mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220872 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			604 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			604 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements Loop Rotation Pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionTracker.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-rotate"
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
 | |
|        cl::desc("The default maximum header size for automatic loop rotation"));
 | |
| 
 | |
| STATISTIC(NumRotated, "Number of loops rotated");
 | |
| namespace {
 | |
| 
 | |
|   class LoopRotate : public LoopPass {
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
 | |
|       initializeLoopRotatePass(*PassRegistry::getPassRegistry());
 | |
|       if (SpecifiedMaxHeaderSize == -1)
 | |
|         MaxHeaderSize = DefaultRotationThreshold;
 | |
|       else
 | |
|         MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
 | |
|     }
 | |
| 
 | |
|     // LCSSA form makes instruction renaming easier.
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<AssumptionTracker>();
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addRequired<TargetTransformInfo>();
 | |
|     }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
|     bool simplifyLoopLatch(Loop *L);
 | |
|     bool rotateLoop(Loop *L, bool SimplifiedLatch);
 | |
| 
 | |
|   private:
 | |
|     unsigned MaxHeaderSize;
 | |
|     LoopInfo *LI;
 | |
|     const TargetTransformInfo *TTI;
 | |
|     AssumptionTracker *AT;
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LoopRotate::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
 | |
| 
 | |
| Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
 | |
|   return new LoopRotate(MaxHeaderSize);
 | |
| }
 | |
| 
 | |
| /// Rotate Loop L as many times as possible. Return true if
 | |
| /// the loop is rotated at least once.
 | |
| bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (skipOptnoneFunction(L))
 | |
|     return false;
 | |
| 
 | |
|   // Save the loop metadata.
 | |
|   MDNode *LoopMD = L->getLoopID();
 | |
| 
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   TTI = &getAnalysis<TargetTransformInfo>();
 | |
|   AT = &getAnalysis<AssumptionTracker>();
 | |
| 
 | |
|   // Simplify the loop latch before attempting to rotate the header
 | |
|   // upward. Rotation may not be needed if the loop tail can be folded into the
 | |
|   // loop exit.
 | |
|   bool SimplifiedLatch = simplifyLoopLatch(L);
 | |
| 
 | |
|   // One loop can be rotated multiple times.
 | |
|   bool MadeChange = false;
 | |
|   while (rotateLoop(L, SimplifiedLatch)) {
 | |
|     MadeChange = true;
 | |
|     SimplifiedLatch = false;
 | |
|   }
 | |
| 
 | |
|   // Restore the loop metadata.
 | |
|   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
 | |
|   if ((MadeChange || SimplifiedLatch) && LoopMD)
 | |
|     L->setLoopID(LoopMD);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
 | |
| /// old header into the preheader.  If there were uses of the values produced by
 | |
| /// these instruction that were outside of the loop, we have to insert PHI nodes
 | |
| /// to merge the two values.  Do this now.
 | |
| static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
 | |
|                                             BasicBlock *OrigPreheader,
 | |
|                                             ValueToValueMapTy &ValueMap) {
 | |
|   // Remove PHI node entries that are no longer live.
 | |
|   BasicBlock::iterator I, E = OrigHeader->end();
 | |
|   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
 | |
| 
 | |
|   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
 | |
|   // as necessary.
 | |
|   SSAUpdater SSA;
 | |
|   for (I = OrigHeader->begin(); I != E; ++I) {
 | |
|     Value *OrigHeaderVal = I;
 | |
| 
 | |
|     // If there are no uses of the value (e.g. because it returns void), there
 | |
|     // is nothing to rewrite.
 | |
|     if (OrigHeaderVal->use_empty())
 | |
|       continue;
 | |
| 
 | |
|     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
 | |
| 
 | |
|     // The value now exits in two versions: the initial value in the preheader
 | |
|     // and the loop "next" value in the original header.
 | |
|     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
 | |
|     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
 | |
|     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
 | |
| 
 | |
|     // Visit each use of the OrigHeader instruction.
 | |
|     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
 | |
|          UE = OrigHeaderVal->use_end(); UI != UE; ) {
 | |
|       // Grab the use before incrementing the iterator.
 | |
|       Use &U = *UI;
 | |
| 
 | |
|       // Increment the iterator before removing the use from the list.
 | |
|       ++UI;
 | |
| 
 | |
|       // SSAUpdater can't handle a non-PHI use in the same block as an
 | |
|       // earlier def. We can easily handle those cases manually.
