mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	"#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)" No functional change. Update r163339. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163653 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3011 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3011 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements bottom-up and top-down register pressure reduction list
 | |
| // schedulers, using standard algorithms.  The basic approach uses a priority
 | |
| // queue of available nodes to schedule.  One at a time, nodes are taken from
 | |
| // the priority queue (thus in priority order), checked for legality to
 | |
| // schedule, and emitted if legal.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "pre-RA-sched"
 | |
| #include "ScheduleDAGSDNodes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <climits>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
 | |
| STATISTIC(NumUnfolds,    "Number of nodes unfolded");
 | |
| STATISTIC(NumDups,       "Number of duplicated nodes");
 | |
| STATISTIC(NumPRCopies,   "Number of physical register copies");
 | |
| 
 | |
| static RegisterScheduler
 | |
|   burrListDAGScheduler("list-burr",
 | |
|                        "Bottom-up register reduction list scheduling",
 | |
|                        createBURRListDAGScheduler);
 | |
| static RegisterScheduler
 | |
|   sourceListDAGScheduler("source",
 | |
|                          "Similar to list-burr but schedules in source "
 | |
|                          "order when possible",
 | |
|                          createSourceListDAGScheduler);
 | |
| 
 | |
| static RegisterScheduler
 | |
|   hybridListDAGScheduler("list-hybrid",
 | |
|                          "Bottom-up register pressure aware list scheduling "
 | |
|                          "which tries to balance latency and register pressure",
 | |
|                          createHybridListDAGScheduler);
 | |
| 
 | |
| static RegisterScheduler
 | |
|   ILPListDAGScheduler("list-ilp",
 | |
|                       "Bottom-up register pressure aware list scheduling "
 | |
|                       "which tries to balance ILP and register pressure",
 | |
|                       createILPListDAGScheduler);
 | |
| 
 | |
| static cl::opt<bool> DisableSchedCycles(
 | |
|   "disable-sched-cycles", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable cycle-level precision during preRA scheduling"));
 | |
| 
 | |
| // Temporary sched=list-ilp flags until the heuristics are robust.
 | |
| // Some options are also available under sched=list-hybrid.
 | |
| static cl::opt<bool> DisableSchedRegPressure(
 | |
|   "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable regpressure priority in sched=list-ilp"));
 | |
| static cl::opt<bool> DisableSchedLiveUses(
 | |
|   "disable-sched-live-uses", cl::Hidden, cl::init(true),
 | |
|   cl::desc("Disable live use priority in sched=list-ilp"));
 | |
| static cl::opt<bool> DisableSchedVRegCycle(
 | |
|   "disable-sched-vrcycle", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable virtual register cycle interference checks"));
 | |
| static cl::opt<bool> DisableSchedPhysRegJoin(
 | |
|   "disable-sched-physreg-join", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable physreg def-use affinity"));
 | |
| static cl::opt<bool> DisableSchedStalls(
 | |
|   "disable-sched-stalls", cl::Hidden, cl::init(true),
 | |
|   cl::desc("Disable no-stall priority in sched=list-ilp"));
 | |
| static cl::opt<bool> DisableSchedCriticalPath(
 | |
|   "disable-sched-critical-path", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable critical path priority in sched=list-ilp"));
 | |
| static cl::opt<bool> DisableSchedHeight(
 | |
|   "disable-sched-height", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable scheduled-height priority in sched=list-ilp"));
 | |
| static cl::opt<bool> Disable2AddrHack(
 | |
|   "disable-2addr-hack", cl::Hidden, cl::init(true),
 | |
|   cl::desc("Disable scheduler's two-address hack"));
 | |
| 
 | |
| static cl::opt<int> MaxReorderWindow(
 | |
|   "max-sched-reorder", cl::Hidden, cl::init(6),
 | |
|   cl::desc("Number of instructions to allow ahead of the critical path "
 | |
|            "in sched=list-ilp"));
 | |
| 
 | |
| static cl::opt<unsigned> AvgIPC(
 | |
|   "sched-avg-ipc", cl::Hidden, cl::init(1),
 | |
|   cl::desc("Average inst/cycle whan no target itinerary exists."));
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleDAGRRList - The actual register reduction list scheduler
 | |
| /// implementation.  This supports both top-down and bottom-up scheduling.
