mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36515 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2614 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2614 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements all of the non-inline methods for the LLVM instruction
 | |
| // classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/ParameterAttributes.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| unsigned CallSite::getCallingConv() const {
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     return CI->getCallingConv();
 | |
|   else
 | |
|     return cast<InvokeInst>(I)->getCallingConv();
 | |
| }
 | |
| void CallSite::setCallingConv(unsigned CC) {
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     CI->setCallingConv(CC);
 | |
|   else
 | |
|     cast<InvokeInst>(I)->setCallingConv(CC);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            TerminatorInst Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Out of line virtual method, so the vtable, etc has a home.
 | |
| TerminatorInst::~TerminatorInst() {
 | |
| }
 | |
| 
 | |
| // Out of line virtual method, so the vtable, etc has a home.
 | |
| UnaryInstruction::~UnaryInstruction() {
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               PHINode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| PHINode::PHINode(const PHINode &PN)
 | |
|   : Instruction(PN.getType(), Instruction::PHI,
 | |
|                 new Use[PN.getNumOperands()], PN.getNumOperands()),
 | |
|     ReservedSpace(PN.getNumOperands()) {
 | |
|   Use *OL = OperandList;
 | |
|   for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
 | |
|     OL[i].init(PN.getOperand(i), this);
 | |
|     OL[i+1].init(PN.getOperand(i+1), this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| PHINode::~PHINode() {
 | |
|   delete [] OperandList;
 | |
| }
 | |
| 
 | |
| // removeIncomingValue - Remove an incoming value.  This is useful if a
 | |
| // predecessor basic block is deleted.
 | |
| Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
 | |
|   unsigned NumOps = getNumOperands();
 | |
|   Use *OL = OperandList;
 | |
|   assert(Idx*2 < NumOps && "BB not in PHI node!");
 | |
|   Value *Removed = OL[Idx*2];
 | |
| 
 | |
|   // Move everything after this operand down.
 | |
|   //
 | |
|   // FIXME: we could just swap with the end of the list, then erase.  However,
 | |
|   // client might not expect this to happen.  The code as it is thrashes the
 | |
|   // use/def lists, which is kinda lame.
 | |
|   for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
 | |
|     OL[i-2] = OL[i];
 | |
|     OL[i-2+1] = OL[i+1];
 | |
|   }
 | |
| 
 | |
|   // Nuke the last value.
 | |
|   OL[NumOps-2].set(0);
 | |
|   OL[NumOps-2+1].set(0);
 | |
|   NumOperands = NumOps-2;
 | |
| 
 | |
|   // If the PHI node is dead, because it has zero entries, nuke it now.
 | |
|   if (NumOps == 2 && DeletePHIIfEmpty) {
 | |
|     // If anyone is using this PHI, make them use a dummy value instead...
 | |
|     replaceAllUsesWith(UndefValue::get(getType()));
 | |
|     eraseFromParent();
 | |
|   }
 | |
|   return Removed;
 | |
| }
 | |
| 
 | |
| /// resizeOperands - resize operands - This adjusts the length of the operands
 | |
| /// list according to the following behavior:
 | |
| ///   1. If NumOps == 0, grow the operand list in response to a push_back style
 | |
| ///      of operation.  This grows the number of ops by 1.5 times.
 | |
| ///   2. If NumOps > NumOperands, reserve space for NumOps operands.
 | |
| ///   3. If NumOps == NumOperands, trim the reserved space.
 | |
| ///
 | |
| void PHINode::resizeOperands(unsigned NumOps) {
 | |
|   if (NumOps == 0) {
 | |
|     NumOps = (getNumOperands())*3/2;
 | |
|     if (NumOps < 4) NumOps = 4;      // 4 op PHI nodes are VERY common.
 | |
|   } else if (NumOps*2 > NumOperands) {
 | |
|     // No resize needed.
 | |
|     if (ReservedSpace >= NumOps) return;
 | |
|   } else if (NumOps == NumOperands) {
 | |
|     if (ReservedSpace == NumOps) return;
 | |
|   } else {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ReservedSpace = NumOps;
 | |
|   Use *NewOps = new Use[NumOps];
 | |
|   Use *OldOps = OperandList;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|       NewOps[i].init(OldOps[i], this);
 | |
|       OldOps[i].set(0);
 | |
|   }
 | |
|   delete [] OldOps;
 | |
|   OperandList = NewOps;
 | |
| }
 | |
| 
 | |
| /// hasConstantValue - If the specified PHI node always merges together the same
 | |
| /// value, return the value, otherwise return null.
 | |
| ///
 | |
| Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
 | |
|   // If the PHI node only has one incoming value, eliminate the PHI node...
 | |
|   if (getNumIncomingValues() == 1)
 | |
|     if (getIncomingValue(0) != this)   // not  X = phi X
 | |
|       return getIncomingValue(0);
 | |
|     else
 | |
|       return UndefValue::get(getType());  // Self cycle is dead.
 | |
|       
 | |
|   // Otherwise if all of the incoming values are the same for the PHI, replace
 | |
|   // the PHI node with the incoming value.
 | |
|   //
 | |
|   Value *InVal = 0;
 | |
|   bool HasUndefInput = false;
 | |
|   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
 | |
|     if (isa<UndefValue>(getIncomingValue(i)))
 | |
|       HasUndefInput = true;
 | |
|     else if (getIncomingValue(i) != this)  // Not the PHI node itself...
 | |
|       if (InVal && getIncomingValue(i) != InVal)
 | |
|         return 0;  // Not the same, bail out.
 | |
|       else
 | |
|         InVal = getIncomingValue(i);
 | |
|   
 | |
|   // The only case that could cause InVal to be null is if we have a PHI node
 | |
|   // that only has entries for itself.  In this case, there is no entry into the
 | |
|   // loop, so kill the PHI.
 | |
|   //
 | |
|   if (InVal == 0) InVal = UndefValue::get(getType());
 | |
|   
 | |
|   // If we have a PHI node like phi(X, undef, X), where X is defined by some
 | |
|   // instruction, we cannot always return X as the result of the PHI node.  Only
 | |
|   // do this if X is not an instruction (thus it must dominate the PHI block),
 | |
|   // or if the client is prepared to deal with this possibility.
 | |
|   if (HasUndefInput && !AllowNonDominatingInstruction)
 | |
|     if (Instruction *IV = dyn_cast<Instruction>(InVal))
 | |
|       // If it's in the entry block, it dominates everything.
 | |
|       if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
 | |
|           isa<InvokeInst>(IV))
 | |
|         return 0;   // Cannot guarantee that InVal dominates this PHINode.
 | |
| 
 | |
|   // All of the incoming values are the same, return the value now.
 | |
|   return InVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        CallInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CallInst::~CallInst() {
 | |
|   delete [] OperandList;
 | |
|   if (ParamAttrs)
 | |
|     ParamAttrs->dropRef();
 | |
| }
 | |
| 
 | |
| void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
 | |
|   ParamAttrs = 0;
 | |
|   NumOperands = NumParams+1;
 | |
|   Use *OL = OperandList = new Use[NumParams+1];
 | |
|   OL[0].init(Func, this);
 | |
| 
 | |
|   const FunctionType *FTy =
 | |
|     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
 | |
|   FTy = FTy;  // silence warning.
 | |
| 
 | |
|   assert((NumParams == FTy->getNumParams() ||
 | |
|           (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
 | |
|          "Calling a function with bad signature!");
 | |
|   for (unsigned i = 0; i != NumParams; ++i) {
 | |
|     assert((i >= FTy->getNumParams() || 
 | |
|             FTy->getParamType(i) == Params[i]->getType()) &&
 | |
|            "Calling a function with a bad signature!");
 | |
|     OL[i+1].init(Params[i], this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
 | |
|   ParamAttrs = 0;
 | |
|   NumOperands = 3;
 | |
|   Use *OL = OperandList = new Use[3];
 | |
|   OL[0].init(Func, this);
 | |
|   OL[1].init(Actual1, this);
 | |
|   OL[2].init(Actual2, this);
 | |
| 
 | |
|   const FunctionType *FTy =
 | |
|     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
 | |
|   FTy = FTy;  // silence warning.
 | |
| 
 | |
|   assert((FTy->getNumParams() == 2 ||
 | |
|           (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
 | |
|          "Calling a function with bad signature");
 | |
|   assert((0 >= FTy->getNumParams() || 
 | |
|           FTy->getParamType(0) == Actual1->getType()) &&
 | |
|          "Calling a function with a bad signature!");
 | |
|   assert((1 >= FTy->getNumParams() || 
 | |
|           FTy->getParamType(1) == Actual2->getType()) &&
 | |
|          "Calling a function with a bad signature!");
 | |
| }
 | |
| 
 | |
| void CallInst::init(Value *Func, Value *Actual) {
 | |
|   ParamAttrs = 0;
 | |
|   NumOperands = 2;
 | |
|   Use *OL = OperandList = new Use[2];
 | |
|   OL[0].init(Func, this);
 | |
|   OL[1].init(Actual, this);
 | |
| 
 | |
|   const FunctionType *FTy =
 | |
|     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
 | |
|   FTy = FTy;  // silence warning.
 | |
| 
 | |
|   assert((FTy->getNumParams() == 1 ||
 | |
|           (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
 | |
|          "Calling a function with bad signature");
 | |
|   assert((0 == FTy->getNumParams() || 
 | |
|           FTy->getParamType(0) == Actual->getType()) &&
 | |
|          "Calling a function with a bad signature!");
 | |
| }
 | |
| 
 | |
| void CallInst::init(Value *Func) {
 | |
|   ParamAttrs = 0;
 | |
|   NumOperands = 1;
 | |
|   Use *OL = OperandList = new Use[1];
 | |
|   OL[0].init(Func, this);
 | |
| 
 | |
|   const FunctionType *FTy =
 | |
|     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
 | |
|   FTy = FTy;  // silence warning.