 | |
|       Instruction *UserInst = cast<Instruction>(U.getUser());
 | |
|       if (!isa<PHINode>(UserInst)) {
 | |
|         BasicBlock *UserBB = UserInst->getParent();
 | |
| 
 | |
|         // The original users in the OrigHeader are already using the
 | |
|         // original definitions.
 | |
|         if (UserBB == OrigHeader)
 | |
|           continue;
 | |
| 
 | |
|         // Users in the OrigPreHeader need to use the value to which the
 | |
|         // original definitions are mapped.
 | |
|         if (UserBB == OrigPreheader) {
 | |
|           U = OrigPreHeaderVal;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Anything else can be handled by SSAUpdater.
 | |
|       SSA.RewriteUse(U);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine whether the instructions in this range may be safely and cheaply
 | |
| /// speculated. This is not an important enough situation to develop complex
 | |
| /// heuristics. We handle a single arithmetic instruction along with any type
 | |
| /// conversions.
 | |
| static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
 | |
|                                   BasicBlock::iterator End, Loop *L) {
 | |
|   bool seenIncrement = false;
 | |
|   bool MultiExitLoop = false;
 | |
| 
 | |
|   if (!L->getExitingBlock())
 | |
|     MultiExitLoop = true;
 | |
| 
 | |
|   for (BasicBlock::iterator I = Begin; I != End; ++I) {
 | |
| 
 | |
|     if (!isSafeToSpeculativelyExecute(I))
 | |
|       return false;
 | |
| 
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       continue;
 | |
| 
 | |
|     switch (I->getOpcode()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::GetElementPtr:
 | |
|       // GEPs are cheap if all indices are constant.
 | |
|       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
 | |
|         return false;
 | |
|       // fall-thru to increment case
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr: {
 | |
|       Value *IVOpnd = nullptr;
 | |
|       if (isa<ConstantInt>(I->getOperand(0)))
 | |
|         IVOpnd = I->getOperand(1);
 | |
| 
 | |
|       if (isa<ConstantInt>(I->getOperand(1))) {
 | |
|         if (IVOpnd)
 | |
|           return false;
 | |
| 
 | |
|         IVOpnd = I->getOperand(0);
 | |
|       }
 | |
| 
 | |
|       // If increment operand is used outside of the loop, this speculation
 | |
|       // could cause extra live range interference.
 | |
|       if (MultiExitLoop && IVOpnd) {
 | |
|         for (User *UseI : IVOpnd->users()) {
 | |
|           auto *UserInst = cast<Instruction>(UseI);
 | |
|           if (!L->contains(UserInst))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (seenIncrement)
 | |
|         return false;
 | |
|       seenIncrement = true;
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|       // ignore type conversions
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Fold the loop tail into the loop exit by speculating the loop tail
 | |
| /// instructions. Typically, this is a single post-increment. In the case of a
 | |
| /// simple 2-block loop, hoisting the increment can be much better than
 | |
| /// duplicating the entire loop header. In the case of loops with early exits,
 | |
| /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
 | |
| /// canonical form so downstream passes can handle it.
 | |
| ///
 | |
| /// I don't believe this invalidates SCEV.
 | |
| bool LoopRotate::simplifyLoopLatch(Loop *L) {
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch || Latch->hasAddressTaken())
 | |
|     return false;
 | |
| 
 | |
|   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|   if (!Jmp || !Jmp->isUnconditional())
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *LastExit = Latch->getSinglePredecessor();
 | |
|   if (!LastExit || !L->isLoopExiting(LastExit))
 | |
|     return false;
 | |
| 
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
 | |
|   if (!BI)
 | |
|     return false;
 | |
| 
 | |
|   if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
 | |
|         << LastExit->getName() << "\n");
 | |
| 
 | |
|   // Hoist the instructions from Latch into LastExit.
 | |
|   LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
 | |
| 
 | |
|   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
 | |
|   BasicBlock *Header = Jmp->getSuccessor(0);
 | |
|   assert(Header == L->getHeader() && "expected a backward branch");
 | |
| 
 | |
|   // Remove Latch from the CFG so that LastExit becomes the new Latch.
 | |
|   BI->setSuccessor(FallThruPath, Header);
 | |
|   Latch->replaceSuccessorsPhiUsesWith(LastExit);
 | |
|   Jmp->eraseFromParent();
 | |
| 
 | |
|   // Nuke the Latch block.