 | |
| ///
 | |
| class ScheduleDAGRRList : public ScheduleDAGSDNodes {
 | |
| private:
 | |
|   /// NeedLatency - True if the scheduler will make use of latency information.
 | |
|   ///
 | |
|   bool NeedLatency;
 | |
| 
 | |
|   /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|   SchedulingPriorityQueue *AvailableQueue;
 | |
| 
 | |
|   /// PendingQueue - This contains all of the instructions whose operands have
 | |
|   /// been issued, but their results are not ready yet (due to the latency of
 | |
|   /// the operation).  Once the operands becomes available, the instruction is
 | |
|   /// added to the AvailableQueue.
 | |
|   std::vector<SUnit*> PendingQueue;
 | |
| 
 | |
|   /// HazardRec - The hazard recognizer to use.
 | |
|   ScheduleHazardRecognizer *HazardRec;
 | |
| 
 | |
|   /// CurCycle - The current scheduler state corresponds to this cycle.
 | |
|   unsigned CurCycle;
 | |
| 
 | |
|   /// MinAvailableCycle - Cycle of the soonest available instruction.
 | |
|   unsigned MinAvailableCycle;
 | |
| 
 | |
|   /// IssueCount - Count instructions issued in this cycle
 | |
|   /// Currently valid only for bottom-up scheduling.
 | |
|   unsigned IssueCount;
 | |
| 
 | |
|   /// LiveRegDefs - A set of physical registers and their definition
 | |
|   /// that are "live". These nodes must be scheduled before any other nodes that
 | |
|   /// modifies the registers can be scheduled.
 | |
|   unsigned NumLiveRegs;
 | |
|   std::vector<SUnit*> LiveRegDefs;
 | |
|   std::vector<SUnit*> LiveRegGens;
 | |
| 
 | |
|   /// Topo - A topological ordering for SUnits which permits fast IsReachable
 | |
|   /// and similar queries.
 | |
|   ScheduleDAGTopologicalSort Topo;
 | |
| 
 | |
|   // Hack to keep track of the inverse of FindCallSeqStart without more crazy
 | |
|   // DAG crawling.
 | |
|   DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
 | |
| 
 | |
| public:
 | |
|   ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
 | |
|                     SchedulingPriorityQueue *availqueue,
 | |
|                     CodeGenOpt::Level OptLevel)
 | |
|     : ScheduleDAGSDNodes(mf),
 | |
|       NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
 | |
|       Topo(SUnits) {
 | |
| 
 | |
|     const TargetMachine &tm = mf.getTarget();
 | |
|     if (DisableSchedCycles || !NeedLatency)
 | |
|       HazardRec = new ScheduleHazardRecognizer();
 | |
|     else
 | |
|       HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
 | |
|   }
 | |
| 
 | |
|   ~ScheduleDAGRRList() {
 | |
|     delete HazardRec;
 | |
|     delete AvailableQueue;
 | |
|   }
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
|   ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
 | |
| 
 | |
|   /// IsReachable - Checks if SU is reachable from TargetSU.
 | |
|   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
 | |
|     return Topo.IsReachable(SU, TargetSU);
 | |
|   }
 | |
| 
 | |
|   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
 | |
|   /// create a cycle.
 | |
|   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
 | |
|     return Topo.WillCreateCycle(SU, TargetSU);
 | |
|   }
 | |
| 
 | |
|   /// AddPred - adds a predecessor edge to SUnit SU.
 | |
|   /// This returns true if this is a new predecessor.
 | |
|   /// Updates the topological ordering if required.
