mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Same functionality, but hoists the vector growth out of the loop. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229500 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2207 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2207 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// \brief Custom DAG lowering for SI
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| // Provide M_PI.
 | |
| #define _USE_MATH_DEFINES
 | |
| #include <cmath>
 | |
| #endif
 | |
| 
 | |
| #include "SIISelLowering.h"
 | |
| #include "AMDGPU.h"
 | |
| #include "AMDGPUIntrinsicInfo.h"
 | |
| #include "AMDGPUSubtarget.h"
 | |
| #include "SIInstrInfo.h"
 | |
| #include "SIMachineFunctionInfo.h"
 | |
| #include "SIRegisterInfo.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| SITargetLowering::SITargetLowering(TargetMachine &TM,
 | |
|                                    const AMDGPUSubtarget &STI)
 | |
|     : AMDGPUTargetLowering(TM, STI) {
 | |
|   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
 | |
|   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
 | |
| 
 | |
|   addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
 | |
|   addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
 | |
| 
 | |
|   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
 | |
|   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
 | |
| 
 | |
|   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
 | |
|   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
 | |
|   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
 | |
| 
 | |
|   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
 | |
|   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
 | |
| 
 | |
|   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
 | |
|   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
 | |
| 
 | |
|   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
 | |
|   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::ADD, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::ADDC, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::ADDE, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::SUBC, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::SUBE, MVT::i32, Legal);
 | |
| 
 | |
|   setOperationAction(ISD::FSIN, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::FCOS, MVT::f32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
 | |
|   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
 | |
|   setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
 | |
|   setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
 | |
| 
 | |
|   // We need to custom lower vector stores from local memory
 | |
|   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
 | |
|   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
 | |
|   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
 | |
|   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::STORE, MVT::i1, Custom);
 | |
|   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SELECT, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SELECT, MVT::f64, Promote);
 | |
|   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
 | |
| 
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
 | |
|   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
 | |
| 
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
 | |
| 
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     if (VT == MVT::i64)
 | |
|       continue;
 | |
| 
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
 | |
| 
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
 | |
| 
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
 | |
|   }
 | |
| 
 | |
|   for (MVT VT : MVT::integer_vector_valuetypes()) {
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
 | |
|   }
 | |
| 
 | |
|   for (MVT VT : MVT::fp_valuetypes())
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
 | |
| 
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
 | |
|   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
 | |
|   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::LOAD, MVT::i1, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
 | |
| 
 | |
|   // These should use UDIVREM, so set them to expand
 | |
|   setOperationAction(ISD::UDIV, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i64, Expand);
 | |
| 
 | |
|   // We only support LOAD/STORE and vector manipulation ops for vectors
 | |
|   // with > 4 elements.
 | |
|   MVT VecTypes[] = {
 | |
|     MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32
 | |
|   };
 | |
| 
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::i1, Promote);
 | |
| 
 | |
|   for (MVT VT : VecTypes) {
 | |
|     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
 | |
|       switch(Op) {
 | |
|       case ISD::LOAD:
 | |
|       case ISD::STORE:
 | |
|       case ISD::BUILD_VECTOR:
 | |
|       case ISD::BITCAST:
 | |
|       case ISD::EXTRACT_VECTOR_ELT:
 | |
|       case ISD::INSERT_VECTOR_ELT:
 | |
|       case ISD::INSERT_SUBVECTOR:
 | |
|       case ISD::EXTRACT_SUBVECTOR:
 | |
|         break;
 | |
|       case ISD::CONCAT_VECTORS:
 | |
|         setOperationAction(Op, VT, Custom);
 | |
|         break;
 | |
|       default:
 | |
|         setOperationAction(Op, VT, Expand);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
 | |
|     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FRINT, MVT::f64, Legal);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::FDIV, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::FDIV, MVT::f64, Custom);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::FADD);
 | |
|   setTargetDAGCombine(ISD::FSUB);
 | |
|   setTargetDAGCombine(ISD::FMINNUM);
 | |
|   setTargetDAGCombine(ISD::FMAXNUM);
 | |
|   setTargetDAGCombine(ISD::SELECT_CC);
 | |
|   setTargetDAGCombine(ISD::SETCC);
 | |
|   setTargetDAGCombine(ISD::AND);
 | |
|   setTargetDAGCombine(ISD::OR);
 | |
|   setTargetDAGCombine(ISD::UINT_TO_FP);
 | |
| 
 | |
|   // All memory operations. Some folding on the pointer operand is done to help
 | |
|   // matching the constant offsets in the addressing modes.
 | |
|   setTargetDAGCombine(ISD::LOAD);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_STORE);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_SWAP);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
 | |
|   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
 | |
| 
 | |
|   setSchedulingPreference(Sched::RegPressure);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TargetLowering queries
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
 | |
|                                           EVT) const {
 | |
|   // SI has some legal vector types, but no legal vector operations. Say no
 | |
|   // shuffles are legal in order to prefer scalarizing some vector operations.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // FIXME: This really needs an address space argument. The immediate offset
 | |
| // size is different for different sets of memory instruction sets.
 | |
| 
 | |
| // The single offset DS instructions have a 16-bit unsigned byte offset.
 | |
| //
 | |
| // MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
 | |
| // r + i with addr64. 32-bit has more addressing mode options. Depending on the
 | |
| // resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
 | |
| //
 | |
| // SMRD instructions have an 8-bit, dword offset.
 | |
| //
 | |
| bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                              Type *Ty) const {
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // Allow a 16-bit unsigned immediate field, since this is what DS instructions
 | |
|   // use.
 | |
|   if (!isUInt<16>(AM.BaseOffs))
 | |
|     return false;
 | |
| 
 | |
|   // Only support r+r,
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | |
|     break;
 | |
|   case 1:
 | |
|     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | |
|       return false;
 | |
|     // Otherwise we have r+r or r+i.
 | |
|     break;
 | |
|   case 2:
 | |
|     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | |
|       return false;
 | |
|     // Allow 2*r as r+r.
 | |
|     break;
 | |
|   default: // Don't allow n * r
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | |
|                                                       unsigned AddrSpace,
 | |
|                                                       unsigned Align,
 | |
|                                                       bool *IsFast) const {
 | |
|   if (IsFast)
 | |
|     *IsFast = false;
 | |
| 
 | |
|   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
 | |
|   // which isn't a simple VT.
 | |
|   if (!VT.isSimple() || VT == MVT::Other)
 | |
|     return false;
 | |
| 
 | |
|   // TODO - CI+ supports unaligned memory accesses, but this requires driver
 | |
|   // support.
 | |
| 
 | |
|   // XXX - The only mention I see of this in the ISA manual is for LDS direct
 | |
|   // reads the "byte address and must be dword aligned". Is it also true for the
 | |
|   // normal loads and stores?
 | |
|   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
 | |
|     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
 | |
|     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
 | |
|     // with adjacent offsets.
 | |
|     return Align % 4 == 0;
 | |
|   }
 | |
| 
 | |
|   // Smaller than dword value must be aligned.
 | |
|   // FIXME: This should be allowed on CI+
 | |
|   if (VT.bitsLT(MVT::i32))
 | |
|     return false;
 | |
| 
 | |
|   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
 | |
|   // byte-address are ignored, thus forcing Dword alignment.
 | |
|   // This applies to private, global, and constant memory.
 | |
|   if (IsFast)
 | |
|     *IsFast = true;
 | |
| 
 | |
|   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
 | |
| }
 | |
| 
 | |
| EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
 | |
|                                           unsigned SrcAlign, bool IsMemset,
 | |
|                                           bool ZeroMemset,
 | |
|                                           bool MemcpyStrSrc,
 | |
|                                           MachineFunction &MF) const {
 | |
|   // FIXME: Should account for address space here.
 | |
| 
 | |
|   // The default fallback uses the private pointer size as a guess for a type to
 | |
|   // use. Make sure we switch these to 64-bit accesses.
 | |
| 
 | |
|   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
 | |
|     return MVT::v4i32;
 | |
| 
 | |
|   if (Size >= 8 && DstAlign >= 4)
 | |
|     return MVT::v2i32;
 | |
| 
 | |
|   // Use the default.
