mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36662 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			876 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			876 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs several transformations to transform natural loops into a
 | |
| // simpler form, which makes subsequent analyses and transformations simpler and
 | |
| // more effective.
 | |
| //
 | |
| // Loop pre-header insertion guarantees that there is a single, non-critical
 | |
| // entry edge from outside of the loop to the loop header.  This simplifies a
 | |
| // number of analyses and transformations, such as LICM.
 | |
| //
 | |
| // Loop exit-block insertion guarantees that all exit blocks from the loop
 | |
| // (blocks which are outside of the loop that have predecessors inside of the
 | |
| // loop) only have predecessors from inside of the loop (and are thus dominated
 | |
| // by the loop header).  This simplifies transformations such as store-sinking
 | |
| // that are built into LICM.
 | |
| //
 | |
| // This pass also guarantees that loops will have exactly one backedge.
 | |
| //
 | |
| // Note that the simplifycfg pass will clean up blocks which are split out but
 | |
| // end up being unnecessary, so usage of this pass should not pessimize
 | |
| // generated code.
 | |
| //
 | |
| // This pass obviously modifies the CFG, but updates loop information and
 | |
| // dominator information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loopsimplify"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
 | |
| STATISTIC(NumNested  , "Number of nested loops split out");
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
 | |
|     static char ID; // Pass identifcation, replacement for typeid
 | |
|     LoopSimplify() : FunctionPass((intptr_t)&ID) {}
 | |
| 
 | |
|     // AA - If we have an alias analysis object to update, this is it, otherwise
 | |
|     // this is null.
 | |
|     AliasAnalysis *AA;
 | |
|     LoopInfo *LI;
 | |
| 
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       // We need loop information to identify the loops...
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<ETForest>();
 | |
| 
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addPreserved<ETForest>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<DominanceFrontier>();
 | |
|       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
 | |
|     }
 | |
|   private:
 | |
|     bool ProcessLoop(Loop *L);
 | |
|     BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
 | |
|                                        const std::vector<BasicBlock*> &Preds);
 | |
|     BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
 | |
|     void InsertPreheaderForLoop(Loop *L);
 | |
|     Loop *SeparateNestedLoop(Loop *L);
 | |
|     void InsertUniqueBackedgeBlock(Loop *L);
 | |
|     void PlaceSplitBlockCarefully(BasicBlock *NewBB,
 | |
|                                   std::vector<BasicBlock*> &SplitPreds,
 | |
|                                   Loop *L);
 | |
|       
 | |
|     void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
 | |
|                                          std::vector<BasicBlock*> &PredBlocks);
 | |
|   };
 | |
| 
 | |
|   char LoopSimplify::ID = 0;
 | |
|   RegisterPass<LoopSimplify>
 | |
|   X("loopsimplify", "Canonicalize natural loops", true);
 | |
| }
 | |
| 
 | |
| // Publically exposed interface to pass...
 | |
| const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
 | |
| FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
 | |
| 
 | |
| /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
 | |
| /// it in any convenient order) inserting preheaders...
 | |
| ///
 | |
| bool LoopSimplify::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   AA = getAnalysisToUpdate<AliasAnalysis>();
 | |
| 
 | |
|   // Check to see that no blocks (other than the header) in loops have
 | |
|   // predecessors that are not in loops.  This is not valid for natural loops,
 | |
|   // but can occur if the blocks are unreachable.  Since they are unreachable we
 | |
|   // can just shamelessly destroy their terminators to make them not branch into
 | |
|   // the loop!
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     // This case can only occur for unreachable blocks.  Blocks that are
 | |
|     // unreachable can't be in loops, so filter those blocks out.
 | |
|     if (LI->getLoopFor(BB)) continue;
 | |
|     
 | |
|     bool BlockUnreachable = false;
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
| 
 | |
|     // Check to see if any successors of this block are non-loop-header loops
 | |
|     // that are not the header.
