       // Iterate through the GEP folding the constants into offsets where
 | |
|       // we can.
 | |
|       gep_type_iterator GTI = gep_type_begin(U);
 | |
|       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
 | |
|            II != IE; ++II, ++GTI) {
 | |
|         const Value *Op = *II;
 | |
|         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|           const StructLayout *SL = DL.getStructLayout(STy);
 | |
|           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
 | |
|           TmpOffset += SL->getElementOffset(Idx);
 | |
|         } else {
 | |
|           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
|           for (;;) {
 | |
|             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|               // Constant-offset addressing.
 | |
|               TmpOffset += CI->getSExtValue() * S;
 | |
|               break;
 | |
|             }
 | |
|             if (canFoldAddIntoGEP(U, Op)) {
 | |
|               // A compatible add with a constant operand. Fold the constant.
 | |
|               ConstantInt *CI =
 | |
|               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
 | |
|               TmpOffset += CI->getSExtValue() * S;
 | |
|               // Iterate on the other operand.
 | |
|               Op = cast<AddOperator>(Op)->getOperand(0);
 | |
|               continue;
 | |
|             }
 | |
|             // Unsupported
 | |
|             goto unsupported_gep;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Try to grab the base operand now.
 | |
|       Addr.Offset = TmpOffset;
 | |
|       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
 | |
| 
 | |
|       // We failed, restore everything and try the other options.
 | |
|       Addr = SavedAddr;
 | |
| 
 | |
|       unsupported_gep:
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Alloca: {
 | |
|       const AllocaInst *AI = cast<AllocaInst>(Obj);
 | |
|       DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|         FuncInfo.StaticAllocaMap.find(AI);
 | |
|       if (SI != FuncInfo.StaticAllocaMap.end()) {
 | |
|         Addr.BaseType = Address::FrameIndexBase;
 | |
|         Addr.Base.FI = SI->second;
 | |
|         return true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: References to parameters fall through to the behavior
 | |
|   // below.  They should be able to reference a frame index since
 | |
|   // they are stored to the stack, so we can get "ld rx, offset(r1)"
 | |
|   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
 | |
|   // just contain the parameter.  Try to handle this with a FI.
 | |
| 
 | |
|   // Try to get this in a register if nothing else has worked.
 | |
|   if (Addr.Base.Reg == 0)
 | |
|     Addr.Base.Reg = getRegForValue(Obj);
 | |
| 
 | |
|   // Prevent assignment of base register to X0, which is inappropriate
 | |
|   // for loads and stores alike.
 | |
|   if (Addr.Base.Reg != 0)
 | |
|     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
 | |
| 
 | |
|   return Addr.Base.Reg != 0;
 | |
| }
 | |
| 
 | |
| // Fix up some addresses that can't be used directly.  For example, if
 | |
| // an offset won't fit in an instruction field, we may need to move it
 | |
| // into an index register.
 | |
| void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
 | |
|                                      unsigned &IndexReg) {
 | |
| 
 | |
|   // Check whether the offset fits in the instruction field.
 | |
|   if (!isInt<16>(Addr.Offset))
 | |
|     UseOffset = false;
 | |
| 
 | |
|   // If this is a stack pointer and the offset needs to be simplified then
 | |
|   // put the alloca address into a register, set the base type back to
 | |
|   // register and continue. This should almost never happen.
 | |
|   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
 | |
|     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
 | |
|             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
 | |
|     Addr.Base.Reg = ResultReg;
 | |
|     Addr.BaseType = Address::RegBase;
 | |
|   }
 | |
| 
 | |
|   if (!UseOffset) {
 | |
|     IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
 | |
|                              : Type::getInt64Ty(*Context));
 | |
|     const ConstantInt *Offset =
 | |
|       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
 | |
|     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
 | |
|     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Emit a load instruction if possible, returning true if we succeeded,
 | |
| // otherwise false.  See commentary below for how the register class of
 | |
| // the load is determined. 
 | |
| bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
 | |
|                               const TargetRegisterClass *RC,
 | |
|                               bool IsZExt, unsigned FP64LoadOpc) {
 | |
|   unsigned Opc;
 | |
|   bool UseOffset = true;
 | |
| 
 | |
|   // If ResultReg is given, it determines the register class of the load.
 | |
|   // Otherwise, RC is the register class to use.  If the result of the
 | |
|   // load isn't anticipated in this block, both may be zero, in which
 | |
|   // case we must make a conservative guess.  In particular, don't assign
 | |
|   // R0 or X0 to the result register, as the result may be used in a load,
 | |
|   // store, add-immediate, or isel that won't permit this.  (Though
 | |
|   // perhaps the spill and reload of live-exit values would handle this?)
 | |
|   const TargetRegisterClass *UseRC =
 | |
|     (ResultReg ? MRI.getRegClass(ResultReg) :
 | |
|      (RC ? RC :
 | |
|       (VT == MVT::f64 ? &PPC::F8RCRegClass :
 | |
|        (VT == MVT::f32 ? &PPC::F4RCRegClass :
 | |
|         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
 | |
|          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
 | |
| 
 | |
|   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
 | |
| 
 | |
|   switch (VT.SimpleTy) {
 | |
|     default: // e.g., vector types not handled
 | |
|       return false;
 | |
|     case MVT::i8:
 | |
|       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
 | |
|       break;
 | |
|     case MVT::i16:
 | |
|       Opc = (IsZExt ?
 | |
|              (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 
 | |
|              (Is32BitInt ? PPC::LHA : PPC::LHA8));
 | |
|       break;
 | |
|     case MVT::i32:
 | |
|       Opc = (IsZExt ? 
 | |
|              (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
 | |
|              (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
 | |
|       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
 | |
|         UseOffset = false;
 | |
|       break;
 | |
|     case MVT::i64:
 | |
|       Opc = PPC::LD;
 | |
|       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 
 | |
|              "64-bit load with 32-bit target??");
 | |
|       UseOffset = ((Addr.Offset & 3) == 0);
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|       Opc = PPC::LFS;
 | |
|       break;
 | |
|     case MVT::f64:
 | |
|       Opc = FP64LoadOpc;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // If necessary, materialize the offset into a register and use
 | |
|   // the indexed form.  Also handle stack pointers with special needs.
 | |
|   unsigned IndexReg = 0;
 | |
|   PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
 | |
| 
 | |
|   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
 | |
|   // be used.
 | |
|   bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg);
 | |
|   if (IsVSFRC && (Opc == PPC::LFD) && 
 | |
|       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
 | |
|       (Addr.Offset == 0)) {
 | |
|     UseOffset = false;
 | |
|   }
 | |
| 
 | |
|   if (ResultReg == 0)
 | |
|     ResultReg = createResultReg(UseRC);
 | |
| 
 | |
|   // Note: If we still have a frame index here, we know the offset is
 | |
|   // in range, as otherwise PPCSimplifyAddress would have converted it
 | |
|   // into a RegBase.
 | |
|   if (Addr.BaseType == Address::FrameIndexBase) {
 | |
|     // VSX only provides an indexed load.
 | |
|     if (IsVSFRC && Opc == PPC::LFD) return false;
 | |
| 
 | |
|     MachineMemOperand *MMO =
 | |
|       FuncInfo.MF->getMachineMemOperand(
 | |
|         MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
 | |
|         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
 | |
|         MFI.getObjectAlignment(Addr.Base.FI));
 | |
| 
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
 | |
|       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
 | |
| 
 | |
|   // Base reg with offset in range.
 | |
|   } else if (UseOffset) {
 | |
|     // VSX only provides an indexed load.
 | |
|     if (IsVSFRC && Opc == PPC::LFD) return false;
 | |
| 
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
 | |
|       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
 | |
| 
 | |
|   // Indexed form.
 | |
|   } else {
 | |
|     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
 | |
|     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
 | |
|     // is hard to get at.
 | |
|     switch (Opc) {
 | |
|       default:        llvm_unreachable("Unexpected opcode!");
 | |
|       case PPC::LBZ:    Opc = PPC::LBZX;    break;
 | |
|       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
 | |
|       case PPC::LHZ:    Opc = PPC::LHZX;    break;
 | |
|       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
 | |
|       case PPC::LHA:    Opc = PPC::LHAX;    break;
 | |
|       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
 | |
|       case PPC::LWZ:    Opc = PPC::LWZX;    break;
 | |
|       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
 | |
|       case PPC::LWA:    Opc = PPC::LWAX;    break;
 | |
|       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
 | |
|       case PPC::LD:     Opc = PPC::LDX;     break;
 | |
|       case PPC::LFS:    Opc = PPC::LFSX;    break;
 | |
|       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
 | |
|     }
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
 | |
|       .addReg(Addr.Base.Reg).addReg(IndexReg);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select a load instruction.