 | |
|   assert(Latch->empty() && "unable to evacuate Latch");
 | |
|   LI->removeBlock(Latch);
 | |
|   if (DominatorTreeWrapperPass *DTWP =
 | |
|           getAnalysisIfAvailable<DominatorTreeWrapperPass>())
 | |
|     DTWP->getDomTree().eraseNode(Latch);
 | |
|   Latch->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Rotate loop LP. Return true if the loop is rotated.
 | |
| ///
 | |
| /// \param SimplifiedLatch is true if the latch was just folded into the final
 | |
| /// loop exit. In this case we may want to rotate even though the new latch is
 | |
| /// now an exiting branch. This rotation would have happened had the latch not
 | |
| /// been simplified. However, if SimplifiedLatch is false, then we avoid
 | |
| /// rotating loops in which the latch exits to avoid excessive or endless
 | |
| /// rotation. LoopRotate should be repeatable and converge to a canonical
 | |
| /// form. This property is satisfied because simplifying the loop latch can only
 | |
| /// happen once across multiple invocations of the LoopRotate pass.
 | |
| bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
 | |
|   // If the loop has only one block then there is not much to rotate.
 | |
|   if (L->getBlocks().size() == 1)
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *OrigHeader = L->getHeader();
 | |
|   BasicBlock *OrigLatch = L->getLoopLatch();
 | |
| 
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
 | |
|   if (!BI || BI->isUnconditional())
 | |
|     return false;
 | |
| 
 | |
|   // If the loop header is not one of the loop exiting blocks then
 | |
|   // either this loop is already rotated or it is not
 | |
|   // suitable for loop rotation transformations.
 | |
|   if (!L->isLoopExiting(OrigHeader))
 | |
|     return false;
 | |
| 
 | |
|   // If the loop latch already contains a branch that leaves the loop then the
 | |
|   // loop is already rotated.
 | |
|   if (!OrigLatch)
 | |
|     return false;
 | |
| 
 | |
|   // Rotate if either the loop latch does *not* exit the loop, or if the loop
 | |
|   // latch was just simplified.
 | |
|   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
 | |
|     return false;
 | |
| 
 | |
|   // Check size of original header and reject loop if it is very big or we can't
 | |
|   // duplicate blocks inside it.
 | |
|   {
 | |
|     SmallPtrSet<const Value *, 32> EphValues;
 | |
|     CodeMetrics::collectEphemeralValues(L, AT, EphValues);
 | |
| 
 | |
|     CodeMetrics Metrics;
 | |
|     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
 | |
|     if (Metrics.notDuplicatable) {
 | |
|       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
 | |
|             << " instructions: "; L->dump());
 | |
|       return false;
 | |
|     }
 | |
|     if (Metrics.NumInsts > MaxHeaderSize)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Now, this loop is suitable for rotation.
 | |
|   BasicBlock *OrigPreheader = L->getLoopPreheader();
 | |
| 
 | |
|   // If the loop could not be converted to canonical form, it must have an
 | |
|   // indirectbr in it, just give up.
 | |
|   if (!OrigPreheader)
 | |
|     return false;
 | |
| 
 | |
|   // Anything ScalarEvolution may know about this loop or the PHI nodes
 | |
|   // in its header will soon be invalidated.
 | |
|   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
 | |
|     SE->forgetLoop(L);
 | |
| 
 | |
|   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
 | |
| 
 | |
|   // Find new Loop header. NewHeader is a Header's one and only successor
 | |
|   // that is inside loop.  Header's other successor is outside the
 | |
|   // loop.  Otherwise loop is not suitable for rotation.
 | |
|   BasicBlock *Exit = BI->getSuccessor(0);
 | |
|   BasicBlock *NewHeader = BI->getSuccessor(1);
 | |
|   if (L->contains(Exit))
 | |
|     std::swap(Exit, NewHeader);
 | |
|   assert(NewHeader && "Unable to determine new loop header");
 | |
|   assert(L->contains(NewHeader) && !L->contains(Exit) &&
 | |
|          "Unable to determine loop header and exit blocks");
 | |
| 
 | |
|   // This code assumes that the new header has exactly one predecessor.
 | |
|   // Remove any single-entry PHI nodes in it.
 | |
|   assert(NewHeader->getSinglePredecessor() &&
 | |
|          "New header doesn't have one pred!");
 | |
|   FoldSingleEntryPHINodes(NewHeader);
 | |
| 
 | |
|   // Begin by walking OrigHeader and populating ValueMap with an entry for
 | |
|   // each Instruction.