 | |
| 
 | |
|   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(Value *Func, Value* const *Args, unsigned NumArgs,
 | |
|                    const std::string &Name, BasicBlock *InsertAtEnd)
 | |
|   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | |
|                                  ->getElementType())->getReturnType(),
 | |
|                 Instruction::Call, 0, 0, InsertAtEnd) {
 | |
|   init(Func, Args, NumArgs);
 | |
|   setName(Name);
 | |
| }
 | |
| CallInst::CallInst(Value *Func, Value* const *Args, unsigned NumArgs,
 | |
|                    const std::string &Name, Instruction *InsertBefore)
 | |
| : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | |
|                                  ->getElementType())->getReturnType(),
 | |
|               Instruction::Call, 0, 0, InsertBefore) {
 | |
|   init(Func, Args, NumArgs);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
 | |
|                    const std::string &Name, Instruction  *InsertBefore)
 | |
|   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | |
|                                    ->getElementType())->getReturnType(),
 | |
|                 Instruction::Call, 0, 0, InsertBefore) {
 | |
|   init(Func, Actual1, Actual2);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
 | |
|                    const std::string &Name, BasicBlock  *InsertAtEnd)
 | |
|   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | |
|                                    ->getElementType())->getReturnType(),
 | |
|                 Instruction::Call, 0, 0, InsertAtEnd) {
 | |
|   init(Func, Actual1, Actual2);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
 | |
|                    Instruction *InsertBefore)
 | |
|   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | |
|                                    ->getElementType())->getReturnType(),
 | |
|                 Instruction::Call, 0, 0, InsertBefore) {
 | |
|   init(Func, Actual);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
 | |
|                    BasicBlock  *InsertAtEnd)
 | |
|   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | |
|                                    ->getElementType())->getReturnType(),
 | |
|                 Instruction::Call, 0, 0, InsertAtEnd) {
 | |
|   init(Func, Actual);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(Value *Func, const std::string &Name,
 | |
|                    Instruction *InsertBefore)
 | |
|   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | |
|                                    ->getElementType())->getReturnType(),
 | |
|                 Instruction::Call, 0, 0, InsertBefore) {
 | |
|   init(Func);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(Value *Func, const std::string &Name,
 | |
|                    BasicBlock *InsertAtEnd)
 | |
|   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | |
|                                    ->getElementType())->getReturnType(),
 | |
|                 Instruction::Call, 0, 0, InsertAtEnd) {
 | |
|   init(Func);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(const CallInst &CI)
 | |
|   : Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()],
 | |
|                 CI.getNumOperands()) {
 | |
|   ParamAttrs = 0;
 | |
|   SubclassData = CI.SubclassData;
 | |
|   Use *OL = OperandList;
 | |
|   Use *InOL = CI.OperandList;
 | |
|   for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
 | |
|     OL[i].init(InOL[i], this);
 | |
| }
 | |
| 
 | |
| void CallInst::setParamAttrs(ParamAttrsList *newAttrs) {
 | |
|   if (ParamAttrs)
 | |
|     ParamAttrs->dropRef();
 | |
| 
 | |
|   if (newAttrs)
 | |
|     newAttrs->addRef();
 | |
| 
 | |
|   ParamAttrs = newAttrs; 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        InvokeInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| InvokeInst::~InvokeInst() {
 | |
|   delete [] OperandList;
 | |
|   if (ParamAttrs)
 | |
|     ParamAttrs->dropRef();
 | |
| }
 | |
| 
 | |
| void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
 | |
|                       Value* const *Args, unsigned NumArgs) {
 | |
|   ParamAttrs = 0;
 | |
|   NumOperands = 3+NumArgs;
 | |
|   Use *OL = OperandList = new Use[3+NumArgs];
 | |
|   OL[0].init(Fn, this);
 | |
|   OL[1].init(IfNormal, this);
 | |
|   OL[2].init(IfException, this);
 | |
|   const FunctionType *FTy =
 | |
|     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
 | |
|   FTy = FTy;  // silence warning.
 | |
| 
 | |
|   assert((NumArgs == FTy->getNumParams()) ||
 | |
|          (FTy->isVarArg() && NumArgs > FTy->getNumParams()) &&
 | |
|          "Calling a function with bad signature");
 | |
| 
 | |
|   for (unsigned i = 0, e = NumArgs; i != e; i++) {
 | |
|     assert((i >= FTy->getNumParams() || 
 | |
|             FTy->getParamType(i) == Args[i]->getType()) &&
 | |
|            "Invoking a function with a bad signature!");
 | |
|     
 | |
|     OL[i+3].init(Args[i], this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
 | |
|                        BasicBlock *IfException,
 | |
|                        Value* const *Args, unsigned NumArgs,
 | |
|                        const std::string &Name, Instruction *InsertBefore)
 | |
|   : TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
 | |
|                                     ->getElementType())->getReturnType(),
 | |
|                    Instruction::Invoke, 0, 0, InsertBefore) {
 | |
|   init(Fn, IfNormal, IfException, Args, NumArgs);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
 | |
|                        BasicBlock *IfException,
 | |
|                        Value* const *Args, unsigned NumArgs,
 | |
|                        const std::string &Name, BasicBlock *InsertAtEnd)
 | |
|   : TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
 | |
|                                     ->getElementType())->getReturnType(),
 | |
|                    Instruction::Invoke, 0, 0, InsertAtEnd) {
 | |
|   init(Fn, IfNormal, IfException, Args, NumArgs);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| InvokeInst::InvokeInst(const InvokeInst &II)
 | |
|   : TerminatorInst(II.getType(), Instruction::Invoke,
 | |
|                    new Use[II.getNumOperands()], II.getNumOperands()) {
 | |
|   ParamAttrs = 0;
 | |
|   SubclassData = II.SubclassData;
 | |
|   Use *OL = OperandList, *InOL = II.OperandList;
 | |
|   for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
 | |
|     OL[i].init(InOL[i], this);
 | |
| }
 | |
| 
 | |
| BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
 | |
|   return getSuccessor(idx);
 | |
| }
 | |
| unsigned InvokeInst::getNumSuccessorsV() const {
 | |
|   return getNumSuccessors();
 | |
| }
 | |
| void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
 | |
|   return setSuccessor(idx, B);
 | |
| }
 | |
| 
 | |
| void InvokeInst::setParamAttrs(ParamAttrsList *newAttrs) {
 | |
|   if (ParamAttrs)
 | |
|     ParamAttrs->dropRef();
 | |
| 
 | |
|   if (newAttrs)
 | |
|     newAttrs->addRef();
 | |
| 
 | |
|   ParamAttrs = newAttrs; 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        ReturnInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ReturnInst::ReturnInst(const ReturnInst &RI)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Ret,
 | |
|                    &RetVal, RI.getNumOperands()) {
 | |
|   if (RI.getNumOperands())
 | |
|     RetVal.init(RI.RetVal, this);
 | |
| }
 | |
| 
 | |
| ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertBefore) {
 | |
|   init(retVal);
 | |
| }
 | |
| ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertAtEnd) {
 | |
|   init(retVal);
 | |
| }
 | |
| ReturnInst::ReturnInst(BasicBlock *InsertAtEnd)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertAtEnd) {
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void ReturnInst::init(Value *retVal) {
 | |
|   if (retVal && retVal->getType() != Type::VoidTy) {
 | |
|     assert(!isa<BasicBlock>(retVal) &&
 | |
|            "Cannot return basic block.  Probably using the incorrect ctor");
 | |
|     NumOperands = 1;
 | |
|     RetVal.init(retVal, this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned ReturnInst::getNumSuccessorsV() const {
 | |
|   return getNumSuccessors();
 | |
| }
 | |
| 
 | |
| // Out-of-line ReturnInst method, put here so the C++ compiler can choose to
 | |
| // emit the vtable for the class in this translation unit.
 | |
| void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
 | |
|   assert(0 && "ReturnInst has no successors!");
 | |
| }
 | |
| 
 | |
| BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
 | |
|   assert(0 && "ReturnInst has no successors!");
 | |
|   abort();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        UnwindInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| UnwindInst::UnwindInst(Instruction *InsertBefore)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) {
 | |
| }
 | |
| UnwindInst::UnwindInst(BasicBlock *InsertAtEnd)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) {
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned UnwindInst::getNumSuccessorsV() const {
 | |
|   return getNumSuccessors();
 | |
| }
 | |
| 
 | |
| void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
 | |
|   assert(0 && "UnwindInst has no successors!");
 | |
| }
 | |
| 
 | |
| BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
 | |
|   assert(0 && "UnwindInst has no successors!");
 | |
|   abort();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      UnreachableInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| UnreachableInst::UnreachableInst(Instruction *InsertBefore)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) {
 | |
| }
 | |
| UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) {
 | |
| }
 | |
| 
 | |
| unsigned UnreachableInst::getNumSuccessorsV() const {
 | |
|   return getNumSuccessors();
 | |
| }
 | |
| 
 | |
| void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
 | |
|   assert(0 && "UnwindInst has no successors!");
 | |
| }
 | |
| 
 | |
| BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
 | |
|   assert(0 && "UnwindInst has no successors!");
 | |
|   abort();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        BranchInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void BranchInst::AssertOK() {
 | |
|   if (isConditional())
 | |
|     assert(getCondition()->getType() == Type::Int1Ty &&
 | |
|            "May only branch on boolean predicates!");
 | |
| }
 | |
| 
 | |
| BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertBefore) {
 | |
|   assert(IfTrue != 0 && "Branch destination may not be null!");
 | |
|   Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
 | |
| }
 | |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
 | |
|                        Instruction *InsertBefore)
 | |
| : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertBefore) {
 | |
|   Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
 | |
|   Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
 | |
|   Ops[2].init(Cond, this);
 | |
| #ifndef NDEBUG
 | |
|   AssertOK();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertAtEnd) {
 | |
|   assert(IfTrue != 0 && "Branch destination may not be null!");
 | |
|   Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
 | |
| }
 | |
| 
 | |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
 | |
|            BasicBlock *InsertAtEnd)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertAtEnd) {
 | |
|   Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
 | |
|   Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
 | |
|   Ops[2].init(Cond, this);
 | |
| #ifndef NDEBUG
 | |
|   AssertOK();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| BranchInst::BranchInst(const BranchInst &BI) :
 | |
|   TerminatorInst(Type::VoidTy, Instruction::Br, Ops, BI.getNumOperands()) {
 | |
|   OperandList[0].init(BI.getOperand(0), this);
 | |
|   if (BI.getNumOperands() != 1) {
 | |
|     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
 | |
|     OperandList[1].init(BI.getOperand(1), this);
 | |
|     OperandList[2].init(BI.getOperand(2), this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
 | |
|   return getSuccessor(idx);
 | |
| }
 | |
| unsigned BranchInst::getNumSuccessorsV() const {
 | |
|   return getNumSuccessors();
 | |
| }
 | |
| void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
 | |
|   setSuccessor(idx, B);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        AllocationInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Value *getAISize(Value *Amt) {
 | |
|   if (!Amt)
 | |
|     Amt = ConstantInt::get(Type::Int32Ty, 1);
 | |
|   else {
 | |
|     assert(!isa<BasicBlock>(Amt) &&
 | |
|            "Passed basic block into allocation size parameter!  Ue other ctor");
 | |
|     assert(Amt->getType() == Type::Int32Ty &&
 | |
|            "Malloc/Allocation array size is not a 32-bit integer!");
 | |
|   }
 | |
|   return Amt;
 | |
| }
 | |
| 
 | |
| AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
 | |
|                                unsigned Align, const std::string &Name,
 | |
|                                Instruction *InsertBefore)
 | |
|   : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
 | |
|                      InsertBefore), Alignment(Align) {
 | |
|   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
 | |
|   assert(Ty != Type::VoidTy && "Cannot allocate void!");
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
 | |
|                                unsigned Align, const std::string &Name,
 | |
|                                BasicBlock *InsertAtEnd)
 | |
|   : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
 | |
|                      InsertAtEnd), Alignment(Align) {
 | |
|   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
 | |
|   assert(Ty != Type::VoidTy && "Cannot allocate void!");
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| // Out of line virtual method, so the vtable, etc has a home.