 | |
|   return MVT::Other;
 | |
| }
 | |
| 
 | |
| TargetLoweringBase::LegalizeTypeAction
 | |
| SITargetLowering::getPreferredVectorAction(EVT VT) const {
 | |
|   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
 | |
|     return TypeSplitVector;
 | |
| 
 | |
|   return TargetLoweringBase::getPreferredVectorAction(VT);
 | |
| }
 | |
| 
 | |
| bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | |
|                                                          Type *Ty) const {
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
|   return TII->isInlineConstant(Imm);
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
 | |
|                                          SDLoc SL, SDValue Chain,
 | |
|                                          unsigned Offset, bool Signed) const {
 | |
|   const DataLayout *DL = getDataLayout();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const SIRegisterInfo *TRI =
 | |
|       static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
 | |
|   unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
 | |
| 
 | |
|   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
 | |
| 
 | |
|   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
 | |
|   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
 | |
|   SDValue BasePtr =  DAG.getCopyFromReg(Chain, SL,
 | |
|                            MRI.getLiveInVirtReg(InputPtrReg), MVT::i64);
 | |
|   SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
 | |
|                                              DAG.getConstant(Offset, MVT::i64));
 | |
|   SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
 | |
|   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
 | |
| 
 | |
|   return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
 | |
|                      VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
 | |
|                      false, // isVolatile
 | |
|                      true, // isNonTemporal
 | |
|                      true, // isInvariant
 | |
|                      DL->getABITypeAlignment(Ty)); // Alignment
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
 | |
|     SmallVectorImpl<SDValue> &InVals) const {
 | |
|   const SIRegisterInfo *TRI =
 | |
|       static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   FunctionType *FType = MF.getFunction()->getFunctionType();
 | |
|   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
 | |
| 
 | |
|   assert(CallConv == CallingConv::C);
 | |
| 
 | |
|   SmallVector<ISD::InputArg, 16> Splits;
 | |
|   BitVector Skipped(Ins.size());
 | |
| 
 | |
|   for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
 | |
|     const ISD::InputArg &Arg = Ins[i];
 | |
| 
 | |
|     // First check if it's a PS input addr
 | |
|     if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
 | |
|         !Arg.Flags.isByVal()) {
 | |
| 
 | |
|       assert((PSInputNum <= 15) && "Too many PS inputs!");
 | |
| 
 | |
|       if (!Arg.Used) {
 | |
|         // We can savely skip PS inputs
 | |
|         Skipped.set(i);
 | |
|         ++PSInputNum;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Info->PSInputAddr |= 1 << PSInputNum++;
 | |
|     }
 | |
| 
 | |
|     // Second split vertices into their elements
 | |
|     if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
 | |
|       ISD::InputArg NewArg = Arg;
 | |
|       NewArg.Flags.setSplit();
 | |
|       NewArg.VT = Arg.VT.getVectorElementType();
 | |
| 
 | |
|       // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
 | |
|       // three or five element vertex only needs three or five registers,
 | |
|       // NOT four or eigth.
 | |
|       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
 | |
|       unsigned NumElements = ParamType->getVectorNumElements();
 | |
| 
 | |
|       for (unsigned j = 0; j != NumElements; ++j) {
 | |
|         Splits.push_back(NewArg);
 | |
|         NewArg.PartOffset += NewArg.VT.getStoreSize();
 | |
|       }
 | |
| 
 | |
|     } else if (Info->getShaderType() != ShaderType::COMPUTE) {
 | |
|       Splits.push_back(Arg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // At least one interpolation mode must be enabled or else the GPU will hang.
 | |
|   if (Info->getShaderType() == ShaderType::PIXEL &&
 | |
|       (Info->PSInputAddr & 0x7F) == 0) {
 | |
|     Info->PSInputAddr |= 1;
 | |
|     CCInfo.AllocateReg(AMDGPU::VGPR0);
 | |
|     CCInfo.AllocateReg(AMDGPU::VGPR1);
 | |
|   }
 | |
| 
 | |
|   // The pointer to the list of arguments is stored in SGPR0, SGPR1
 | |
| 	// The pointer to the scratch buffer is stored in SGPR2, SGPR3
 | |
|   if (Info->getShaderType() == ShaderType::COMPUTE) {
 | |
|     if (Subtarget->isAmdHsaOS())
 | |
|       Info->NumUserSGPRs = 2;  // FIXME: Need to support scratch buffers.
 | |
|     else
 | |
|       Info->NumUserSGPRs = 4;
 | |
| 
 | |
|     unsigned InputPtrReg =
 | |
|         TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
 | |
|     unsigned InputPtrRegLo =
 | |
|         TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
 | |
|     unsigned InputPtrRegHi =
 | |
|         TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);
 | |
| 
 | |
|     unsigned ScratchPtrReg =
 | |
|         TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
 | |
|     unsigned ScratchPtrRegLo =
 | |
|         TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
 | |
|     unsigned ScratchPtrRegHi =
 | |
|         TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);
 | |
| 
 | |
|     CCInfo.AllocateReg(InputPtrRegLo);
 | |
|     CCInfo.AllocateReg(InputPtrRegHi);
 | |
|     CCInfo.AllocateReg(ScratchPtrRegLo);
 | |
|     CCInfo.AllocateReg(ScratchPtrRegHi);
 | |
|     MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
 | |
|     MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
 | |
|   }
 | |
| 
 | |
|   if (Info->getShaderType() == ShaderType::COMPUTE) {
 | |
|     getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
 | |
|                             Splits);
 | |
|   }
 | |
| 
 | |
|   AnalyzeFormalArguments(CCInfo, Splits);
 | |
| 
 | |
|   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
 | |
| 
 | |
|     const ISD::InputArg &Arg = Ins[i];
 | |
|     if (Skipped[i]) {
 | |
|       InVals.push_back(DAG.getUNDEF(Arg.VT));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     CCValAssign &VA = ArgLocs[ArgIdx++];
 | |
|     MVT VT = VA.getLocVT();
 | |
| 
 | |
|     if (VA.isMemLoc()) {
 | |
|       VT = Ins[i].VT;
 | |
|       EVT MemVT = Splits[i].VT;
 | |
|       const unsigned Offset = 36 + VA.getLocMemOffset();
 | |
|       // The first 36 bytes of the input buffer contains information about
 | |
|       // thread group and global sizes.
 | |
|       SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, DAG.getRoot(),
 | |
|                                    Offset, Ins[i].Flags.isSExt());
 | |
| 
 | |
|       const PointerType *ParamTy =
 | |
|         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
 | |
|       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
 | |
|           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
 | |
|         // On SI local pointers are just offsets into LDS, so they are always
 | |
|         // less than 16-bits.  On CI and newer they could potentially be
 | |
|         // real pointers, so we can't guarantee their size.
 | |
|         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
 | |
|                           DAG.getValueType(MVT::i16));
 | |
|       }
 | |
| 
 | |
|       InVals.push_back(Arg);
 | |
|       Info->ABIArgOffset = Offset + MemVT.getStoreSize();
 | |
|       continue;
 | |
|     }
 | |
|     assert(VA.isRegLoc() && "Parameter must be in a register!");
 | |
| 
 | |
|     unsigned Reg = VA.getLocReg();
 | |
| 
 | |
|     if (VT == MVT::i64) {
 | |
|       // For now assume it is a pointer
 | |
|       Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
 | |
|                                      &AMDGPU::SReg_64RegClass);
 | |
|       Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
 | |
|       InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
 | |
| 
 | |
|     Reg = MF.addLiveIn(Reg, RC);
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
 | |
| 
 | |
|     if (Arg.VT.isVector()) {
 | |
| 
 | |
|       // Build a vector from the registers
 | |
|       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
 | |
|       unsigned NumElements = ParamType->getVectorNumElements();
 | |
| 
 | |
|       SmallVector<SDValue, 4> Regs;
 | |
|       Regs.push_back(Val);
 | |
|       for (unsigned j = 1; j != NumElements; ++j) {
 | |
|         Reg = ArgLocs[ArgIdx++].getLocReg();
 | |
|         Reg = MF.addLiveIn(Reg, RC);
 | |
|         Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
 | |
|       }
 | |
| 
 | |
|       // Fill up the missing vector elements
 | |
|       NumElements = Arg.VT.getVectorNumElements() - NumElements;
 | |
|       Regs.append(NumElements, DAG.getUNDEF(VT));
 | |
| 
 | |
|       InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   if (Info->getShaderType() != ShaderType::COMPUTE) {
 | |
|     unsigned ScratchIdx = CCInfo.getFirstUnallocated(
 | |
|         AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs());
 | |
|     Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
 | |
|     MachineInstr * MI, MachineBasicBlock * BB) const {
 | |
| 
 | |
|   MachineBasicBlock::iterator I = *MI;
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
| 
 | |
|   switch (MI->getOpcode()) {
 | |
|   default:
 | |
|     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
 | |
|   case AMDGPU::BRANCH: return BB;
 | |
|   case AMDGPU::V_SUB_F64: {
 | |
|     unsigned DestReg = MI->getOperand(0).getReg();
 | |
|     BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64), DestReg)
 | |
|       .addImm(0)  // SRC0 modifiers
 | |
|       .addReg(MI->getOperand(1).getReg())
 | |
|       .addImm(1)  // SRC1 modifiers
 | |
|       .addReg(MI->getOperand(2).getReg())
 | |
|       .addImm(0)  // CLAMP
 | |
|       .addImm(0); // OMOD
 | |
|     MI->eraseFromParent();
 | |
|     break;
 | |
|   }
 | |
|   case AMDGPU::SI_RegisterStorePseudo: {
 | |
|     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
 | |
|     unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
 | |
|     MachineInstrBuilder MIB =
 | |
|         BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
 | |
|                 Reg);
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
 | |
|       MIB.addOperand(MI->getOperand(i));
 | |
| 
 | |
|     MI->eraseFromParent();
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
 | |
|   // This currently forces unfolding various combinations of fsub into fma with
 | |
|   // free fneg'd operands. As long as we have fast FMA (controlled by
 | |
|   // isFMAFasterThanFMulAndFAdd), we should perform these.