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|       // If this successor is not in a loop, BB is clearly ok.
 | |
|       Loop *L = LI->getLoopFor(TI->getSuccessor(i));
 | |
|       if (!L) continue;
 | |
|       
 | |
|       // If the succ is the loop header, and if L is a top-level loop, then this
 | |
|       // is an entrance into a loop through the header, which is also ok.
 | |
|       if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
 | |
|         continue;
 | |
|       
 | |
|       // Otherwise, this is an entrance into a loop from some place invalid.
 | |
|       // Either the loop structure is invalid and this is not a natural loop (in
 | |
|       // which case the compiler is buggy somewhere else) or BB is unreachable.
 | |
|       BlockUnreachable = true;
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // If this block is ok, check the next one.
 | |
|     if (!BlockUnreachable) continue;
 | |
|     
 | |
|     // Otherwise, this block is dead.  To clean up the CFG and to allow later
 | |
|     // loop transformations to ignore this case, we delete the edges into the
 | |
|     // loop by replacing the terminator.
 | |
|     
 | |
|     // Remove PHI entries from the successors.
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       TI->getSuccessor(i)->removePredecessor(BB);
 | |
|    
 | |
|     // Add a new unreachable instruction.
 | |
|     new UnreachableInst(TI);
 | |
|     
 | |
|     // Delete the dead terminator.
 | |
|     if (AA) AA->deleteValue(&BB->back());
 | |
|     BB->getInstList().pop_back();
 | |
|     Changed |= true;
 | |
|   }
 | |
|   
 | |
|   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | |
|     Changed |= ProcessLoop(*I);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
 | |
| /// all loops have preheaders.
 | |
| ///
 | |
| bool LoopSimplify::ProcessLoop(Loop *L) {
 | |
|   bool Changed = false;
 | |
| ReprocessLoop:
 | |
|   
 | |
|   // Canonicalize inner loops before outer loops.  Inner loop canonicalization
 | |
|   // can provide work for the outer loop to canonicalize.
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     Changed |= ProcessLoop(*I);
 | |
|   
 | |
|   assert(L->getBlocks()[0] == L->getHeader() &&
 | |
|          "Header isn't first block in loop?");
 | |
| 
 | |
|   // Does the loop already have a preheader?  If so, don't insert one.
 | |
|   if (L->getLoopPreheader() == 0) {
 | |
|     InsertPreheaderForLoop(L);
 | |
|     NumInserted++;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // Next, check to make sure that all exit nodes of the loop only have
 | |
|   // predecessors that are inside of the loop.  This check guarantees that the
 | |
|   // loop preheader/header will dominate the exit blocks.  If the exit block has
 | |
|   // predecessors from outside of the loop, split the edge now.
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|     
 | |
|   SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
 | |
|   for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
 | |
|          E = ExitBlockSet.end(); I != E; ++I) {
 | |
|     BasicBlock *ExitBlock = *I;
 | |
|     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | |
|          PI != PE; ++PI)
 | |
|       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
 | |
|       // allowed.
 | |
|       if (!L->contains(*PI)) {
 | |
|         RewriteLoopExitBlock(L, ExitBlock);
 | |
|         NumInserted++;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If the header has more than two predecessors at this point (from the
 | |
|   // preheader and from multiple backedges), we must adjust the loop.
 | |
|   unsigned NumBackedges = L->getNumBackEdges();
 | |
|   if (NumBackedges != 1) {
 | |
|     // If this is really a nested loop, rip it out into a child loop.  Don't do
 | |
|     // this for loops with a giant number of backedges, just factor them into a
 | |
|     // common backedge instead.
 | |
|     if (NumBackedges < 8) {
 | |
|       if (Loop *NL = SeparateNestedLoop(L)) {
 | |
|         ++NumNested;
 | |
|         // This is a big restructuring change, reprocess the whole loop.
 | |
|         ProcessLoop(NL);
 | |
|         Changed = true;
 | |
|         // GCC doesn't tail recursion eliminate this.
 | |
|         goto ReprocessLoop;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we either couldn't, or didn't want to, identify nesting of the loops,
 | |
|     // insert a new block that all backedges target, then make it jump to the
 | |
|     // loop header.
 | |
|     InsertUniqueBackedgeBlock(L);
 | |
|     NumInserted++;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // Scan over the PHI nodes in the loop header.  Since they now have only two
 | |
|   // incoming values (the loop is canonicalized), we may have simplified the PHI
 | |
|   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin();
 | |
|        (PN = dyn_cast<PHINode>(I++)); )
 | |
|     if (Value *V = PN->hasConstantValue()) {
 | |
|         PN->replaceAllUsesWith(V);
 | |
|         PN->eraseFromParent();
 | |
|       }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// SplitBlockPredecessors - Split the specified block into two blocks.  We want
 | |
| /// to move the predecessors specified in the Preds list to point to the new
 | |
| /// block, leaving the remaining predecessors pointing to BB.  This method
 | |
| /// updates the SSA PHINode's, but no other analyses.