 | |
| AllocationInst::~AllocationInst() {
 | |
| }
 | |
| 
 | |
| bool AllocationInst::isArrayAllocation() const {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
 | |
|     return CI->getZExtValue() != 1;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| const Type *AllocationInst::getAllocatedType() const {
 | |
|   return getType()->getElementType();
 | |
| }
 | |
| 
 | |
| AllocaInst::AllocaInst(const AllocaInst &AI)
 | |
|   : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
 | |
|                    Instruction::Alloca, AI.getAlignment()) {
 | |
| }
 | |
| 
 | |
| MallocInst::MallocInst(const MallocInst &MI)
 | |
|   : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
 | |
|                    Instruction::Malloc, MI.getAlignment()) {
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             FreeInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void FreeInst::AssertOK() {
 | |
|   assert(isa<PointerType>(getOperand(0)->getType()) &&
 | |
|          "Can not free something of nonpointer type!");
 | |
| }
 | |
| 
 | |
| FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
 | |
|   : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) {
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
 | |
|   : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) {
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           LoadInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void LoadInst::AssertOK() {
 | |
|   assert(isa<PointerType>(getOperand(0)->getType()) &&
 | |
|          "Ptr must have pointer type.");
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
 | |
|   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                      Load, Ptr, InsertBef) {
 | |
|   setVolatile(false);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
 | |
|   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                      Load, Ptr, InsertAE) {
 | |
|   setVolatile(false);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
 | |
|                    Instruction *InsertBef)
 | |
|   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                      Load, Ptr, InsertBef) {
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, 
 | |
|                    unsigned Align, Instruction *InsertBef)
 | |
|   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                      Load, Ptr, InsertBef) {
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(Align);
 | |
|   AssertOK();
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
 | |
|                    BasicBlock *InsertAE)
 | |
|   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                      Load, Ptr, InsertAE) {
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
 | |
|   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                      Load, Ptr, InsertBef) {
 | |
|   setVolatile(false);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
|   if (Name && Name[0]) setName(Name);
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
 | |
|   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                      Load, Ptr, InsertAE) {
 | |
|   setVolatile(false);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
|   if (Name && Name[0]) setName(Name);
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
 | |
|                    Instruction *InsertBef)
 | |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                    Load, Ptr, InsertBef) {
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
|   if (Name && Name[0]) setName(Name);
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
 | |
|                    BasicBlock *InsertAE)
 | |
|   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | |
|                      Load, Ptr, InsertAE) {
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
|   if (Name && Name[0]) setName(Name);
 | |
| }
 | |
| 
 | |
| void LoadInst::setAlignment(unsigned Align) {
 | |
|   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
 | |
|   SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           StoreInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void StoreInst::AssertOK() {
 | |
|   assert(isa<PointerType>(getOperand(1)->getType()) &&
 | |
|          "Ptr must have pointer type!");
 | |
|   assert(getOperand(0)->getType() ==
 | |
|                  cast<PointerType>(getOperand(1)->getType())->getElementType()
 | |
|          && "Ptr must be a pointer to Val type!");
 | |
| }
 | |
| 
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
 | |
|   : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
 | |
|   Ops[0].init(val, this);
 | |
|   Ops[1].init(addr, this);
 | |
|   setVolatile(false);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
 | |
|   : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
 | |
|   Ops[0].init(val, this);
 | |
|   Ops[1].init(addr, this);
 | |
|   setVolatile(false);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | |
|                      Instruction *InsertBefore)
 | |
|   : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
 | |
|   Ops[0].init(val, this);
 | |
|   Ops[1].init(addr, this);
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | |
|                      unsigned Align, Instruction *InsertBefore)
 | |
|   : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
 | |
|   Ops[0].init(val, this);
 | |
|   Ops[1].init(addr, this);
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(Align);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | |
|                      BasicBlock *InsertAtEnd)
 | |
|   : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
 | |
|   Ops[0].init(val, this);
 | |
|   Ops[1].init(addr, this);
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(0);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| void StoreInst::setAlignment(unsigned Align) {
 | |
|   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
 | |
|   SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       GetElementPtrInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // checkType - Simple wrapper function to give a better assertion failure
 | |
| // message on bad indexes for a gep instruction.
 | |
| //
 | |
| static inline const Type *checkType(const Type *Ty) {
 | |
|   assert(Ty && "Invalid GetElementPtrInst indices for type!");
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx) {
 | |
|   NumOperands = 1+NumIdx;
 | |
|   Use *OL = OperandList = new Use[NumOperands];
 | |
|   OL[0].init(Ptr, this);
 | |
| 
 | |
|   for (unsigned i = 0; i != NumIdx; ++i)
 | |
|     OL[i+1].init(Idx[i], this);
 | |
| }
 | |
| 
 | |
| void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) {
 | |
|   NumOperands = 3;
 | |
|   Use *OL = OperandList = new Use[3];
 | |
|   OL[0].init(Ptr, this);
 | |
|   OL[1].init(Idx0, this);
 | |
|   OL[2].init(Idx1, this);
 | |
| }
 | |
| 
 | |
| void GetElementPtrInst::init(Value *Ptr, Value *Idx) {
 | |
|   NumOperands = 2;
 | |
|   Use *OL = OperandList = new Use[2];
 | |
|   OL[0].init(Ptr, this);
 | |
|   OL[1].init(Idx, this);
 | |
| }
 | |
| 
 | |
| 
 | |
| GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value* const *Idx,
 | |
|                                      unsigned NumIdx,
 | |
|                                      const std::string &Name, Instruction *InBe)
 | |
| : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
 | |
|                                                         Idx, NumIdx, true))),
 | |
|               GetElementPtr, 0, 0, InBe) {
 | |
|   init(Ptr, Idx, NumIdx);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value* const *Idx, 
 | |
|                                      unsigned NumIdx,
 | |
|                                      const std::string &Name, BasicBlock *IAE)
 | |
| : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
 | |
|                                                         Idx, NumIdx, true))),
 | |
|               GetElementPtr, 0, 0, IAE) {
 | |
|   init(Ptr, Idx, NumIdx);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
 | |
|                                      const std::string &Name, Instruction *InBe)
 | |
|   : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
 | |
|                 GetElementPtr, 0, 0, InBe) {
 | |
|   init(Ptr, Idx);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
 | |
|                                      const std::string &Name, BasicBlock *IAE)
 | |
|   : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
 | |
|                 GetElementPtr, 0, 0, IAE) {
 | |
|   init(Ptr, Idx);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
 | |
|                                      const std::string &Name, Instruction *InBe)
 | |
|   : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
 | |
|                                                           Idx0, Idx1, true))),
 | |
|                 GetElementPtr, 0, 0, InBe) {
 | |
|   init(Ptr, Idx0, Idx1);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
 | |
|                                      const std::string &Name, BasicBlock *IAE)
 | |
|   : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
 | |
|                                                           Idx0, Idx1, true))),
 | |
|                 GetElementPtr, 0, 0, IAE) {
 | |
|   init(Ptr, Idx0, Idx1);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| GetElementPtrInst::~GetElementPtrInst() {
 | |
|   delete[] OperandList;
 | |
| }
 | |
| 
 | |
| // getIndexedType - Returns the type of the element that would be loaded with
 | |
| // a load instruction with the specified parameters.
 | |
| //
 | |
| // A null type is returned if the indices are invalid for the specified
 | |
| // pointer type.
 | |
| //
 | |
| const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
 | |
|                                               Value* const *Idxs,
 | |
|                                               unsigned NumIdx,
 | |
|                                               bool AllowCompositeLeaf) {
 | |
|   if (!isa<PointerType>(Ptr)) return 0;   // Type isn't a pointer type!
 | |
| 
 | |
|   // Handle the special case of the empty set index set...
 | |
|   if (NumIdx == 0)
 | |
|     if (AllowCompositeLeaf ||
 | |
|         cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
 | |
|       return cast<PointerType>(Ptr)->getElementType();
 | |
|     else
 | |
|       return 0;
 | |
| 
 | |
|   unsigned CurIdx = 0;
 | |
|   while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
 | |
|     if (NumIdx == CurIdx) {
 | |
|       if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
 | |
|       return 0;   // Can't load a whole structure or array!?!?
 | |
|     }
 | |
| 
 | |
|     Value *Index = Idxs[CurIdx++];
 | |
|     if (isa<PointerType>(CT) && CurIdx != 1)
 | |
|       return 0;  // Can only index into pointer types at the first index!
 | |
|     if (!CT->indexValid(Index)) return 0;
 | |
|     Ptr = CT->getTypeAtIndex(Index);
 | |
| 
 | |
|     // If the new type forwards to another type, then it is in the middle
 | |
|     // of being refined to another type (and hence, may have dropped all
 | |
|     // references to what it was using before).  So, use the new forwarded
 | |
|     // type.
 | |
|     if (const Type * Ty = Ptr->getForwardedType()) {
 | |
|       Ptr = Ty;
 | |
|     }
 | |
|   }
 | |
|   return CurIdx == NumIdx ? Ptr : 0;
 | |
| }
 | |
| 
 | |
| const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
 | |
|                                               Value *Idx0, Value *Idx1,
 | |
|                                               bool AllowCompositeLeaf) {
 | |
|   const PointerType *PTy = dyn_cast<PointerType>(Ptr);
 | |
|   if (!PTy) return 0;   // Type isn't a pointer type!
 | |
| 
 | |
|   // Check the pointer index.
 | |
|   if (!PTy->indexValid(Idx0)) return 0;
 | |
| 
 | |
|   const CompositeType *CT = dyn_cast<CompositeType>(PTy->getElementType());
 | |
|   if (!CT || !CT->indexValid(Idx1)) return 0;
 | |
| 
 | |
|   const Type *ElTy = CT->getTypeAtIndex(Idx1);
 | |
|   if (AllowCompositeLeaf || ElTy->isFirstClassType())
 | |
|     return ElTy;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
 | |
|   const PointerType *PTy = dyn_cast<PointerType>(Ptr);
 | |
|   if (!PTy) return 0;   // Type isn't a pointer type!
 | |
| 
 | |
|   // Check the pointer index.
 | |
|   if (!PTy->indexValid(Idx)) return 0;
 | |
| 
 | |
|   return PTy->getElementType();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// hasAllZeroIndices - Return true if all of the indices of this GEP are
 | |
| /// zeros.  If so, the result pointer and the first operand have the same
 | |
| /// value, just potentially different types.
 | |
| bool GetElementPtrInst::hasAllZeroIndices() const {
 | |
|   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
 | |
|       if (!CI->isZero()) return false;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// hasAllConstantIndices - Return true if all of the indices of this GEP are
 | |
| /// constant integers.  If so, the result pointer and the first operand have
 | |
| /// a constant offset between them.
