mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Our register allocation has become better recently, it seems, and is now starting to generate cross-block copies into inflated register classes. These copies are not transformed into subregister insertions/extractions by the PPCVSXCopy class, and so need to be handled directly by PPCInstrInfo::copyPhysReg. The code to do this was *almost* there, but not quite (it was unnecessarily restricting itself to only the direct sub/super-register-class case (not copying between, for example, something in VRRC and the lower-half of VSRC which are super-registers of F8RC). Triggering this behavior manually is difficult; I'm including two bugpoint-reduced test cases from the test suite. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229457 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1608 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1608 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the PowerPC implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPCInstrInfo.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "PPC.h"
 | |
| #include "PPCHazardRecognizers.h"
 | |
| #include "PPCInstrBuilder.h"
 | |
| #include "PPCMachineFunctionInfo.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ppc-instr-info"
 | |
| 
 | |
| #define GET_INSTRMAP_INFO
 | |
| #define GET_INSTRINFO_CTOR_DTOR
 | |
| #include "PPCGenInstrInfo.inc"
 | |
| 
 | |
| static cl::
 | |
| opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
 | |
|             cl::desc("Disable analysis for CTR loops"));
 | |
| 
 | |
| static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
 | |
| cl::desc("Disable compare instruction optimization"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
 | |
| cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
 | |
| cl::Hidden);
 | |
| 
 | |
| // Pin the vtable to this file.
 | |
| void PPCInstrInfo::anchor() {}
 | |
| 
 | |
| PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
 | |
|     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
 | |
|       Subtarget(STI), RI(STI) {}
 | |
| 
 | |
| /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
 | |
| /// this target when scheduling the DAG.
 | |
| ScheduleHazardRecognizer *
 | |
| PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
 | |
|                                            const ScheduleDAG *DAG) const {
 | |
|   unsigned Directive =
 | |
|       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
 | |
|   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
 | |
|       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
 | |
|     const InstrItineraryData *II =
 | |
|         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
 | |
|     return new ScoreboardHazardRecognizer(II, DAG);
 | |
|   }
 | |
| 
 | |
|   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
 | |
| }
 | |
| 
 | |
| /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
 | |
| /// to use for this target when scheduling the DAG.
 | |
| ScheduleHazardRecognizer *
 | |
| PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
 | |
|                                                  const ScheduleDAG *DAG) const {
 | |
|   unsigned Directive =
 | |
|       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
 | |
| 
 | |
|   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
 | |
|     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
 | |
| 
 | |
|   // Most subtargets use a PPC970 recognizer.
 | |
|   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
 | |
|       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
 | |
|     assert(DAG->TII && "No InstrInfo?");
 | |
| 
 | |
|     return new PPCHazardRecognizer970(*DAG);
 | |
|   }
 | |
| 
 | |
|   return new ScoreboardHazardRecognizer(II, DAG);
 | |
| }
 | |
| 
 | |
| 
 | |
| int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                     const MachineInstr *DefMI, unsigned DefIdx,
 | |
|                                     const MachineInstr *UseMI,
 | |
|                                     unsigned UseIdx) const {
 | |
|   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
 | |
|                                                    UseMI, UseIdx);
 | |
| 
 | |
|   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
 | |
|   unsigned Reg = DefMO.getReg();
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   bool IsRegCR;
 | |
|   if (TRI->isVirtualRegister(Reg)) {
 | |
|     const MachineRegisterInfo *MRI =
 | |
|       &DefMI->getParent()->getParent()->getRegInfo();
 | |
|     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
 | |
|               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
 | |
|   } else {
 | |
|     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
 | |
|               PPC::CRBITRCRegClass.contains(Reg);
 | |
|   }
 | |
| 
 | |
|   if (UseMI->isBranch() && IsRegCR) {
 | |
|     if (Latency < 0)
 | |
|       Latency = getInstrLatency(ItinData, DefMI);
 | |
| 
 | |
|     // On some cores, there is an additional delay between writing to a condition
 | |
|     // register, and using it from a branch.
 | |
|     unsigned Directive = Subtarget.getDarwinDirective();
 | |
|     switch (Directive) {
 | |
|     default: break;
 | |
|     case PPC::DIR_7400:
 | |
|     case PPC::DIR_750:
 | |
|     case PPC::DIR_970:
 | |
|     case PPC::DIR_E5500:
 | |
|     case PPC::DIR_PWR4:
 | |
|     case PPC::DIR_PWR5:
 | |
|     case PPC::DIR_PWR5X:
 | |
|     case PPC::DIR_PWR6:
 | |
|     case PPC::DIR_PWR6X:
 | |
|     case PPC::DIR_PWR7:
 | |
|     case PPC::DIR_PWR8:
 | |
|       Latency += 2;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
 | |
| bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
 | |
|                                          unsigned &SrcReg, unsigned &DstReg,
 | |
|                                          unsigned &SubIdx) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: return false;
 | |
|   case PPC::EXTSW:
 | |
|   case PPC::EXTSW_32_64:
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     SubIdx = PPC::sub_32;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
 | |
|                                            int &FrameIndex) const {
 | |
|   // Note: This list must be kept consistent with LoadRegFromStackSlot.
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case PPC::LD:
 | |
|   case PPC::LWZ:
 | |
|   case PPC::LFS:
 | |
|   case PPC::LFD:
 | |
|   case PPC::RESTORE_CR:
 | |
|   case PPC::RESTORE_CRBIT:
 | |
|   case PPC::LVX:
 | |
|   case PPC::LXVD2X:
 | |
|   case PPC::RESTORE_VRSAVE:
 | |
|     // Check for the operands added by addFrameReference (the immediate is the
 | |
|     // offset which defaults to 0).
 | |
|     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
 | |
|         MI->getOperand(2).isFI()) {
 | |
|       FrameIndex = MI->getOperand(2).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
 | |
|                                           int &FrameIndex) const {
 | |
|   // Note: This list must be kept consistent with StoreRegToStackSlot.