 | |
| ///
 | |
| BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
 | |
|                                                  const char *Suffix,
 | |
|                                        const std::vector<BasicBlock*> &Preds) {
 | |
| 
 | |
|   // Create new basic block, insert right before the original block...
 | |
|   BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
 | |
| 
 | |
|   // The preheader first gets an unconditional branch to the loop header...
 | |
|   BranchInst *BI = new BranchInst(BB, NewBB);
 | |
| 
 | |
|   // For every PHI node in the block, insert a PHI node into NewBB where the
 | |
|   // incoming values from the out of loop edges are moved to NewBB.  We have two
 | |
|   // possible cases here.  If the loop is dead, we just insert dummy entries
 | |
|   // into the PHI nodes for the new edge.  If the loop is not dead, we move the
 | |
|   // incoming edges in BB into new PHI nodes in NewBB.
 | |
|   //
 | |
|   if (!Preds.empty()) {  // Is the loop not obviously dead?
 | |
|     // Check to see if the values being merged into the new block need PHI
 | |
|     // nodes.  If so, insert them.
 | |
|     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       ++I;
 | |
| 
 | |
|       // Check to see if all of the values coming in are the same.  If so, we
 | |
|       // don't need to create a new PHI node.
 | |
|       Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
 | |
|       for (unsigned i = 1, e = Preds.size(); i != e; ++i)
 | |
|         if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
 | |
|           InVal = 0;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // If the values coming into the block are not the same, we need a PHI.
 | |
|       if (InVal == 0) {
 | |
|         // Create the new PHI node, insert it into NewBB at the end of the block
 | |
|         PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
 | |
|         if (AA) AA->copyValue(PN, NewPHI);
 | |
| 
 | |
|         // Move all of the edges from blocks outside the loop to the new PHI
 | |
|         for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|           Value *V = PN->removeIncomingValue(Preds[i], false);
 | |
|           NewPHI->addIncoming(V, Preds[i]);
 | |
|         }
 | |
|         InVal = NewPHI;
 | |
|       } else {
 | |
|         // Remove all of the edges coming into the PHI nodes from outside of the
 | |
|         // block.
 | |
|         for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | |
|           PN->removeIncomingValue(Preds[i], false);
 | |
|       }
 | |
| 
 | |
|       // Add an incoming value to the PHI node in the loop for the preheader
 | |
|       // edge.
 | |
|       PN->addIncoming(InVal, NewBB);
 | |
| 
 | |
|       // Can we eliminate this phi node now?
 | |
|       if (Value *V = PN->hasConstantValue(true)) {
 | |
|         Instruction *I = dyn_cast<Instruction>(V);
 | |
|         // If I is in NewBB, the ETForest call will fail, because NewBB isn't
 | |
|         // registered in ETForest yet.  Handle this case explicitly.
 | |
|         if (!I || (I->getParent() != NewBB &&
 | |
|                    getAnalysis<ETForest>().dominates(I, PN))) {
 | |
|           PN->replaceAllUsesWith(V);
 | |
|           if (AA) AA->deleteValue(PN);
 | |
|           BB->getInstList().erase(PN);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that the PHI nodes are updated, actually move the edges from
 | |
|     // Preds to point to NewBB instead of BB.
 | |
|     //
 | |
|     for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|       TerminatorInst *TI = Preds[i]->getTerminator();
 | |
|       for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
 | |
|         if (TI->getSuccessor(s) == BB)
 | |
|           TI->setSuccessor(s, NewBB);
 | |
|     }
 | |
| 
 | |
|   } else {                       // Otherwise the loop is dead...
 | |
|     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       // Insert dummy values as the incoming value...
 | |
|       PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
 | |
|     }
 | |
|   }
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
 | |
| /// preheader, this method is called to insert one.  This method has two phases:
 | |
| /// preheader insertion and analysis updating.
 | |
| ///
 | |
| void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   // Compute the set of predecessors of the loop that are not in the loop.
 | |
|   std::vector<BasicBlock*> OutsideBlocks;
 | |
|   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | |
|        PI != PE; ++PI)
 | |
|     if (!L->contains(*PI))           // Coming in from outside the loop?
