llvm-6502/lib/Target/CellSPU/SPUAsmPrinter.cpp
2008-02-02 08:39:46 +00:00

655 lines
21 KiB
C++

//===-- SPUAsmPrinter.cpp - Print machine instrs to Cell SPU assembly -------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to Cell SPU assembly language. This printer
// is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asmprinter"
#include "SPU.h"
#include "SPUTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <set>
using namespace llvm;
namespace {
STATISTIC(EmittedInsts, "Number of machine instrs printed");
const std::string bss_section(".bss");
struct VISIBILITY_HIDDEN SPUAsmPrinter : public AsmPrinter {
std::set<std::string> FnStubs, GVStubs;
SPUAsmPrinter(std::ostream &O, TargetMachine &TM, const TargetAsmInfo *T) :
AsmPrinter(O, TM, T)
{
}
virtual const char *getPassName() const {
return "STI CBEA SPU Assembly Printer";
}
SPUTargetMachine &getTM() {
return static_cast<SPUTargetMachine&>(TM);
}
/// printInstruction - This method is automatically generated by tablegen
/// from the instruction set description. This method returns true if the
/// machine instruction was sufficiently described to print it, otherwise it
/// returns false.
bool printInstruction(const MachineInstr *MI);
void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO);
/// printRegister - Print register according to target requirements.
///
void printRegister(const MachineOperand &MO, bool R0AsZero) {
unsigned RegNo = MO.getReg();
assert(MRegisterInfo::isPhysicalRegister(RegNo) && "Not physreg??");
O << TM.getRegisterInfo()->get(RegNo).Name;
}
void printOperand(const MachineInstr *MI, unsigned OpNo) {
const MachineOperand &MO = MI->getOperand(OpNo);
if (MO.isRegister()) {
assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physreg??");
O << TM.getRegisterInfo()->get(MO.getReg()).Name;
} else if (MO.isImmediate()) {
O << MO.getImm();
} else {
printOp(MO);
}
}
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode);
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode);
void
printS7ImmOperand(const MachineInstr *MI, unsigned OpNo)
{
int value = MI->getOperand(OpNo).getImm();
value = (value << (32 - 7)) >> (32 - 7);
assert((value >= -(1 << 8) && value <= (1 << 7) - 1)
&& "Invalid s7 argument");
O << value;
}
void
printU7ImmOperand(const MachineInstr *MI, unsigned OpNo)
{
unsigned int value = MI->getOperand(OpNo).getImm();
assert(value < (1 << 8) && "Invalid u7 argument");
O << value;
}
void
printMemRegImmS7(const MachineInstr *MI, unsigned OpNo)
{
char value = MI->getOperand(OpNo).getImm();
O << (int) value;
O << "(";
printOperand(MI, OpNo+1);
O << ")";
}
void
printS16ImmOperand(const MachineInstr *MI, unsigned OpNo)
{
O << (short) MI->getOperand(OpNo).getImm();
}
void
printU16ImmOperand(const MachineInstr *MI, unsigned OpNo)
{
O << (unsigned short)MI->getOperand(OpNo).getImm();
}
void
printU32ImmOperand(const MachineInstr *MI, unsigned OpNo)
{
O << (unsigned)MI->getOperand(OpNo).getImm();
}
void
printMemRegReg(const MachineInstr *MI, unsigned OpNo) {
// When used as the base register, r0 reads constant zero rather than
// the value contained in the register. For this reason, the darwin
// assembler requires that we print r0 as 0 (no r) when used as the base.