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case PPC::STD:
 | |
|   case PPC::STW:
 | |
|   case PPC::STFS:
 | |
|   case PPC::STFD:
 | |
|   case PPC::SPILL_CR:
 | |
|   case PPC::SPILL_CRBIT:
 | |
|   case PPC::STVX:
 | |
|   case PPC::STXVD2X:
 | |
|   case PPC::SPILL_VRSAVE:
 | |
|     // Check for the operands added by addFrameReference (the immediate is the
 | |
|     // offset which defaults to 0).
 | |
|     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
 | |
|         MI->getOperand(2).isFI()) {
 | |
|       FrameIndex = MI->getOperand(2).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // commuteInstruction - We can commute rlwimi instructions, but only if the
 | |
| // rotate amt is zero.  We also have to munge the immediates a bit.
 | |
| MachineInstr *
 | |
| PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
| 
 | |
|   // Normal instructions can be commuted the obvious way.
 | |
|   if (MI->getOpcode() != PPC::RLWIMI &&
 | |
|       MI->getOpcode() != PPC::RLWIMIo)
 | |
|     return TargetInstrInfo::commuteInstruction(MI, NewMI);
 | |
|   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
 | |
|   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
 | |
|   // changing the relative order of the mask operands might change what happens
 | |
|   // to the high-bits of the mask (and, thus, the result).
 | |
| 
 | |
|   // Cannot commute if it has a non-zero rotate count.
 | |
|   if (MI->getOperand(3).getImm() != 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we have a zero rotate count, we have:
 | |
|   //   M = mask(MB,ME)
 | |
|   //   Op0 = (Op1 & ~M) | (Op2 & M)
 | |
|   // Change this to:
 | |
|   //   M = mask((ME+1)&31, (MB-1)&31)
 | |
|   //   Op0 = (Op2 & ~M) | (Op1 & M)
 | |
| 
 | |
|   // Swap op1/op2
 | |
|   unsigned Reg0 = MI->getOperand(0).getReg();
 | |
|   unsigned Reg1 = MI->getOperand(1).getReg();
 | |
|   unsigned Reg2 = MI->getOperand(2).getReg();
 | |
|   unsigned SubReg1 = MI->getOperand(1).getSubReg();
 | |
|   unsigned SubReg2 = MI->getOperand(2).getSubReg();
 | |
|   bool Reg1IsKill = MI->getOperand(1).isKill();
 | |
|   bool Reg2IsKill = MI->getOperand(2).isKill();
 | |
|   bool ChangeReg0 = false;
 | |
|   // If machine instrs are no longer in two-address forms, update
 | |
|   // destination register as well.
 | |
|   if (Reg0 == Reg1) {
 | |
|     // Must be two address instruction!
 | |
|     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
 | |
|            "Expecting a two-address instruction!");
 | |
|     assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
 | |
|     Reg2IsKill = false;
 | |
|     ChangeReg0 = true;
 | |
|   }
 | |
| 
 | |
|   // Masks.
 | |
|   unsigned MB = MI->getOperand(4).getImm();
 | |
|   unsigned ME = MI->getOperand(5).getImm();
 | |
| 
 | |
|   if (NewMI) {
 | |
|     // Create a new instruction.
 | |
|     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
 | |
|     bool Reg0IsDead = MI->getOperand(0).isDead();
 | |
|     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
 | |
|       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
 | |
|       .addReg(Reg2, getKillRegState(Reg2IsKill))
 | |
|       .addReg(Reg1, getKillRegState(Reg1IsKill))
 | |
|       .addImm((ME+1) & 31)
 | |
|       .addImm((MB-1) & 31);
 | |
|   }
 | |
| 
 | |
|   if (ChangeReg0) {
 | |
|     MI->getOperand(0).setReg(Reg2);
 | |
|     MI->getOperand(0).setSubReg(SubReg2);
 | |
|   }
 | |
|   MI->getOperand(2).setReg(Reg1);
 | |
|   MI->getOperand(1).setReg(Reg2);
 | |
|   MI->getOperand(2).setSubReg(SubReg1);
 | |
|   MI->getOperand(1).setSubReg(SubReg2);
 | |
|   MI->getOperand(2).setIsKill(Reg1IsKill);
 | |
|   MI->getOperand(1).setIsKill(Reg2IsKill);
 | |
| 
 | |
|   // Swap the mask around.
 | |
|   MI->getOperand(4).setImm((ME+1) & 31);
 | |
|   MI->getOperand(5).setImm((MB-1) & 31);
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
 | |
|                                          unsigned &SrcOpIdx2) const {
 | |
|   // For VSX A-Type FMA instructions, it is the first two operands that can be
 | |
|   // commuted, however, because the non-encoded tied input operand is listed
 | |
|   // first, the operands to swap are actually the second and third.
 | |
| 
 | |
|   int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
 | |
|   if (AltOpc == -1)
 | |
|     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
 | |
| 
 | |
|   SrcOpIdx1 = 2;
 | |
|   SrcOpIdx2 = 3;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
 | |
|                               MachineBasicBlock::iterator MI) const {
 | |
|   // This function is used for scheduling, and the nop wanted here is the type
 | |
|   // that terminates dispatch groups on the POWER cores.
 | |
|   unsigned Directive = Subtarget.getDarwinDirective();
 | |
|   unsigned Opcode;
 | |
|   switch (Directive) {
 | |
|   default:            Opcode = PPC::NOP; break;
 | |
|   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
 | |
|   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
 | |
|   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
 | |
|   }
 | |
| 
 | |
|   DebugLoc DL;
 | |
|   BuildMI(MBB, MI, DL, get(Opcode));
 | |
| }
 | |
| 
 | |
| /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
 | |
| void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
 | |
|   NopInst.setOpcode(PPC::NOP);
 | |
| }
 | |
| 
 | |
| // Branch analysis.
 | |
| // Note: If the condition register is set to CTR or CTR8 then this is a
 | |
| // BDNZ (imm == 1) or BDZ (imm == 0) branch.
 | |
| bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
 | |
|                                  MachineBasicBlock *&FBB,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  bool AllowModify) const {
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|   // If the block has no terminators, it just falls into the block after it.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin())
 | |
|     return false;
 | |
|   --I;
 | |
|   while (I->isDebugValue()) {
 | |
|     if (I == MBB.begin())
 | |
|       return false;
 | |
|     --I;
 | |
|   }
 | |
|   if (!isUnpredicatedTerminator(I))
 | |
|     return false;
 | |
| 
 | |
|   // Get the last instruction in the block.
 | |
|   MachineInstr *LastInst = I;
 | |
| 
 | |
|   // If there is only one terminator instruction, process it.