 | |
| bool PPCFastISel::SelectLoad(const Instruction *I) {
 | |
|   // FIXME: No atomic loads are supported.
 | |
|   if (cast<LoadInst>(I)->isAtomic())
 | |
|     return false;
 | |
| 
 | |
|   // Verify we have a legal type before going any further.
 | |
|   MVT VT;
 | |
|   if (!isLoadTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   // See if we can handle this address.
 | |
|   Address Addr;
 | |
|   if (!PPCComputeAddress(I->getOperand(0), Addr))
 | |
|     return false;
 | |
| 
 | |
|   // Look at the currently assigned register for this instruction
 | |
|   // to determine the required register class.  This is necessary
 | |
|   // to constrain RA from using R0/X0 when this is not legal.
 | |
|   unsigned AssignedReg = FuncInfo.ValueMap[I];
 | |
|   const TargetRegisterClass *RC =
 | |
|     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
 | |
| 
 | |
|   unsigned ResultReg = 0;
 | |
|   if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
 | |
|     return false;
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Emit a store instruction to store SrcReg at Addr.
 | |
| bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
 | |
|   assert(SrcReg && "Nothing to store!");
 | |
|   unsigned Opc;
 | |
|   bool UseOffset = true;
 | |
| 
 | |
|   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
 | |
|   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
 | |
| 
 | |
|   switch (VT.SimpleTy) {
 | |
|     default: // e.g., vector types not handled
 | |
|       return false;
 | |
|     case MVT::i8:
 | |
|       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
 | |
|       break;
 | |
|     case MVT::i16:
 | |
|       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
 | |
|       break;
 | |
|     case MVT::i32:
 | |
|       assert(Is32BitInt && "Not GPRC for i32??");
 | |
|       Opc = PPC::STW;
 | |
|       break;
 | |
|     case MVT::i64:
 | |
|       Opc = PPC::STD;
 | |
|       UseOffset = ((Addr.Offset & 3) == 0);
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|       Opc = PPC::STFS;
 | |
|       break;
 | |
|     case MVT::f64:
 | |
|       Opc = PPC::STFD;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // If necessary, materialize the offset into a register and use
 | |
|   // the indexed form.  Also handle stack pointers with special needs.
 | |
|   unsigned IndexReg = 0;
 | |
|   PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
 | |
| 
 | |
|   // If this is a potential VSX store with an offset of 0, a VSX indexed store
 | |
|   // can be used.
 | |
|   bool IsVSFRC = isVSFRCRegister(SrcReg);
 | |
|   if (IsVSFRC && (Opc == PPC::STFD) && 
 | |
|       (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 
 | |
|       (Addr.Offset == 0)) {
 | |
|     UseOffset = false;
 | |
|   }
 | |
| 
 | |
|   // Note: If we still have a frame index here, we know the offset is
 | |
|   // in range, as otherwise PPCSimplifyAddress would have converted it
 | |
|   // into a RegBase.
 | |
|   if (Addr.BaseType == Address::FrameIndexBase) {
 | |
|     // VSX only provides an indexed store.
 | |
|     if (IsVSFRC && Opc == PPC::STFD) return false;
 | |
| 
 | |
|     MachineMemOperand *MMO =
 | |
|       FuncInfo.MF->getMachineMemOperand(
 | |
|         MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
 | |
|         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
 | |
|         MFI.getObjectAlignment(Addr.Base.FI));
 | |
| 
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
 | |
|         .addReg(SrcReg)
 | |
|         .addImm(Addr.Offset)
 | |
|         .addFrameIndex(Addr.Base.FI)
 | |
|         .addMemOperand(MMO);
 | |
| 
 | |
|   // Base reg with offset in range.
 | |
|   } else if (UseOffset) {
 | |
|     // VSX only provides an indexed store.
 | |
|     if (IsVSFRC && Opc == PPC::STFD) return false;
 | |
|     
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
 | |
|       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
 | |
| 
 | |
|   // Indexed form.
 | |
|   } else {
 | |
|     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
 | |
|     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
 | |
|     // is hard to get at.
 | |
|     switch (Opc) {
 | |
|       default:        llvm_unreachable("Unexpected opcode!");
 | |
|       case PPC::STB:  Opc = PPC::STBX;  break;
 | |
|       case PPC::STH : Opc = PPC::STHX;  break;
 | |
|       case PPC::STW : Opc = PPC::STWX;  break;
 | |
|       case PPC::STB8: Opc = PPC::STBX8; break;
 | |
|       case PPC::STH8: Opc = PPC::STHX8; break;
 | |
|       case PPC::STW8: Opc = PPC::STWX8; break;
 | |
|       case PPC::STD:  Opc = PPC::STDX;  break;
 | |
|       case PPC::STFS: Opc = PPC::STFSX; break;
 | |
|       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
 | |
|     }
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
 | |
|       .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select a store instruction.
 | |
| bool PPCFastISel::SelectStore(const Instruction *I) {
 | |
|   Value *Op0 = I->getOperand(0);
 | |
|   unsigned SrcReg = 0;
 | |
| 
 | |
|   // FIXME: No atomics loads are supported.
 | |
|   if (cast<StoreInst>(I)->isAtomic())
 | |
|     return false;
 | |
| 
 | |
|   // Verify we have a legal type before going any further.
 | |
|   MVT VT;
 | |
|   if (!isLoadTypeLegal(Op0->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   // Get the value to be stored into a register.
 | |
|   SrcReg = getRegForValue(Op0);
 | |
|   if (SrcReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // See if we can handle this address.
 | |
|   Address Addr;
 | |
|   if (!PPCComputeAddress(I->getOperand(1), Addr))
 | |
|     return false;
 | |
| 
 | |
|   if (!PPCEmitStore(VT, SrcReg, Addr))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select a branch instruction.
 | |
| bool PPCFastISel::SelectBranch(const Instruction *I) {
 | |
|   const BranchInst *BI = cast<BranchInst>(I);
 | |
|   MachineBasicBlock *BrBB = FuncInfo.MBB;
 | |
|   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
 | |
|   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
 | |
| 
 | |
|   // For now, just try the simplest case where it's fed by a compare.
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
 | |
|     Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
 | |
|     if (!OptPPCPred)
 | |
|       return false;
 | |
| 
 | |
|     PPC::Predicate PPCPred = OptPPCPred.getValue();
 | |
| 
 | |
|     // Take advantage of fall-through opportunities.
 | |
|     if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
 | |
|       std::swap(TBB, FBB);
 | |
|       PPCPred = PPC::InvertPredicate(PPCPred);
 | |
|     }
 | |
| 
 | |
|     unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
 | |
| 
 | |
|     if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
 | |
|                     CondReg))
 | |
|       return false;
 | |
| 
 | |
|     BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
 | |
|       .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
 | |
|     fastEmitBranch(FBB, DbgLoc);
 | |
|     FuncInfo.MBB->addSuccessor(TBB);
 | |
|     return true;
 | |
| 
 | |
|   } else if (const ConstantInt *CI =
 | |
|              dyn_cast<ConstantInt>(BI->getCondition())) {
 | |
|     uint64_t Imm = CI->getZExtValue();
 | |
|     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
 | |
|     fastEmitBranch(Target, DbgLoc);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: ARM looks for a case where the block containing the compare
 | |
|   // has been split from the block containing the branch.  If this happens,
 | |
|   // there is a vreg available containing the result of the compare.  I'm
 | |
|   // not sure we can do much, as we've lost the predicate information with
 | |
|   // the compare instruction -- we have a 4-bit CR but don't know which bit
 | |
|   // to test here.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Attempt to emit a compare of the two source values.  Signed and unsigned
 | |
| // comparisons are supported.  Return false if we can't handle it.
 | |
| bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
 | |
|                              bool IsZExt, unsigned DestReg) {
 | |
|   Type *Ty = SrcValue1->getType();
 | |
|   EVT SrcEVT = TLI.getValueType(Ty, true);
 | |
|   if (!SrcEVT.isSimple())
 | |
|     return false;
 | |
|   MVT SrcVT = SrcEVT.getSimpleVT();
 | |
| 
 | |
|   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
 | |
|     return false;
 | |
| 
 | |
|   // See if operand 2 is an immediate encodeable in the compare.
 | |
|   // FIXME: Operands are not in canonical order at -O0, so an immediate
 | |
|   // operand in position 1 is a lost opportunity for now.  We are
 | |
|   // similar to ARM in this regard.
 | |
|   long Imm = 0;
 | |
|   bool UseImm = false;
 | |
| 
 | |
|   // Only 16-bit integer constants can be represented in compares for 
 | |
|   // PowerPC.  Others will be materialized into a register.