 | |
|       OutsideBlocks.push_back(*PI);  // Keep track of it...
 | |
| 
 | |
|   // Split out the loop pre-header.
 | |
|   BasicBlock *NewBB =
 | |
|     SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
 | |
|   
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //  Update analysis results now that we have performed the transformation
 | |
|   //
 | |
| 
 | |
|   // We know that we have loop information to update... update it now.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->addBasicBlockToLoop(NewBB, *LI);
 | |
| 
 | |
|   UpdateDomInfoForRevectoredPreds(NewBB, OutsideBlocks);
 | |
|   
 | |
|   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
 | |
|   // code layout too horribly.
 | |
|   PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
 | |
| }
 | |
| 
 | |
| /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
 | |
| /// blocks.  This method is used to split exit blocks that have predecessors
 | |
| /// outside of the loop.
 | |
| BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
 | |
|   std::vector<BasicBlock*> LoopBlocks;
 | |
|   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
 | |
|     if (L->contains(*I))
 | |
|       LoopBlocks.push_back(*I);
 | |
| 
 | |
|   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
 | |
|   BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
 | |
| 
 | |
|   // Update Loop Information - we know that the new block will be in whichever
 | |
|   // loop the Exit block is in.  Note that it may not be in that immediate loop,
 | |
|   // if the successor is some other loop header.  In that case, we continue 
 | |
|   // walking up the loop tree to find a loop that contains both the successor
 | |
|   // block and the predecessor block.
 | |
|   Loop *SuccLoop = LI->getLoopFor(Exit);
 | |
|   while (SuccLoop && !SuccLoop->contains(L->getHeader()))
 | |
|     SuccLoop = SuccLoop->getParentLoop();
 | |
|   if (SuccLoop)
 | |
|     SuccLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
| 
 | |
|   // Update dominator information (set, immdom, domtree, and domfrontier)
 | |
|   UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// AddBlockAndPredsToSet - Add the specified block, and all of its
 | |
| /// predecessors, to the specified set, if it's not already in there.  Stop
 | |
| /// predecessor traversal when we reach StopBlock.
 | |
| static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
 | |
|                                   std::set<BasicBlock*> &Blocks) {
 | |
|   std::vector<BasicBlock *> WorkList;
 | |
|   WorkList.push_back(InputBB);
 | |
|   do {
 | |
|     BasicBlock *BB = WorkList.back(); WorkList.pop_back();
 | |
|     if (Blocks.insert(BB).second && BB != StopBlock)
 | |
|       // If BB is not already processed and it is not a stop block then
 | |
|       // insert its predecessor in the work list
 | |
|       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
 | |
|         BasicBlock *WBB = *I;
 | |
|         WorkList.push_back(WBB);
 | |
|       }
 | |
|   } while(!WorkList.empty());
 | |
| }
 | |
| 
 | |
| /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
 | |
| /// PHI node that tells us how to partition the loops.
 | |
| static PHINode *FindPHIToPartitionLoops(Loop *L, ETForest *EF,
 | |
|                                         AliasAnalysis *AA) {
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     ++I;
 | |
|     if (Value *V = PN->hasConstantValue())
 | |
|       if (!isa<Instruction>(V) || EF->dominates(cast<Instruction>(V), PN)) {
 | |
|         // This is a degenerate PHI already, don't modify it!
 | |
|         PN->replaceAllUsesWith(V);
 | |
|         if (AA) AA->deleteValue(PN);
 | |
|         PN->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // Scan this PHI node looking for a use of the PHI node by itself.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (PN->getIncomingValue(i) == PN &&
 | |
|           L->contains(PN->getIncomingBlock(i)))
 | |
|         // We found something tasty to remove.
 | |
|         return PN;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
 | |
| // right after some 'outside block' block.  This prevents the preheader from
 | |
| // being placed inside the loop body, e.g. when the loop hasn't been rotated.
 | |
| void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
 | |
|                                             std::vector<BasicBlock*>&SplitPreds,
 | |
|                                             Loop *L) {
 | |
|   // Check to see if NewBB is already well placed.
 | |
|   Function::iterator BBI = NewBB; --BBI;
 | |
|   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
 | |
|     if (&*BBI == SplitPreds[i])
 | |
|       return;
 | |
|   }
 | |
|   
 | |
|   // If it isn't already after an outside block, move it after one.  This is
 | |
|   // always good as it makes the uncond branch from the outside block into a
 | |
|   // fall-through.