 | |
|   void AddPred(SUnit *SU, const SDep &D) {
 | |
|     Topo.AddPred(SU, D.getSUnit());
 | |
|     SU->addPred(D);
 | |
|   }
 | |
| 
 | |
|   /// RemovePred - removes a predecessor edge from SUnit SU.
 | |
|   /// This returns true if an edge was removed.
 | |
|   /// Updates the topological ordering if required.
 | |
|   void RemovePred(SUnit *SU, const SDep &D) {
 | |
|     Topo.RemovePred(SU, D.getSUnit());
 | |
|     SU->removePred(D);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool isReady(SUnit *SU) {
 | |
|     return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
 | |
|       AvailableQueue->isReady(SU);
 | |
|   }
 | |
| 
 | |
|   void ReleasePred(SUnit *SU, const SDep *PredEdge);
 | |
|   void ReleasePredecessors(SUnit *SU);
 | |
|   void ReleasePending();
 | |
|   void AdvanceToCycle(unsigned NextCycle);
 | |
|   void AdvancePastStalls(SUnit *SU);
 | |
|   void EmitNode(SUnit *SU);
 | |
|   void ScheduleNodeBottomUp(SUnit*);
 | |
|   void CapturePred(SDep *PredEdge);
 | |
|   void UnscheduleNodeBottomUp(SUnit*);
 | |
|   void RestoreHazardCheckerBottomUp();
 | |
|   void BacktrackBottomUp(SUnit*, SUnit*);
 | |
|   SUnit *CopyAndMoveSuccessors(SUnit*);
 | |
|   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
 | |
|                                 const TargetRegisterClass*,
 | |
|                                 const TargetRegisterClass*,
 | |
|                                 SmallVector<SUnit*, 2>&);
 | |
|   bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
 | |
| 
 | |
|   SUnit *PickNodeToScheduleBottomUp();
 | |
|   void ListScheduleBottomUp();
 | |
| 
 | |
|   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
 | |
|   /// Updates the topological ordering if required.
 | |
|   SUnit *CreateNewSUnit(SDNode *N) {
 | |
|     unsigned NumSUnits = SUnits.size();
 | |
|     SUnit *NewNode = newSUnit(N);
 | |
|     // Update the topological ordering.
 | |
|     if (NewNode->NodeNum >= NumSUnits)
 | |
|       Topo.InitDAGTopologicalSorting();
 | |
|     return NewNode;
 | |
|   }
 | |
| 
 | |
|   /// CreateClone - Creates a new SUnit from an existing one.
 | |
|   /// Updates the topological ordering if required.
 | |
|   SUnit *CreateClone(SUnit *N) {
 | |
|     unsigned NumSUnits = SUnits.size();
 | |
|     SUnit *NewNode = Clone(N);
 | |
|     // Update the topological ordering.
 | |
|     if (NewNode->NodeNum >= NumSUnits)
 | |
|       Topo.InitDAGTopologicalSorting();
 | |
|     return NewNode;
 | |
|   }
 | |
| 
 | |
|   /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
 | |
|   /// need actual latency information but the hybrid scheduler does.
 | |
|   bool forceUnitLatencies() const {
 | |
|     return !NeedLatency;
 | |
|   }
 | |
| };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| /// GetCostForDef - Looks up the register class and cost for a given definition.
 | |
| /// Typically this just means looking up the representative register class,
 | |
| /// but for untyped values (MVT::Untyped) it means inspecting the node's
 | |
| /// opcode to determine what register class is being generated.
 | |
| static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
 | |
|                           const TargetLowering *TLI,
 | |
|                           const TargetInstrInfo *TII,
 | |
|                           const TargetRegisterInfo *TRI,
 | |
|                           unsigned &RegClass, unsigned &Cost,
 | |
|                           const MachineFunction &MF) {
 | |
|   EVT VT = RegDefPos.GetValue();
 | |
| 
 | |
|   // Special handling for untyped values.  These values can only come from
 | |
|   // the expansion of custom DAG-to-DAG patterns.