 | |
|   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
 | |
|     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
 | |
|         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
 | |
|       const APInt &CIVal = ConstInt->getValue();
 | |
|       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
 | |
|       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
 | |
|         UseImm = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned CmpOpc;
 | |
|   bool NeedsExt = false;
 | |
|   switch (SrcVT.SimpleTy) {
 | |
|     default: return false;
 | |
|     case MVT::f32:
 | |
|       CmpOpc = PPC::FCMPUS;
 | |
|       break;
 | |
|     case MVT::f64:
 | |
|       CmpOpc = PPC::FCMPUD;
 | |
|       break;
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|       NeedsExt = true;
 | |
|       // Intentional fall-through.
 | |
|     case MVT::i32:
 | |
|       if (!UseImm)
 | |
|         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
 | |
|       else
 | |
|         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
 | |
|       break;
 | |
|     case MVT::i64:
 | |
|       if (!UseImm)
 | |
|         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
 | |
|       else
 | |
|         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   unsigned SrcReg1 = getRegForValue(SrcValue1);
 | |
|   if (SrcReg1 == 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg2 = 0;
 | |
|   if (!UseImm) {
 | |
|     SrcReg2 = getRegForValue(SrcValue2);
 | |
|     if (SrcReg2 == 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (NeedsExt) {
 | |
|     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
 | |
|     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
 | |
|       return false;
 | |
|     SrcReg1 = ExtReg;
 | |
| 
 | |
|     if (!UseImm) {
 | |
|       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
 | |
|       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
 | |
|         return false;
 | |
|       SrcReg2 = ExtReg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!UseImm)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
 | |
|       .addReg(SrcReg1).addReg(SrcReg2);
 | |
|   else
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
 | |
|       .addReg(SrcReg1).addImm(Imm);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select a floating-point extend instruction.
 | |
| bool PPCFastISel::SelectFPExt(const Instruction *I) {
 | |
|   Value *Src  = I->getOperand(0);
 | |
|   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
 | |
|   EVT DestVT = TLI.getValueType(I->getType(), true);
 | |
| 
 | |
|   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg = getRegForValue(Src);
 | |
|   if (!SrcReg)
 | |
|     return false;
 | |
| 
 | |
|   // No code is generated for a FP extend.
 | |
|   updateValueMap(I, SrcReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select a floating-point truncate instruction.
 | |
| bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
 | |
|   Value *Src  = I->getOperand(0);
 | |
|   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
 | |
|   EVT DestVT = TLI.getValueType(I->getType(), true);
 | |
| 
 | |
|   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg = getRegForValue(Src);
 | |
|   if (!SrcReg)
 | |
|     return false;
 | |
| 
 | |
|   // Round the result to single precision.
 | |
|   unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
 | |
|     .addReg(SrcReg);
 | |
| 
 | |
|   updateValueMap(I, DestReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
 | |
| // FIXME: When direct register moves are implemented (see PowerISA 2.07),
 | |
| // those should be used instead of moving via a stack slot when the
 | |
| // subtarget permits.
 | |
| // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
 | |
| // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
 | |
| // case to 8 bytes which produces tighter code but wastes stack space.
 | |
| unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
 | |
|                                      bool IsSigned) {
 | |
| 
 | |
|   // If necessary, extend 32-bit int to 64-bit.
 | |
|   if (SrcVT == MVT::i32) {
 | |
|     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
 | |
|     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
 | |
|       return 0;
 | |
|     SrcReg = TmpReg;
 | |
|   }
 | |
| 
 | |
|   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
 | |
|   Address Addr;
 | |
|   Addr.BaseType = Address::FrameIndexBase;
 | |
|   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
 | |
| 
 | |
|   // Store the value from the GPR.
 | |
|   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
 | |
|     return 0;
 | |
| 
 | |
|   // Load the integer value into an FPR.  The kind of load used depends
 | |
|   // on a number of conditions.
 | |
|   unsigned LoadOpc = PPC::LFD;
 | |
| 
 | |
|   if (SrcVT == MVT::i32) {
 | |
|     if (!IsSigned) {
 | |
|       LoadOpc = PPC::LFIWZX;
 | |
|       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
 | |
|     } else if (PPCSubTarget->hasLFIWAX()) {
 | |
|       LoadOpc = PPC::LFIWAX;
 | |
|       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
 | |
|   unsigned ResultReg = 0;
 | |
|   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
 | |
|     return 0;
 | |
| 
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select an integer-to-floating-point conversion.
 | |
| bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
 | |
|   MVT DstVT;
 | |
|   Type *DstTy = I->getType();
 | |
|   if (!isTypeLegal(DstTy, DstVT))
 | |
|     return false;
 | |
| 
 | |
|   if (DstVT != MVT::f32 && DstVT != MVT::f64)
 | |
|     return false;
 | |
| 
 | |
|   Value *Src = I->getOperand(0);
 | |
|   EVT SrcEVT = TLI.getValueType(Src->getType(), true);
 | |
|   if (!SrcEVT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   MVT SrcVT = SrcEVT.getSimpleVT();
 | |
| 
 | |
|   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
 | |
|       SrcVT != MVT::i32 && SrcVT != MVT::i64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg = getRegForValue(Src);
 | |
|   if (SrcReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // We can only lower an unsigned convert if we have the newer
 | |
|   // floating-point conversion operations.
 | |
|   if (!IsSigned && !PPCSubTarget->hasFPCVT())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: For now we require the newer floating-point conversion operations
 | |
|   // (which are present only on P7 and A2 server models) when converting
 | |
|   // to single-precision float.  Otherwise we have to generate a lot of
 | |
|   // fiddly code to avoid double rounding.  If necessary, the fiddly code
 | |
|   // can be found in PPCTargetLowering::LowerINT_TO_FP().
 | |
|   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
 | |
|     return false;
 | |
| 
 | |
|   // Extend the input if necessary.
 | |
|   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
 | |
|     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
 | |
|     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
 | |
|       return false;
 | |
|     SrcVT = MVT::i64;
 | |
|     SrcReg = TmpReg;
 | |
|   }
 | |
| 
 | |
|   // Move the integer value to an FPR.
 | |
|   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
 | |
|   if (FPReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Determine the opcode for the conversion.
 | |
|   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
 | |
|   unsigned DestReg = createResultReg(RC);
 | |
|   unsigned Opc;
 | |
| 
 | |
|   if (DstVT == MVT::f32)
 | |
|     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
 | |
|   else
 | |
|     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
 | |
| 
 | |
|   // Generate the convert.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
 | |
|     .addReg(FPReg);
 | |
| 
 | |
|   updateValueMap(I, DestReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Move the floating-point value in SrcReg into an integer destination
 | |
| // register, and return the register (or zero if we can't handle it).
 | |
| // FIXME: When direct register moves are implemented (see PowerISA 2.07),
 | |
| // those should be used instead of moving via a stack slot when the
 | |
| // subtarget permits.
 | |
| unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
 | |
|                                       unsigned SrcReg, bool IsSigned) {
 | |
|   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
 | |
|   // Note that if have STFIWX available, we could use a 4-byte stack
 | |
|   // slot for i32, but this being fast-isel we'll just go with the
 | |
|   // easiest code gen possible.
 | |
|   Address Addr;
 | |
|   Addr.BaseType = Address::FrameIndexBase;
 | |
|   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
 | |
| 
 | |
|   // Store the value from the FPR.
 | |
|   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
 | |
|     return 0;
 | |
| 
 | |
|   // Reload it into a GPR.  If we want an i32, modify the address
 | |
|   // to have a 4-byte offset so we load from the right place.
 | |
|   if (VT == MVT::i32)
 | |
|     Addr.Offset = 4;
 | |
| 
 | |
|   // Look at the currently assigned register for this instruction
 | |
|   // to determine the required register class.
 | |
|   unsigned AssignedReg = FuncInfo.ValueMap[I];
 | |
|   const TargetRegisterClass *RC =
 | |
|     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
 | |
| 
 | |
|   unsigned ResultReg = 0;
 | |
|   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
 | |
|     return 0;
 | |
| 
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select a floating-point-to-integer conversion.
 | |
| bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
 | |
|   MVT DstVT, SrcVT;
 | |
|   Type *DstTy = I->getType();
 | |
|   if (!isTypeLegal(DstTy, DstVT))
 | |
|     return false;
 | |
| 
 | |
|   if (DstVT != MVT::i32 && DstVT != MVT::i64)
 | |
|     return false;
 | |
| 
 | |
|   // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
 | |
|   if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
 | |
|     return false;
 | |
| 
 | |
|   Value *Src = I->getOperand(0);
 | |
|   Type *SrcTy = Src->getType();
 | |
|   if (!isTypeLegal(SrcTy, SrcVT))
 | |
|     return false;
 | |
| 
 | |
|   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg = getRegForValue(Src);
 | |
|   if (SrcReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Convert f32 to f64 if necessary.  This is just a meaningless copy
 | |
|   // to get the register class right.  COPY_TO_REGCLASS is needed since
 | |
|   // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
 | |
|   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
 | |
|   if (InRC == &PPC::F4RCRegClass) {
 | |
|     unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
 | |
|       .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
 | |
|     SrcReg = TmpReg;
 | |
|   }
 | |
| 
 | |
|   // Determine the opcode for the conversion, which takes place
 | |
|   // entirely within FPRs.