 | |
| 
 | |
|   // When fma is quarter rate, for f64 where add / sub are at best half rate,
 | |
|   // most of these combines appear to be cycle neutral but save on instruction
 | |
|   // count / code size.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
 | |
|   if (!VT.isVector()) {
 | |
|     return MVT::i1;
 | |
|   }
 | |
|   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
 | |
| }
 | |
| 
 | |
| MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
 | |
|   return MVT::i32;
 | |
| }
 | |
| 
 | |
| // Answering this is somewhat tricky and depends on the specific device which
 | |
| // have different rates for fma or all f64 operations.
 | |
| //
 | |
| // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
 | |
| // regardless of which device (although the number of cycles differs between
 | |
| // devices), so it is always profitable for f64.
 | |
| //
 | |
| // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
 | |
| // only on full rate devices. Normally, we should prefer selecting v_mad_f32
 | |
| // which we can always do even without fused FP ops since it returns the same
 | |
| // result as the separate operations and since it is always full
 | |
| // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
 | |
| // however does not support denormals, so we do report fma as faster if we have
 | |
| // a fast fma device and require denormals.
 | |
| //
 | |
| bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | |
|   VT = VT.getScalarType();
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f32:
 | |
|     // This is as fast on some subtargets. However, we always have full rate f32
 | |
|     // mad available which returns the same result as the separate operations
 | |
|     // which we should prefer over fma.
 | |
|     return false;
 | |
|   case MVT::f64:
 | |
|     return true;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Custom DAG Lowering Operations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
 | |
|   case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
 | |
|   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
 | |
|   case ISD::LOAD: {
 | |
|     SDValue Result = LowerLOAD(Op, DAG);
 | |
|     assert((!Result.getNode() ||
 | |
|             Result.getNode()->getNumValues() == 2) &&
 | |
|            "Load should return a value and a chain");
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FSIN:
 | |
|   case ISD::FCOS:
 | |
|     return LowerTrig(Op, DAG);
 | |
|   case ISD::SELECT: return LowerSELECT(Op, DAG);
 | |
|   case ISD::FDIV: return LowerFDIV(Op, DAG);
 | |
|   case ISD::STORE: return LowerSTORE(Op, DAG);
 | |
|   case ISD::GlobalAddress: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
 | |
|     return LowerGlobalAddress(MFI, Op, DAG);
 | |
|   }
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// \brief Helper function for LowerBRCOND
 | |
| static SDNode *findUser(SDValue Value, unsigned Opcode) {
 | |
| 
 | |
|   SDNode *Parent = Value.getNode();
 | |
|   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
 | |
|        I != E; ++I) {
 | |
| 
 | |
|     if (I.getUse().get() != Value)
 | |
|       continue;
 | |
| 
 | |
|     if (I->getOpcode() == Opcode)
 | |
|       return *I;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
 | |
| 
 | |
|   FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
 | |
|   unsigned FrameIndex = FINode->getIndex();
 | |
| 
 | |
|   return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
 | |
| }
 | |
| 
 | |
| /// This transforms the control flow intrinsics to get the branch destination as
 | |
| /// last parameter, also switches branch target with BR if the need arise
 | |
| SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
 | |
|                                       SelectionDAG &DAG) const {
 | |
| 
 | |
|   SDLoc DL(BRCOND);
 | |
| 
 | |
|   SDNode *Intr = BRCOND.getOperand(1).getNode();
 | |
|   SDValue Target = BRCOND.getOperand(2);
 | |
|   SDNode *BR = nullptr;
 | |
| 
 | |
|   if (Intr->getOpcode() == ISD::SETCC) {
 | |
|     // As long as we negate the condition everything is fine
 | |
|     SDNode *SetCC = Intr;
 | |
|     assert(SetCC->getConstantOperandVal(1) == 1);
 | |
|     assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
 | |
|            ISD::SETNE);
 | |
|     Intr = SetCC->getOperand(0).getNode();
 | |
| 
 | |
|   } else {
 | |
|     // Get the target from BR if we don't negate the condition
 | |
|     BR = findUser(BRCOND, ISD::BR);
 | |
|     Target = BR->getOperand(1);
 | |
|   }
 | |
| 
 | |
|   assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
 | |
| 
 | |
|   // Build the result and
 | |
|   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
 | |
| 
 | |
|   // operands of the new intrinsic call
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   Ops.push_back(BRCOND.getOperand(0));
 | |
|   Ops.append(Intr->op_begin() + 1, Intr->op_end());
 | |
|   Ops.push_back(Target);
 | |
| 
 | |
|   // build the new intrinsic call
 | |
|   SDNode *Result = DAG.getNode(
 | |
|     Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
 | |
|     DAG.getVTList(Res), Ops).getNode();
 | |
| 
 | |
|   if (BR) {
 | |
|     // Give the branch instruction our target
 | |
|     SDValue Ops[] = {
 | |
|       BR->getOperand(0),
 | |
|       BRCOND.getOperand(2)
 | |
|     };
 | |
|     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
 | |
|     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
 | |
|     BR = NewBR.getNode();
 | |
|   }
 | |
| 
 | |
|   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
 | |
| 
 | |
|   // Copy the intrinsic results to registers
 | |
|   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
 | |
|     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
 | |
|     if (!CopyToReg)
 | |
|       continue;
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(
 | |
|       Chain, DL,
 | |
|       CopyToReg->getOperand(1),
 | |
|       SDValue(Result, i - 1),
 | |
|       SDValue());
 | |
| 
 | |
|     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
 | |
|   }
 | |
| 
 | |
|   // Remove the old intrinsic from the chain
 | |
|   DAG.ReplaceAllUsesOfValueWith(
 | |
|     SDValue(Intr, Intr->getNumValues() - 1),
 | |
|     Intr->getOperand(0));
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
 | |
|                                              SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
 | |
| 
 | |
|   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
 | |
|     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
 | |
| 
 | |
|   SDLoc DL(GSD);
 | |
|   const GlobalValue *GV = GSD->getGlobal();
 | |
|   MVT PtrVT = getPointerTy(GSD->getAddressSpace());
 | |
| 
 | |
|   SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
 | |
|   SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
 | |
| 
 | |
|   SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
 | |
|                               DAG.getConstant(0, MVT::i32));
 | |
|   SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
 | |
|                               DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|   SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
 | |
|                            PtrLo, GA);
 | |
|   SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
 | |
|                            PtrHi, DAG.getConstant(0, MVT::i32),
 | |
|                            SDValue(Lo.getNode(), 1));
 | |
|   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const SIRegisterInfo *TRI =
 | |
|       static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
| 
 | |
|   switch (IntrinsicID) {
 | |
|   case Intrinsic::r600_read_ngroups_x:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::NGROUPS_X, false);
 | |
|   case Intrinsic::r600_read_ngroups_y:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::NGROUPS_Y, false);
 | |
|   case Intrinsic::r600_read_ngroups_z:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::NGROUPS_Z, false);
 | |
|   case Intrinsic::r600_read_global_size_x:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
 | |
|   case Intrinsic::r600_read_global_size_y:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
 | |
|   case Intrinsic::r600_read_global_size_z:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
 | |
|   case Intrinsic::r600_read_local_size_x:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::LOCAL_SIZE_X, false);
 | |
|   case Intrinsic::r600_read_local_size_y:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
 | |
|   case Intrinsic::r600_read_local_size_z:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           SI::KernelInputOffsets::LOCAL_SIZE_Z, false);
 | |
| 
 | |
|   case Intrinsic::AMDGPU_read_workdim:
 | |
|     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | |
|                           MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
 | |
|                           false);
 | |
| 
 | |
|   case Intrinsic::r600_read_tgid_x:
 | |
|     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
 | |
|       TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
 | |
|   case Intrinsic::r600_read_tgid_y:
 | |
|     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
 | |