 | |
|   
 | |
|   // Figure out *which* outside block to put this after.  Prefer an outside
 | |
|   // block that neighbors a BB actually in the loop.
 | |
|   BasicBlock *FoundBB = 0;
 | |
|   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
 | |
|     Function::iterator BBI = SplitPreds[i];
 | |
|     if (++BBI != NewBB->getParent()->end() && 
 | |
|         L->contains(BBI)) {
 | |
|       FoundBB = SplitPreds[i];
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If our heuristic for a *good* bb to place this after doesn't find
 | |
|   // anything, just pick something.  It's likely better than leaving it within
 | |
|   // the loop.
 | |
|   if (!FoundBB)
 | |
|     FoundBB = SplitPreds[0];
 | |
|   NewBB->moveAfter(FoundBB);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
 | |
| /// them out into a nested loop.  This is important for code that looks like
 | |
| /// this:
 | |
| ///
 | |
| ///  Loop:
 | |
| ///     ...
 | |
| ///     br cond, Loop, Next
 | |
| ///     ...
 | |
| ///     br cond2, Loop, Out
 | |
| ///
 | |
| /// To identify this common case, we look at the PHI nodes in the header of the
 | |
| /// loop.  PHI nodes with unchanging values on one backedge correspond to values
 | |
| /// that change in the "outer" loop, but not in the "inner" loop.
 | |
| ///
 | |
| /// If we are able to separate out a loop, return the new outer loop that was
 | |
| /// created.
 | |
| ///
 | |
| Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
 | |
|   ETForest *EF = getAnalysisToUpdate<ETForest>();
 | |
|   PHINode *PN = FindPHIToPartitionLoops(L, EF, AA);
 | |
|   if (PN == 0) return 0;  // No known way to partition.
 | |
| 
 | |
|   // Pull out all predecessors that have varying values in the loop.  This
 | |
|   // handles the case when a PHI node has multiple instances of itself as
 | |
|   // arguments.
 | |
|   std::vector<BasicBlock*> OuterLoopPreds;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingValue(i) != PN ||
 | |
|         !L->contains(PN->getIncomingBlock(i)))
 | |
|       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
 | |
| 
 | |
|   // Update dominator information (set, immdom, domtree, and domfrontier)
 | |
|   UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
 | |
| 
 | |
|   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
 | |
|   // code layout too horribly.
 | |
|   PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
 | |
|   
 | |
|   // Create the new outer loop.
 | |
|   Loop *NewOuter = new Loop();
 | |
| 
 | |
|   // Change the parent loop to use the outer loop as its child now.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->replaceChildLoopWith(L, NewOuter);
 | |
|   else
 | |
|     LI->changeTopLevelLoop(L, NewOuter);
 | |
| 
 | |
|   // This block is going to be our new header block: add it to this loop and all
 | |
|   // parent loops.
 | |
|   NewOuter->addBasicBlockToLoop(NewBB, *LI);
 | |
| 
 | |
|   // L is now a subloop of our outer loop.
 | |
|   NewOuter->addChildLoop(L);
 | |
| 
 | |
|   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
 | |
|     NewOuter->addBlockEntry(L->getBlocks()[i]);
 | |
| 
 | |
|   // Determine which blocks should stay in L and which should be moved out to
 | |
|   // the Outer loop now.
 | |
|   std::set<BasicBlock*> BlocksInL;
 | |
|   for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
 | |
|     if (EF->dominates(Header, *PI))
 | |
|       AddBlockAndPredsToSet(*PI, Header, BlocksInL);
 | |
| 
 | |
| 
 | |
|   // Scan all of the loop children of L, moving them to OuterLoop if they are
 | |
|   // not part of the inner loop.
 | |
|   for (Loop::iterator I = L->begin(); I != L->end(); )
 | |
|     if (BlocksInL.count((*I)->getHeader()))
 | |
|       ++I;   // Loop remains in L
 | |
|     else
 | |
|       NewOuter->addChildLoop(L->removeChildLoop(I));
 | |
| 
 | |
|   // Now that we know which blocks are in L and which need to be moved to
 | |
|   // OuterLoop, move any blocks that need it.