 | |
| bool GetElementPtrInst::hasAllConstantIndices() const {
 | |
|   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|     if (!isa<ConstantInt>(getOperand(i)))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ExtractElementInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
 | |
|                                        const std::string &Name,
 | |
|                                        Instruction *InsertBef)
 | |
|   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
 | |
|                 ExtractElement, Ops, 2, InsertBef) {
 | |
|   assert(isValidOperands(Val, Index) &&
 | |
|          "Invalid extractelement instruction operands!");
 | |
|   Ops[0].init(Val, this);
 | |
|   Ops[1].init(Index, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
 | |
|                                        const std::string &Name,
 | |
|                                        Instruction *InsertBef)
 | |
|   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
 | |
|                 ExtractElement, Ops, 2, InsertBef) {
 | |
|   Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
 | |
|   assert(isValidOperands(Val, Index) &&
 | |
|          "Invalid extractelement instruction operands!");
 | |
|   Ops[0].init(Val, this);
 | |
|   Ops[1].init(Index, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| 
 | |
| ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
 | |
|                                        const std::string &Name,
 | |
|                                        BasicBlock *InsertAE)
 | |
|   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
 | |
|                 ExtractElement, Ops, 2, InsertAE) {
 | |
|   assert(isValidOperands(Val, Index) &&
 | |
|          "Invalid extractelement instruction operands!");
 | |
| 
 | |
|   Ops[0].init(Val, this);
 | |
|   Ops[1].init(Index, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
 | |
|                                        const std::string &Name,
 | |
|                                        BasicBlock *InsertAE)
 | |
|   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
 | |
|                 ExtractElement, Ops, 2, InsertAE) {
 | |
|   Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
 | |
|   assert(isValidOperands(Val, Index) &&
 | |
|          "Invalid extractelement instruction operands!");
 | |
|   
 | |
|   Ops[0].init(Val, this);
 | |
|   Ops[1].init(Index, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
 | |
|   if (!isa<VectorType>(Val->getType()) || Index->getType() != Type::Int32Ty)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           InsertElementInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| InsertElementInst::InsertElementInst(const InsertElementInst &IE)
 | |
|     : Instruction(IE.getType(), InsertElement, Ops, 3) {
 | |
|   Ops[0].init(IE.Ops[0], this);
 | |
|   Ops[1].init(IE.Ops[1], this);
 | |
|   Ops[2].init(IE.Ops[2], this);
 | |
| }
 | |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
 | |
|                                      const std::string &Name,
 | |
|                                      Instruction *InsertBef)
 | |
|   : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) {
 | |
|   assert(isValidOperands(Vec, Elt, Index) &&
 | |
|          "Invalid insertelement instruction operands!");
 | |
|   Ops[0].init(Vec, this);
 | |
|   Ops[1].init(Elt, this);
 | |
|   Ops[2].init(Index, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
 | |
|                                      const std::string &Name,
 | |
|                                      Instruction *InsertBef)
 | |
|   : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) {
 | |
|   Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
 | |
|   assert(isValidOperands(Vec, Elt, Index) &&
 | |
|          "Invalid insertelement instruction operands!");
 | |
|   Ops[0].init(Vec, this);
 | |
|   Ops[1].init(Elt, this);
 | |
|   Ops[2].init(Index, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| 
 | |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
 | |
|                                      const std::string &Name,
 | |
|                                      BasicBlock *InsertAE)
 | |
|   : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) {
 | |
|   assert(isValidOperands(Vec, Elt, Index) &&
 | |
|          "Invalid insertelement instruction operands!");
 | |
| 
 | |
|   Ops[0].init(Vec, this);
 | |
|   Ops[1].init(Elt, this);
 | |
|   Ops[2].init(Index, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
 | |
|                                      const std::string &Name,
 | |
|                                      BasicBlock *InsertAE)
 | |
| : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) {
 | |
|   Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
 | |
|   assert(isValidOperands(Vec, Elt, Index) &&
 | |
|          "Invalid insertelement instruction operands!");
 | |
|   
 | |
|   Ops[0].init(Vec, this);
 | |
|   Ops[1].init(Elt, this);
 | |
|   Ops[2].init(Index, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
 | |
|                                         const Value *Index) {
 | |
|   if (!isa<VectorType>(Vec->getType()))
 | |
|     return false;   // First operand of insertelement must be vector type.
 | |
|   
 | |
|   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
 | |
|     return false;// Second operand of insertelement must be packed element type.
 | |
|     
 | |
|   if (Index->getType() != Type::Int32Ty)
 | |
|     return false;  // Third operand of insertelement must be uint.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      ShuffleVectorInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV) 
 | |
|     : Instruction(SV.getType(), ShuffleVector, Ops, 3) {
 | |
|   Ops[0].init(SV.Ops[0], this);
 | |
|   Ops[1].init(SV.Ops[1], this);
 | |
|   Ops[2].init(SV.Ops[2], this);
 | |
| }
 | |
| 
 | |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
 | |
|                                      const std::string &Name,
 | |
|                                      Instruction *InsertBefore)
 | |
|   : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertBefore) {
 | |
|   assert(isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector instruction operands!");
 | |
|   Ops[0].init(V1, this);
 | |
|   Ops[1].init(V2, this);
 | |
|   Ops[2].init(Mask, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
 | |
|                                      const std::string &Name, 
 | |
|                                      BasicBlock *InsertAtEnd)
 | |
|   : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertAtEnd) {
 | |
|   assert(isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector instruction operands!");
 | |
| 
 | |
|   Ops[0].init(V1, this);
 | |
|   Ops[1].init(V2, this);
 | |
|   Ops[2].init(Mask, this);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 
 | |
|                                         const Value *Mask) {
 | |
|   if (!isa<VectorType>(V1->getType())) return false;
 | |
|   if (V1->getType() != V2->getType()) return false;
 | |
|   if (!isa<VectorType>(Mask->getType()) ||
 | |
|          cast<VectorType>(Mask->getType())->getElementType() != Type::Int32Ty ||
 | |
|          cast<VectorType>(Mask->getType())->getNumElements() !=
 | |
|          cast<VectorType>(V1->getType())->getNumElements())
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             BinaryOperator Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
 | |
|                                const Type *Ty, const std::string &Name,
 | |
|                                Instruction *InsertBefore)
 | |
|   : Instruction(Ty, iType, Ops, 2, InsertBefore) {
 | |
|   Ops[0].init(S1, this);
 | |
|   Ops[1].init(S2, this);
 | |
|   init(iType);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
 | |
|                                const Type *Ty, const std::string &Name,
 | |
|                                BasicBlock *InsertAtEnd)
 | |
|   : Instruction(Ty, iType, Ops, 2, InsertAtEnd) {
 | |
|   Ops[0].init(S1, this);
 | |
|   Ops[1].init(S2, this);
 | |
|   init(iType);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| 
 | |
| void BinaryOperator::init(BinaryOps iType) {
 | |
|   Value *LHS = getOperand(0), *RHS = getOperand(1);
 | |
|   LHS = LHS; RHS = RHS; // Silence warnings.
 | |
|   assert(LHS->getType() == RHS->getType() &&
 | |
|          "Binary operator operand types must match!");
 | |
| #ifndef NDEBUG
 | |
|   switch (iType) {
 | |
|   case Add: case Sub:
 | |
|   case Mul: 
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert((getType()->isInteger() || getType()->isFloatingPoint() ||
 | |
|             isa<VectorType>(getType())) &&
 | |
|           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case UDiv: 
 | |
|   case SDiv: 
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert((getType()->isInteger() || (isa<VectorType>(getType()) && 
 | |
|             cast<VectorType>(getType())->getElementType()->isInteger())) &&
 | |
|            "Incorrect operand type (not integer) for S/UDIV");
 | |
|     break;
 | |
|   case FDiv:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
 | |
|             cast<VectorType>(getType())->getElementType()->isFloatingPoint())) 
 | |
|             && "Incorrect operand type (not floating point) for FDIV");
 | |
|     break;
 | |
|   case URem: 
 | |
|   case SRem: 
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert((getType()->isInteger() || (isa<VectorType>(getType()) && 
 | |
|             cast<VectorType>(getType())->getElementType()->isInteger())) &&
 | |
|            "Incorrect operand type (not integer) for S/UREM");
 | |
|     break;
 | |
|   case FRem:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
 | |
|             cast<VectorType>(getType())->getElementType()->isFloatingPoint())) 
 | |
|             && "Incorrect operand type (not floating point) for FREM");
 | |
|     break;
 | |
|   case Shl:
 | |
|   case LShr:
 | |
|   case AShr:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Shift operation should return same type as operands!");
 | |
|     assert(getType()->isInteger() && 
 | |
|            "Shift operation requires integer operands");
 | |
|     break;
 | |
|   case And: case Or:
 | |
|   case Xor:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Logical operation should return same type as operands!");
 | |
|     assert((getType()->isInteger() ||
 | |
|             (isa<VectorType>(getType()) && 
 | |
|              cast<VectorType>(getType())->getElementType()->isInteger())) &&
 | |
|            "Tried to create a logical operation on a non-integral type!");
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
 | |
|                                        const std::string &Name,
 | |
|                                        Instruction *InsertBefore) {
 | |
|   assert(S1->getType() == S2->getType() &&
 | |
|          "Cannot create binary operator with two operands of differing type!");
 | |
|   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
 | |
|                                        const std::string &Name,
 | |
|                                        BasicBlock *InsertAtEnd) {
 | |
|   BinaryOperator *Res = create(Op, S1, S2, Name);
 | |
|   InsertAtEnd->getInstList().push_back(Res);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
 | |
|                                           Instruction *InsertBefore) {
 | |
|   Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
 | |
|   return new BinaryOperator(Instruction::Sub,
 | |
|                             zero, Op,
 | |
|                             Op->getType(), Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
 | |
|                                           BasicBlock *InsertAtEnd) {
 | |
|   Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
 | |
|   return new BinaryOperator(Instruction::Sub,
 | |
|                             zero, Op,
 | |
|                             Op->getType(), Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
 | |
|                                           Instruction *InsertBefore) {
 | |
|   Constant *C;
 | |
|   if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
 | |
|     C = ConstantInt::getAllOnesValue(PTy->getElementType());
 | |
|     C = ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), C));
 | |
|   } else {
 | |
|     C = ConstantInt::getAllOnesValue(Op->getType());
 | |
|   }
 | |
|   
 | |
|   return new BinaryOperator(Instruction::Xor, Op, C,
 | |
|                             Op->getType(), Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
 | |
|                                           BasicBlock *InsertAtEnd) {
 | |
|   Constant *AllOnes;
 | |
|   if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
 | |
|     // Create a vector of all ones values.