|       TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
 | |
|   case Intrinsic::r600_read_tgid_z:
 | |
|     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
 | |
|       TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
 | |
|   case Intrinsic::r600_read_tidig_x:
 | |
|     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
 | |
|       TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
 | |
|   case Intrinsic::r600_read_tidig_y:
 | |
|     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
 | |
|       TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
 | |
|   case Intrinsic::r600_read_tidig_z:
 | |
|     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
 | |
|       TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
 | |
|   case AMDGPUIntrinsic::SI_load_const: {
 | |
|     SDValue Ops[] = {
 | |
|       Op.getOperand(1),
 | |
|       Op.getOperand(2)
 | |
|     };
 | |
| 
 | |
|     MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo(),
 | |
|       MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
 | |
|       VT.getStoreSize(), 4);
 | |
|     return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
 | |
|                                    Op->getVTList(), Ops, VT, MMO);
 | |
|   }
 | |
|   case AMDGPUIntrinsic::SI_sample:
 | |
|     return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
 | |
|   case AMDGPUIntrinsic::SI_sampleb:
 | |
|     return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
 | |
|   case AMDGPUIntrinsic::SI_sampled:
 | |
|     return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
 | |
|   case AMDGPUIntrinsic::SI_samplel:
 | |
|     return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
 | |
|   case AMDGPUIntrinsic::SI_vs_load_input:
 | |
|     return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
 | |
|                        Op.getOperand(1),
 | |
|                        Op.getOperand(2),
 | |
|                        Op.getOperand(3));
 | |
|   default:
 | |
|     return AMDGPUTargetLowering::LowerOperation(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
| 
 | |
|   switch (IntrinsicID) {
 | |
|   case AMDGPUIntrinsic::SI_tbuffer_store: {
 | |
|     SDLoc DL(Op);
 | |
|     SDValue Ops[] = {
 | |
|       Chain,
 | |
|       Op.getOperand(2),
 | |
|       Op.getOperand(3),
 | |
|       Op.getOperand(4),
 | |
|       Op.getOperand(5),
 | |
|       Op.getOperand(6),
 | |
|       Op.getOperand(7),
 | |
|       Op.getOperand(8),
 | |
|       Op.getOperand(9),
 | |
|       Op.getOperand(10),
 | |
|       Op.getOperand(11),
 | |
|       Op.getOperand(12),
 | |
|       Op.getOperand(13),
 | |
|       Op.getOperand(14)
 | |
|     };
 | |
| 
 | |
|     EVT VT = Op.getOperand(3).getValueType();
 | |
| 
 | |
|     MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo(),
 | |
|       MachineMemOperand::MOStore,
 | |
|       VT.getStoreSize(), 4);
 | |
|     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
 | |
|                                    Op->getVTList(), Ops, VT, MMO);
 | |
|   }
 | |
|   default:
 | |
|     return SDValue();
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   LoadSDNode *Load = cast<LoadSDNode>(Op);
 | |
| 
 | |
|   if (Op.getValueType().isVector()) {
 | |
|     assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
 | |
|            "Custom lowering for non-i32 vectors hasn't been implemented.");
 | |
|     unsigned NumElements = Op.getValueType().getVectorNumElements();
 | |
|     assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
 | |
|     switch (Load->getAddressSpace()) {
 | |
|       default: break;
 | |
|       case AMDGPUAS::GLOBAL_ADDRESS:
 | |
|       case AMDGPUAS::PRIVATE_ADDRESS:
 | |
|         // v4 loads are supported for private and global memory.
 | |
|         if (NumElements <= 4)
 | |
|           break;
 | |
|         // fall-through
 | |
|       case AMDGPUAS::LOCAL_ADDRESS:
 | |
|         return ScalarizeVectorLoad(Op, DAG);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
 | |
|                                                const SDValue &Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
 | |
|                      Op.getOperand(2),
 | |
|                      Op.getOperand(3),
 | |
|                      Op.getOperand(4));
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   if (Op.getValueType() != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Cond = Op.getOperand(0);
 | |
| 
 | |
|   SDValue Zero = DAG.getConstant(0, MVT::i32);
 | |
|   SDValue One = DAG.getConstant(1, MVT::i32);
 | |
| 
 | |
|   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
 | |
|   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
 | |
| 
 | |
|   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
 | |
|   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
 | |
| 
 | |
|   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
 | |
| 
 | |
|   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
 | |
|   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
 | |
| 
 | |
|   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
 | |
| 
 | |
|   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
 | |
|   return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
 | |
| }
 | |
| 
 | |
| // Catch division cases where we can use shortcuts with rcp and rsq
 | |
| // instructions.
 | |
| SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc SL(Op);
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
|   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
 | |
| 
 | |
|   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
 | |
|     if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
 | |
|         CLHS->isExactlyValue(1.0)) {
 | |
|       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
 | |
|       // the CI documentation has a worst case error of 1 ulp.
 | |
|       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
 | |
|       // use it as long as we aren't trying to use denormals.
 | |
| 
 | |
|       // 1.0 / sqrt(x) -> rsq(x)
 | |
|       //
 | |
|       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
 | |
|       // error seems really high at 2^29 ULP.
 | |
|       if (RHS.getOpcode() == ISD::FSQRT)
 | |
|         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
 | |
| 
 | |
|       // 1.0 / x -> rcp(x)
 | |
|       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Unsafe) {
 | |
|     // Turn into multiply by the reciprocal.
 | |
|     // x / y -> x * (1.0 / y)
 | |
|     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
 | |
|     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue FastLowered = LowerFastFDIV(Op, DAG);
 | |
|   if (FastLowered.getNode())
 | |
|     return FastLowered;
 | |
| 
 | |
|   // This uses v_rcp_f32 which does not handle denormals. Let this hit a
 | |
|   // selection error for now rather than do something incorrect.
 | |
|   if (Subtarget->hasFP32Denormals())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc SL(Op);
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
| 
 | |
|   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
 | |
| 
 | |
|   const APFloat K0Val(BitsToFloat(0x6f800000));
 | |
|   const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);
 | |
| 
 | |
|   const APFloat K1Val(BitsToFloat(0x2f800000));
 | |
|   const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
 | |
| 
 | |
|   const SDValue One = DAG.getConstantFP(1.0, MVT::f32);
 | |
| 
 | |
|   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
 | |
| 
 | |
|   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
 | |
| 
 | |
|   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
 | |
| 
 | |
|   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
 | |
| 
 | |
|   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
 | |
| 
 | |
|   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
 | |
| 
 | |
|   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
 | |
|   if (DAG.getTarget().Options.UnsafeFPMath)
 | |
|     return LowerFastFDIV(Op, DAG);
 | |
| 
 | |
|   SDLoc SL(Op);
 | |
|   SDValue X = Op.getOperand(0);
 | |
|   SDValue Y = Op.getOperand(1);
 | |
| 
 | |
|   const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
 | |
| 
 | |
|   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
 | |
| 
 | |
|   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
 | |
| 
 | |
|   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
 | |
| 
 | |
|   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
 | |
| 
 | |
|   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
 | |
| 
 | |
|   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
 | |
| 
 | |
|   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
 | |
| 
 | |
|   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
 | |
| 
 | |
|   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
 | |
|   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
 | |
| 
 | |
|   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
 | |
|                              NegDivScale0, Mul, DivScale1);
 | |
| 
 | |
|   SDValue Scale;
 | |
| 
 | |
|   if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
 | |
|     // Workaround a hardware bug on SI where the condition output from div_scale
 | |
|     // is not usable.