 | |
|   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
 | |
|     BasicBlock *BB = L->getBlocks()[i];
 | |
|     if (!BlocksInL.count(BB)) {
 | |
|       // Move this block to the parent, updating the exit blocks sets
 | |
|       L->removeBlockFromLoop(BB);
 | |
|       if ((*LI)[BB] == L)
 | |
|         LI->changeLoopFor(BB, NewOuter);
 | |
|       --i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NewOuter;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// InsertUniqueBackedgeBlock - This method is called when the specified loop
 | |
| /// has more than one backedge in it.  If this occurs, revector all of these
 | |
| /// backedges to target a new basic block and have that block branch to the loop
 | |
| /// header.  This ensures that loops have exactly one backedge.
 | |
| ///
 | |
| void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
 | |
|   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
 | |
| 
 | |
|   // Get information about the loop
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   Function *F = Header->getParent();
 | |
| 
 | |
|   // Figure out which basic blocks contain back-edges to the loop header.
 | |
|   std::vector<BasicBlock*> BackedgeBlocks;
 | |
|   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
 | |
|     if (*I != Preheader) BackedgeBlocks.push_back(*I);
 | |
| 
 | |
|   // Create and insert the new backedge block...
 | |
|   BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
 | |
|   BranchInst *BETerminator = new BranchInst(Header, BEBlock);
 | |
| 
 | |
|   // Move the new backedge block to right after the last backedge block.
 | |
|   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
 | |
|   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
 | |
| 
 | |
|   // Now that the block has been inserted into the function, create PHI nodes in
 | |
|   // the backedge block which correspond to any PHI nodes in the header block.
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
 | |
|                                  BETerminator);
 | |
|     NewPN->reserveOperandSpace(BackedgeBlocks.size());
 | |
|     if (AA) AA->copyValue(PN, NewPN);
 | |
| 
 | |
|     // Loop over the PHI node, moving all entries except the one for the
 | |
|     // preheader over to the new PHI node.
 | |
|     unsigned PreheaderIdx = ~0U;
 | |
|     bool HasUniqueIncomingValue = true;
 | |
|     Value *UniqueValue = 0;
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       BasicBlock *IBB = PN->getIncomingBlock(i);
 | |
|       Value *IV = PN->getIncomingValue(i);
 | |
|       if (IBB == Preheader) {
 | |
|         PreheaderIdx = i;
 | |
|       } else {
 | |
|         NewPN->addIncoming(IV, IBB);
 | |
|         if (HasUniqueIncomingValue) {
 | |
|           if (UniqueValue == 0)
 | |
|             UniqueValue = IV;
 | |
|           else if (UniqueValue != IV)
 | |
|             HasUniqueIncomingValue = false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Delete all of the incoming values from the old PN except the preheader's
 | |
|     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
 | |
|     if (PreheaderIdx != 0) {
 | |
|       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
 | |
|       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
 | |
|     }
 | |
|     // Nuke all entries except the zero'th.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
 | |
|       PN->removeIncomingValue(e-i, false);
 | |
| 
 | |
|     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
 | |
|     PN->addIncoming(NewPN, BEBlock);
 | |
| 
 | |
|     // As an optimization, if all incoming values in the new PhiNode (which is a
 | |
|     // subset of the incoming values of the old PHI node) have the same value,
 | |
|     // eliminate the PHI Node.
 | |
|     if (HasUniqueIncomingValue) {
 | |
|       NewPN->replaceAllUsesWith(UniqueValue);
 | |
|       if (AA) AA->deleteValue(NewPN);
 | |
|       BEBlock->getInstList().erase(NewPN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that all of the PHI nodes have been inserted and adjusted, modify the
 | |
|   // backedge blocks to just to the BEBlock instead of the header.
 | |
|   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
 | |
|     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
 | |
|     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
 | |
|       if (TI->getSuccessor(Op) == Header)
 | |
|         TI->setSuccessor(Op, BEBlock);
 | |
|   }
 | |
| 
 | |
|   //===--- Update all analyses which we must preserve now -----------------===//
 | |
| 
 | |
|   // Update Loop Information - we know that this block is now in the current
 | |
|   // loop and all parent loops.