 | |
|     Constant *Elt = ConstantInt::getAllOnesValue(PTy->getElementType());
 | |
|     AllOnes = 
 | |
|       ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
 | |
|   } else {
 | |
|     AllOnes = ConstantInt::getAllOnesValue(Op->getType());
 | |
|   }
 | |
|   
 | |
|   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
 | |
|                             Op->getType(), Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| 
 | |
| // isConstantAllOnes - Helper function for several functions below
 | |
| static inline bool isConstantAllOnes(const Value *V) {
 | |
|   return isa<ConstantInt>(V) &&cast<ConstantInt>(V)->isAllOnesValue();
 | |
| }
 | |
| 
 | |
| bool BinaryOperator::isNeg(const Value *V) {
 | |
|   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
 | |
|     if (Bop->getOpcode() == Instruction::Sub)
 | |
|       return Bop->getOperand(0) ==
 | |
|              ConstantExpr::getZeroValueForNegationExpr(Bop->getType());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool BinaryOperator::isNot(const Value *V) {
 | |
|   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
 | |
|     return (Bop->getOpcode() == Instruction::Xor &&
 | |
|             (isConstantAllOnes(Bop->getOperand(1)) ||
 | |
|              isConstantAllOnes(Bop->getOperand(0))));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Value *BinaryOperator::getNegArgument(Value *BinOp) {
 | |
|   assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
 | |
|   return cast<BinaryOperator>(BinOp)->getOperand(1);
 | |
| }
 | |
| 
 | |
| const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
 | |
|   return getNegArgument(const_cast<Value*>(BinOp));
 | |
| }
 | |
| 
 | |
| Value *BinaryOperator::getNotArgument(Value *BinOp) {
 | |
|   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
 | |
|   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
 | |
|   Value *Op0 = BO->getOperand(0);
 | |
|   Value *Op1 = BO->getOperand(1);
 | |
|   if (isConstantAllOnes(Op0)) return Op1;
 | |
| 
 | |
|   assert(isConstantAllOnes(Op1));
 | |
|   return Op0;
 | |
| }
 | |
| 
 | |
| const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
 | |
|   return getNotArgument(const_cast<Value*>(BinOp));
 | |
| }
 | |
| 
 | |
| 
 | |
| // swapOperands - Exchange the two operands to this instruction.  This
 | |
| // instruction is safe to use on any binary instruction and does not
 | |
| // modify the semantics of the instruction.  If the instruction is
 | |
| // order dependent (SetLT f.e.) the opcode is changed.
 | |
| //
 | |
| bool BinaryOperator::swapOperands() {
 | |
|   if (!isCommutative())
 | |
|     return true; // Can't commute operands
 | |
|   std::swap(Ops[0], Ops[1]);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                CastInst Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Just determine if this cast only deals with integral->integral conversion.
 | |
| bool CastInst::isIntegerCast() const {
 | |
|   switch (getOpcode()) {
 | |
|     default: return false;
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::Trunc:
 | |
|       return true;
 | |
|     case Instruction::BitCast:
 | |
|       return getOperand(0)->getType()->isInteger() && getType()->isInteger();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CastInst::isLosslessCast() const {
 | |
|   // Only BitCast can be lossless, exit fast if we're not BitCast
 | |
|   if (getOpcode() != Instruction::BitCast)
 | |
|     return false;
 | |
| 
 | |
|   // Identity cast is always lossless
 | |
|   const Type* SrcTy = getOperand(0)->getType();
 | |
|   const Type* DstTy = getType();
 | |
|   if (SrcTy == DstTy)
 | |
|     return true;
 | |
|   
 | |
|   // Pointer to pointer is always lossless.
 | |
|   if (isa<PointerType>(SrcTy))
 | |
|     return isa<PointerType>(DstTy);
 | |
|   return false;  // Other types have no identity values
 | |
| }
 | |
| 
 | |
| /// This function determines if the CastInst does not require any bits to be
 | |
| /// changed in order to effect the cast. Essentially, it identifies cases where
 | |
| /// no code gen is necessary for the cast, hence the name no-op cast.  For 
 | |
| /// example, the following are all no-op casts:
 | |
| /// # bitcast uint %X, int
 | |
| /// # bitcast uint* %x, sbyte*
 | |
| /// # bitcast packed< 2 x int > %x, packed< 4 x short> 
 | |
| /// # ptrtoint uint* %x, uint     ; on 32-bit plaforms only
 | |
| /// @brief Determine if a cast is a no-op.
 | |
| bool CastInst::isNoopCast(const Type *IntPtrTy) const {
 | |
|   switch (getOpcode()) {
 | |
|     default:
 | |
|       assert(!"Invalid CastOp");
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt: 
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|       return false; // These always modify bits
 | |
|     case Instruction::BitCast:
 | |
|       return true;  // BitCast never modifies bits.
 | |
|     case Instruction::PtrToInt:
 | |
|       return IntPtrTy->getPrimitiveSizeInBits() ==
 | |
|             getType()->getPrimitiveSizeInBits();
 | |
|     case Instruction::IntToPtr:
 | |
|       return IntPtrTy->getPrimitiveSizeInBits() ==
 | |
|              getOperand(0)->getType()->getPrimitiveSizeInBits();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This function determines if a pair of casts can be eliminated and what 
 | |
| /// opcode should be used in the elimination. This assumes that there are two 
 | |
| /// instructions like this:
 | |
| /// *  %F = firstOpcode SrcTy %x to MidTy
 | |
| /// *  %S = secondOpcode MidTy %F to DstTy
 | |
| /// The function returns a resultOpcode so these two casts can be replaced with:
 | |
| /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
 | |
| /// If no such cast is permited, the function returns 0.
 | |
| unsigned CastInst::isEliminableCastPair(
 | |
|   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
 | |
|   const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
 | |
| {
 | |
|   // Define the 144 possibilities for these two cast instructions. The values
 | |
|   // in this matrix determine what to do in a given situation and select the
 | |
|   // case in the switch below.  The rows correspond to firstOp, the columns 
 | |
|   // correspond to secondOp.  In looking at the table below, keep in  mind
 | |
|   // the following cast properties:
 | |
|   //
 | |
|   //          Size Compare       Source               Destination
 | |
|   // Operator  Src ? Size   Type       Sign         Type       Sign
 | |
|   // -------- ------------ -------------------   ---------------------
 | |
|   // TRUNC         >       Integer      Any        Integral     Any
 | |
|   // ZEXT          <       Integral   Unsigned     Integer      Any
 | |
|   // SEXT          <       Integral    Signed      Integer      Any
 | |
|   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
 | |
|   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed 
 | |
|   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a   
 | |
|   // SITOFP       n/a      Integral    Signed      FloatPt      n/a   
 | |
|   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a   
 | |
|   // FPEXT         <       FloatPt      n/a        FloatPt      n/a   
 | |
|   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
 | |
|   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
 | |
|   // BITCONVERT    =       FirstClass   n/a       FirstClass    n/a   
 | |
|   //
 | |
|   // NOTE: some transforms are safe, but we consider them to be non-profitable.
 | |
|   // For example, we could merge "fptoui double to uint" + "zext uint to ulong",
 | |
|   // into "fptoui double to ulong", but this loses information about the range
 | |
|   // of the produced value (we no longer know the top-part is all zeros). 
 | |
|   // Further this conversion is often much more expensive for typical hardware,
 | |
|   // and causes issues when building libgcc.  We disallow fptosi+sext for the 
 | |
|   // same reason.
 | |
|   const unsigned numCastOps = 
 | |
|     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
 | |
|   static const uint8_t CastResults[numCastOps][numCastOps] = {
 | |
|     // T        F  F  U  S  F  F  P  I  B   -+
 | |
|     // R  Z  S  P  P  I  I  T  P  2  N  T    |
 | |
|     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
 | |
|     // N  X  X  U  S  F  F  N  X  N  2  V    |
 | |
|     // C  T  T  I  I  P  P  C  T  T  P  T   -+
 | |
|     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
 | |
|     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
 | |
|     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
 | |
|     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
 | |
|     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
 | |
|     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
 | |
|     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
 | |
|     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
 | |
|     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
 | |
|     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
 | |
|     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
 | |
|     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
 | |
|   };
 | |
| 
 | |
|   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
 | |
|                             [secondOp-Instruction::CastOpsBegin];
 | |
|   switch (ElimCase) {
 | |
|     case 0: 
 | |
|       // categorically disallowed
 | |
|       return 0;
 | |
|     case 1: 
 | |
|       // allowed, use first cast's opcode
 | |
|       return firstOp;
 | |
|     case 2: 
 | |
|       // allowed, use second cast's opcode
 | |
|       return secondOp;
 | |
|     case 3: 
 | |
|       // no-op cast in second op implies firstOp as long as the DestTy 
 | |
|       // is integer
 | |
|       if (DstTy->isInteger())
 | |
|         return firstOp;
 | |
|       return 0;
 | |
|     case 4:
 | |
|       // no-op cast in second op implies firstOp as long as the DestTy
 | |
|       // is floating point
 | |
|       if (DstTy->isFloatingPoint())
 | |
|         return firstOp;
 | |
|       return 0;
 | |
|     case 5: 
 | |
|       // no-op cast in first op implies secondOp as long as the SrcTy
 | |
|       // is an integer
 | |
|       if (SrcTy->isInteger())
 | |
|         return secondOp;
 | |
|       return 0;
 | |
|     case 6:
 | |
|       // no-op cast in first op implies secondOp as long as the SrcTy
 | |
|       // is a floating point
 | |
|       if (SrcTy->isFloatingPoint())
 | |
|         return secondOp;
 | |
|       return 0;
 | |
|     case 7: { 
 | |
|       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
 | |
|       unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
 | |
|       unsigned MidSize = MidTy->getPrimitiveSizeInBits();
 | |
|       if (MidSize >= PtrSize)
 | |
|         return Instruction::BitCast;
 | |
|       return 0;
 | |
|     }
 | |
|     case 8: {
 | |
|       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
 | |
|       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
 | |
|       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
 | |
|       unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
 | |
|       unsigned DstSize = DstTy->getPrimitiveSizeInBits();
 | |
|       if (SrcSize == DstSize)
 | |
|         return Instruction::BitCast;
 | |
|       else if (SrcSize < DstSize)
 | |
|         return firstOp;
 | |
|       return secondOp;
 | |
|     }
 | |
|     case 9: // zext, sext -> zext, because sext can't sign extend after zext
 | |
|       return Instruction::ZExt;
 | |
|     case 10:
 | |
|       // fpext followed by ftrunc is allowed if the bit size returned to is
 | |
|       // the same as the original, in which case its just a bitcast
 | |
|       if (SrcTy == DstTy)
 | |
|         return Instruction::BitCast;
 | |
|       return 0; // If the types are not the same we can't eliminate it.
 | |
|     case 11:
 | |
|       // bitcast followed by ptrtoint is allowed as long as the bitcast
 | |
|       // is a pointer to pointer cast.