 | |
| 
 | |
|     const SDValue Hi = DAG.getConstant(1, MVT::i32);
 | |
| 
 | |
|     // Figure out if the scale to use for div_fmas.
 | |
|     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
 | |
|     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
 | |
|     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
 | |
|     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
 | |
| 
 | |
|     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
 | |
|     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
 | |
| 
 | |
|     SDValue Scale0Hi
 | |
|       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
 | |
|     SDValue Scale1Hi
 | |
|       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
 | |
| 
 | |
|     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
 | |
|     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
 | |
|     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
 | |
|   } else {
 | |
|     Scale = DivScale1.getValue(1);
 | |
|   }
 | |
| 
 | |
|   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
 | |
|                              Fma4, Fma3, Mul, Scale);
 | |
| 
 | |
|   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   if (VT == MVT::f32)
 | |
|     return LowerFDIV32(Op, DAG);
 | |
| 
 | |
|   if (VT == MVT::f64)
 | |
|     return LowerFDIV64(Op, DAG);
 | |
| 
 | |
|   llvm_unreachable("Unexpected type for fdiv");
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   StoreSDNode *Store = cast<StoreSDNode>(Op);
 | |
|   EVT VT = Store->getMemoryVT();
 | |
| 
 | |
|   // These stores are legal.
 | |
|   if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
 | |
|     if (VT.isVector() && VT.getVectorNumElements() > 4)
 | |
|       return ScalarizeVectorStore(Op, DAG);
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
 | |
|   if (Ret.getNode())
 | |
|     return Ret;
 | |
| 
 | |
|   if (VT.isVector() && VT.getVectorNumElements() >= 8)
 | |
|       return ScalarizeVectorStore(Op, DAG);
 | |
| 
 | |
|   if (VT == MVT::i1)
 | |
|     return DAG.getTruncStore(Store->getChain(), DL,
 | |
|                         DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
 | |
|                         Store->getBasePtr(), MVT::i1, Store->getMemOperand());
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue Arg = Op.getOperand(0);
 | |
|   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
 | |
|         DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
 | |
|           DAG.getConstantFP(0.5 / M_PI, VT)));
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::FCOS:
 | |
|     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
 | |
|   case ISD::FSIN:
 | |
|     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
 | |
|   default:
 | |
|     llvm_unreachable("Wrong trig opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Custom DAG optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
 | |
|                                                      DAGCombinerInfo &DCI) const {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   EVT ScalarVT = VT.getScalarType();
 | |
|   if (ScalarVT != MVT::f32)
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   SDValue Src = N->getOperand(0);
 | |
|   EVT SrcVT = Src.getValueType();
 | |
| 
 | |
|   // TODO: We could try to match extracting the higher bytes, which would be
 | |
|   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
 | |
|   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
 | |
|   // about in practice.
 | |
|   if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
 | |
|     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
 | |
|       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
 | |
|       DCI.AddToWorklist(Cvt.getNode());
 | |
|       return Cvt;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We are primarily trying to catch operations on illegal vector types
 | |
|   // before they are expanded.
 | |
|   // For scalars, we can use the more flexible method of checking masked bits
 | |
|   // after legalization.
 | |
|   if (!DCI.isBeforeLegalize() ||
 | |
|       !SrcVT.isVector() ||
 | |
|       SrcVT.getVectorElementType() != MVT::i8) {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   assert(DCI.isBeforeLegalize() && "Unexpected legal type");
 | |
| 
 | |
|   // Weird sized vectors are a pain to handle, but we know 3 is really the same
 | |
|   // size as 4.
 | |
|   unsigned NElts = SrcVT.getVectorNumElements();
 | |
|   if (!SrcVT.isSimple() && NElts != 3)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
 | |
|   // prevent a mess from expanding to v4i32 and repacking.
 | |
|   if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
 | |
|     EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
 | |
|     EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
 | |
|     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
 | |
|     LoadSDNode *Load = cast<LoadSDNode>(Src);
 | |
| 
 | |
|     unsigned AS = Load->getAddressSpace();
 | |
|     unsigned Align = Load->getAlignment();
 | |
|     Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
 | |
|     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
 | |
| 
 | |
|     // Don't try to replace the load if we have to expand it due to alignment
 | |
|     // problems. Otherwise we will end up scalarizing the load, and trying to
 | |
|     // repack into the vector for no real reason.
 | |
|     if (Align < ABIAlignment &&
 | |
|         !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
 | |
|                                      Load->getChain(),
 | |
|                                      Load->getBasePtr(),
 | |
|                                      LoadVT,
 | |
|                                      Load->getMemOperand());
 | |
| 
 | |
|     // Make sure successors of the original load stay after it by updating
 | |
|     // them to use the new Chain.
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
 | |
| 
 | |
|     SmallVector<SDValue, 4> Elts;
 | |
|     if (RegVT.isVector())
 | |
|       DAG.ExtractVectorElements(NewLoad, Elts);
 | |
|     else
 | |
|       Elts.push_back(NewLoad);
 | |
| 
 | |
|     SmallVector<SDValue, 4> Ops;
 | |
| 
 | |
|     unsigned EltIdx = 0;
 | |
|     for (SDValue Elt : Elts) {
 | |
|       unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
 | |
|       for (unsigned I = 0; I < ComponentsInElt; ++I) {
 | |
|         unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
 | |
|         SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
 | |
|         DCI.AddToWorklist(Cvt.getNode());
 | |
|         Ops.push_back(Cvt);
 | |
|       }
 | |
| 
 | |
|       ++EltIdx;
 | |
|     }
 | |
| 
 | |
|     assert(Ops.size() == NElts);
 | |
| 
 | |
|     return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
 | |
| 
 | |
| // This is a variant of
 | |
| // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
 | |
| //
 | |
| // The normal DAG combiner will do this, but only if the add has one use since
 | |
| // that would increase the number of instructions.
 | |
| //
 | |
| // This prevents us from seeing a constant offset that can be folded into a
 | |
| // memory instruction's addressing mode. If we know the resulting add offset of
 | |
| // a pointer can be folded into an addressing offset, we can replace the pointer
 | |
| // operand with the add of new constant offset. This eliminates one of the uses,
 | |
| // and may allow the remaining use to also be simplified.
 | |
| //
 | |
| SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
 | |
|                                                unsigned AddrSpace,
 | |
|                                                DAGCombinerInfo &DCI) const {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
| 
 | |
|   if (N0.getOpcode() != ISD::ADD)
 | |
|     return SDValue();
 | |
| 
 | |
|   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
 | |
|   if (!CN1)
 | |
|     return SDValue();
 | |
| 
 | |
|   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
 | |
|   if (!CAdd)
 | |
|     return SDValue();
 | |
| 
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
| 
 | |
|   // If the resulting offset is too large, we can't fold it into the addressing
 | |
|   // mode offset.
 | |
|   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
 | |
|   if (!TII->canFoldOffset(Offset.getZExtValue(), AddrSpace))
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc SL(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
 | |
|   SDValue COffset = DAG.getConstant(Offset, MVT::i32);
 | |
| 
 | |
|   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::performAndCombine(SDNode *N,
 | |
|                                             DAGCombinerInfo &DCI) const {
 | |
|   if (DCI.isBeforeLegalize())
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
 | |
|   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
| 
 | |
|   if (LHS.getOpcode() == ISD::SETCC &&
 | |
|       RHS.getOpcode() == ISD::SETCC) {
 | |
|     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
 | |
|     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
 | |
| 
 | |
|     SDValue X = LHS.getOperand(0);
 | |
|     SDValue Y = RHS.getOperand(0);
 | |
|     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
 | |
|       return SDValue();
 | |
| 
 | |
|     if (LCC == ISD::SETO) {
 | |
|       if (X != LHS.getOperand(1))
 | |
|         return SDValue();
 | |
| 
 | |
|       if (RCC == ISD::SETUNE) {
 | |
|         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
 | |
|         if (!C1 || !C1->isInfinity() || C1->isNegative())
 | |
|           return SDValue();
 | |
| 
 | |
|         const uint32_t Mask = SIInstrFlags::N_NORMAL |
 | |
|                               SIInstrFlags::N_SUBNORMAL |
 | |
|                               SIInstrFlags::N_ZERO |
 | |
|                               SIInstrFlags::P_ZERO |
 | |
|                               SIInstrFlags::P_SUBNORMAL |
 | |
|                               SIInstrFlags::P_NORMAL;
 | |
| 
 | |
|         static_assert(((~(SIInstrFlags::S_NAN |
 | |
|                           SIInstrFlags::Q_NAN |
 | |
|                           SIInstrFlags::N_INFINITY |
 | |
|                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
 | |
|                       "mask not equal");
 | |
| 
 | |
|         return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
 | |
|                            X, DAG.getConstant(Mask, MVT::i32));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::performOrCombine(SDNode *N,
 | |
|                                            DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
| 
 | |
|   // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
 | |
|   if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
 | |
|       RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
 | |
|     SDValue Src = LHS.getOperand(0);
 | |
|     if (Src != RHS.getOperand(0))
 | |
|       return SDValue();
 | |
| 
 | |
|     const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
 | |
|     const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
 | |
|     if (!CLHS || !CRHS)
 | |
|       return SDValue();
 | |
| 
 | |
|     // Only 10 bits are used.