 | |
|   unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
 | |
|   unsigned Opc;
 | |
| 
 | |
|   if (DstVT == MVT::i32)
 | |
|     if (IsSigned)
 | |
|       Opc = PPC::FCTIWZ;
 | |
|     else
 | |
|       Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
 | |
|   else
 | |
|     Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
 | |
| 
 | |
|   // Generate the convert.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
 | |
|     .addReg(SrcReg);
 | |
| 
 | |
|   // Now move the integer value from a float register to an integer register.
 | |
|   unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
 | |
|   if (IntReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   updateValueMap(I, IntReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select a binary integer operation that isn't already
 | |
| // handled automatically.
 | |
| bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
 | |
|   EVT DestVT  = TLI.getValueType(I->getType(), true);
 | |
| 
 | |
|   // We can get here in the case when we have a binary operation on a non-legal
 | |
|   // type and the target independent selector doesn't know how to handle it.
 | |
|   if (DestVT != MVT::i16 && DestVT != MVT::i8)
 | |
|     return false;
 | |
| 
 | |
|   // Look at the currently assigned register for this instruction
 | |
|   // to determine the required register class.  If there is no register,
 | |
|   // make a conservative choice (don't assign R0).
 | |
|   unsigned AssignedReg = FuncInfo.ValueMap[I];
 | |
|   const TargetRegisterClass *RC =
 | |
|     (AssignedReg ? MRI.getRegClass(AssignedReg) :
 | |
|      &PPC::GPRC_and_GPRC_NOR0RegClass);
 | |
|   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
 | |
| 
 | |
|   unsigned Opc;
 | |
|   switch (ISDOpcode) {
 | |
|     default: return false;
 | |
|     case ISD::ADD:
 | |
|       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
 | |
|       break;
 | |
|     case ISD::OR:
 | |
|       Opc = IsGPRC ? PPC::OR : PPC::OR8;
 | |
|       break;
 | |
|     case ISD::SUB:
 | |
|       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
 | |
|   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
 | |
|   if (SrcReg1 == 0) return false;
 | |
| 
 | |
|   // Handle case of small immediate operand.
 | |
|   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|     const APInt &CIVal = ConstInt->getValue();
 | |
|     int Imm = (int)CIVal.getSExtValue();
 | |
|     bool UseImm = true;
 | |
|     if (isInt<16>(Imm)) {
 | |
|       switch (Opc) {
 | |
|         default:
 | |
|           llvm_unreachable("Missing case!");
 | |
|         case PPC::ADD4:
 | |
|           Opc = PPC::ADDI;
 | |
|           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
 | |
|           break;
 | |
|         case PPC::ADD8:
 | |
|           Opc = PPC::ADDI8;
 | |
|           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
 | |
|           break;
 | |
|         case PPC::OR:
 | |
|           Opc = PPC::ORI;
 | |
|           break;
 | |
|         case PPC::OR8:
 | |
|           Opc = PPC::ORI8;
 | |
|           break;
 | |
|         case PPC::SUBF:
 | |
|           if (Imm == -32768)
 | |
|             UseImm = false;
 | |
|           else {
 | |
|             Opc = PPC::ADDI;
 | |
|             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
 | |
|             Imm = -Imm;
 | |
|           }
 | |
|           break;
 | |
|         case PPC::SUBF8:
 | |
|           if (Imm == -32768)
 | |
|             UseImm = false;
 | |
|           else {
 | |
|             Opc = PPC::ADDI8;
 | |
|             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
 | |
|             Imm = -Imm;
 | |
|           }
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       if (UseImm) {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
 | |
|                 ResultReg)
 | |
|             .addReg(SrcReg1)
 | |
|             .addImm(Imm);
 | |
|         updateValueMap(I, ResultReg);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reg-reg case.
 | |
|   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
 | |
|   if (SrcReg2 == 0) return false;
 | |
| 
 | |
|   // Reverse operands for subtract-from.
 | |
|   if (ISDOpcode == ISD::SUB)
 | |
|     std::swap(SrcReg1, SrcReg2);
 | |
| 
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
 | |
|     .addReg(SrcReg1).addReg(SrcReg2);
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Handle arguments to a call that we're attempting to fast-select.
 | |
| // Return false if the arguments are too complex for us at the moment.
 | |
| bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
 | |
|                                   SmallVectorImpl<unsigned> &ArgRegs,
 | |
|                                   SmallVectorImpl<MVT> &ArgVTs,
 | |
|                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
 | |
|                                   SmallVectorImpl<unsigned> &RegArgs,
 | |
|                                   CallingConv::ID CC,
 | |
|                                   unsigned &NumBytes,
 | |
|                                   bool IsVarArg) {
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
 | |
| 
 | |
|   // Reserve space for the linkage area on the stack.
 | |
|   unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
 | |
|   CCInfo.AllocateStack(LinkageSize, 8);
 | |
| 
 | |
|   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
 | |
| 
 | |
|   // Bail out if we can't handle any of the arguments.
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = ArgLocs[I];
 | |
|     MVT ArgVT = ArgVTs[VA.getValNo()];
 | |
| 
 | |
|     // Skip vector arguments for now, as well as long double and
 | |
|     // uint128_t, and anything that isn't passed in a register.
 | |
|     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
 | |
|         !VA.isRegLoc() || VA.needsCustom())
 | |
|       return false;
 | |
| 
 | |
|     // Skip bit-converted arguments for now.
 | |
|     if (VA.getLocInfo() == CCValAssign::BCvt)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed onto the stack.
 | |
|   NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   // The prolog code of the callee may store up to 8 GPR argument registers to
 | |
|   // the stack, allowing va_start to index over them in memory if its varargs.
 | |
|   // Because we cannot tell if this is needed on the caller side, we have to
 | |
|   // conservatively assume that it is needed.  As such, make sure we have at
 | |
|   // least enough stack space for the caller to store the 8 GPRs.
 | |
|   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
 | |
|   NumBytes = std::max(NumBytes, LinkageSize + 64);
 | |
| 
 | |
|   // Issue CALLSEQ_START.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|           TII.get(TII.getCallFrameSetupOpcode()))
 | |
|     .addImm(NumBytes);
 | |
| 
 | |
|   // Prepare to assign register arguments.  Every argument uses up a
 | |
|   // GPR protocol register even if it's passed in a floating-point
 | |
|   // register (unless we're using the fast calling convention).
 | |
|   unsigned NextGPR = PPC::X3;
 | |
|   unsigned NextFPR = PPC::F1;
 | |
| 
 | |
|   // Process arguments.
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = ArgLocs[I];
 | |
|     unsigned Arg = ArgRegs[VA.getValNo()];
 | |
|     MVT ArgVT = ArgVTs[VA.getValNo()];
 | |
| 
 | |
|     // Handle argument promotion and bitcasts.
 | |
|     switch (VA.getLocInfo()) {
 | |
|       default:
 | |
|         llvm_unreachable("Unknown loc info!");
 | |
|       case CCValAssign::Full:
 | |
|         break;
 | |
|       case CCValAssign::SExt: {
 | |
|         MVT DestVT = VA.getLocVT();
 | |
|         const TargetRegisterClass *RC =
 | |
|           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | |
|         unsigned TmpReg = createResultReg(RC);
 | |
|         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
 | |
|           llvm_unreachable("Failed to emit a sext!");
 | |
|         ArgVT = DestVT;
 | |
|         Arg = TmpReg;
 | |
|         break;
 | |
|       }
 | |
|       case CCValAssign::AExt:
 | |
|       case CCValAssign::ZExt: {
 | |
|         MVT DestVT = VA.getLocVT();
 | |
|         const TargetRegisterClass *RC =
 | |
|           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | |
|         unsigned TmpReg = createResultReg(RC);
 | |
|         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
 | |
|           llvm_unreachable("Failed to emit a zext!");
 | |
|         ArgVT = DestVT;
 | |
|         Arg = TmpReg;
 | |
|         break;
 | |
|       }
 | |
|       case CCValAssign::BCvt: {
 | |
|         // FIXME: Not yet handled.
 | |
|         llvm_unreachable("Should have bailed before getting here!");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Copy this argument to the appropriate register.