const MachineOperand &MO = MI->getOperand(OpNo);
O << TM.getRegisterInfo()->get(MO.getReg()).Name;
O << ", ";
printOperand(MI, OpNo+1);
}
void
printU18ImmOperand(const MachineInstr *MI, unsigned OpNo)
{
unsigned int value = MI->getOperand(OpNo).getImm();
assert(value <= (1 << 19) - 1 && "Invalid u18 argument");
O << value;
}
void
printS10ImmOperand(const MachineInstr *MI, unsigned OpNo)
{
short value = (short) (((int) MI->getOperand(OpNo).getImm() << 16)
>> 16);
assert((value >= -(1 << 9) && value <= (1 << 9) - 1)
&& "Invalid s10 argument");
O << value;
}
void
printU10ImmOperand(const MachineInstr *MI, unsigned OpNo)
{
short value = (short) (((int) MI->getOperand(OpNo).getImm() << 16)
>> 16);
assert((value <= (1 << 10) - 1) && "Invalid u10 argument");
O << value;
}
void
printMemRegImmS10(const MachineInstr *MI, unsigned OpNo)
{
const MachineOperand &MO = MI->getOperand(OpNo);
assert(MO.isImmediate()
&& "printMemRegImmS10 first operand is not immedate");
printS10ImmOperand(MI, OpNo);
O << "(";
printOperand(MI, OpNo+1);
O << ")";
}
void
printAddr256K(const MachineInstr *MI, unsigned OpNo)
{
/* Note: operand 1 is an offset or symbol name. */
if (MI->getOperand(OpNo).isImmediate()) {
printS16ImmOperand(MI, OpNo);
} else {
printOp(MI->getOperand(OpNo));
if (MI->getOperand(OpNo+1).isImmediate()) {
int displ = int(MI->getOperand(OpNo+1).getImm());
if (displ > 0)
O << "+" << displ;
else if (displ < 0)
O << displ;
}
}
}
void printCallOperand(const MachineInstr *MI, unsigned OpNo) {
printOp(MI->getOperand(OpNo));
}
void printPCRelativeOperand(const MachineInstr *MI, unsigned OpNo) {
printOp(MI->getOperand(OpNo));
O << "-.";
}
void printSymbolHi(const MachineInstr *MI, unsigned OpNo) {
if (MI->getOperand(OpNo).isImmediate()) {
printS16ImmOperand(MI, OpNo);
} else {
printOp(MI->getOperand(OpNo));
O << "@h";
}
}
void printSymbolLo(const MachineInstr *MI, unsigned OpNo) {
if (MI->getOperand(OpNo).isImmediate()) {
printS16ImmOperand(MI, OpNo);
} else {
printOp(MI->getOperand(OpNo));
O << "@l";
}
}
/// Print local store address
void printSymbolLSA(const MachineInstr *MI, unsigned OpNo) {
printOp(MI->getOperand(OpNo));
}
void printROTHNeg7Imm(const MachineInstr *MI, unsigned OpNo) {
if (MI->getOperand(OpNo).isImmediate()) {
int value = (int) MI->getOperand(OpNo).getImm();
assert((value >= 0 && value < 16)
&& "Invalid negated immediate rotate 7-bit argument");
O << -value;
} else {
assert(0 &&"Invalid/non-immediate rotate amount in printRotateNeg7Imm");
}
}
void printROTNeg7Imm(const MachineInstr *MI, unsigned OpNo) {
if (MI->getOperand(OpNo).isImmediate()) {
int value = (int) MI->getOperand(OpNo).getImm();
assert((value >= 0 && value < 32)
&& "Invalid negated immediate rotate 7-bit argument");
O << -value;
} else {
assert(0 &&"Invalid/non-immediate rotate amount in printRotateNeg7Imm");
}
}
virtual bool runOnMachineFunction(MachineFunction &F) = 0;
virtual bool doFinalization(Module &M) = 0;
};
/// LinuxAsmPrinter - SPU assembly printer, customized for Linux
struct VISIBILITY_HIDDEN LinuxAsmPrinter : public SPUAsmPrinter {
DwarfWriter DW;
LinuxAsmPrinter(std::ostream &O, SPUTargetMachine &TM,
const TargetAsmInfo *T) :
SPUAsmPrinter(O, TM, T),
DW(O, this, T)
{ }
virtual const char *getPassName() const {
return "STI CBEA SPU Assembly Printer";
}
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
SPUAsmPrinter::getAnalysisUsage(AU);
}
/// getSectionForFunction - Return the section that we should emit the
/// specified function body into.