 | |
|   L->addBasicBlockToLoop(BEBlock, *LI);
 | |
| 
 | |
|   // Update dominator information (set, immdom, domtree, and domfrontier)
 | |
|   UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
 | |
| }
 | |
| 
 | |
| // Returns true if BasicBlock A dominates at least one block in vector B
 | |
| // Helper function for UpdateDomInfoForRevectoredPreds
 | |
| static bool BlockDominatesAny(BasicBlock* A, const std::vector<BasicBlock*>& B,
 | |
|                               ETForest& ETF) {
 | |
|   for (std::vector<BasicBlock*>::const_iterator BI = B.begin(), BE = B.end();
 | |
|        BI != BE; ++BI) {
 | |
|     if (ETF.dominates(A, *BI))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// UpdateDomInfoForRevectoredPreds - This method is used to update the four
 | |
| /// different kinds of dominator information (immediate dominators,
 | |
| /// dominator trees, et-forest and dominance frontiers) after a new block has
 | |
| /// been added to the CFG.
 | |
| ///
 | |
| /// This only supports the case when an existing block (known as "NewBBSucc"),
 | |
| /// had some of its predecessors factored into a new basic block.  This
 | |
| /// transformation inserts a new basic block ("NewBB"), with a single
 | |
| /// unconditional branch to NewBBSucc, and moves some predecessors of
 | |
| /// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
 | |
| /// PredBlocks, even though they are the same as
 | |
| /// pred_begin(NewBB)/pred_end(NewBB).
 | |
| ///
 | |
| void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
 | |
|                                          std::vector<BasicBlock*> &PredBlocks) {
 | |
|   assert(!PredBlocks.empty() && "No predblocks??");
 | |
|   assert(succ_begin(NewBB) != succ_end(NewBB) &&
 | |
|          ++succ_begin(NewBB) == succ_end(NewBB) &&
 | |
|          "NewBB should have a single successor!");
 | |
|   BasicBlock *NewBBSucc = *succ_begin(NewBB);
 | |
|   ETForest& ETF = getAnalysis<ETForest>();
 | |
|   
 | |
|   // The newly inserted basic block will dominate existing basic blocks iff the
 | |
|   // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
 | |
|   // the non-pred blocks, then they all must be the same block!
 | |
|   //
 | |
|   bool NewBBDominatesNewBBSucc = true;
 | |
|   {
 | |
|     BasicBlock *OnePred = PredBlocks[0];
 | |
|     unsigned i = 1, e = PredBlocks.size();
 | |
|     for (i = 1; !ETF.isReachableFromEntry(OnePred); ++i) {
 | |
|       assert(i != e && "Didn't find reachable pred?");
 | |
|       OnePred = PredBlocks[i];
 | |
|     }
 | |
|     
 | |
|     for (; i != e; ++i)
 | |
|       if (PredBlocks[i] != OnePred && ETF.isReachableFromEntry(OnePred)){
 | |
|         NewBBDominatesNewBBSucc = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (NewBBDominatesNewBBSucc)
 | |
|       for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
 | |
|            PI != E; ++PI)
 | |
|         if (*PI != NewBB && !ETF.dominates(NewBBSucc, *PI)) {
 | |
|           NewBBDominatesNewBBSucc = false;
 | |
|           break;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // The other scenario where the new block can dominate its successors are when
 | |
|   // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
 | |
|   // already.
 | |
|   if (!NewBBDominatesNewBBSucc) {
 | |
|     NewBBDominatesNewBBSucc = true;
 | |
|     for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
 | |
|          PI != E; ++PI)
 | |
|       if (*PI != NewBB && !ETF.dominates(NewBBSucc, *PI)) {
 | |
|         NewBBDominatesNewBBSucc = false;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   BasicBlock *NewBBIDom = 0;
 | |
| 
 | |
|   // Update DominatorTree information if it is active.
 | |
|   if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
 | |
|     // If we don't have ImmediateDominator info around, calculate the idom as
 | |
|     // above.
 | |
|     if (!NewBBIDom) {
 | |
|       unsigned i = 0;
 | |
|       for (i = 0; i < PredBlocks.size(); ++i)
 | |
|         if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i])) {
 | |
|           NewBBIDom = PredBlocks[i];
 | |
|           break;
 | |
|         }
 | |
|       assert(i != PredBlocks.size() && "No reachable preds?");
 | |
|       for (i = i + 1; i < PredBlocks.size(); ++i) {
 | |
|         if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i]))
 | |
|           NewBBIDom = ETF.nearestCommonDominator(NewBBIDom, PredBlocks[i]);
 | |
|       }
 | |
|       assert(NewBBIDom && "No immediate dominator found??");
 | |
|     }
 | |
|     DominatorTree::Node *NewBBIDomNode = DT->getNode(NewBBIDom);
 | |
| 
 | |
|     // Create the new dominator tree node... and set the idom of NewBB.