 | |
|   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
 | |
|     if (LastInst->getOpcode() == PPC::B) {
 | |
|       if (!LastInst->getOperand(0).isMBB())
 | |
|         return true;
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       return false;
 | |
|     } else if (LastInst->getOpcode() == PPC::BCC) {
 | |
|       if (!LastInst->getOperand(2).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst->getOperand(2).getMBB();
 | |
|       Cond.push_back(LastInst->getOperand(0));
 | |
|       Cond.push_back(LastInst->getOperand(1));
 | |
|       return false;
 | |
|     } else if (LastInst->getOpcode() == PPC::BC) {
 | |
|       if (!LastInst->getOperand(1).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst->getOperand(1).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | |
|       Cond.push_back(LastInst->getOperand(0));
 | |
|       return false;
 | |
|     } else if (LastInst->getOpcode() == PPC::BCn) {
 | |
|       if (!LastInst->getOperand(1).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst->getOperand(1).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
 | |
|       Cond.push_back(LastInst->getOperand(0));
 | |
|       return false;
 | |
|     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
 | |
|                LastInst->getOpcode() == PPC::BDNZ) {
 | |
|       if (!LastInst->getOperand(0).isMBB())
 | |
|         return true;
 | |
|       if (DisableCTRLoopAnal)
 | |
|         return true;
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(1));
 | |
|       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                                true));
 | |
|       return false;
 | |
|     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
 | |
|                LastInst->getOpcode() == PPC::BDZ) {
 | |
|       if (!LastInst->getOperand(0).isMBB())
 | |
|         return true;
 | |
|       if (DisableCTRLoopAnal)
 | |
|         return true;
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(0));
 | |
|       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                                true));
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, don't know what this is.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Get the instruction before it if it's a terminator.
 | |
|   MachineInstr *SecondLastInst = I;
 | |
| 
 | |
|   // If there are three terminators, we don't know what sort of block this is.
 | |
|   if (SecondLastInst && I != MBB.begin() &&
 | |
|       isUnpredicatedTerminator(--I))
 | |
|     return true;
 | |
| 
 | |
|   // If the block ends with PPC::B and PPC:BCC, handle it.
 | |
|   if (SecondLastInst->getOpcode() == PPC::BCC &&
 | |
|       LastInst->getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst->getOperand(2).isMBB() ||
 | |
|         !LastInst->getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB =  SecondLastInst->getOperand(2).getMBB();
 | |
|     Cond.push_back(SecondLastInst->getOperand(0));
 | |
|     Cond.push_back(SecondLastInst->getOperand(1));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if (SecondLastInst->getOpcode() == PPC::BC &&
 | |
|       LastInst->getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst->getOperand(1).isMBB() ||
 | |
|         !LastInst->getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB =  SecondLastInst->getOperand(1).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | |
|     Cond.push_back(SecondLastInst->getOperand(0));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
 | |
|       LastInst->getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst->getOperand(1).isMBB() ||
 | |
|         !LastInst->getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB =  SecondLastInst->getOperand(1).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
 | |
|     Cond.push_back(SecondLastInst->getOperand(0));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
 | |
|               SecondLastInst->getOpcode() == PPC::BDNZ) &&
 | |
|       LastInst->getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst->getOperand(0).isMBB() ||
 | |
|         !LastInst->getOperand(0).isMBB())
 | |
|       return true;
 | |
|     if (DisableCTRLoopAnal)
 | |
|       return true;
 | |
|     TBB = SecondLastInst->getOperand(0).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(1));
 | |
|     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                              true));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
 | |
|               SecondLastInst->getOpcode() == PPC::BDZ) &&
 | |
|       LastInst->getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst->getOperand(0).isMBB() ||
 | |
|         !LastInst->getOperand(0).isMBB())
 | |
|       return true;
 | |
|     if (DisableCTRLoopAnal)
 | |
|       return true;
 | |
|     TBB = SecondLastInst->getOperand(0).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(0));
 | |
|     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                              true));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the block ends with two PPC:Bs, handle it.  The second one is not
 | |
|   // executed, so remove it.
 | |
|   if (SecondLastInst->getOpcode() == PPC::B &&
 | |
|       LastInst->getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst->getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst->getOperand(0).getMBB();
 | |
|     I = LastInst;
 | |
|     if (AllowModify)
 | |
|       I->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, can't handle this.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin()) return 0;
 | |
|   --I;
 | |
|   while (I->isDebugValue()) {
 | |
|     if (I == MBB.begin())
 | |
|       return 0;
 | |
|     --I;
 | |
|   }
 | |
|   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
 | |
|       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
 | |
|       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
 | |
|       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
 | |
|     return 0;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
| 
 | |
|   I = MBB.end();
 | |
| 
 | |
|   if (I == MBB.begin()) return 1;
 | |
|   --I;
 | |
|   if (I->getOpcode() != PPC::BCC &&
 | |
|       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
 | |
|       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
 | |
|       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
 | |
|     return 1;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | |
|                            MachineBasicBlock *FBB,
 | |
|                            const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                            DebugLoc DL) const {
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 2 || Cond.size() == 0) &&
 | |
|          "PPC branch conditions have two components!");
 | |
| 
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|   // One-way branch.
 | |
|   if (!FBB) {
 | |
|     if (Cond.empty())   // Unconditional branch
 | |
|       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
 | |
|     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
 | |
|                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
 | |
|     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
 | |
|       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
 | |
|     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
 | |
|       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
 | |
|     else                // Conditional branch
 | |
|       BuildMI(&MBB, DL, get(PPC::BCC))
 | |
|         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Two-way Conditional Branch.
 | |
|   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
 | |
|                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
 | |
|   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
 | |
|     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
 | |
|   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
 | |
|     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
 | |
|   else
 | |
|     BuildMI(&MBB, DL, get(PPC::BCC))
 | |
|       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
 | |
|   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| // Select analysis.
 | |
| bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
 | |
|                 const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                 unsigned TrueReg, unsigned FalseReg,
 | |
|                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
 | |
|   if (!Subtarget.hasISEL())
 | |
|     return false;
 | |
| 
 | |
|   if (Cond.size() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // If this is really a bdnz-like condition, then it cannot be turned into a
 | |
|   // select.
 | |
|   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|     return false;
 | |
| 
 | |
|   // Check register classes.
 | |
|   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | |
|   if (!RC)
 | |
|     return false;
 | |
| 
 | |
|   // isel is for regular integer GPRs only.