 | |
|     static const uint32_t MaxMask = 0x3ff;
 | |
| 
 | |
|     uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
 | |
|     return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
 | |
|                        Src, DAG.getConstant(NewMask, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::performClassCombine(SDNode *N,
 | |
|                                               DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue Mask = N->getOperand(1);
 | |
| 
 | |
|   // fp_class x, 0 -> false
 | |
|   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
 | |
|     if (CMask->isNullValue())
 | |
|       return DAG.getConstant(0, MVT::i1);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
 | |
|   switch (Opc) {
 | |
|   case ISD::FMAXNUM:
 | |
|     return AMDGPUISD::FMAX3;
 | |
|   case AMDGPUISD::SMAX:
 | |
|     return AMDGPUISD::SMAX3;
 | |
|   case AMDGPUISD::UMAX:
 | |
|     return AMDGPUISD::UMAX3;
 | |
|   case ISD::FMINNUM:
 | |
|     return AMDGPUISD::FMIN3;
 | |
|   case AMDGPUISD::SMIN:
 | |
|     return AMDGPUISD::SMIN3;
 | |
|   case AMDGPUISD::UMIN:
 | |
|     return AMDGPUISD::UMIN3;
 | |
|   default:
 | |
|     llvm_unreachable("Not a min/max opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
 | |
|                                                  DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   unsigned Opc = N->getOpcode();
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
| 
 | |
|   // Only do this if the inner op has one use since this will just increases
 | |
|   // register pressure for no benefit.
 | |
| 
 | |
|   // max(max(a, b), c)
 | |
|   if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
 | |
|     SDLoc DL(N);
 | |
|     return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
 | |
|                        DL,
 | |
|                        N->getValueType(0),
 | |
|                        Op0.getOperand(0),
 | |
|                        Op0.getOperand(1),
 | |
|                        Op1);
 | |
|   }
 | |
| 
 | |
|   // max(a, max(b, c))
 | |
|   if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
 | |
|     SDLoc DL(N);
 | |
|     return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
 | |
|                        DL,
 | |
|                        N->getValueType(0),
 | |
|                        Op0,
 | |
|                        Op1.getOperand(0),
 | |
|                        Op1.getOperand(1));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::performSetCCCombine(SDNode *N,
 | |
|                                               DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc SL(N);
 | |
| 
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
|   EVT VT = LHS.getValueType();
 | |
| 
 | |
|   if (VT != MVT::f32 && VT != MVT::f64)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Match isinf pattern
 | |
|   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | |
|   if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
 | |
|     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
 | |
|     if (!CRHS)
 | |
|       return SDValue();
 | |
| 
 | |
|     const APFloat &APF = CRHS->getValueAPF();
 | |
|     if (APF.isInfinity() && !APF.isNegative()) {
 | |
|       unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
 | |
|       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1,
 | |
|                          LHS.getOperand(0), DAG.getConstant(Mask, MVT::i32));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                             DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
 | |
|   case ISD::SETCC:
 | |
|     return performSetCCCombine(N, DCI);
 | |
|   case ISD::FMAXNUM: // TODO: What about fmax_legacy?
 | |
|   case ISD::FMINNUM:
 | |
|   case AMDGPUISD::SMAX:
 | |
|   case AMDGPUISD::SMIN:
 | |
|   case AMDGPUISD::UMAX:
 | |
|   case AMDGPUISD::UMIN: {
 | |
|     if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
 | |
|         getTargetMachine().getOptLevel() > CodeGenOpt::None)
 | |
|       return performMin3Max3Combine(N, DCI);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPUISD::CVT_F32_UBYTE0:
 | |
|   case AMDGPUISD::CVT_F32_UBYTE1:
 | |
|   case AMDGPUISD::CVT_F32_UBYTE2:
 | |
|   case AMDGPUISD::CVT_F32_UBYTE3: {
 | |
|     unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
 | |
| 
 | |
|     SDValue Src = N->getOperand(0);
 | |
|     APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
 | |
| 
 | |
|     APInt KnownZero, KnownOne;
 | |
|     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | |
|                                           !DCI.isBeforeLegalizeOps());
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
 | |
|         TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
 | |
|       DCI.CommitTargetLoweringOpt(TLO);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::UINT_TO_FP: {
 | |
|     return performUCharToFloatCombine(N, DCI);
 | |
| 
 | |
|   case ISD::FADD: {
 | |
|     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
 | |
|       break;
 | |
| 
 | |
|     EVT VT = N->getValueType(0);
 | |
|     if (VT != MVT::f32)
 | |
|       break;
 | |
| 
 | |
|     SDValue LHS = N->getOperand(0);
 | |
|     SDValue RHS = N->getOperand(1);
 | |
| 
 | |
|     // These should really be instruction patterns, but writing patterns with
 | |
|     // source modiifiers is a pain.
 | |
| 
 | |
|     // fadd (fadd (a, a), b) -> mad 2.0, a, b
 | |
|     if (LHS.getOpcode() == ISD::FADD) {
 | |
|       SDValue A = LHS.getOperand(0);
 | |
|       if (A == LHS.getOperand(1)) {
 | |
|         const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
 | |
|         return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, RHS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // fadd (b, fadd (a, a)) -> mad 2.0, a, b
 | |
|     if (RHS.getOpcode() == ISD::FADD) {
 | |
|       SDValue A = RHS.getOperand(0);
 | |
|       if (A == RHS.getOperand(1)) {
 | |
|         const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
 | |
|         return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, LHS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FSUB: {
 | |
|     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
 | |
|       break;
 | |
| 
 | |
|     EVT VT = N->getValueType(0);
 | |
| 
 | |
|     // Try to get the fneg to fold into the source modifier. This undoes generic
 | |
|     // DAG combines and folds them into the mad.