 | |
|     unsigned ArgReg;
 | |
|     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
 | |
|       ArgReg = NextFPR++;
 | |
|       if (CC != CallingConv::Fast)
 | |
|         ++NextGPR;
 | |
|     } else
 | |
|       ArgReg = NextGPR++;
 | |
| 
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
 | |
|     RegArgs.push_back(ArgReg);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // For a call that we've determined we can fast-select, finish the
 | |
| // call sequence and generate a copy to obtain the return value (if any).
 | |
| bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
 | |
|   CallingConv::ID CC = CLI.CallConv;
 | |
| 
 | |
|   // Issue CallSEQ_END.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|           TII.get(TII.getCallFrameDestroyOpcode()))
 | |
|     .addImm(NumBytes).addImm(0);
 | |
| 
 | |
|   // Next, generate a copy to obtain the return value.
 | |
|   // FIXME: No multi-register return values yet, though I don't foresee
 | |
|   // any real difficulties there.
 | |
|   if (RetVT != MVT::isVoid) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs;
 | |
|     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
 | |
|     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
 | |
|     CCValAssign &VA = RVLocs[0];
 | |
|     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     MVT DestVT = VA.getValVT();
 | |
|     MVT CopyVT = DestVT;
 | |
| 
 | |
|     // Ints smaller than a register still arrive in a full 64-bit
 | |
|     // register, so make sure we recognize this.
 | |
|     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
 | |
|       CopyVT = MVT::i64;
 | |
| 
 | |
|     unsigned SourcePhysReg = VA.getLocReg();
 | |
|     unsigned ResultReg = 0;
 | |
| 
 | |
|     if (RetVT == CopyVT) {
 | |
|       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
 | |
|       ResultReg = createResultReg(CpyRC);
 | |
| 
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), ResultReg)
 | |
|         .addReg(SourcePhysReg);
 | |
| 
 | |
|     // If necessary, round the floating result to single precision.
 | |
|     } else if (CopyVT == MVT::f64) {
 | |
|       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
 | |
|               ResultReg).addReg(SourcePhysReg);
 | |
| 
 | |
|     // If only the low half of a general register is needed, generate
 | |
|     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
 | |
|     // used along the fast-isel path (not lowered), and downstream logic
 | |
|     // also doesn't like a direct subreg copy on a physical reg.)
 | |
|     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
 | |
|       ResultReg = createResultReg(&PPC::GPRCRegClass);
 | |
|       // Convert physical register from G8RC to GPRC.
 | |
|       SourcePhysReg -= PPC::X0 - PPC::R0;
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), ResultReg)
 | |
|         .addReg(SourcePhysReg);
 | |
|     }
 | |
| 
 | |
|     assert(ResultReg && "ResultReg unset!");
 | |
|     CLI.InRegs.push_back(SourcePhysReg);
 | |
|     CLI.ResultReg = ResultReg;
 | |
|     CLI.NumResultRegs = 1;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
 | |
|   CallingConv::ID CC  = CLI.CallConv;
 | |
|   bool IsTailCall     = CLI.IsTailCall;
 | |
|   bool IsVarArg       = CLI.IsVarArg;
 | |
|   const Value *Callee = CLI.Callee;
 | |
|   const char *SymName = CLI.SymName;
 | |
| 
 | |
|   if (!Callee && !SymName)
 | |
|     return false;
 | |
| 
 | |
|   // Allow SelectionDAG isel to handle tail calls.
 | |
|   if (IsTailCall)
 | |
|     return false;
 | |
| 
 | |
|   // Let SDISel handle vararg functions.
 | |
|   if (IsVarArg)
 | |
|     return false;
 | |
| 
 | |
|   // Handle simple calls for now, with legal return types and
 | |
|   // those that can be extended.
 | |
|   Type *RetTy = CLI.RetTy;
 | |
|   MVT RetVT;
 | |
|   if (RetTy->isVoidTy())
 | |
|     RetVT = MVT::isVoid;
 | |
|   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
 | |
|            RetVT != MVT::i8)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: No multi-register return values yet.
 | |
|   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
 | |
|       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
 | |
|       RetVT != MVT::f64) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs;
 | |
|     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
 | |
|     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
 | |
|     if (RVLocs.size() > 1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Bail early if more than 8 arguments, as we only currently
 | |
|   // handle arguments passed in registers.
 | |
|   unsigned NumArgs = CLI.OutVals.size();
 | |
|   if (NumArgs > 8)
 | |
|     return false;
 | |
| 
 | |
|   // Set up the argument vectors.
 | |
|   SmallVector<Value*, 8> Args;
 | |
|   SmallVector<unsigned, 8> ArgRegs;
 | |
|   SmallVector<MVT, 8> ArgVTs;
 | |
|   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
 | |
| 
 | |
|   Args.reserve(NumArgs);
 | |
|   ArgRegs.reserve(NumArgs);
 | |
|   ArgVTs.reserve(NumArgs);
 | |
|   ArgFlags.reserve(NumArgs);
 | |
| 
 | |
|   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
 | |
|     // Only handle easy calls for now.  It would be reasonably easy
 | |
|     // to handle <= 8-byte structures passed ByVal in registers, but we
 | |
|     // have to ensure they are right-justified in the register.
 | |
|     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
 | |
|     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
 | |
|       return false;
 | |
| 
 | |
|     Value *ArgValue = CLI.OutVals[i];
 | |
|     Type *ArgTy = ArgValue->getType();
 | |
|     MVT ArgVT;
 | |
|     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
 | |
|       return false;
 | |
| 
 | |
|     if (ArgVT.isVector())
 | |
|       return false;
 | |
| 
 | |
|     unsigned Arg = getRegForValue(ArgValue);
 | |
|     if (Arg == 0)
 | |
|       return false;
 | |
| 
 | |
|     Args.push_back(ArgValue);
 | |
|     ArgRegs.push_back(Arg);
 | |
|     ArgVTs.push_back(ArgVT);
 | |
|     ArgFlags.push_back(Flags);
 | |
|   }
 | |
| 
 | |
|   // Process the arguments.
 | |
|   SmallVector<unsigned, 8> RegArgs;
 | |
|   unsigned NumBytes;
 | |
| 
 | |
|   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
 | |
|                        RegArgs, CC, NumBytes, IsVarArg))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
|   // FIXME: No handling for function pointers yet.  This requires
 | |
|   // implementing the function descriptor (OPD) setup.
 | |
|   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
 | |
|   if (!GV) {
 | |
|     // patchpoints are a special case; they always dispatch to a pointer value.
 | |
|     // However, we don't actually want to generate the indirect call sequence
 | |
|     // here (that will be generated, as necessary, during asm printing), and
 | |
|     // the call we generate here will be erased by FastISel::selectPatchpoint,
 | |
|     // so don't try very hard...
 | |
|     if (CLI.IsPatchPoint)
 | |
|       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
 | |
|     else
 | |
|       return false;
 | |
|   } else {
 | |
|     // Build direct call with NOP for TOC restore.
 | |
|     // FIXME: We can and should optimize away the NOP for local calls.
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                   TII.get(PPC::BL8_NOP));
 | |
|     // Add callee.
 | |
|     MIB.addGlobalAddress(GV);
 | |
|   }
 | |
| 
 | |
|   // Add implicit physical register uses to the call.
 | |
|   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
 | |
|     MIB.addReg(RegArgs[II], RegState::Implicit);
 | |
| 
 | |
|   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
 | |
|   // into the call.
 | |
|   PPCFuncInfo->setUsesTOCBasePtr();
 | |
|   MIB.addReg(PPC::X2, RegState::Implicit);
 | |
| 
 | |
|   // Add a register mask with the call-preserved registers.  Proper
 | |
|   // defs for return values will be added by setPhysRegsDeadExcept().
 | |
|   MIB.addRegMask(TRI.getCallPreservedMask(CC));
 | |
| 
 | |
|   CLI.Call = MIB;
 | |
| 
 | |
|   // Finish off the call including any return values.
 | |
|   return finishCall(RetVT, CLI, NumBytes);
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select a return instruction.
 | |
| bool PPCFastISel::SelectRet(const Instruction *I) {
 | |
| 
 | |
|   if (!FuncInfo.CanLowerReturn)
 | |
|     return false;
 | |
| 
 | |
|   const ReturnInst *Ret = cast<ReturnInst>(I);
 | |
|   const Function &F = *I->getParent()->getParent();
 | |
| 
 | |
|   // Build a list of return value registers.
 | |
|   SmallVector<unsigned, 4> RetRegs;
 | |
|   CallingConv::ID CC = F.getCallingConv();
 | |
| 
 | |
|   if (Ret->getNumOperands() > 0) {
 | |
|     SmallVector<ISD::OutputArg, 4> Outs;
 | |
|     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
 | |
| 
 | |
|     // Analyze operands of the call, assigning locations to each operand.