virtual std::string getSectionForFunction(const Function &F) const;
};
} // end of anonymous namespace
// Include the auto-generated portion of the assembly writer
#include "SPUGenAsmWriter.inc"
void SPUAsmPrinter::printOp(const MachineOperand &MO) {
switch (MO.getType()) {
case MachineOperand::MO_Immediate:
cerr << "printOp() does not handle immediate values\n";
abort();
return;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMBB());
return;
case MachineOperand::MO_JumpTableIndex:
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
return;
case MachineOperand::MO_ConstantPoolIndex:
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getIndex();
return;
case MachineOperand::MO_ExternalSymbol:
// Computing the address of an external symbol, not calling it.
if (TM.getRelocationModel() != Reloc::Static) {
std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName();
GVStubs.insert(Name);
O << "L" << Name << "$non_lazy_ptr";
return;
}
O << TAI->getGlobalPrefix() << MO.getSymbolName();
return;
case MachineOperand::MO_GlobalAddress: {
// Computing the address of a global symbol, not calling it.
GlobalValue *GV = MO.getGlobal();
std::string Name = Mang->getValueName(GV);
// External or weakly linked global variables need non-lazily-resolved
// stubs
if (TM.getRelocationModel() != Reloc::Static) {
if (((GV->isDeclaration() || GV->hasWeakLinkage() ||
GV->hasLinkOnceLinkage()))) {
GVStubs.insert(Name);
O << "L" << Name << "$non_lazy_ptr";
return;
}
}
O << Name;
if (GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
return;
}
default:
O << "<unknown operand type: " << MO.getType() << ">";
return;
}
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool SPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'L': // Write second word of DImode reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNo).isRegister() ||
OpNo+1 == MI->getNumOperands() ||
!MI->getOperand(OpNo+1).isRegister())
return true;
++OpNo; // Return the high-part.
break;
}
}
printOperand(MI, OpNo);
return false;
}
bool SPUAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
printMemRegReg(MI, OpNo);
return false;
}
/// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax
/// to the current output stream.
///
void SPUAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
printInstruction(MI);
}
std::string LinuxAsmPrinter::getSectionForFunction(const Function &F) const {
switch (F.getLinkage()) {
default: assert(0 && "Unknown linkage type!");
case Function::ExternalLinkage:
case Function::InternalLinkage: return TAI->getTextSection();
case Function::WeakLinkage:
case Function::LinkOnceLinkage:
return ""; // Print nothing for the time being...
}
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool
LinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF)
{
DW.SetModuleInfo(&getAnalysis<MachineModuleInfo>());
SetupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
// Print out labels for the function.
const Function *F = MF.getFunction();
SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
EmitAlignment(3, F);
switch (F->getLinkage()) {
default: assert(0 && "Unknown linkage type!");
case Function::InternalLinkage: // Symbols default to internal.
break;
case Function::ExternalLinkage:
O << "\t.global\t" << CurrentFnName << "\n"
<< "\t.type\t" << CurrentFnName << ", @function\n";
break;
case Function::WeakLinkage:
case Function::LinkOnceLinkage:
O << "\t.global\t" << CurrentFnName << "\n";
O << "\t.weak_definition\t" << CurrentFnName << "\n";
break;
}
O << CurrentFnName << ":\n";
// Emit pre-function debug information.
DW.BeginFunction(&MF);
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
printBasicBlockLabel(I, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
printMachineInstruction(II);
}
}
O << "\t.size\t" << CurrentFnName << ",.-" << CurrentFnName << "\n";
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
// Emit post-function debug information.
DW.EndFunction();
// We didn't modify anything.
return false;
}
bool LinuxAsmPrinter::doInitialization(Module &M) {
bool Result = AsmPrinter::doInitialization(M);
SwitchToTextSection(TAI->getTextSection());
// Emit initial debug information.