 | |
|       if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
 | |
|         return secondOp;
 | |
|       return 0;
 | |
|     case 12:
 | |
|       // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
 | |
|       if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
 | |
|         return firstOp;
 | |
|       return 0;
 | |
|     case 13: {
 | |
|       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
 | |
|       unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
 | |
|       unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
 | |
|       unsigned DstSize = DstTy->getPrimitiveSizeInBits();
 | |
|       if (SrcSize <= PtrSize && SrcSize == DstSize)
 | |
|         return Instruction::BitCast;
 | |
|       return 0;
 | |
|     }
 | |
|     case 99: 
 | |
|       // cast combination can't happen (error in input). This is for all cases
 | |
|       // where the MidTy is not the same for the two cast instructions.
 | |
|       assert(!"Invalid Cast Combination");
 | |
|       return 0;
 | |
|     default:
 | |
|       assert(!"Error in CastResults table!!!");
 | |
|       return 0;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty, 
 | |
|   const std::string &Name, Instruction *InsertBefore) {
 | |
|   // Construct and return the appropriate CastInst subclass
 | |
|   switch (op) {
 | |
|     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
 | |
|     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
 | |
|     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
 | |
|     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
 | |
|     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
 | |
|     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
 | |
|     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
 | |
|     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
 | |
|     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
 | |
|     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
 | |
|     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
 | |
|     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
 | |
|     default:
 | |
|       assert(!"Invalid opcode provided");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
 | |
|   const std::string &Name, BasicBlock *InsertAtEnd) {
 | |
|   // Construct and return the appropriate CastInst subclass
 | |
|   switch (op) {
 | |
|     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
 | |
|     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
 | |
|     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
 | |
|     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
 | |
|     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
 | |
|     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
 | |
|     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
 | |
|     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
 | |
|     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
 | |
|     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
 | |
|     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
 | |
|     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
 | |
|     default:
 | |
|       assert(!"Invalid opcode provided");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty, 
 | |
|                                         const std::string &Name,
 | |
|                                         Instruction *InsertBefore) {
 | |
|   if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
|   return create(Instruction::ZExt, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty, 
 | |
|                                         const std::string &Name,
 | |
|                                         BasicBlock *InsertAtEnd) {
 | |
|   if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | |
|   return create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty, 
 | |
|                                         const std::string &Name,
 | |
|                                         Instruction *InsertBefore) {
 | |
|   if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
|   return create(Instruction::SExt, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty, 
 | |
|                                         const std::string &Name,
 | |
|                                         BasicBlock *InsertAtEnd) {
 | |
|   if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | |
|   return create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty,
 | |
|                                          const std::string &Name,
 | |
|                                          Instruction *InsertBefore) {
 | |
|   if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
|   return create(Instruction::Trunc, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty,
 | |
|                                          const std::string &Name, 
 | |
|                                          BasicBlock *InsertAtEnd) {
 | |
|   if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | |
|   return create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createPointerCast(Value *S, const Type *Ty,
 | |
|                                       const std::string &Name,
 | |
|                                       BasicBlock *InsertAtEnd) {
 | |
|   assert(isa<PointerType>(S->getType()) && "Invalid cast");
 | |
|   assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
 | |
|          "Invalid cast");
 | |
| 
 | |
|   if (Ty->isInteger())
 | |
|     return create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
 | |
|   return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| /// @brief Create a BitCast or a PtrToInt cast instruction
 | |
| CastInst *CastInst::createPointerCast(Value *S, const Type *Ty, 
 | |
|                                       const std::string &Name, 
 | |
|                                       Instruction *InsertBefore) {
 | |
|   assert(isa<PointerType>(S->getType()) && "Invalid cast");
 | |
|   assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
 | |
|          "Invalid cast");
 | |
| 
 | |
|   if (Ty->isInteger())
 | |
|     return create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
 | |
|   return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty, 
 | |
|                                       bool isSigned, const std::string &Name,
 | |
|                                       Instruction *InsertBefore) {
 | |
|   assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
 | |
|   unsigned DstBits = Ty->getPrimitiveSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::Trunc :
 | |
|       (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | |
|   return create(opcode, C, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty, 
 | |
|                                       bool isSigned, const std::string &Name,
 | |
|                                       BasicBlock *InsertAtEnd) {
 | |
|   assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
 | |
|   unsigned DstBits = Ty->getPrimitiveSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::Trunc :
 | |
|       (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | |
|   return create(opcode, C, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createFPCast(Value *C, const Type *Ty, 
 | |
|                                  const std::string &Name, 
 | |
|                                  Instruction *InsertBefore) {
 | |
|   assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && 
 | |
|          "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
 | |
|   unsigned DstBits = Ty->getPrimitiveSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
 | |
|   return create(opcode, C, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::createFPCast(Value *C, const Type *Ty, 
 | |
|                                  const std::string &Name, 
 | |
|                                  BasicBlock *InsertAtEnd) {
 | |
|   assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && 
 | |
|          "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
 | |
|   unsigned DstBits = Ty->getPrimitiveSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
 | |
|   return create(opcode, C, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| // Provide a way to get a "cast" where the cast opcode is inferred from the 
 | |
| // types and size of the operand. This, basically, is a parallel of the 
 | |
| // logic in the castIsValid function below.  This axiom should hold:
 | |
| //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
 | |
| // should not assert in castIsValid. In other words, this produces a "correct"
 | |
| // casting opcode for the arguments passed to it.
 | |
| Instruction::CastOps
 | |
| CastInst::getCastOpcode(
 | |
|   const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
 | |
|   // Get the bit sizes, we'll need these
 | |
|   const Type *SrcTy = Src->getType();
 | |
|   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr/packed
 | |
|   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/packed
 | |
| 
 | |
|   // Run through the possibilities ...
 | |
|   if (DestTy->isInteger()) {                       // Casting to integral
 | |
|     if (SrcTy->isInteger()) {                      // Casting from integral
 | |
|       if (DestBits < SrcBits)
 | |
|         return Trunc;                               // int -> smaller int
 | |
|       else if (DestBits > SrcBits) {                // its an extension
 | |
|         if (SrcIsSigned)
 | |
|           return SExt;                              // signed -> SEXT
 | |
|         else
 | |
|           return ZExt;                              // unsigned -> ZEXT
 | |
|       } else {
 | |
|         return BitCast;                             // Same size, No-op cast
 | |
|       }
 | |
|     } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
 | |
|       if (DestIsSigned) 
 | |
|         return FPToSI;                              // FP -> sint
 | |
|       else
 | |
|         return FPToUI;                              // FP -> uint 
 | |
|     } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
 | |
|       assert(DestBits == PTy->getBitWidth() &&
 | |
|                "Casting packed to integer of different width");
 | |
|       return BitCast;                             // Same size, no-op cast
 | |
|     } else {
 | |
|       assert(isa<PointerType>(SrcTy) &&
 | |
|              "Casting from a value that is not first-class type");
 | |
|       return PtrToInt;                              // ptr -> int
 | |
|     }
 | |
|   } else if (DestTy->isFloatingPoint()) {           // Casting to floating pt
 | |
|     if (SrcTy->isInteger()) {                      // Casting from integral
 | |
|       if (SrcIsSigned)
 | |
|         return SIToFP;                              // sint -> FP
 | |
|       else
 | |
|         return UIToFP;                              // uint -> FP
 | |
|     } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
 | |
|       if (DestBits < SrcBits) {
 | |
|         return FPTrunc;                             // FP -> smaller FP
 | |
|       } else if (DestBits > SrcBits) {
 | |
|         return FPExt;                               // FP -> larger FP
 | |
|       } else  {
 | |
|         return BitCast;                             // same size, no-op cast
 | |
|       }
 | |
|     } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
 | |
|       assert(DestBits == PTy->getBitWidth() &&
 | |
|              "Casting packed to floating point of different width");
 | |
|         return BitCast;                             // same size, no-op cast
 | |
|     } else {
 | |
|       assert(0 && "Casting pointer or non-first class to float");
 | |
|     }
 | |
|   } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
 | |
|     if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
 | |
|       assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
 | |
|              "Casting packed to packed of different widths");
 | |
|       return BitCast;                             // packed -> packed
 | |
|     } else if (DestPTy->getBitWidth() == SrcBits) {
 | |
|       return BitCast;                               // float/int -> packed
 | |
|     } else {
 | |
|       assert(!"Illegal cast to packed (wrong type or size)");
 | |
|     }
 | |
|   } else if (isa<PointerType>(DestTy)) {
 | |
|     if (isa<PointerType>(SrcTy)) {
 | |
|       return BitCast;                               // ptr -> ptr
 | |
|     } else if (SrcTy->isInteger()) {
 | |
|       return IntToPtr;                              // int -> ptr
 | |
|     } else {
 | |
|       assert(!"Casting pointer to other than pointer or int");
 | |
|     }
 | |
|   } else {
 | |
|     assert(!"Casting to type that is not first-class");
 | |
|   }
 | |
| 
 | |
|   // If we fall through to here we probably hit an assertion cast above
 | |
|   // and assertions are not turned on. Anything we return is an error, so
 | |
|   // BitCast is as good a choice as any.
 | |
|   return BitCast;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    CastInst SubClass Constructors
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Check that the construction parameters for a CastInst are correct. This
 | |
| /// could be broken out into the separate constructors but it is useful to have
 | |
| /// it in one place and to eliminate the redundant code for getting the sizes
 | |
| /// of the types involved.
 | |
| bool 
 | |
| CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
 | |
| 
 | |
|   // Check for type sanity on the arguments
 | |
|   const Type *SrcTy = S->getType();
 | |
|   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
 | |
|     return false;
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   // Switch on the opcode provided
 | |
|   switch (op) {
 | |
|   default: return false; // This is an input error
 | |
|   case Instruction::Trunc:
 | |
|     return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize > DstBitSize;
 | |
|   case Instruction::ZExt:
 | |
|     return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize;
 | |
|   case Instruction::SExt: 
 | |
|     return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize;
 | |
|   case Instruction::FPTrunc:
 | |
|     return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() && 
 | |
|       SrcBitSize > DstBitSize;
 | |
|   case Instruction::FPExt:
 | |
|     return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() && 
 | |
|       SrcBitSize < DstBitSize;
 | |
|   case Instruction::UIToFP:
 | |
|     return SrcTy->isInteger() && DstTy->isFloatingPoint();
 | |
|   case Instruction::SIToFP:
 | |
|     return SrcTy->isInteger() && DstTy->isFloatingPoint();
 | |
|   case Instruction::FPToUI:
 | |
|     return SrcTy->isFloatingPoint() && DstTy->isInteger();
 | |
|   case Instruction::FPToSI:
 | |
|     return SrcTy->isFloatingPoint() && DstTy->isInteger();
 | |
|   case Instruction::PtrToInt:
 | |
|     return isa<PointerType>(SrcTy) && DstTy->isInteger();
 | |
|   case Instruction::IntToPtr:
 | |
|     return SrcTy->isInteger() && isa<PointerType>(DstTy);
 | |
|   case Instruction::BitCast:
 | |
|     // BitCast implies a no-op cast of type only. No bits change.