 | |
|   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
 | |
|   ValueToValueMapTy ValueMap;
 | |
| 
 | |
|   // For PHI nodes, the value available in OldPreHeader is just the
 | |
|   // incoming value from OldPreHeader.
 | |
|   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
 | |
| 
 | |
|   // For the rest of the instructions, either hoist to the OrigPreheader if
 | |
|   // possible or create a clone in the OldPreHeader if not.
 | |
|   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
 | |
|   while (I != E) {
 | |
|     Instruction *Inst = I++;
 | |
| 
 | |
|     // If the instruction's operands are invariant and it doesn't read or write
 | |
|     // memory, then it is safe to hoist.  Doing this doesn't change the order of
 | |
|     // execution in the preheader, but does prevent the instruction from
 | |
|     // executing in each iteration of the loop.  This means it is safe to hoist
 | |
|     // something that might trap, but isn't safe to hoist something that reads
 | |
|     // memory (without proving that the loop doesn't write).
 | |
|     if (L->hasLoopInvariantOperands(Inst) &&
 | |
|         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
 | |
|         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
 | |
|         !isa<AllocaInst>(Inst)) {
 | |
|       Inst->moveBefore(LoopEntryBranch);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, create a duplicate of the instruction.
 | |
|     Instruction *C = Inst->clone();
 | |
| 
 | |
|     // Eagerly remap the operands of the instruction.
 | |
|     RemapInstruction(C, ValueMap,
 | |
|                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
 | |
| 
 | |
|     // With the operands remapped, see if the instruction constant folds or is
 | |
|     // otherwise simplifyable.  This commonly occurs because the entry from PHI
 | |
|     // nodes allows icmps and other instructions to fold.
 | |
|     // FIXME: Provide DL, TLI, DT, AT to SimplifyInstruction.
 | |
|     Value *V = SimplifyInstruction(C);
 | |
|     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
 | |
|       // If so, then delete the temporary instruction and stick the folded value
 | |
|       // in the map.
 | |
|       delete C;
 | |
|       ValueMap[Inst] = V;
 | |
|     } else {
 | |
|       // Otherwise, stick the new instruction into the new block!
 | |
|       C->setName(Inst->getName());
 | |
|       C->insertBefore(LoopEntryBranch);
 | |
|       ValueMap[Inst] = C;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Along with all the other instructions, we just cloned OrigHeader's
 | |
|   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
 | |
|   // successors by duplicating their incoming values for OrigHeader.
 | |
|   TerminatorInst *TI = OrigHeader->getTerminator();
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|     for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | |
|       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
 | |
| 
 | |
|   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
 | |
|   // OrigPreHeader's old terminator (the original branch into the loop), and
 | |
|   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
 | |
|   LoopEntryBranch->eraseFromParent();
 | |
| 
 | |
|   // If there were any uses of instructions in the duplicated block outside the
 | |
|   // loop, update them, inserting PHI nodes as required
 | |
|   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
 | |
| 
 | |
|   // NewHeader is now the header of the loop.
 | |
|   L->moveToHeader(NewHeader);
 | |
|   assert(L->getHeader() == NewHeader && "Latch block is our new header");
 | |
| 
 | |
| 
 | |
|   // At this point, we've finished our major CFG changes.  As part of cloning
 | |
|   // the loop into the preheader we've simplified instructions and the
 | |
|   // duplicated conditional branch may now be branching on a constant.  If it is
 | |
|   // branching on a constant and if that constant means that we enter the loop,
 | |
|   // then we fold away the cond branch to an uncond branch.  This simplifies the
 | |
|   // loop in cases important for nested loops, and it also means we don't have
 | |
|   // to split as many edges.
 | |
|   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
 | |
|   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
 | |
|   if (!isa<ConstantInt>(PHBI->getCondition()) ||
 | |
|       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
 | |
|           != NewHeader) {
 | |
|     // The conditional branch can't be folded, handle the general case.
 | |
|     // Update DominatorTree to reflect the CFG change we just made.  Then split
 | |
|     // edges as necessary to preserve LoopSimplify form.
 | |
|     if (DominatorTreeWrapperPass *DTWP =
 | |
|             getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
 | |
|       DominatorTree &DT = DTWP->getDomTree();
 | |
|       // Everything that was dominated by the old loop header is now dominated
 | |
|       // by the original loop preheader. Conceptually the header was merged
 | |
|       // into the preheader, even though we reuse the actual block as a new
 | |
|       // loop latch.