 | |
|     DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
 | |
| 
 | |
|     // If NewBB strictly dominates other blocks, then it is now the immediate
 | |
|     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
 | |
|       DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update ET-Forest information if it is active.
 | |
|   if (ETForest *EF = getAnalysisToUpdate<ETForest>()) {
 | |
|     EF->addNewBlock(NewBB, NewBBIDom);
 | |
|     if (NewBBDominatesNewBBSucc)
 | |
|       EF->setImmediateDominator(NewBBSucc, NewBB);
 | |
|   }
 | |
| 
 | |
|   // Update dominance frontier information...
 | |
|   if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | |
|     // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
 | |
|     // DF(PredBlocks[0]) without the stuff that the new block does not dominate
 | |
|     // a predecessor of.
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
 | |
|       if (DFI != DF->end()) {
 | |
|         DominanceFrontier::DomSetType Set = DFI->second;
 | |
|         // Filter out stuff in Set that we do not dominate a predecessor of.
 | |
|         for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
 | |
|                E = Set.end(); SetI != E;) {
 | |
|           bool DominatesPred = false;
 | |
|           for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
 | |
|                PI != E; ++PI)
 | |
|             if (ETF.dominates(NewBB, *PI))
 | |
|               DominatesPred = true;
 | |
|           if (!DominatesPred)
 | |
|             Set.erase(SetI++);
 | |
|           else
 | |
|             ++SetI;
 | |
|         }
 | |
| 
 | |
|         DF->addBasicBlock(NewBB, Set);
 | |
|       }
 | |
| 
 | |
|     } else {
 | |
|       // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
 | |
|       // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
 | |
|       // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
 | |
|       DominanceFrontier::DomSetType NewDFSet;
 | |
|       NewDFSet.insert(NewBBSucc);
 | |
|       DF->addBasicBlock(NewBB, NewDFSet);
 | |
|     }
 | |
| 
 | |
|     // Now we must loop over all of the dominance frontiers in the function,
 | |
|     // replacing occurrences of NewBBSucc with NewBB in some cases.  All
 | |
|     // blocks that dominate a block in PredBlocks and contained NewBBSucc in
 | |
|     // their dominance frontier must be updated to contain NewBB instead.
 | |
|     //
 | |
|     for (Function::iterator FI = NewBB->getParent()->begin(),
 | |
|          FE = NewBB->getParent()->end(); FI != FE; ++FI) {
 | |
|       DominanceFrontier::iterator DFI = DF->find(FI);
 | |
|       if (DFI == DF->end()) continue;  // unreachable block.
 | |
|       
 | |
|       // Only consider dominators of NewBBSucc
 | |
|       if (!DFI->second.count(NewBBSucc)) continue;
 | |
|       
 | |
|       if (BlockDominatesAny(FI, PredBlocks, ETF)) {
 | |
|         // If NewBBSucc should not stay in our dominator frontier, remove it.
 | |
|         // We remove it unless there is a predecessor of NewBBSucc that we
 | |
|         // dominate, but we don't strictly dominate NewBBSucc.
 | |
|         bool ShouldRemove = true;
 | |
|         if ((BasicBlock*)FI == NewBBSucc || !ETF.dominates(FI, NewBBSucc)) {
 | |
|           // Okay, we know that PredDom does not strictly dominate NewBBSucc.
 | |
|           // Check to see if it dominates any predecessors of NewBBSucc.
 | |
|           for (pred_iterator PI = pred_begin(NewBBSucc),
 | |
|                E = pred_end(NewBBSucc); PI != E; ++PI)
 | |
|             if (ETF.dominates(FI, *PI)) {
 | |
|               ShouldRemove = false;
 | |
|               break;
 | |
|             }
 | |
|           
 | |
|           if (ShouldRemove)
 | |
|             DF->removeFromFrontier(DFI, NewBBSucc);
 | |
|           DF->addToFrontier(DFI, NewBB);
 | |
|           
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 |