 | |
|     // However, you can't cast pointers to anything but pointers.
 | |
|     if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
 | |
|       return false;
 | |
| 
 | |
|     // Now we know we're not dealing with a pointer/non-poiner mismatch. In all
 | |
|     // these cases, the cast is okay if the source and destination bit widths
 | |
|     // are identical.
 | |
|     return SrcBitSize == DstBitSize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TruncInst::TruncInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
 | |
| }
 | |
| 
 | |
| TruncInst::TruncInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
 | |
| }
 | |
| 
 | |
| ZExtInst::ZExtInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| )  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
 | |
| }
 | |
| 
 | |
| ZExtInst::ZExtInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
 | |
| }
 | |
| SExtInst::SExtInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
 | |
| }
 | |
| 
 | |
| SExtInst::SExtInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
 | |
| }
 | |
| 
 | |
| FPTruncInst::FPTruncInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
 | |
| }
 | |
| 
 | |
| FPTruncInst::FPTruncInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
 | |
| }
 | |
| 
 | |
| FPExtInst::FPExtInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
 | |
| }
 | |
| 
 | |
| FPExtInst::FPExtInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
 | |
| }
 | |
| 
 | |
| UIToFPInst::UIToFPInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
 | |
| }
 | |
| 
 | |
| UIToFPInst::UIToFPInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
 | |
| }
 | |
| 
 | |
| SIToFPInst::SIToFPInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
 | |
| }
 | |
| 
 | |
| SIToFPInst::SIToFPInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
 | |
| }
 | |
| 
 | |
| FPToUIInst::FPToUIInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
 | |
| }
 | |
| 
 | |
| FPToUIInst::FPToUIInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
 | |
| }
 | |
| 
 | |
| FPToSIInst::FPToSIInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
 | |
| }
 | |
| 
 | |
| FPToSIInst::FPToSIInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
 | |
| }
 | |
| 
 | |
| PtrToIntInst::PtrToIntInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
 | |
| }
 | |
| 
 | |
| PtrToIntInst::PtrToIntInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
 | |
| }
 | |
| 
 | |
| IntToPtrInst::IntToPtrInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
 | |
| }
 | |
| 
 | |
| IntToPtrInst::IntToPtrInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
 | |
| }
 | |
| 
 | |
| BitCastInst::BitCastInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
 | |
| }
 | |
| 
 | |
| BitCastInst::BitCastInst(
 | |
|   Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               CmpInst Classes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
 | |
|                  const std::string &Name, Instruction *InsertBefore)
 | |
|   : Instruction(Type::Int1Ty, op, Ops, 2, InsertBefore) {
 | |
|     Ops[0].init(LHS, this);
 | |
|     Ops[1].init(RHS, this);
 | |
|   SubclassData = predicate;
 | |
|   setName(Name);
 | |
|   if (op == Instruction::ICmp) {
 | |
|     assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE &&
 | |
|            predicate <= ICmpInst::LAST_ICMP_PREDICATE &&
 | |
|            "Invalid ICmp predicate value");
 | |
|     const Type* Op0Ty = getOperand(0)->getType();
 | |
|     const Type* Op1Ty = getOperand(1)->getType();
 | |
|     assert(Op0Ty == Op1Ty &&
 | |
|            "Both operands to ICmp instruction are not of the same type!");
 | |
|     // Check that the operands are the right type
 | |
|     assert((Op0Ty->isInteger() || isa<PointerType>(Op0Ty)) &&
 | |
|            "Invalid operand types for ICmp instruction");
 | |
|     return;
 | |
|   }
 | |
|   assert(op == Instruction::FCmp && "Invalid CmpInst opcode");
 | |
|   assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE &&
 | |
|          "Invalid FCmp predicate value");
 | |
|   const Type* Op0Ty = getOperand(0)->getType();
 | |
|   const Type* Op1Ty = getOperand(1)->getType();
 | |
|   assert(Op0Ty == Op1Ty &&
 | |
|          "Both operands to FCmp instruction are not of the same type!");
 | |
|   // Check that the operands are the right type
 | |
|   assert(Op0Ty->isFloatingPoint() &&
 | |
|          "Invalid operand types for FCmp instruction");
 | |
| }
 | |
|   
 | |
| CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
 | |
|                  const std::string &Name, BasicBlock *InsertAtEnd)
 | |
|   : Instruction(Type::Int1Ty, op, Ops, 2, InsertAtEnd) {
 | |
|   Ops[0].init(LHS, this);
 | |
|   Ops[1].init(RHS, this);
 | |
|   SubclassData = predicate;
 | |
|   setName(Name);
 | |
|   if (op == Instruction::ICmp) {
 | |
|     assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE &&
 | |
|            predicate <= ICmpInst::LAST_ICMP_PREDICATE &&
 | |
|            "Invalid ICmp predicate value");
 | |
| 
 | |
|     const Type* Op0Ty = getOperand(0)->getType();
 | |
|     const Type* Op1Ty = getOperand(1)->getType();
 | |
|     assert(Op0Ty == Op1Ty &&
 | |
|           "Both operands to ICmp instruction are not of the same type!");
 | |
|     // Check that the operands are the right type
 | |
|     assert(Op0Ty->isInteger() || isa<PointerType>(Op0Ty) &&
 | |
|            "Invalid operand types for ICmp instruction");
 | |
|     return;
 | |
|   }
 | |
|   assert(op == Instruction::FCmp && "Invalid CmpInst opcode");
 | |
|   assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE &&
 | |
|          "Invalid FCmp predicate value");
 | |
|   const Type* Op0Ty = getOperand(0)->getType();
 | |
|   const Type* Op1Ty = getOperand(1)->getType();
 | |
|   assert(Op0Ty == Op1Ty &&
 | |
|           "Both operands to FCmp instruction are not of the same type!");
 | |
|   // Check that the operands are the right type
 | |
|   assert(Op0Ty->isFloatingPoint() &&
 | |
|         "Invalid operand types for FCmp instruction");
 | |
| }
 | |
| 
 | |
| CmpInst *
 | |
| CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 
 | |
|                 const std::string &Name, Instruction *InsertBefore) {
 | |
|   if (Op == Instruction::ICmp) {
 | |
|     return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name, 
 | |
|                         InsertBefore);
 | |
|   }
 | |
|   return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name, 
 | |
|                       InsertBefore);
 | |
| }
 | |
| 
 | |
| CmpInst *
 | |
| CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 
 | |
|                 const std::string &Name, BasicBlock *InsertAtEnd) {
 | |
|   if (Op == Instruction::ICmp) {
 | |
|     return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name, 
 | |
|                         InsertAtEnd);
 | |
|   }
 | |
|   return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name, 
 | |
|                       InsertAtEnd);
 | |
| }
 | |
| 
 | |
| void CmpInst::swapOperands() {
 | |
|   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
 | |
|     IC->swapOperands();
 | |
|   else
 | |
|     cast<FCmpInst>(this)->swapOperands();
 | |
| }
 | |
| 
 | |
| bool CmpInst::isCommutative() {
 | |
|   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
 | |
|     return IC->isCommutative();
 | |
|   return cast<FCmpInst>(this)->isCommutative();
 | |
| }
 | |
| 
 | |
| bool CmpInst::isEquality() {
 | |
|   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
 | |
|     return IC->isEquality();
 | |
|   return cast<FCmpInst>(this)->isEquality();
 | |
| }
 | |
| 
 | |
| 
 | |
| ICmpInst::Predicate ICmpInst::getInversePredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default:
 | |
|       assert(!"Unknown icmp predicate!");
 | |
|     case ICMP_EQ: return ICMP_NE;
 | |
|     case ICMP_NE: return ICMP_EQ;
 | |
|     case ICMP_UGT: return ICMP_ULE;
 | |
|     case ICMP_ULT: return ICMP_UGE;
 | |
|     case ICMP_UGE: return ICMP_ULT;
 | |
|     case ICMP_ULE: return ICMP_UGT;
 | |
|     case ICMP_SGT: return ICMP_SLE;
 | |
|     case ICMP_SLT: return ICMP_SGE;
 | |
|     case ICMP_SGE: return ICMP_SLT;
 | |
|     case ICMP_SLE: return ICMP_SGT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ICmpInst::Predicate ICmpInst::getSwappedPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default: assert(! "Unknown icmp predicate!");
 | |
|     case ICMP_EQ: case ICMP_NE:
 | |
|       return pred;
 | |
|     case ICMP_SGT: return ICMP_SLT;
 | |
|     case ICMP_SLT: return ICMP_SGT;
 | |
|     case ICMP_SGE: return ICMP_SLE;
 | |
|     case ICMP_SLE: return ICMP_SGE;
 | |
|     case ICMP_UGT: return ICMP_ULT;
 | |
|     case ICMP_ULT: return ICMP_UGT;
 | |
|     case ICMP_UGE: return ICMP_ULE;
 | |
|     case ICMP_ULE: return ICMP_UGE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default: assert(! "Unknown icmp predicate!");
 | |
|     case ICMP_EQ: case ICMP_NE: 
 | |
|     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
 | |
|        return pred;
 | |
|     case ICMP_UGT: return ICMP_SGT;
 | |
|     case ICMP_ULT: return ICMP_SLT;
 | |
|     case ICMP_UGE: return ICMP_SGE;
 | |
|     case ICMP_ULE: return ICMP_SLE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ICmpInst::isSignedPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default: assert(! "Unknown icmp predicate!");
 | |
|     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
 | |
|       return true;
 | |
|     case ICMP_EQ:  case ICMP_NE: case ICMP_UGT: case ICMP_ULT: 
 | |
|     case ICMP_UGE: case ICMP_ULE:
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Initialize a set of values that all satisfy the condition with C.