 | |
|   if (VT == MVT::Untyped) {
 | |
|     const SDNode *Node = RegDefPos.GetNode();
 | |
|     unsigned Opcode = Node->getMachineOpcode();
 | |
| 
 | |
|     if (Opcode == TargetOpcode::REG_SEQUENCE) {
 | |
|       unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
 | |
|       const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
 | |
|       RegClass = RC->getID();
 | |
|       Cost = 1;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     unsigned Idx = RegDefPos.GetIdx();
 | |
|     const MCInstrDesc Desc = TII->get(Opcode);
 | |
|     const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
 | |
|     RegClass = RC->getID();
 | |
|     // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
 | |
|     // better way to determine it.
 | |
|     Cost = 1;
 | |
|   } else {
 | |
|     RegClass = TLI->getRepRegClassFor(VT)->getID();
 | |
|     Cost = TLI->getRepRegClassCostFor(VT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Schedule - Schedule the DAG using list scheduling.
 | |
| void ScheduleDAGRRList::Schedule() {
 | |
|   DEBUG(dbgs()
 | |
|         << "********** List Scheduling BB#" << BB->getNumber()
 | |
|         << " '" << BB->getName() << "' **********\n");
 | |
| 
 | |
|   CurCycle = 0;
 | |
|   IssueCount = 0;
 | |
|   MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
 | |
|   NumLiveRegs = 0;
 | |
|   // Allocate slots for each physical register, plus one for a special register
 | |
|   // to track the virtual resource of a calling sequence.
 | |
|   LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
 | |
|   LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
 | |
|   CallSeqEndForStart.clear();
 | |
| 
 | |
|   // Build the scheduling graph.
 | |
|   BuildSchedGraph(NULL);
 | |
| 
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(this));
 | |
|   Topo.InitDAGTopologicalSorting();
 | |
| 
 | |
|   AvailableQueue->initNodes(SUnits);
 | |
| 
 | |
|   HazardRec->Reset();
 | |
| 
 | |
|   // Execute the actual scheduling loop.
 | |
|   ListScheduleBottomUp();
 | |
| 
 | |
|   AvailableQueue->releaseState();
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "*** Final schedule ***\n";
 | |
|       dumpSchedule();
 | |
|       dbgs() << '\n';
 | |
|     });
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Bottom-Up Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | |
| /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
 | |
|   SUnit *PredSU = PredEdge->getSUnit();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     PredSU->dump(this);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   --PredSU->NumSuccsLeft;
 | |
| 
 | |
|   if (!forceUnitLatencies()) {
 | |
|     // Updating predecessor's height. This is now the cycle when the
 | |
|     // predecessor can be scheduled without causing a pipeline stall.
 | |
|     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
 | |
|   }
 | |
| 
 | |
|   // If all the node's successors are scheduled, this node is ready
 | |
|   // to be scheduled. Ignore the special EntrySU node.
 | |
|   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
 | |
|     PredSU->isAvailable = true;
 | |
| 
 | |
|     unsigned Height = PredSU->getHeight();
 | |
|     if (Height < MinAvailableCycle)
 | |
|       MinAvailableCycle = Height;
 | |
| 
 | |
|     if (isReady(PredSU)) {
 | |
|       AvailableQueue->push(PredSU);
 | |
|     }
 | |
|     // CapturePred and others may have left the node in the pending queue, avoid
 | |
|     // adding it twice.
 | |
|     else if (!PredSU->isPending) {
 | |
|       PredSU->isPending = true;
 | |
|       PendingQueue.push_back(PredSU);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IsChainDependent - Test if Outer is reachable from Inner through
 | |
| /// chain dependencies.