 | |
|   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: These numbers are for the A2, how well they work for other cores is
 | |
|   // an open question. On the A2, the isel instruction has a 2-cycle latency
 | |
|   // but single-cycle throughput. These numbers are used in combination with
 | |
|   // the MispredictPenalty setting from the active SchedMachineModel.
 | |
|   CondCycles = 1;
 | |
|   TrueCycles = 1;
 | |
|   FalseCycles = 1;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
 | |
|                                 MachineBasicBlock::iterator MI, DebugLoc dl,
 | |
|                                 unsigned DestReg,
 | |
|                                 const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                 unsigned TrueReg, unsigned FalseReg) const {
 | |
|   assert(Cond.size() == 2 &&
 | |
|          "PPC branch conditions have two components!");
 | |
| 
 | |
|   assert(Subtarget.hasISEL() &&
 | |
|          "Cannot insert select on target without ISEL support");
 | |
| 
 | |
|   // Get the register classes.
 | |
|   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | |
|   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
 | |
| 
 | |
|   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
 | |
|   assert((Is64Bit ||
 | |
|           PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
 | |
|          "isel is for regular integer GPRs only");
 | |
| 
 | |
|   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
 | |
|   unsigned SelectPred = Cond[0].getImm();
 | |
| 
 | |
|   unsigned SubIdx;
 | |
|   bool SwapOps;
 | |
|   switch (SelectPred) {
 | |
|   default: llvm_unreachable("invalid predicate for isel");
 | |
|   case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
 | |
|   case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
 | |
|   case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
 | |
|   case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
 | |
|   case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
 | |
|   case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
 | |
|   case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
 | |
|   case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
 | |
|   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
 | |
|   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
 | |
|   }
 | |
| 
 | |
|   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
 | |
|            SecondReg = SwapOps ? TrueReg  : FalseReg;
 | |
| 
 | |
|   // The first input register of isel cannot be r0. If it is a member
 | |
|   // of a register class that can be r0, then copy it first (the
 | |
|   // register allocator should eliminate the copy).
 | |
|   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
 | |
|       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
 | |
|     const TargetRegisterClass *FirstRC =
 | |
|       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
 | |
|         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
 | |
|     unsigned OldFirstReg = FirstReg;
 | |
|     FirstReg = MRI.createVirtualRegister(FirstRC);
 | |
|     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
 | |
|       .addReg(OldFirstReg);
 | |
|   }
 | |
| 
 | |
|   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
 | |
|     .addReg(FirstReg).addReg(SecondReg)
 | |
|     .addReg(Cond[1].getReg(), 0, SubIdx);
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                MachineBasicBlock::iterator I, DebugLoc DL,
 | |
|                                unsigned DestReg, unsigned SrcReg,
 | |
|                                bool KillSrc) const {
 | |
|   // We can end up with self copies and similar things as a result of VSX copy
 | |
|   // legalization. Promote them here.
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   if (PPC::F8RCRegClass.contains(DestReg) &&
 | |
|       PPC::VSRCRegClass.contains(SrcReg)) {
 | |
|     unsigned SuperReg =
 | |
|       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
 | |
| 
 | |
|     if (VSXSelfCopyCrash && SrcReg == SuperReg)
 | |
|       llvm_unreachable("nop VSX copy");
 | |
| 
 | |
|     DestReg = SuperReg;
 | |
|   } else if (PPC::VRRCRegClass.contains(DestReg) &&
 | |
|              PPC::VSRCRegClass.contains(SrcReg)) {
 | |
|     unsigned SuperReg =
 | |
|       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
 | |
| 
 | |
|     if (VSXSelfCopyCrash && SrcReg == SuperReg)
 | |
|       llvm_unreachable("nop VSX copy");
 | |
| 
 | |
|     DestReg = SuperReg;
 | |
|   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
 | |
|              PPC::VSRCRegClass.contains(DestReg)) {
 | |
|     unsigned SuperReg =
 | |
|       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
 | |
| 
 | |
|     if (VSXSelfCopyCrash && DestReg == SuperReg)
 | |
|       llvm_unreachable("nop VSX copy");
 | |
| 
 | |
|     SrcReg = SuperReg;
 | |
|   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
 | |
|              PPC::VSRCRegClass.contains(DestReg)) {
 | |
|     unsigned SuperReg =
 | |
|       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
 | |
| 
 | |
|     if (VSXSelfCopyCrash && DestReg == SuperReg)
 | |
|       llvm_unreachable("nop VSX copy");
 | |
| 
 | |
|     SrcReg = SuperReg;
 | |
|   }
 | |
| 
 | |
|   unsigned Opc;
 | |
|   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::OR;
 | |
|   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::OR8;
 | |
|   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::FMR;
 | |
|   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::MCRF;
 | |
|   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::VOR;
 | |
|   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
 | |
|     // There are two different ways this can be done:
 | |
|     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
 | |
|     //      issue in VSU pipeline 0.
 | |
|     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
 | |
|     //      can go to either pipeline.
 | |
|     // We'll always use xxlor here, because in practically all cases where
 | |
|     // copies are generated, they are close enough to some use that the
 | |
|     // lower-latency form is preferable.
 | |
|     Opc = PPC::XXLOR;
 | |
|   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::XXLORf;
 | |
|   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::CROR;
 | |
|   else
 | |
|     llvm_unreachable("Impossible reg-to-reg copy");
 | |
| 
 | |
|   const MCInstrDesc &MCID = get(Opc);
 | |
|   if (MCID.getNumOperands() == 3)
 | |
|     BuildMI(MBB, I, DL, MCID, DestReg)
 | |
|       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
 | |
|   else
 | |
|     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
 | |
| }
 | |
| 
 | |
| // This function returns true if a CR spill is necessary and false otherwise.
 | |
| bool
 | |
| PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
 | |
|                                   unsigned SrcReg, bool isKill,
 | |
|                                   int FrameIdx,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   SmallVectorImpl<MachineInstr*> &NewMIs,
 | |
|                                   bool &NonRI, bool &SpillsVRS) const{
 | |
|   // Note: If additional store instructions are added here,
 | |
|   // update isStoreToStackSlot.