 | |
| ///
 | |
| ConstantRange 
 | |
| ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
 | |
|   APInt Lower(C);
 | |
|   APInt Upper(C);
 | |
|   uint32_t BitWidth = C.getBitWidth();
 | |
|   switch (pred) {
 | |
|   default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
 | |
|   case ICmpInst::ICMP_EQ: Upper++; break;
 | |
|   case ICmpInst::ICMP_NE: Lower++; break;
 | |
|   case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
 | |
|   case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
 | |
|   case ICmpInst::ICMP_UGT: 
 | |
|     Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULE: 
 | |
|     Lower = APInt::getMinValue(BitWidth); Upper++; 
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLE: 
 | |
|     Lower = APInt::getSignedMinValue(BitWidth); Upper++; 
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
 | |
|     break;
 | |
|   }
 | |
|   return ConstantRange(Lower, Upper);
 | |
| }
 | |
| 
 | |
| FCmpInst::Predicate FCmpInst::getInversePredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default:
 | |
|       assert(!"Unknown icmp predicate!");
 | |
|     case FCMP_OEQ: return FCMP_UNE;
 | |
|     case FCMP_ONE: return FCMP_UEQ;
 | |
|     case FCMP_OGT: return FCMP_ULE;
 | |
|     case FCMP_OLT: return FCMP_UGE;
 | |
|     case FCMP_OGE: return FCMP_ULT;
 | |
|     case FCMP_OLE: return FCMP_UGT;
 | |
|     case FCMP_UEQ: return FCMP_ONE;
 | |
|     case FCMP_UNE: return FCMP_OEQ;
 | |
|     case FCMP_UGT: return FCMP_OLE;
 | |
|     case FCMP_ULT: return FCMP_OGE;
 | |
|     case FCMP_UGE: return FCMP_OLT;
 | |
|     case FCMP_ULE: return FCMP_OGT;
 | |
|     case FCMP_ORD: return FCMP_UNO;
 | |
|     case FCMP_UNO: return FCMP_ORD;
 | |
|     case FCMP_TRUE: return FCMP_FALSE;
 | |
|     case FCMP_FALSE: return FCMP_TRUE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| FCmpInst::Predicate FCmpInst::getSwappedPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default: assert(!"Unknown fcmp predicate!");
 | |
|     case FCMP_FALSE: case FCMP_TRUE:
 | |
|     case FCMP_OEQ: case FCMP_ONE:
 | |
|     case FCMP_UEQ: case FCMP_UNE:
 | |
|     case FCMP_ORD: case FCMP_UNO:
 | |
|       return pred;
 | |
|     case FCMP_OGT: return FCMP_OLT;
 | |
|     case FCMP_OLT: return FCMP_OGT;
 | |
|     case FCMP_OGE: return FCMP_OLE;
 | |
|     case FCMP_OLE: return FCMP_OGE;
 | |
|     case FCMP_UGT: return FCMP_ULT;
 | |
|     case FCMP_ULT: return FCMP_UGT;
 | |
|     case FCMP_UGE: return FCMP_ULE;
 | |
|     case FCMP_ULE: return FCMP_UGE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isUnsigned(unsigned short predicate) {
 | |
|   switch (predicate) {
 | |
|     default: return false;
 | |
|     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
 | |
|     case ICmpInst::ICMP_UGE: return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isSigned(unsigned short predicate){
 | |
|   switch (predicate) {
 | |
|     default: return false;
 | |
|     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
 | |
|     case ICmpInst::ICMP_SGE: return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isOrdered(unsigned short predicate) {
 | |
|   switch (predicate) {
 | |
|     default: return false;
 | |
|     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
 | |
|     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
 | |
|     case FCmpInst::FCMP_ORD: return true;
 | |
|   }
 | |
| }
 | |
|       
 | |
| bool CmpInst::isUnordered(unsigned short predicate) {
 | |
|   switch (predicate) {
 | |
|     default: return false;
 | |
|     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
 | |
|     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
 | |
|     case FCmpInst::FCMP_UNO: return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        SwitchInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
 | |
|   assert(Value && Default);
 | |
|   ReservedSpace = 2+NumCases*2;
 | |
|   NumOperands = 2;
 | |
|   OperandList = new Use[ReservedSpace];
 | |
| 
 | |
|   OperandList[0].init(Value, this);
 | |
|   OperandList[1].init(Default, this);
 | |
| }
 | |
| 
 | |
| /// SwitchInst ctor - Create a new switch instruction, specifying a value to
 | |
| /// switch on and a default destination.  The number of additional cases can
 | |
| /// be specified here to make memory allocation more efficient.  This
 | |
| /// constructor can also autoinsert before another instruction.
 | |
| SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
 | |
|                        Instruction *InsertBefore)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) {
 | |
|   init(Value, Default, NumCases);
 | |
| }
 | |
| 
 | |
| /// SwitchInst ctor - Create a new switch instruction, specifying a value to
 | |
| /// switch on and a default destination.  The number of additional cases can
 | |
| /// be specified here to make memory allocation more efficient.  This
 | |
| /// constructor also autoinserts at the end of the specified BasicBlock.
 | |
| SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
 | |
|                        BasicBlock *InsertAtEnd)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) {
 | |
|   init(Value, Default, NumCases);
 | |
| }
 | |
| 
 | |
| SwitchInst::SwitchInst(const SwitchInst &SI)
 | |
|   : TerminatorInst(Type::VoidTy, Instruction::Switch,
 | |
|                    new Use[SI.getNumOperands()], SI.getNumOperands()) {
 | |
|   Use *OL = OperandList, *InOL = SI.OperandList;
 | |
|   for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
 | |
|     OL[i].init(InOL[i], this);
 | |
|     OL[i+1].init(InOL[i+1], this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SwitchInst::~SwitchInst() {
 | |
|   delete [] OperandList;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// addCase - Add an entry to the switch instruction...
 | |
| ///
 | |
| void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
 | |
|   unsigned OpNo = NumOperands;
 | |
|   if (OpNo+2 > ReservedSpace)
 | |
|     resizeOperands(0);  // Get more space!
 | |
|   // Initialize some new operands.
 | |
|   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
 | |
|   NumOperands = OpNo+2;
 | |
|   OperandList[OpNo].init(OnVal, this);
 | |
|   OperandList[OpNo+1].init(Dest, this);
 | |
| }
 | |
| 
 | |
| /// removeCase - This method removes the specified successor from the switch
 | |
| /// instruction.  Note that this cannot be used to remove the default
 | |
| /// destination (successor #0).
 | |
| ///
 | |
| void SwitchInst::removeCase(unsigned idx) {
 | |
|   assert(idx != 0 && "Cannot remove the default case!");
 | |
|   assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
 | |
| 
 | |
|   unsigned NumOps = getNumOperands();
 | |
|   Use *OL = OperandList;
 | |
| 
 | |
|   // Move everything after this operand down.
 | |
|   //
 | |
|   // FIXME: we could just swap with the end of the list, then erase.  However,
 | |
|   // client might not expect this to happen.  The code as it is thrashes the
 | |
|   // use/def lists, which is kinda lame.
 | |
|   for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
 | |
|     OL[i-2] = OL[i];
 | |
|     OL[i-2+1] = OL[i+1];
 | |
|   }
 | |
| 
 | |
|   // Nuke the last value.
 | |
|   OL[NumOps-2].set(0);
 | |
|   OL[NumOps-2+1].set(0);
 | |
|   NumOperands = NumOps-2;
 | |
| }
 | |
| 
 | |
| /// resizeOperands - resize operands - This adjusts the length of the operands
 | |
| /// list according to the following behavior:
 | |
| ///   1. If NumOps == 0, grow the operand list in response to a push_back style
 | |
| ///      of operation.  This grows the number of ops by 1.5 times.
 | |
| ///   2. If NumOps > NumOperands, reserve space for NumOps operands.
 | |
| ///   3. If NumOps == NumOperands, trim the reserved space.
 | |
| ///
 | |
| void SwitchInst::resizeOperands(unsigned NumOps) {
 | |
|   if (NumOps == 0) {
 | |
|     NumOps = getNumOperands()/2*6;
 | |
|   } else if (NumOps*2 > NumOperands) {
 | |
|     // No resize needed.
 | |
|     if (ReservedSpace >= NumOps) return;
 | |
|   } else if (NumOps == NumOperands) {
 | |
|     if (ReservedSpace == NumOps) return;
 | |
|   } else {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ReservedSpace = NumOps;
 | |
|   Use *NewOps = new Use[NumOps];
 | |
|   Use *OldOps = OperandList;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|       NewOps[i].init(OldOps[i], this);
 | |
|       OldOps[i].set(0);
 | |
|   }
 | |
|   delete [] OldOps;
 | |
|   OperandList = NewOps;
 | |
| }
 | |
| 
 | |
| 
 | |
| BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
 | |
|   return getSuccessor(idx);
 | |
| }
 | |
| unsigned SwitchInst::getNumSuccessorsV() const {
 | |
|   return getNumSuccessors();
 | |
| }
 | |
| void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
 | |
|   setSuccessor(idx, B);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Define these methods here so vtables don't get emitted into every translation
 | |
| // unit that uses these classes.
 | |
| 
 | |
| GetElementPtrInst *GetElementPtrInst::clone() const {
 | |
|   return new GetElementPtrInst(*this);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::clone() const {
 | |
|   return create(getOpcode(), Ops[0], Ops[1]);
 | |
| }
 | |
| 
 | |
| CmpInst* CmpInst::clone() const {
 | |
|   return create(getOpcode(), getPredicate(), Ops[0], Ops[1]);
 | |
| }
 | |
| 
 | |
| MallocInst *MallocInst::clone()   const { return new MallocInst(*this); }
 | |
| AllocaInst *AllocaInst::clone()   const { return new AllocaInst(*this); }
 | |
| FreeInst   *FreeInst::clone()     const { return new FreeInst(getOperand(0)); }
 | |
| LoadInst   *LoadInst::clone()     const { return new LoadInst(*this); }
 | |
| StoreInst  *StoreInst::clone()    const { return new StoreInst(*this); }
 | |
| CastInst   *TruncInst::clone()    const { return new TruncInst(*this); }
 | |
| CastInst   *ZExtInst::clone()     const { return new ZExtInst(*this); }
 | |
| CastInst   *SExtInst::clone()     const { return new SExtInst(*this); }
 | |
| CastInst   *FPTruncInst::clone()  const { return new FPTruncInst(*this); }
 | |
| CastInst   *FPExtInst::clone()    const { return new FPExtInst(*this); }
 | |
| CastInst   *UIToFPInst::clone()   const { return new UIToFPInst(*this); }
 | |
| CastInst   *SIToFPInst::clone()   const { return new SIToFPInst(*this); }
 | |
| CastInst   *FPToUIInst::clone()   const { return new FPToUIInst(*this); }
 | |
| CastInst   *FPToSIInst::clone()   const { return new FPToSIInst(*this); }
 | |
| CastInst   *PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
 | |
| CastInst   *IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
 | |
| CastInst   *BitCastInst::clone()  const { return new BitCastInst(*this); }
 | |
| CallInst   *CallInst::clone()     const { return new CallInst(*this); }
 | |
| SelectInst *SelectInst::clone()   const { return new SelectInst(*this); }
 | |
| VAArgInst  *VAArgInst::clone()    const { return new VAArgInst(*this); }
 | |
| 
 | |
| ExtractElementInst *ExtractElementInst::clone() const {
 | |
|   return new ExtractElementInst(*this);
 | |
| }
 | |
| InsertElementInst *InsertElementInst::clone() const {
 | |
|   return new InsertElementInst(*this);
 | |
| }
 | |
| ShuffleVectorInst *ShuffleVectorInst::clone() const {
 | |
|   return new ShuffleVectorInst(*this);
 | |
| }
 | |
| PHINode    *PHINode::clone()    const { return new PHINode(*this); }
 | |
| ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
 | |
| BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
 | |
| SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
 | |
| InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
 | |
| UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
 | |
| UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}
 |