 | |
| static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
 | |
|                              unsigned NestLevel,
 | |
|                              const TargetInstrInfo *TII) {
 | |
|   SDNode *N = Outer;
 | |
|   for (;;) {
 | |
|     if (N == Inner)
 | |
|       return true;
 | |
|     // For a TokenFactor, examine each operand. There may be multiple ways
 | |
|     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
 | |
|     // most nesting in order to ensure that we find the corresponding match.
 | |
|     if (N->getOpcode() == ISD::TokenFactor) {
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|         if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
 | |
|           return true;
 | |
|       return false;
 | |
|     }
 | |
|     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
 | |
|     if (N->isMachineOpcode()) {
 | |
|       if (N->getMachineOpcode() ==
 | |
|           (unsigned)TII->getCallFrameDestroyOpcode()) {
 | |
|         ++NestLevel;
 | |
|       } else if (N->getMachineOpcode() ==
 | |
|                  (unsigned)TII->getCallFrameSetupOpcode()) {
 | |
|         if (NestLevel == 0)
 | |
|           return false;
 | |
|         --NestLevel;
 | |
|       }
 | |
|     }
 | |
|     // Otherwise, find the chain and continue climbing.
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|       if (N->getOperand(i).getValueType() == MVT::Other) {
 | |
|         N = N->getOperand(i).getNode();
 | |
|         goto found_chain_operand;
 | |
|       }
 | |
|     return false;
 | |
|   found_chain_operand:;
 | |
|     if (N->getOpcode() == ISD::EntryToken)
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
 | |
| /// the corresponding (lowered) CALLSEQ_BEGIN node.
 | |
| ///
 | |
| /// NestLevel and MaxNested are used in recursion to indcate the current level
 | |
| /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
 | |
| /// level seen so far.
 | |
| ///
 | |
| /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
 | |
| /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
 | |
| static SDNode *
 | |
| FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
 | |
|                  const TargetInstrInfo *TII) {
 | |
|   for (;;) {
 | |
|     // For a TokenFactor, examine each operand. There may be multiple ways
 | |
|     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
 | |
|     // most nesting in order to ensure that we find the corresponding match.
 | |
|     if (N->getOpcode() == ISD::TokenFactor) {
 | |
|       SDNode *Best = 0;
 | |
|       unsigned BestMaxNest = MaxNest;
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|         unsigned MyNestLevel = NestLevel;
 | |
|         unsigned MyMaxNest = MaxNest;
 | |
|         if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
 | |
|                                            MyNestLevel, MyMaxNest, TII))
 | |
|           if (!Best || (MyMaxNest > BestMaxNest)) {
 | |
|             Best = New;
 | |
|             BestMaxNest = MyMaxNest;
 | |
|           }
 | |
|       }
 | |
|       assert(Best);
 | |
|       MaxNest = BestMaxNest;
 | |
|       return Best;
 | |
|     }
 | |
|     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
 | |
|     if (N->isMachineOpcode()) {
 | |
|       if (N->getMachineOpcode() ==
 | |
|           (unsigned)TII->getCallFrameDestroyOpcode()) {
 | |
|         ++NestLevel;
 | |
|         MaxNest = std::max(MaxNest, NestLevel);
 | |
|       } else if (N->getMachineOpcode() ==
 | |
|                  (unsigned)TII->getCallFrameSetupOpcode()) {
 | |
|         assert(NestLevel != 0);
 | |
|         --NestLevel;
 | |
|         if (NestLevel == 0)
 | |
|           return N;
 | |
|       }
 | |
|     }
 | |
|     // Otherwise, find the chain and continue climbing.