 | |
| 
 | |
|   DebugLoc DL;
 | |
|   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     return true;
 | |
|   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     return true;
 | |
|   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
 | |
|     assert(Subtarget.isDarwin() &&
 | |
|            "VRSAVE only needs spill/restore on Darwin");
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     SpillsVRS = true;
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown regclass!");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator MI,
 | |
|                                   unsigned SrcReg, bool isKill, int FrameIdx,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   const TargetRegisterInfo *TRI) const {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   SmallVector<MachineInstr*, 4> NewMIs;
 | |
| 
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setHasSpills();
 | |
| 
 | |
|   bool NonRI = false, SpillsVRS = false;
 | |
|   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
 | |
|                           NonRI, SpillsVRS))
 | |
|     FuncInfo->setSpillsCR();
 | |
| 
 | |
|   if (SpillsVRS)
 | |
|     FuncInfo->setSpillsVRSAVE();
 | |
| 
 | |
|   if (NonRI)
 | |
|     FuncInfo->setHasNonRISpills();
 | |
| 
 | |
|   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
 | |
|     MBB.insert(MI, NewMIs[i]);
 | |
| 
 | |
|   const MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
 | |
|                             MachineMemOperand::MOStore,
 | |
|                             MFI.getObjectSize(FrameIdx),
 | |
|                             MFI.getObjectAlignment(FrameIdx));
 | |
|   NewMIs.back()->addMemOperand(MF, MMO);
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
 | |
|                                    unsigned DestReg, int FrameIdx,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    SmallVectorImpl<MachineInstr*> &NewMIs,
 | |
|                                    bool &NonRI, bool &SpillsVRS) const{
 | |
|   // Note: If additional load instructions are added here,
 | |
|   // update isLoadFromStackSlot.
 | |
| 
 | |
|   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
 | |
|                                                DestReg), FrameIdx));
 | |
|   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
 | |
|                                                get(PPC::RESTORE_CR), DestReg),
 | |
|                                        FrameIdx));
 | |
|     return true;
 | |
|   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
 | |
|                                                get(PPC::RESTORE_CRBIT), DestReg),
 | |
|                                        FrameIdx));
 | |
|     return true;
 | |
|   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
 | |
|     assert(Subtarget.isDarwin() &&
 | |
|            "VRSAVE only needs spill/restore on Darwin");
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
 | |
|                                                get(PPC::RESTORE_VRSAVE),
 | |
|                                                DestReg),
 | |
|                                        FrameIdx));
 | |
|     SpillsVRS = true;
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown regclass!");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator MI,
 | |
|                                    unsigned DestReg, int FrameIdx,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    const TargetRegisterInfo *TRI) const {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   SmallVector<MachineInstr*, 4> NewMIs;
 | |
|   DebugLoc DL;
 | |
|   if (MI != MBB.end()) DL = MI->getDebugLoc();
 | |
| 
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setHasSpills();
 | |
| 
 | |
|   bool NonRI = false, SpillsVRS = false;
 | |
|   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
 | |
|                            NonRI, SpillsVRS))
 | |
|     FuncInfo->setSpillsCR();
 | |
| 
 | |
|   if (SpillsVRS)
 | |
|     FuncInfo->setSpillsVRSAVE();
 | |
| 
 | |
|   if (NonRI)
 | |
|     FuncInfo->setHasNonRISpills();
 | |
| 
 | |
|   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
 | |
|     MBB.insert(MI, NewMIs[i]);
 | |
| 
 | |
|   const MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
 | |
|                             MachineMemOperand::MOLoad,
 | |
|                             MFI.getObjectSize(FrameIdx),
 | |
|                             MFI.getObjectAlignment(FrameIdx));
 | |
|   NewMIs.back()->addMemOperand(MF, MMO);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::
 | |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
 | |
|   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
 | |
|     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
 | |
|   else
 | |
|     // Leave the CR# the same, but invert the condition.
 | |
|     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
 | |
|                              unsigned Reg, MachineRegisterInfo *MRI) const {
 | |
|   // For some instructions, it is legal to fold ZERO into the RA register field.
 | |
|   // A zero immediate should always be loaded with a single li.
 | |
|   unsigned DefOpc = DefMI->getOpcode();
 | |
|   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
 | |
|     return false;
 | |
|   if (!DefMI->getOperand(1).isImm())
 | |
|     return false;
 | |
|   if (DefMI->getOperand(1).getImm() != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Note that we cannot here invert the arguments of an isel in order to fold
 | |
|   // a ZERO into what is presented as the second argument. All we have here
 | |
|   // is the condition bit, and that might come from a CR-logical bit operation.
 | |
| 
 | |
|   const MCInstrDesc &UseMCID = UseMI->getDesc();
 | |
| 
 | |
|   // Only fold into real machine instructions.
 | |
|   if (UseMCID.isPseudo())
 | |
|     return false;
 | |
| 
 | |
|   unsigned UseIdx;
 | |
|   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
 | |
|     if (UseMI->getOperand(UseIdx).isReg() &&
 | |
|         UseMI->getOperand(UseIdx).getReg() == Reg)
 | |
|       break;
 | |
| 
 | |
|   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
 | |
|   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
 | |
| 
 | |
|   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
 | |
| 
 | |
|   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
 | |
|   // register (which might also be specified as a pointer class kind).
 | |
|   if (UseInfo->isLookupPtrRegClass()) {
 | |
|     if (UseInfo->RegClass /* Kind */ != 1)
 | |
|       return false;
 | |
|   } else {
 | |
|     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
 | |
|         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Make sure this is not tied to an output register (or otherwise
 | |
|   // constrained). This is true for ST?UX registers, for example, which
 | |
|   // are tied to their output registers.
 | |
|   if (UseInfo->Constraints != 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned ZeroReg;
 | |
|   if (UseInfo->isLookupPtrRegClass()) {
 | |
|     bool isPPC64 = Subtarget.isPPC64();
 | |
|     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
 | |
|   } else {
 | |
|     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
 | |
|               PPC::ZERO8 : PPC::ZERO;
 | |
|   }
 | |
| 
 | |
|   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
 | |
|   UseMI->getOperand(UseIdx).setReg(ZeroReg);
 | |
| 
 | |
|   if (DeleteDef)
 | |
|     DefMI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
 | |
|   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
 | |
|        I != IE; ++I)
 | |
|     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // We should make sure that, if we're going to predicate both sides of a
 | |
| // condition (a diamond), that both sides don't define the counter register. We
 | |
| // can predicate counter-decrement-based branches, but while that predicates
 | |
| // the branching, it does not predicate the counter decrement. If we tried to
 | |
| // merge the triangle into one predicated block, we'd decrement the counter
 | |
| // twice.