 | |
|     if (VT == MVT::f32) {
 | |
|       SDValue LHS = N->getOperand(0);
 | |
|       SDValue RHS = N->getOperand(1);
 | |
| 
 | |
|       if (LHS.getOpcode() == ISD::FMUL) {
 | |
|         // (fsub (fmul a, b), c) -> mad a, b, (fneg c)
 | |
| 
 | |
|         SDValue A = LHS.getOperand(0);
 | |
|         SDValue B = LHS.getOperand(1);
 | |
|         SDValue C = DAG.getNode(ISD::FNEG, DL, VT, RHS);
 | |
| 
 | |
|         return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C);
 | |
|       }
 | |
| 
 | |
|       if (RHS.getOpcode() == ISD::FMUL) {
 | |
|         // (fsub c, (fmul a, b)) -> mad (fneg a), b, c
 | |
| 
 | |
|         SDValue A = DAG.getNode(ISD::FNEG, DL, VT, RHS.getOperand(0));
 | |
|         SDValue B = RHS.getOperand(1);
 | |
|         SDValue C = LHS;
 | |
| 
 | |
|         return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C);
 | |
|       }
 | |
| 
 | |
|       if (LHS.getOpcode() == ISD::FADD) {
 | |
|         // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
 | |
| 
 | |
|         SDValue A = LHS.getOperand(0);
 | |
|         if (A == LHS.getOperand(1)) {
 | |
|           const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
 | |
|           SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
 | |
| 
 | |
|           return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, NegRHS);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (RHS.getOpcode() == ISD::FADD) {
 | |
|         // (fsub c, (fadd a, a)) -> mad -2.0, a, c
 | |
| 
 | |
|         SDValue A = RHS.getOperand(0);
 | |
|         if (A == RHS.getOperand(1)) {
 | |
|           const SDValue NegTwo = DAG.getConstantFP(-2.0, MVT::f32);
 | |
|           return DAG.getNode(AMDGPUISD::MAD, DL, VT, NegTwo, A, LHS);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   case ISD::LOAD:
 | |
|   case ISD::STORE:
 | |
|   case ISD::ATOMIC_LOAD:
 | |
|   case ISD::ATOMIC_STORE:
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
 | |
|   case ISD::ATOMIC_SWAP:
 | |
|   case ISD::ATOMIC_LOAD_ADD:
 | |
|   case ISD::ATOMIC_LOAD_SUB:
 | |
|   case ISD::ATOMIC_LOAD_AND:
 | |
|   case ISD::ATOMIC_LOAD_OR:
 | |
|   case ISD::ATOMIC_LOAD_XOR:
 | |
|   case ISD::ATOMIC_LOAD_NAND:
 | |
|   case ISD::ATOMIC_LOAD_MIN:
 | |
|   case ISD::ATOMIC_LOAD_MAX:
 | |
|   case ISD::ATOMIC_LOAD_UMIN:
 | |
|   case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
 | |
|     if (DCI.isBeforeLegalize())
 | |
|       break;
 | |
| 
 | |
|     MemSDNode *MemNode = cast<MemSDNode>(N);
 | |
|     SDValue Ptr = MemNode->getBasePtr();
 | |
| 
 | |
|     // TODO: We could also do this for multiplies.
 | |
|     unsigned AS = MemNode->getAddressSpace();
 | |
|     if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
 | |
|       SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
 | |
|       if (NewPtr) {
 | |
|         SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
 | |
| 
 | |
|         NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
 | |
|         return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AND:
 | |
|     return performAndCombine(N, DCI);
 | |
|   case ISD::OR:
 | |
|     return performOrCombine(N, DCI);
 | |
|   case AMDGPUISD::FP_CLASS:
 | |
|     return performClassCombine(N, DCI);
 | |
|   }
 | |
|   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
 | |
| }
 | |
| 
 | |
| /// \brief Test if RegClass is one of the VSrc classes
 | |
| static bool isVSrc(unsigned RegClass) {
 | |
|   switch(RegClass) {
 | |
|     default: return false;
 | |
|     case AMDGPU::VS_32RegClassID:
 | |
|     case AMDGPU::VS_64RegClassID:
 | |
|       return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Analyze the possible immediate value Op
 | |
| ///
 | |
| /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
 | |
| /// and the immediate value if it's a literal immediate
 | |
| int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
 | |
| 
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
| 
 | |
|   if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
 | |
|     if (TII->isInlineConstant(Node->getAPIntValue()))
 | |
|       return 0;
 | |
| 
 | |
|     uint64_t Val = Node->getZExtValue();
 | |
|     return isUInt<32>(Val) ? Val : -1;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
 | |
|     if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
 | |
|       return 0;
 | |
| 
 | |
|     if (Node->getValueType(0) == MVT::f32)
 | |
|       return FloatToBits(Node->getValueAPF().convertToFloat());
 | |
| 
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass *
 | |
| SITargetLowering::getRegClassForNode(SelectionDAG &DAG,
 | |
|                                      const SDValue &Op) const {
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
|   const SIRegisterInfo &TRI = TII->getRegisterInfo();
 | |
| 
 | |
|   if (!Op->isMachineOpcode()) {
 | |
|     switch(Op->getOpcode()) {
 | |
|     case ISD::CopyFromReg: {
 | |
|       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
 | |
|       unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         return MRI.getRegClass(Reg);
 | |
|       }
 | |
|       return TRI.getPhysRegClass(Reg);
 | |
|     }
 | |
|     default:  return nullptr;
 | |
|     }
 | |
|   }
 | |
|   const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
 | |
|   int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
 | |
|   if (OpClassID != -1) {
 | |
|     return TRI.getRegClass(OpClassID);
 | |
|   }
 | |
|   switch(Op.getMachineOpcode()) {
 | |
|   case AMDGPU::COPY_TO_REGCLASS:
 | |
|     // Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
 | |
|     OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
 | |
| 
 | |
|     // If the COPY_TO_REGCLASS instruction is copying to a VSrc register
 | |
|     // class, then the register class for the value could be either a
 | |
|     // VReg or and SReg.  In order to get a more accurate
 | |
|     if (isVSrc(OpClassID))
 | |
|       return getRegClassForNode(DAG, Op.getOperand(0));
 | |
| 
 | |
|     return TRI.getRegClass(OpClassID);
 | |
|   case AMDGPU::EXTRACT_SUBREG: {
 | |
|     int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     const TargetRegisterClass *SuperClass =
 | |
|       getRegClassForNode(DAG, Op.getOperand(0));
 | |
|     return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
 | |
|   }
 | |
|   case AMDGPU::REG_SEQUENCE:
 | |
|     // Operand 0 is the register class id for REG_SEQUENCE instructions.
 | |
|     return TRI.getRegClass(
 | |
|       cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
 | |
|   default:
 | |
|     return getRegClassFor(Op.getSimpleValueType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Does "Op" fit into register class "RegClass" ?
 | |
| bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
 | |
|                                     unsigned RegClass) const {
 | |
|   const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
 | |
|   const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
 | |
|   if (!RC) {
 | |
|     return false;
 | |
|   }
 | |
|   return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
 | |
| }
 | |
| 
 | |
| /// \brief Helper function for adjustWritemask
 | |
| static unsigned SubIdx2Lane(unsigned Idx) {
 | |
|   switch (Idx) {
 | |
|   default: return 0;
 | |
|   case AMDGPU::sub0: return 0;
 | |
|   case AMDGPU::sub1: return 1;
 | |
|   case AMDGPU::sub2: return 2;
 | |
|   case AMDGPU::sub3: return 3;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Adjust the writemask of MIMG instructions
 | |
| void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
 | |
|                                        SelectionDAG &DAG) const {
 | |
|   SDNode *Users[4] = { };
 | |
|   unsigned Lane = 0;
 | |
|   unsigned OldDmask = Node->getConstantOperandVal(0);
 | |
|   unsigned NewDmask = 0;
 | |
| 
 | |
|   // Try to figure out the used register components
 | |
|   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
 | |
|        I != E; ++I) {
 | |
| 
 | |
|     // Abort if we can't understand the usage
 | |
|     if (!I->isMachineOpcode() ||
 | |
|         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
 | |
|       return;
 | |
| 
 | |
|     // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
 | |
|     // Note that subregs are packed, i.e. Lane==0 is the first bit set
 | |
|     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
 | |
|     // set, etc.
 | |
|     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
 | |
| 
 | |
|     // Set which texture component corresponds to the lane.
 | |
|     unsigned Comp;
 | |
|     for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
 | |
|       assert(Dmask);
 | |
|       Comp = countTrailingZeros(Dmask);
 | |
|       Dmask &= ~(1 << Comp);
 | |
|     }
 | |
| 
 | |
|     // Abort if we have more than one user per component
 | |
|     if (Users[Lane])
 | |
|       return;
 | |
| 
 | |
|     Users[Lane] = *I;
 | |
|     NewDmask |= 1 << Comp;
 | |
|   }
 | |
| 
 | |
|   // Abort if there's no change
 | |
|   if (NewDmask == OldDmask)
 | |
|     return;
 | |
| 
 | |
|   // Adjust the writemask in the node
 | |
|   std::vector<SDValue> Ops;
 | |
|   Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
 | |
|   Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
 | |
|   Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
 | |
| 
 | |
|   // If we only got one lane, replace it with a copy
 | |
|   // (if NewDmask has only one bit set...)
 | |
|   if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
 | |
|     SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, MVT::i32);
 | |
|     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
 | |
|                                       SDLoc(), Users[Lane]->getValueType(0),
 | |
|                                       SDValue(Node, 0), RC);
 | |
|     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Update the users of the node with the new indices
 | |
|   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
 | |
| 
 | |
|     SDNode *User = Users[i];
 | |
|     if (!User)
 | |
|       continue;
 | |
| 
 | |
|     SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
 | |
|     DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
 | |
| 
 | |
|     switch (Idx) {
 | |
|     default: break;
 | |
|     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
 | |
|     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
 | |
|     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
 | |
| /// with frame index operands.