 | |
|       DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader);
 | |
|       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
 | |
|                                                    OrigHeaderNode->end());
 | |
|       DomTreeNode *OrigPreheaderNode = DT.getNode(OrigPreheader);
 | |
|       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
 | |
|         DT.changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
 | |
| 
 | |
|       assert(DT.getNode(Exit)->getIDom() == OrigPreheaderNode);
 | |
|       assert(DT.getNode(NewHeader)->getIDom() == OrigPreheaderNode);
 | |
| 
 | |
|       // Update OrigHeader to be dominated by the new header block.
 | |
|       DT.changeImmediateDominator(OrigHeader, OrigLatch);
 | |
|     }
 | |
| 
 | |
|     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
 | |
|     // thus is not a preheader anymore.
 | |
|     // Split the edge to form a real preheader.
 | |
|     BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
 | |
|     NewPH->setName(NewHeader->getName() + ".lr.ph");
 | |
| 
 | |
|     // Preserve canonical loop form, which means that 'Exit' should have only
 | |
|     // one predecessor. Note that Exit could be an exit block for multiple
 | |
|     // nested loops, causing both of the edges to now be critical and need to
 | |
|     // be split.
 | |
|     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
 | |
|     bool SplitLatchEdge = false;
 | |
|     for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
 | |
|                                                  PE = ExitPreds.end();
 | |
|          PI != PE; ++PI) {
 | |
|       // We only need to split loop exit edges.
 | |
|       Loop *PredLoop = LI->getLoopFor(*PI);
 | |
|       if (!PredLoop || PredLoop->contains(Exit))
 | |
|         continue;
 | |
|       SplitLatchEdge |= L->getLoopLatch() == *PI;
 | |
|       BasicBlock *ExitSplit = SplitCriticalEdge(*PI, Exit, this);
 | |
|       ExitSplit->moveBefore(Exit);
 | |
|     }
 | |
|     assert(SplitLatchEdge &&
 | |
|            "Despite splitting all preds, failed to split latch exit?");
 | |
|   } else {
 | |
|     // We can fold the conditional branch in the preheader, this makes things
 | |
|     // simpler. The first step is to remove the extra edge to the Exit block.
 | |
|     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
 | |
|     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
 | |
|     NewBI->setDebugLoc(PHBI->getDebugLoc());
 | |
|     PHBI->eraseFromParent();
 | |
| 
 | |
|     // With our CFG finalized, update DomTree if it is available.
 | |
|     if (DominatorTreeWrapperPass *DTWP =
 | |
|             getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
 | |
|       DominatorTree &DT = DTWP->getDomTree();
 | |
|       // Update OrigHeader to be dominated by the new header block.
 | |
|       DT.changeImmediateDominator(NewHeader, OrigPreheader);
 | |
|       DT.changeImmediateDominator(OrigHeader, OrigLatch);
 | |
| 
 | |
|       // Brute force incremental dominator tree update. Call
 | |
|       // findNearestCommonDominator on all CFG predecessors of each child of the
 | |
|       // original header.
 | |
|       DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader);
 | |
|       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
 | |
|                                                    OrigHeaderNode->end());
 | |
|       bool Changed;
 | |
|       do {
 | |
|         Changed = false;
 | |
|         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
 | |
|           DomTreeNode *Node = HeaderChildren[I];
 | |
|           BasicBlock *BB = Node->getBlock();
 | |
| 
 | |
|           pred_iterator PI = pred_begin(BB);
 | |
|           BasicBlock *NearestDom = *PI;
 | |
|           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
 | |
|             NearestDom = DT.findNearestCommonDominator(NearestDom, *PI);
 | |
| 
 | |
|           // Remember if this changes the DomTree.
 | |
|           if (Node->getIDom()->getBlock() != NearestDom) {
 | |
|             DT.changeImmediateDominator(BB, NearestDom);
 | |
|             Changed = true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       // If the dominator changed, this may have an effect on other
 | |
|       // predecessors, continue until we reach a fixpoint.
 | |
|       } while (Changed);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
 | |
|   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
 | |
| 
 | |
|   // Now that the CFG and DomTree are in a consistent state again, try to merge
 | |
|   // the OrigHeader block into OrigLatch.  This will succeed if they are
 | |
|   // connected by an unconditional branch.  This is just a cleanup so the
 | |
|   // emitted code isn't too gross in this common case.
 | |
|   MergeBlockIntoPredecessor(OrigHeader, this);
 | |
| 
 | |
|   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
 | |
| 
 | |
|   ++NumRotated;
 | |
|   return true;
 | |
| }
 |