 | |
| bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | |
|                      unsigned NumT, unsigned ExtraT,
 | |
|                      MachineBasicBlock &FMBB,
 | |
|                      unsigned NumF, unsigned ExtraF,
 | |
|                      const BranchProbability &Probability) const {
 | |
|   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
 | |
| }
 | |
| 
 | |
| 
 | |
| bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
 | |
|   // The predicated branches are identified by their type, not really by the
 | |
|   // explicit presence of a predicate. Furthermore, some of them can be
 | |
|   // predicated more than once. Because if conversion won't try to predicate
 | |
|   // any instruction which already claims to be predicated (by returning true
 | |
|   // here), always return false. In doing so, we let isPredicable() be the
 | |
|   // final word on whether not the instruction can be (further) predicated.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
 | |
|   if (!MI->isTerminator())
 | |
|     return false;
 | |
| 
 | |
|   // Conditional branch is a special case.
 | |
|   if (MI->isBranch() && !MI->isBarrier())
 | |
|     return true;
 | |
| 
 | |
|   return !isPredicated(MI);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::PredicateInstruction(
 | |
|                      MachineInstr *MI,
 | |
|                      const SmallVectorImpl<MachineOperand> &Pred) const {
 | |
|   unsigned OpC = MI->getOpcode();
 | |
|   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
 | |
|       bool isPPC64 = Subtarget.isPPC64();
 | |
|       MI->setDesc(get(Pred[0].getImm() ?
 | |
|                       (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
 | |
|                       (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MI->setDesc(get(PPC::BCLR));
 | |
|       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|         .addReg(Pred[1].getReg());
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MI->setDesc(get(PPC::BCLRn));
 | |
|       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|         .addReg(Pred[1].getReg());
 | |
|     } else {
 | |
|       MI->setDesc(get(PPC::BCCLR));
 | |
|       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|         .addImm(Pred[0].getImm())
 | |
|         .addReg(Pred[1].getReg());
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   } else if (OpC == PPC::B) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
 | |
|       bool isPPC64 = Subtarget.isPPC64();
 | |
|       MI->setDesc(get(Pred[0].getImm() ?
 | |
|                       (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                       (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
 | |
|       MI->RemoveOperand(0);
 | |
| 
 | |
|       MI->setDesc(get(PPC::BC));
 | |
|       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|         .addReg(Pred[1].getReg())
 | |
|         .addMBB(MBB);
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
 | |
|       MI->RemoveOperand(0);
 | |
| 
 | |
|       MI->setDesc(get(PPC::BCn));
 | |
|       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|         .addReg(Pred[1].getReg())
 | |
|         .addMBB(MBB);
 | |
|     } else {
 | |
|       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
 | |
|       MI->RemoveOperand(0);
 | |
| 
 | |
|       MI->setDesc(get(PPC::BCC));
 | |
|       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|         .addImm(Pred[0].getImm())
 | |
|         .addReg(Pred[1].getReg())
 | |
|         .addMBB(MBB);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
 | |
|              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
 | |
|       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
 | |
| 
 | |
|     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
 | |
|     bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
 | |
|                                 (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
 | |
|       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|         .addReg(Pred[1].getReg());
 | |
|       return true;
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
 | |
|                                 (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
 | |
|       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|         .addReg(Pred[1].getReg());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
 | |
|                               (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
 | |
|     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|       .addImm(Pred[0].getImm())
 | |
|       .addReg(Pred[1].getReg());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::SubsumesPredicate(
 | |
|                      const SmallVectorImpl<MachineOperand> &Pred1,
 | |
|                      const SmallVectorImpl<MachineOperand> &Pred2) const {
 | |
|   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
 | |
|   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
 | |
| 
 | |
|   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
 | |
|     return false;
 | |
|   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
 | |
|     return false;
 | |
| 
 | |
|   // P1 can only subsume P2 if they test the same condition register.
 | |
|   if (Pred1[1].getReg() != Pred2[1].getReg())
 | |
|     return false;
 | |
| 
 | |
|   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
 | |
|   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
 | |
| 
 | |
|   if (P1 == P2)
 | |
|     return true;
 | |
| 
 | |
|   // Does P1 subsume P2, e.g. GE subsumes GT.
 | |
|   if (P1 == PPC::PRED_LE &&
 | |
|       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
 | |
|     return true;
 | |
|   if (P1 == PPC::PRED_GE &&
 | |
|       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
 | |
|                                     std::vector<MachineOperand> &Pred) const {
 | |
|   // Note: At the present time, the contents of Pred from this function is
 | |
|   // unused by IfConversion. This implementation follows ARM by pushing the
 | |
|   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
 | |
|   // predicate, instructions defining CTR or CTR8 are also included as
 | |
|   // predicate-defining instructions.