DW.BeginModule(&M);
return Result;
}
bool LinuxAsmPrinter::doFinalization(Module &M) {
const TargetData *TD = TM.getTargetData();
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->hasInitializer()) continue; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(I))
continue;
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
unsigned Size = TD->getTypeStoreSize(C->getType());
unsigned Align = TD->getPreferredAlignmentLog(I);
if (C->isNullValue() && /* FIXME: Verify correct */
(I->hasInternalLinkage() || I->hasWeakLinkage() ||
I->hasLinkOnceLinkage() ||
(I->hasExternalLinkage() && !I->hasSection()))) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (I->hasExternalLinkage()) {
// External linkage globals -> .bss section
// FIXME: Want to set the global variable's section so that
// SwitchToDataSection emits the ".section" directive
SwitchToDataSection("\t.section\t.bss", I);
O << "\t.global\t" << name << '\n';
O << "\t.align\t" << Align << '\n';
O << "\t.type\t" << name << ", @object\n";
O << "\t.size\t" << name << ", " << Size << '\n';
O << name << ":\n";
O << "\t.zero\t" << Size;
} else if (I->hasInternalLinkage()) {
SwitchToDataSection("\t.data", I);
O << ".local " << name << "\n";
O << TAI->getCOMMDirective() << name << "," << Size << "," << Align << "\n";
} else {
SwitchToDataSection("\t.data", I);
O << ".comm " << name << "," << Size;
}
O << "\t\t# '" << I->getName() << "'\n";
} else {
switch (I->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage:
O << "\t.global " << name << '\n'
<< "\t.weak_definition " << name << '\n';
SwitchToDataSection(".section __DATA,__datacoal_nt,coalesced", I);
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.global " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage:
if (I->isConstant()) {
const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
if (TAI->getCStringSection() && CVA && CVA->isCString()) {
SwitchToDataSection(TAI->getCStringSection(), I);
break;
}
}
SwitchToDataSection("\t.data", I);
break;
default:
cerr << "Unknown linkage type!";
abort();
}
EmitAlignment(Align, I);
O << name << ":\t\t\t\t# '" << I->getName() << "'\n";
// If the initializer is a extern weak symbol, remember to emit the weak
// reference!
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
if (GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
EmitGlobalConstant(C);
O << '\n';
}
}
// Output stubs for dynamically-linked functions
if (TM.getRelocationModel() == Reloc::PIC_) {
for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
i != e; ++i) {
SwitchToTextSection(".section __TEXT,__picsymbolstub1,symbol_stubs,"
"pure_instructions,32");
EmitAlignment(4);
O << "L" << *i << "$stub:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\tmflr r0\n";
O << "\tbcl 20,31,L0$" << *i << "\n";
O << "L0$" << *i << ":\n";
O << "\tmflr r11\n";
O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
O << "\tmtlr r0\n";
O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
O << "\tmtctr r12\n";
O << "\tbctr\n";
SwitchToDataSection(".lazy_symbol_pointer");
O << "L" << *i << "$lazy_ptr:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\t.long dyld_stub_binding_helper\n";
}
} else {
for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
i != e; ++i) {
SwitchToTextSection(".section __TEXT,__symbol_stub1,symbol_stubs,"
"pure_instructions,16");
EmitAlignment(4);
O << "L" << *i << "$stub:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\tlis r11,ha16(L" << *i << "$lazy_ptr)\n";
O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr)(r11)\n";
O << "\tmtctr r12\n";
O << "\tbctr\n";
SwitchToDataSection(".lazy_symbol_pointer");
O << "L" << *i << "$lazy_ptr:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\t.long dyld_stub_binding_helper\n";
}
}
O << "\n";
// Output stubs for external and common global variables.
if (GVStubs.begin() != GVStubs.end()) {
SwitchToDataSection(".non_lazy_symbol_pointer");
for (std::set<std::string>::iterator I = GVStubs.begin(),
E = GVStubs.end(); I != E; ++I) {
O << "L" << *I << "$non_lazy_ptr:\n";
O << "\t.indirect_symbol " << *I << "\n";
O << "\t.long\t0\n";
}
}
// Emit initial debug information.
DW.EndModule();
// Emit ident information
O << "\t.ident\t\"(llvm 2.2+) STI CBEA Cell SPU backend\"\n";
return AsmPrinter::doFinalization(M);
}
/// createSPUCodePrinterPass - Returns a pass that prints the Cell SPU
/// assembly code for a MachineFunction to the given output stream, in a format
/// that the Linux SPU assembler can deal with.
///
FunctionPass *llvm::createSPUAsmPrinterPass(std::ostream &o,
SPUTargetMachine &tm) {
return new LinuxAsmPrinter(o, tm, tm.getTargetAsmInfo());
}