 | |
|     SmallVector<CCValAssign, 16> ValLocs;
 | |
|     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
 | |
|     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
 | |
|     const Value *RV = Ret->getOperand(0);
 | |
|     
 | |
|     // FIXME: Only one output register for now.
 | |
|     if (ValLocs.size() > 1)
 | |
|       return false;
 | |
| 
 | |
|     // Special case for returning a constant integer of any size.
 | |
|     // Materialize the constant as an i64 and copy it to the return
 | |
|     // register. We still need to worry about properly extending the sign. E.g:
 | |
|     // If the constant has only one bit, it means it is a boolean. Therefore
 | |
|     // we can't use PPCMaterializeInt because it extends the sign which will
 | |
|     // cause negations of the returned value to be incorrect as they are
 | |
|     // implemented as the flip of the least significant bit.
 | |
|     if (isa<ConstantInt>(*RV)) {
 | |
|       const Constant *C = cast<Constant>(RV);
 | |
| 
 | |
|       CCValAssign &VA = ValLocs[0];
 | |
| 
 | |
|       unsigned RetReg = VA.getLocReg();
 | |
|       unsigned SrcReg = PPCMaterializeInt(C, MVT::i64,
 | |
|                                           VA.getLocInfo() == CCValAssign::SExt);
 | |
| 
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
 | |
| 
 | |
|       RetRegs.push_back(RetReg);
 | |
| 
 | |
|     } else {
 | |
|       unsigned Reg = getRegForValue(RV);
 | |
| 
 | |
|       if (Reg == 0)
 | |
|         return false;
 | |
| 
 | |
|       // Copy the result values into the output registers.
 | |
|       for (unsigned i = 0; i < ValLocs.size(); ++i) {
 | |
| 
 | |
|         CCValAssign &VA = ValLocs[i];
 | |
|         assert(VA.isRegLoc() && "Can only return in registers!");
 | |
|         RetRegs.push_back(VA.getLocReg());
 | |
|         unsigned SrcReg = Reg + VA.getValNo();
 | |
| 
 | |
|         EVT RVEVT = TLI.getValueType(RV->getType());
 | |
|         if (!RVEVT.isSimple())
 | |
|           return false;
 | |
|         MVT RVVT = RVEVT.getSimpleVT();
 | |
|         MVT DestVT = VA.getLocVT();
 | |
| 
 | |
|         if (RVVT != DestVT && RVVT != MVT::i8 &&
 | |
|             RVVT != MVT::i16 && RVVT != MVT::i32)
 | |
|           return false;
 | |
|       
 | |
|         if (RVVT != DestVT) {
 | |
|           switch (VA.getLocInfo()) {
 | |
|             default:
 | |
|               llvm_unreachable("Unknown loc info!");
 | |
|             case CCValAssign::Full:
 | |
|               llvm_unreachable("Full value assign but types don't match?");
 | |
|             case CCValAssign::AExt:
 | |
|             case CCValAssign::ZExt: {
 | |
|               const TargetRegisterClass *RC =
 | |
|                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | |
|               unsigned TmpReg = createResultReg(RC);
 | |
|               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
 | |
|                 return false;
 | |
|               SrcReg = TmpReg;
 | |
|               break;
 | |
|             }
 | |
|             case CCValAssign::SExt: {
 | |
|               const TargetRegisterClass *RC =
 | |
|                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | |
|               unsigned TmpReg = createResultReg(RC);
 | |
|               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
 | |
|                 return false;
 | |
|               SrcReg = TmpReg;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(TargetOpcode::COPY), RetRegs[i])
 | |
|           .addReg(SrcReg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                     TII.get(PPC::BLR8));
 | |
| 
 | |
|   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
 | |
|     MIB.addReg(RetRegs[i], RegState::Implicit);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to emit an integer extend of SrcReg into DestReg.  Both
 | |
| // signed and zero extensions are supported.  Return false if we
 | |
| // can't handle it.
 | |
| bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
 | |
|                                 unsigned DestReg, bool IsZExt) {
 | |
|   if (DestVT != MVT::i32 && DestVT != MVT::i64)
 | |
|     return false;
 | |
|   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
 | |
|     return false;
 | |
| 
 | |
|   // Signed extensions use EXTSB, EXTSH, EXTSW.
 | |
|   if (!IsZExt) {
 | |
|     unsigned Opc;
 | |
|     if (SrcVT == MVT::i8)
 | |
|       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
 | |
|     else if (SrcVT == MVT::i16)
 | |
|       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
 | |
|     else {
 | |
|       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
 | |
|       Opc = PPC::EXTSW_32_64;
 | |
|     }
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
 | |
|       .addReg(SrcReg);
 | |
| 
 | |
|   // Unsigned 32-bit extensions use RLWINM.
 | |
|   } else if (DestVT == MVT::i32) {
 | |
|     unsigned MB;
 | |
|     if (SrcVT == MVT::i8)
 | |
|       MB = 24;
 | |
|     else {
 | |
|       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
 | |
|       MB = 16;
 | |
|     }
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
 | |
|             DestReg)
 | |
|       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
 | |
| 
 | |
|   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
 | |
|   } else {
 | |
|     unsigned MB;
 | |
|     if (SrcVT == MVT::i8)
 | |
|       MB = 56;
 | |
|     else if (SrcVT == MVT::i16)
 | |
|       MB = 48;
 | |
|     else
 | |
|       MB = 32;
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(PPC::RLDICL_32_64), DestReg)
 | |
|       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select an indirect branch instruction.
 | |
| bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
 | |
|   unsigned AddrReg = getRegForValue(I->getOperand(0));
 | |
|   if (AddrReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
 | |
|     .addReg(AddrReg);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
 | |
| 
 | |
|   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
 | |
|   for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
 | |
|     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select an integer truncate instruction.
 | |
| bool PPCFastISel::SelectTrunc(const Instruction *I) {
 | |
|   Value *Src  = I->getOperand(0);
 | |
|   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
 | |
|   EVT DestVT = TLI.getValueType(I->getType(), true);
 | |
| 
 | |
|   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
 | |
|     return false;
 | |
| 
 | |
|   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg = getRegForValue(Src);
 | |
|   if (!SrcReg)
 | |
|     return false;
 | |
| 
 | |
|   // The only interesting case is when we need to switch register classes.
 | |
|   if (SrcVT == MVT::i64) {
 | |
|     unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY),
 | |
|             ResultReg).addReg(SrcReg, 0, PPC::sub_32);
 | |
|     SrcReg = ResultReg;
 | |
|   }
 | |
| 
 | |
|   updateValueMap(I, SrcReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select an integer extend instruction.
 | |
| bool PPCFastISel::SelectIntExt(const Instruction *I) {
 | |
|   Type *DestTy = I->getType();
 | |
|   Value *Src = I->getOperand(0);
 | |
|   Type *SrcTy = Src->getType();
 | |
| 
 | |
|   bool IsZExt = isa<ZExtInst>(I);
 | |
|   unsigned SrcReg = getRegForValue(Src);
 | |
|   if (!SrcReg) return false;
 | |
| 
 | |
|   EVT SrcEVT, DestEVT;
 | |
|   SrcEVT = TLI.getValueType(SrcTy, true);
 | |
|   DestEVT = TLI.getValueType(DestTy, true);
 | |
|   if (!SrcEVT.isSimple())
 | |
|     return false;
 | |
|   if (!DestEVT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   MVT SrcVT = SrcEVT.getSimpleVT();
 | |
|   MVT DestVT = DestEVT.getSimpleVT();
 | |
| 
 | |
|   // If we know the register class needed for the result of this
 | |
|   // instruction, use it.  Otherwise pick the register class of the
 | |
|   // correct size that does not contain X0/R0, since we don't know
 | |
|   // whether downstream uses permit that assignment.
 | |
|   unsigned AssignedReg = FuncInfo.ValueMap[I];
 | |
|   const TargetRegisterClass *RC =
 | |
|     (AssignedReg ? MRI.getRegClass(AssignedReg) :
 | |
|      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
 | |
|       &PPC::GPRC_and_GPRC_NOR0RegClass));
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
| 
 | |
|   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
 | |
|     return false;
 | |
| 
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to fast-select an instruction that wasn't handled by
 | |
| // the table-generated machinery.