 | |
| 
 | |
|   const TargetRegisterClass *RCs[] =
 | |
|     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
 | |
|       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
 | |
| 
 | |
|   bool Found = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
 | |
|       const TargetRegisterClass *RC = RCs[c];
 | |
|       if (MO.isReg()) {
 | |
|         if (MO.isDef() && RC->contains(MO.getReg())) {
 | |
|           Pred.push_back(MO);
 | |
|           Found = true;
 | |
|         }
 | |
|       } else if (MO.isRegMask()) {
 | |
|         for (TargetRegisterClass::iterator I = RC->begin(),
 | |
|              IE = RC->end(); I != IE; ++I)
 | |
|           if (MO.clobbersPhysReg(*I)) {
 | |
|             Pred.push_back(MO);
 | |
|             Found = true;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
 | |
|   unsigned OpC = MI->getOpcode();
 | |
|   switch (OpC) {
 | |
|   default:
 | |
|     return false;
 | |
|   case PPC::B:
 | |
|   case PPC::BLR:
 | |
|   case PPC::BLR8:
 | |
|   case PPC::BCTR:
 | |
|   case PPC::BCTR8:
 | |
|   case PPC::BCTRL:
 | |
|   case PPC::BCTRL8:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
 | |
|                                   unsigned &SrcReg, unsigned &SrcReg2,
 | |
|                                   int &Mask, int &Value) const {
 | |
|   unsigned Opc = MI->getOpcode();
 | |
| 
 | |
|   switch (Opc) {
 | |
|   default: return false;
 | |
|   case PPC::CMPWI:
 | |
|   case PPC::CMPLWI:
 | |
|   case PPC::CMPDI:
 | |
|   case PPC::CMPLDI:
 | |
|     SrcReg = MI->getOperand(1).getReg();
 | |
|     SrcReg2 = 0;
 | |
|     Value = MI->getOperand(2).getImm();
 | |
|     Mask = 0xFFFF;
 | |
|     return true;
 | |
|   case PPC::CMPW:
 | |
|   case PPC::CMPLW:
 | |
|   case PPC::CMPD:
 | |
|   case PPC::CMPLD:
 | |
|   case PPC::FCMPUS:
 | |
|   case PPC::FCMPUD:
 | |
|     SrcReg = MI->getOperand(1).getReg();
 | |
|     SrcReg2 = MI->getOperand(2).getReg();
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
 | |
|                                         unsigned SrcReg, unsigned SrcReg2,
 | |
|                                         int Mask, int Value,
 | |
|                                         const MachineRegisterInfo *MRI) const {
 | |
|   if (DisableCmpOpt)
 | |
|     return false;
 | |
| 
 | |
|   int OpC = CmpInstr->getOpcode();
 | |
|   unsigned CRReg = CmpInstr->getOperand(0).getReg();
 | |
| 
 | |
|   // FP record forms set CR1 based on the execption status bits, not a
 | |
|   // comparison with zero.
 | |
|   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
 | |
|     return false;
 | |
| 
 | |
|   // The record forms set the condition register based on a signed comparison
 | |
|   // with zero (so says the ISA manual). This is not as straightforward as it
 | |
|   // seems, however, because this is always a 64-bit comparison on PPC64, even
 | |
|   // for instructions that are 32-bit in nature (like slw for example).
 | |
|   // So, on PPC32, for unsigned comparisons, we can use the record forms only
 | |
|   // for equality checks (as those don't depend on the sign). On PPC64,
 | |
|   // we are restricted to equality for unsigned 64-bit comparisons and for
 | |
|   // signed 32-bit comparisons the applicability is more restricted.
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
 | |
|   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
 | |
|   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
 | |
| 
 | |
|   // Get the unique definition of SrcReg.
 | |
|   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
 | |
|   if (!MI) return false;
 | |
|   int MIOpC = MI->getOpcode();
 | |
| 
 | |
|   bool equalityOnly = false;
 | |
|   bool noSub = false;
 | |
|   if (isPPC64) {
 | |
|     if (is32BitSignedCompare) {
 | |
|       // We can perform this optimization only if MI is sign-extending.
 | |
|       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
 | |
|           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
 | |
|           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
 | |
|           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
 | |
|           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
 | |
|         noSub = true;
 | |
|       } else
 | |
|         return false;
 | |
|     } else if (is32BitUnsignedCompare) {
 | |
|       // We can perform this optimization, equality only, if MI is
 | |
|       // zero-extending.
 | |
|       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
 | |
|           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
 | |
|           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
 | |
|         noSub = true;
 | |
|         equalityOnly = true;
 | |
|       } else
 | |
|         return false;
 | |
|     } else
 | |
|       equalityOnly = is64BitUnsignedCompare;
 | |
|   } else
 | |
|     equalityOnly = is32BitUnsignedCompare;
 | |
| 
 | |
|   if (equalityOnly) {
 | |
|     // We need to check the uses of the condition register in order to reject
 | |
|     // non-equality comparisons.
 | |
|     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
 | |
|          IE = MRI->use_instr_end(); I != IE; ++I) {
 | |
|       MachineInstr *UseMI = &*I;
 | |
|       if (UseMI->getOpcode() == PPC::BCC) {
 | |
|         unsigned Pred = UseMI->getOperand(0).getImm();
 | |
|         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
 | |
|           return false;
 | |
|       } else if (UseMI->getOpcode() == PPC::ISEL ||
 | |
|                  UseMI->getOpcode() == PPC::ISEL8) {
 | |
|         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
 | |
|         if (SubIdx != PPC::sub_eq)
 | |
|           return false;
 | |
|       } else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator I = CmpInstr;
 | |
| 
 | |
|   // Scan forward to find the first use of the compare.
 | |
|   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
 | |
|        I != EL; ++I) {
 | |
|     bool FoundUse = false;
 | |
|     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
 | |
|          JE = MRI->use_instr_end(); J != JE; ++J)
 | |
|       if (&*J == &*I) {
 | |
|         FoundUse = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (FoundUse)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // There are two possible candidates which can be changed to set CR[01].
 | |
|   // One is MI, the other is a SUB instruction.
 | |
|   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
 | |
|   MachineInstr *Sub = nullptr;
 | |
|   if (SrcReg2 != 0)
 | |
|     // MI is not a candidate for CMPrr.
 | |
|     MI = nullptr;
 | |
|   // FIXME: Conservatively refuse to convert an instruction which isn't in the
 | |
|   // same BB as the comparison. This is to allow the check below to avoid calls
 | |
|   // (and other explicit clobbers); instead we should really check for these
 | |
|   // more explicitly (in at least a few predecessors).
 | |
|   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
 | |
|     // PPC does not have a record-form SUBri.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Search for Sub.
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   --I;
 | |
| 
 | |
|   // Get ready to iterate backward from CmpInstr.
 | |
|   MachineBasicBlock::iterator E = MI,
 | |
|                               B = CmpInstr->getParent()->begin();
 | |
| 
 | |
|   for (; I != E && !noSub; --I) {
 | |
|     const MachineInstr &Instr = *I;
 | |
|     unsigned IOpC = Instr.getOpcode();
 | |
| 
 | |
|     if (&*I != CmpInstr && (
 | |
|         Instr.modifiesRegister(PPC::CR0, TRI) ||
 | |
|         Instr.readsRegister(PPC::CR0, TRI)))
 | |
|       // This instruction modifies or uses the record condition register after
 | |
|       // the one we want to change. While we could do this transformation, it
 | |
|       // would likely not be profitable. This transformation removes one
 | |
|       // instruction, and so even forcing RA to generate one move probably
 | |
|       // makes it unprofitable.