 | |
| /// LLVM assumes that inputs are to these instructions are registers.
 | |
| void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
| 
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
 | |
|     if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
 | |
|       Ops.push_back(Node->getOperand(i));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SDLoc DL(Node);
 | |
|     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
 | |
|                                      Node->getOperand(i).getValueType(),
 | |
|                                      Node->getOperand(i)), 0));
 | |
|   }
 | |
| 
 | |
|   DAG.UpdateNodeOperands(Node, Ops);
 | |
| }
 | |
| 
 | |
| /// \brief Fold the instructions after selecting them.
 | |
| SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
|   Node = AdjustRegClass(Node, DAG);
 | |
| 
 | |
|   if (TII->isMIMG(Node->getMachineOpcode()))
 | |
|     adjustWritemask(Node, DAG);
 | |
| 
 | |
|   if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
 | |
|       Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
 | |
|     legalizeTargetIndependentNode(Node, DAG);
 | |
|     return Node;
 | |
|   }
 | |
|   return Node;
 | |
| }
 | |
| 
 | |
| /// \brief Assign the register class depending on the number of
 | |
| /// bits set in the writemask
 | |
| void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
 | |
|                                                      SDNode *Node) const {
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
| 
 | |
|   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
 | |
|   TII->legalizeOperands(MI);
 | |
| 
 | |
|   if (TII->isMIMG(MI->getOpcode())) {
 | |
|     unsigned VReg = MI->getOperand(0).getReg();
 | |
|     unsigned Writemask = MI->getOperand(1).getImm();
 | |
|     unsigned BitsSet = 0;
 | |
|     for (unsigned i = 0; i < 4; ++i)
 | |
|       BitsSet += Writemask & (1 << i) ? 1 : 0;
 | |
| 
 | |
|     const TargetRegisterClass *RC;
 | |
|     switch (BitsSet) {
 | |
|     default: return;
 | |
|     case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
 | |
|     case 2:  RC = &AMDGPU::VReg_64RegClass; break;
 | |
|     case 3:  RC = &AMDGPU::VReg_96RegClass; break;
 | |
|     }
 | |
| 
 | |
|     unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
 | |
|     MI->setDesc(TII->get(NewOpcode));
 | |
|     MRI.setRegClass(VReg, RC);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Replace unused atomics with the no return version.
 | |
|   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
 | |
|   if (NoRetAtomicOp != -1) {
 | |
|     if (!Node->hasAnyUseOfValue(0)) {
 | |
|       MI->setDesc(TII->get(NoRetAtomicOp));
 | |
|       MI->RemoveOperand(0);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
 | |
|   SDValue K = DAG.getTargetConstant(Val, MVT::i32);
 | |
|   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
 | |
|                                                 SDLoc DL,
 | |
|                                                 SDValue Ptr) const {
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
| #if 1
 | |
|     // XXX - Workaround for moveToVALU not handling different register class
 | |
|     // inserts for REG_SEQUENCE.
 | |
| 
 | |
|     // Build the half of the subregister with the constants.
 | |
|     const SDValue Ops0[] = {
 | |
|       DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, MVT::i32),
 | |
|       buildSMovImm32(DAG, DL, 0),
 | |
|       DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
 | |
|       buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
 | |
|       DAG.getTargetConstant(AMDGPU::sub1, MVT::i32)
 | |
|     };
 | |
| 
 | |
|     SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
 | |
|                                                   MVT::v2i32, Ops0), 0);
 | |
| 
 | |
|     // Combine the constants and the pointer.
 | |
|     const SDValue Ops1[] = {
 | |
|       DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
 | |
|       Ptr,
 | |
|       DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
 | |
|       SubRegHi,
 | |
|       DAG.getTargetConstant(AMDGPU::sub2_sub3, MVT::i32)
 | |
|     };
 | |
| 
 | |
|     return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
 | |
| #else
 | |
|     const SDValue Ops[] = {
 | |
|       DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
 | |
|       Ptr,
 | |
|       DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
 | |
|       buildSMovImm32(DAG, DL, 0),
 | |
|       DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
 | |
|       buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
 | |
|       DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
 | |
|     };
 | |
| 
 | |
|     return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// \brief Return a resource descriptor with the 'Add TID' bit enabled
 | |
| ///        The TID (Thread ID) is multipled by the stride value (bits [61:48]
 | |
| ///        of the resource descriptor) to create an offset, which is added to the
 | |
| ///        resource ponter.
 | |
| MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
 | |
|                                            SDLoc DL,
 | |
|                                            SDValue Ptr,
 | |
|                                            uint32_t RsrcDword1,
 | |
|                                            uint64_t RsrcDword2And3) const {
 | |
|   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
 | |
|   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
 | |
|   if (RsrcDword1) {
 | |
|     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
 | |
|                                      DAG.getConstant(RsrcDword1, MVT::i32)), 0);
 | |
|   }
 | |
| 
 | |
|   SDValue DataLo = buildSMovImm32(DAG, DL,
 | |
|                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
 | |
|   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
 | |
| 
 | |
|   const SDValue Ops[] = {
 | |
|     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
 | |
|     PtrLo,
 | |
|     DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
 | |
|     PtrHi,
 | |
|     DAG.getTargetConstant(AMDGPU::sub1, MVT::i32),
 | |
|     DataLo,
 | |
|     DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
 | |
|     DataHi,
 | |
|     DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
 | |
|   };
 | |
| 
 | |
|   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
 | |
|                                                   SDLoc DL,
 | |
|                                                   SDValue Ptr) const {
 | |
|   const SIInstrInfo *TII =
 | |
|       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | |
|   uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
 | |
|                   0xffffffff; // Size
 | |
| 
 | |
|   return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
| 
 | |
|   SDLoc DL(N);
 | |
|   unsigned NewOpcode = N->getMachineOpcode();
 | |
| 
 | |
|   switch (N->getMachineOpcode()) {
 | |
|   default: return N;
 | |
|   case AMDGPU::S_LOAD_DWORD_IMM:
 | |
|     NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
 | |
|     // Fall-through
 | |
|   case AMDGPU::S_LOAD_DWORDX2_SGPR:
 | |
|     if (NewOpcode == N->getMachineOpcode()) {
 | |
|       NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
 | |
|     }
 | |
|     // Fall-through
 | |
|   case AMDGPU::S_LOAD_DWORDX4_IMM:
 | |
|   case AMDGPU::S_LOAD_DWORDX4_SGPR: {
 | |
|     if (NewOpcode == N->getMachineOpcode()) {
 | |
|       NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
 | |
|     }
 | |
|     if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
 | |
|       return N;
 | |
|     }
 | |
|     ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
 | |
| 
 | |
|     const SDValue Zero64 = DAG.getTargetConstant(0, MVT::i64);
 | |
|     SDValue Ptr(DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, Zero64), 0);
 | |
|     MachineSDNode *RSrc = wrapAddr64Rsrc(DAG, DL, Ptr);
 | |
| 
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.push_back(SDValue(RSrc, 0));
 | |
|     Ops.push_back(N->getOperand(0));
 | |
|     Ops.push_back(DAG.getTargetConstant(0, MVT::i32)); // soffset
 | |
| 
 | |
|     // The immediate offset is in dwords on SI and in bytes on VI.
 | |
|     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
 | |
|       Ops.push_back(DAG.getTargetConstant(Offset->getSExtValue(), MVT::i32));
 | |
|     else
 | |
|       Ops.push_back(DAG.getTargetConstant(Offset->getSExtValue() << 2, MVT::i32));
 | |
| 
 | |
|     // Copy remaining operands so we keep any chain and glue nodes that follow
 | |
|     // the normal operands.
 | |
|     Ops.append(N->op_begin() + 2, N->op_end());
 | |
| 
 | |
|     return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
 | |
|                                                const TargetRegisterClass *RC,
 | |
|                                                unsigned Reg, EVT VT) const {
 | |
|   SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
 | |
| 
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
 | |
|                             cast<RegisterSDNode>(VReg)->getReg(), VT);
 | |
| }
 |