 | |
| bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Load:
 | |
|       return SelectLoad(I);
 | |
|     case Instruction::Store:
 | |
|       return SelectStore(I);
 | |
|     case Instruction::Br:
 | |
|       return SelectBranch(I);
 | |
|     case Instruction::IndirectBr:
 | |
|       return SelectIndirectBr(I);
 | |
|     case Instruction::FPExt:
 | |
|       return SelectFPExt(I);
 | |
|     case Instruction::FPTrunc:
 | |
|       return SelectFPTrunc(I);
 | |
|     case Instruction::SIToFP:
 | |
|       return SelectIToFP(I, /*IsSigned*/ true);
 | |
|     case Instruction::UIToFP:
 | |
|       return SelectIToFP(I, /*IsSigned*/ false);
 | |
|     case Instruction::FPToSI:
 | |
|       return SelectFPToI(I, /*IsSigned*/ true);
 | |
|     case Instruction::FPToUI:
 | |
|       return SelectFPToI(I, /*IsSigned*/ false);
 | |
|     case Instruction::Add:
 | |
|       return SelectBinaryIntOp(I, ISD::ADD);
 | |
|     case Instruction::Or:
 | |
|       return SelectBinaryIntOp(I, ISD::OR);
 | |
|     case Instruction::Sub:
 | |
|       return SelectBinaryIntOp(I, ISD::SUB);
 | |
|     case Instruction::Call:
 | |
|       return selectCall(I);
 | |
|     case Instruction::Ret:
 | |
|       return SelectRet(I);
 | |
|     case Instruction::Trunc:
 | |
|       return SelectTrunc(I);
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|       return SelectIntExt(I);
 | |
|     // Here add other flavors of Instruction::XXX that automated
 | |
|     // cases don't catch.  For example, switches are terminators
 | |
|     // that aren't yet handled.
 | |
|     default:
 | |
|       break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Materialize a floating-point constant into a register, and return
 | |
| // the register number (or zero if we failed to handle it).
 | |
| unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
 | |
|   // No plans to handle long double here.
 | |
|   if (VT != MVT::f32 && VT != MVT::f64)
 | |
|     return 0;
 | |
| 
 | |
|   // All FP constants are loaded from the constant pool.
 | |
|   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
 | |
|   assert(Align > 0 && "Unexpectedly missing alignment information!");
 | |
|   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
 | |
|   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|   CodeModel::Model CModel = TM.getCodeModel();
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     FuncInfo.MF->getMachineMemOperand(
 | |
|       MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
 | |
|       (VT == MVT::f32) ? 4 : 8, Align);
 | |
| 
 | |
|   unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
 | |
|   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
 | |
| 
 | |
|   PPCFuncInfo->setUsesTOCBasePtr();
 | |
|   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
 | |
|   if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
 | |
|             TmpReg)
 | |
|       .addConstantPoolIndex(Idx).addReg(PPC::X2);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
 | |
|       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
 | |
|   } else {
 | |
|     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
 | |
|             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
 | |
|     // But for large code model, we must generate a LDtocL followed
 | |
|     // by the LF[SD].
 | |
|     if (CModel == CodeModel::Large) {
 | |
|       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
 | |
|               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
 | |
|         .addImm(0).addReg(TmpReg2);
 | |
|     } else 
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
 | |
|         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
 | |
|         .addReg(TmpReg)
 | |
|         .addMemOperand(MMO);
 | |
|   }
 | |
| 
 | |
|   return DestReg;
 | |
| }
 | |
| 
 | |
| // Materialize the address of a global value into a register, and return
 | |
| // the register number (or zero if we failed to handle it).
 | |
| unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
 | |
|   assert(VT == MVT::i64 && "Non-address!");
 | |
|   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
 | |
|   unsigned DestReg = createResultReg(RC);
 | |
| 
 | |
|   // Global values may be plain old object addresses, TLS object
 | |
|   // addresses, constant pool entries, or jump tables.  How we generate
 | |
|   // code for these may depend on small, medium, or large code model.
 | |
|   CodeModel::Model CModel = TM.getCodeModel();
 | |
| 
 | |
|   // FIXME: Jump tables are not yet required because fast-isel doesn't
 | |
|   // handle switches; if that changes, we need them as well.  For now,
 | |
|   // what follows assumes everything's a generic (or TLS) global address.
 | |
| 
 | |
|   // FIXME: We don't yet handle the complexity of TLS.
 | |
|   if (GV->isThreadLocal())
 | |
|     return 0;
 | |
| 
 | |
|   PPCFuncInfo->setUsesTOCBasePtr();
 | |
|   // For small code model, generate a simple TOC load.
 | |
|   if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
 | |
|             DestReg)
 | |
|         .addGlobalAddress(GV)
 | |
|         .addReg(PPC::X2);
 | |
|   else {
 | |
|     // If the address is an externally defined symbol, a symbol with common
 | |
|     // or externally available linkage, a non-local function address, or a
 | |
|     // jump table address (not yet needed), or if we are generating code
 | |
|     // for large code model, we generate:
 | |
|     //       LDtocL(GV, ADDIStocHA(%X2, GV))
 | |
|     // Otherwise we generate:
 | |
|     //       ADDItocL(ADDIStocHA(%X2, GV), GV)
 | |
|     // Either way, start with the ADDIStocHA:
 | |
|     unsigned HighPartReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
 | |
|             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
 | |
| 
 | |
|     // If/when switches are implemented, jump tables should be handled
 | |
|     // on the "if" path here.
 | |
|     if (CModel == CodeModel::Large ||
 | |
|         (GV->getType()->getElementType()->isFunctionTy() &&
 | |
|          (GV->isDeclaration() || GV->isWeakForLinker())) ||
 | |
|         GV->isDeclaration() || GV->hasCommonLinkage() ||
 | |
|         GV->hasAvailableExternallyLinkage())
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
 | |
|               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
 | |
|     else
 | |
|       // Otherwise generate the ADDItocL.
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
 | |
|               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
 | |
|   }
 | |
| 
 | |
|   return DestReg;
 | |
| }
 | |
| 
 | |
| // Materialize a 32-bit integer constant into a register, and return
 | |
| // the register number (or zero if we failed to handle it).
 | |
| unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
 | |
|                                              const TargetRegisterClass *RC) {
 | |
|   unsigned Lo = Imm & 0xFFFF;
 | |
|   unsigned Hi = (Imm >> 16) & 0xFFFF;
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
 | |
| 
 | |
|   if (isInt<16>(Imm))
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
 | |
|       .addImm(Imm);
 | |
|   else if (Lo) {
 | |
|     // Both Lo and Hi have nonzero bits.
 | |
|     unsigned TmpReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
 | |
|       .addImm(Hi);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
 | |
|       .addReg(TmpReg).addImm(Lo);
 | |
|   } else
 | |
|     // Just Hi bits.
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
 | |
|       .addImm(Hi);
 | |
|   
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| // Materialize a 64-bit integer constant into a register, and return
 | |
| // the register number (or zero if we failed to handle it).
 | |
| unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
 | |
|                                              const TargetRegisterClass *RC) {
 | |
|   unsigned Remainder = 0;
 | |
|   unsigned Shift = 0;
 | |
| 
 | |
|   // If the value doesn't fit in 32 bits, see if we can shift it
 | |
|   // so that it fits in 32 bits.
 | |
|   if (!isInt<32>(Imm)) {
 | |
|     Shift = countTrailingZeros<uint64_t>(Imm);
 | |
|     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | |
| 
 | |
|     if (isInt<32>(ImmSh))
 | |
|       Imm = ImmSh;
 | |
|     else {
 | |
|       Remainder = Imm;
 | |
|       Shift = 32;
 | |
|       Imm >>= 32;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
 | |
|   // (if not shifted).
 | |
|   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
 | |
|   if (!Shift)
 | |
|     return TmpReg1;
 | |
| 
 | |
|   // If upper 32 bits were not zero, we've built them and need to shift
 | |
|   // them into place.
 | |
|   unsigned TmpReg2;
 | |
|   if (Imm) {
 | |
|     TmpReg2 = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
 | |
|             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
 | |
|   } else
 | |
|     TmpReg2 = TmpReg1;
 | |
| 
 | |
|   unsigned TmpReg3, Hi, Lo;
 | |
|   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
 | |
|     TmpReg3 = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
 | |
|             TmpReg3).addReg(TmpReg2).addImm(Hi);
 | |
|   } else
 | |
|     TmpReg3 = TmpReg2;
 | |
| 
 | |
|   if ((Lo = Remainder & 0xFFFF)) {
 | |
|     unsigned ResultReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
 | |
|             ResultReg).addReg(TmpReg3).addImm(Lo);
 | |
|     return ResultReg;
 | |
|   }
 | |
| 
 | |
|   return TmpReg3;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Materialize an integer constant into a register, and return
 | |
| // the register number (or zero if we failed to handle it).
 | |
| unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT,
 | |
|                                                            bool UseSExt) {
 | |
|   // If we're using CR bit registers for i1 values, handle that as a special
 | |
|   // case first.