 | |
|       return false;
 | |
| 
 | |
|     // Check whether CmpInstr can be made redundant by the current instruction.
 | |
|     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
 | |
|          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
 | |
|         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
 | |
|         ((Instr.getOperand(1).getReg() == SrcReg &&
 | |
|           Instr.getOperand(2).getReg() == SrcReg2) ||
 | |
|         (Instr.getOperand(1).getReg() == SrcReg2 &&
 | |
|          Instr.getOperand(2).getReg() == SrcReg))) {
 | |
|       Sub = &*I;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (I == B)
 | |
|       // The 'and' is below the comparison instruction.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Return false if no candidates exist.
 | |
|   if (!MI && !Sub)
 | |
|     return false;
 | |
| 
 | |
|   // The single candidate is called MI.
 | |
|   if (!MI) MI = Sub;
 | |
| 
 | |
|   int NewOpC = -1;
 | |
|   MIOpC = MI->getOpcode();
 | |
|   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
 | |
|     NewOpC = MIOpC;
 | |
|   else {
 | |
|     NewOpC = PPC::getRecordFormOpcode(MIOpC);
 | |
|     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
 | |
|       NewOpC = MIOpC;
 | |
|   }
 | |
| 
 | |
|   // FIXME: On the non-embedded POWER architectures, only some of the record
 | |
|   // forms are fast, and we should use only the fast ones.
 | |
| 
 | |
|   // The defining instruction has a record form (or is already a record
 | |
|   // form). It is possible, however, that we'll need to reverse the condition
 | |
|   // code of the users.
 | |
|   if (NewOpC == -1)
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
 | |
|   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
 | |
| 
 | |
|   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
 | |
|   // needs to be updated to be based on SUB.  Push the condition code
 | |
|   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
 | |
|   // condition code of these operands will be modified.
 | |
|   bool ShouldSwap = false;
 | |
|   if (Sub) {
 | |
|     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
 | |
|       Sub->getOperand(2).getReg() == SrcReg;
 | |
| 
 | |
|     // The operands to subf are the opposite of sub, so only in the fixed-point
 | |
|     // case, invert the order.
 | |
|     ShouldSwap = !ShouldSwap;
 | |
|   }
 | |
| 
 | |
|   if (ShouldSwap)
 | |
|     for (MachineRegisterInfo::use_instr_iterator
 | |
|          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
 | |
|          I != IE; ++I) {
 | |
|       MachineInstr *UseMI = &*I;
 | |
|       if (UseMI->getOpcode() == PPC::BCC) {
 | |
|         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
 | |
|         assert((!equalityOnly ||
 | |
|                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
 | |
|                "Invalid predicate for equality-only optimization");
 | |
|         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
 | |
|                                 PPC::getSwappedPredicate(Pred)));
 | |
|       } else if (UseMI->getOpcode() == PPC::ISEL ||
 | |
|                  UseMI->getOpcode() == PPC::ISEL8) {
 | |
|         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
 | |
|         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
 | |
|                "Invalid CR bit for equality-only optimization");
 | |
| 
 | |
|         if (NewSubReg == PPC::sub_lt)
 | |
|           NewSubReg = PPC::sub_gt;
 | |
|         else if (NewSubReg == PPC::sub_gt)
 | |
|           NewSubReg = PPC::sub_lt;
 | |
| 
 | |
|         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
 | |
|                                                  NewSubReg));
 | |
|       } else // We need to abort on a user we don't understand.
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   // Create a new virtual register to hold the value of the CR set by the
 | |
|   // record-form instruction. If the instruction was not previously in
 | |
|   // record form, then set the kill flag on the CR.
 | |
|   CmpInstr->eraseFromParent();
 | |
| 
 | |
|   MachineBasicBlock::iterator MII = MI;
 | |
|   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
 | |
|           get(TargetOpcode::COPY), CRReg)
 | |
|     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
 | |
| 
 | |
|   if (MIOpC != NewOpC) {
 | |
|     // We need to be careful here: we're replacing one instruction with
 | |
|     // another, and we need to make sure that we get all of the right
 | |
|     // implicit uses and defs. On the other hand, the caller may be holding
 | |
|     // an iterator to this instruction, and so we can't delete it (this is
 | |
|     // specifically the case if this is the instruction directly after the
 | |
|     // compare).
 | |
| 
 | |
|     const MCInstrDesc &NewDesc = get(NewOpC);
 | |
|     MI->setDesc(NewDesc);
 | |
| 
 | |
|     if (NewDesc.ImplicitDefs)
 | |
|       for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
 | |
|            *ImpDefs; ++ImpDefs)
 | |
|         if (!MI->definesRegister(*ImpDefs))
 | |
|           MI->addOperand(*MI->getParent()->getParent(),
 | |
|                          MachineOperand::CreateReg(*ImpDefs, true, true));
 | |
|     if (NewDesc.ImplicitUses)
 | |
|       for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
 | |
|            *ImpUses; ++ImpUses)
 | |
|         if (!MI->readsRegister(*ImpUses))
 | |
|           MI->addOperand(*MI->getParent()->getParent(),
 | |
|                          MachineOperand::CreateReg(*ImpUses, false, true));
 | |
|   }
 | |
| 
 | |
|   // Modify the condition code of operands in OperandsToUpdate.
 | |
|   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
 | |
|   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
 | |
|   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
 | |
|     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
 | |
| 
 | |
|   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
 | |
|     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetInstSize - Return the number of bytes of code the specified
 | |
| /// instruction may be.  This returns the maximum number of bytes.
 | |
| ///
 | |
| unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
 | |
|   unsigned Opcode = MI->getOpcode();
 | |
| 
 | |
|   if (Opcode == PPC::INLINEASM) {
 | |
|     const MachineFunction *MF = MI->getParent()->getParent();
 | |
|     const char *AsmStr = MI->getOperand(0).getSymbolName();
 | |
|     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
 | |
|   } else if (Opcode == TargetOpcode::STACKMAP) {
 | |
|     return MI->getOperand(1).getImm();
 | |
|   } else if (Opcode == TargetOpcode::PATCHPOINT) {
 | |
|     PatchPointOpers Opers(MI);
 | |
|     return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
 | |
|   } else {
 | |
|     const MCInstrDesc &Desc = get(Opcode);
 | |
|     return Desc.getSize();
 | |
|   }
 | |
| }
 | |
| 
 |