 | |
|   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
 | |
|     const ConstantInt *CI = cast<ConstantInt>(C);
 | |
|     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
 | |
|     return ImmReg;
 | |
|   }
 | |
| 
 | |
|   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
 | |
|       VT != MVT::i8 && VT != MVT::i1) 
 | |
|     return 0;
 | |
| 
 | |
|   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
 | |
|                                    &PPC::GPRCRegClass);
 | |
| 
 | |
|   // If the constant is in range, use a load-immediate.
 | |
|   const ConstantInt *CI = cast<ConstantInt>(C);
 | |
|   if (isInt<16>(CI->getSExtValue())) {
 | |
|     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
 | |
|     unsigned ImmReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
 | |
|       .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() );
 | |
|     return ImmReg;
 | |
|   }
 | |
| 
 | |
|   // Construct the constant piecewise.
 | |
|   int64_t Imm = CI->getZExtValue();
 | |
| 
 | |
|   if (VT == MVT::i64)
 | |
|     return PPCMaterialize64BitInt(Imm, RC);
 | |
|   else if (VT == MVT::i32)
 | |
|     return PPCMaterialize32BitInt(Imm, RC);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Materialize a constant into a register, and return the register
 | |
| // number (or zero if we failed to handle it).
 | |
| unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
 | |
|   EVT CEVT = TLI.getValueType(C->getType(), true);
 | |
| 
 | |
|   // Only handle simple types.
 | |
|   if (!CEVT.isSimple()) return 0;
 | |
|   MVT VT = CEVT.getSimpleVT();
 | |
| 
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
 | |
|     return PPCMaterializeFP(CFP, VT);
 | |
|   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|     return PPCMaterializeGV(GV, VT);
 | |
|   else if (isa<ConstantInt>(C))
 | |
|     return PPCMaterializeInt(C, VT, VT != MVT::i1);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Materialize the address created by an alloca into a register, and
 | |
| // return the register number (or zero if we failed to handle it).
 | |
| unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
 | |
|   // Don't handle dynamic allocas.
 | |
|   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
 | |
| 
 | |
|   DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|     FuncInfo.StaticAllocaMap.find(AI);
 | |
| 
 | |
|   if (SI != FuncInfo.StaticAllocaMap.end()) {
 | |
|     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
 | |
|             ResultReg).addFrameIndex(SI->second).addImm(0);
 | |
|     return ResultReg;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Fold loads into extends when possible.
 | |
| // FIXME: We can have multiple redundant extend/trunc instructions
 | |
| // following a load.  The folding only picks up one.  Extend this
 | |
| // to check subsequent instructions for the same pattern and remove
 | |
| // them.  Thus ResultReg should be the def reg for the last redundant
 | |
| // instruction in a chain, and all intervening instructions can be
 | |
| // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
 | |
| // to add ELF64-NOT: rldicl to the appropriate tests when this works.
 | |
| bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
 | |
|                                       const LoadInst *LI) {
 | |
|   // Verify we have a legal type before going any further.
 | |
|   MVT VT;
 | |
|   if (!isLoadTypeLegal(LI->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   // Combine load followed by zero- or sign-extend.
 | |
|   bool IsZExt = false;
 | |
|   switch(MI->getOpcode()) {
 | |
|     default:
 | |
|       return false;
 | |
| 
 | |
|     case PPC::RLDICL:
 | |
|     case PPC::RLDICL_32_64: {
 | |
|       IsZExt = true;
 | |
|       unsigned MB = MI->getOperand(3).getImm();
 | |
|       if ((VT == MVT::i8 && MB <= 56) ||
 | |
|           (VT == MVT::i16 && MB <= 48) ||
 | |
|           (VT == MVT::i32 && MB <= 32))
 | |
|         break;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case PPC::RLWINM:
 | |
|     case PPC::RLWINM8: {
 | |
|       IsZExt = true;
 | |
|       unsigned MB = MI->getOperand(3).getImm();
 | |
|       if ((VT == MVT::i8 && MB <= 24) ||
 | |
|           (VT == MVT::i16 && MB <= 16))
 | |
|         break;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case PPC::EXTSB:
 | |
|     case PPC::EXTSB8:
 | |
|     case PPC::EXTSB8_32_64:
 | |
|       /* There is no sign-extending load-byte instruction. */
 | |
|       return false;
 | |
| 
 | |
|     case PPC::EXTSH:
 | |
|     case PPC::EXTSH8:
 | |
|     case PPC::EXTSH8_32_64: {
 | |
|       if (VT != MVT::i16 && VT != MVT::i8)
 | |
|         return false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case PPC::EXTSW:
 | |
|     case PPC::EXTSW_32_64: {
 | |
|       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
 | |
|         return false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we can handle this address.
 | |
|   Address Addr;
 | |
|   if (!PPCComputeAddress(LI->getOperand(0), Addr))
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResultReg = MI->getOperand(0).getReg();
 | |
| 
 | |
|   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
 | |
|     return false;
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Attempt to lower call arguments in a faster way than done by
 | |
| // the selection DAG code.
 | |
| bool PPCFastISel::fastLowerArguments() {
 | |
|   // Defer to normal argument lowering for now.  It's reasonably
 | |
|   // efficient.  Consider doing something like ARM to handle the
 | |
|   // case where all args fit in registers, no varargs, no float
 | |
|   // or vector args.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Handle materializing integer constants into a register.  This is not
 | |
| // automatically generated for PowerPC, so must be explicitly created here.
 | |
| unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
 | |
|   
 | |
|   if (Opc != ISD::Constant)
 | |
|     return 0;
 | |
| 
 | |
|   // If we're using CR bit registers for i1 values, handle that as a special
 | |
|   // case first.
 | |
|   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
 | |
|     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
 | |
|     return ImmReg;
 | |
|   }
 | |
| 
 | |
|   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
 | |
|       VT != MVT::i8 && VT != MVT::i1) 
 | |
|     return 0;
 | |
| 
 | |
|   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
 | |
|                                    &PPC::GPRCRegClass);
 | |
|   if (VT == MVT::i64)
 | |
|     return PPCMaterialize64BitInt(Imm, RC);
 | |
|   else
 | |
|     return PPCMaterialize32BitInt(Imm, RC);
 | |
| }
 | |
| 
 | |
| // Override for ADDI and ADDI8 to set the correct register class
 | |
| // on RHS operand 0.  The automatic infrastructure naively assumes
 | |
| // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
 | |
| // for these cases.  At the moment, none of the other automatically
 | |
| // generated RI instructions require special treatment.  However, once
 | |
| // SelectSelect is implemented, "isel" requires similar handling.
 | |
| //
 | |
| // Also be conservative about the output register class.  Avoid
 | |
| // assigning R0 or X0 to the output register for GPRC and G8RC
 | |
| // register classes, as any such result could be used in ADDI, etc.,
 | |
| // where those regs have another meaning.
 | |
| unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
 | |
|                                       const TargetRegisterClass *RC,
 | |
|                                       unsigned Op0, bool Op0IsKill,
 | |
|                                       uint64_t Imm) {
 | |
|   if (MachineInstOpcode == PPC::ADDI)
 | |
|     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
 | |
|   else if (MachineInstOpcode == PPC::ADDI8)
 | |
|     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
 | |
| 
 | |
|   const TargetRegisterClass *UseRC =
 | |
|     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
 | |
|      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
 | |
| 
 | |
|   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
 | |
|                                    Op0, Op0IsKill, Imm);
 | |
| }
 | |
| 
 | |
| // Override for instructions with one register operand to avoid use of
 | |
| // R0/X0.  The automatic infrastructure isn't aware of the context so
 | |
| // we must be conservative.
 | |
| unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
 | |
|                                      const TargetRegisterClass* RC,
 | |
|                                      unsigned Op0, bool Op0IsKill) {
 | |
|   const TargetRegisterClass *UseRC =
 | |
|     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
 | |
|      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
 | |
| 
 | |
|   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
 | |
| }
 | |
| 
 | |
| // Override for instructions with two register operands to avoid use
 | |
| // of R0/X0.  The automatic infrastructure isn't aware of the context
 | |
| // so we must be conservative.
 | |
| unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
 | |
|                                       const TargetRegisterClass* RC,
 | |
|                                       unsigned Op0, bool Op0IsKill,
 | |
|                                       unsigned Op1, bool Op1IsKill) {
 | |
|   const TargetRegisterClass *UseRC =
 | |
|     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
 | |
|      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
 | |
| 
 | |
|   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
 | |
|                                    Op1, Op1IsKill);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   // Create the fast instruction selector for PowerPC64 ELF.
 | |
|   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
 | |
|                                 const TargetLibraryInfo *LibInfo) {
 | |
|     // Only available on 64-bit ELF for now.
 | |
|     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
 | |
|     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
 | |
|       return new PPCFastISel(FuncInfo, LibInfo);
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 |