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|       if (N->getOperand(i).getValueType() == MVT::Other) {
 | |
|         N = N->getOperand(i).getNode();
 | |
|         goto found_chain_operand;
 | |
|       }
 | |
|     return 0;
 | |
|   found_chain_operand:;
 | |
|     if (N->getOpcode() == ISD::EntryToken)
 | |
|       return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Call ReleasePred for each predecessor, then update register live def/gen.
 | |
| /// Always update LiveRegDefs for a register dependence even if the current SU
 | |
| /// also defines the register. This effectively create one large live range
 | |
| /// across a sequence of two-address node. This is important because the
 | |
| /// entire chain must be scheduled together. Example:
 | |
| ///
 | |
| /// flags = (3) add
 | |
| /// flags = (2) addc flags
 | |
| /// flags = (1) addc flags
 | |
| ///
 | |
| /// results in
 | |
| ///
 | |
| /// LiveRegDefs[flags] = 3
 | |
| /// LiveRegGens[flags] = 1
 | |
| ///
 | |
| /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
 | |
| /// interference on flags.
 | |
| void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
 | |
|   // Bottom up: release predecessors
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     ReleasePred(SU, &*I);
 | |
|     if (I->isAssignedRegDep()) {
 | |
|       // This is a physical register dependency and it's impossible or
 | |
|       // expensive to copy the register. Make sure nothing that can
 | |
|       // clobber the register is scheduled between the predecessor and
 | |
|       // this node.
 | |
|       SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
 | |
|       assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
 | |
|              "interference on register dependence");
 | |
|       LiveRegDefs[I->getReg()] = I->getSUnit();
 | |
|       if (!LiveRegGens[I->getReg()]) {
 | |
|         ++NumLiveRegs;
 | |
|         LiveRegGens[I->getReg()] = SU;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we're scheduling a lowered CALLSEQ_END, find the corresponding
 | |
|   // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
 | |
|   // these nodes, to prevent other calls from being interscheduled with them.
 | |
|   unsigned CallResource = TRI->getNumRegs();
 | |
|   if (!LiveRegDefs[CallResource])
 | |
|     for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
 | |
|       if (Node->isMachineOpcode() &&
 | |
|           Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
 | |
|         unsigned NestLevel = 0;
 | |
|         unsigned MaxNest = 0;
 | |
|         SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
 | |
| 
 | |
|         SUnit *Def = &SUnits[N->getNodeId()];
 | |
|         CallSeqEndForStart[Def] = SU;
 | |
| 
 | |
|         ++NumLiveRegs;
 | |
|         LiveRegDefs[CallResource] = Def;
 | |
|         LiveRegGens[CallResource] = SU;
 | |
|         break;
 | |
|       }
 | |
| }
 | |
| 
 | |
| /// Check to see if any of the pending instructions are ready to issue.  If
 | |
| /// so, add them to the available queue.
 | |
| void ScheduleDAGRRList::ReleasePending() {
 | |
|   if (DisableSchedCycles) {
 | |
|     assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the available queue is empty, it is safe to reset MinAvailableCycle.
 | |
|   if (AvailableQueue->empty())
 | |
|     MinAvailableCycle = UINT_MAX;
 | |
| 
 | |
|   // Check to see if any of the pending instructions are ready to issue.  If
 | |
|   // so, add them to the available queue.
 | |
|   for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
 | |
|     unsigned ReadyCycle = PendingQueue[i]->getHeight();
 | |
|     if (ReadyCycle < MinAvailableCycle)
 | |
|       MinAvailableCycle = ReadyCycle;
 | |
| 
 | |
|     if (PendingQueue[i]->isAvailable) {
 | |
|       if (!isReady(PendingQueue[i]))
 | |
|           continue;
 | |
|       AvailableQueue->push(PendingQueue[i]);
 | |
|     }
 | |
|     PendingQueue[i]->isPending = false;
 | |
|     PendingQueue[i] = PendingQueue.back();
 | |
|     PendingQueue.pop_back();
 | |
|     --i; --e;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Move the scheduler state forward by the specified number of Cycles.
 | |
| void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
 | |
|   if (NextCycle <= CurCycle)
 | |
|     return;
 | |
| 
 | |
|   IssueCount = 0;
 | |
|   AvailableQueue->setCurCycle(NextCycle);
 | |
|   if (!HazardRec->isEnabled()) {
 | |
|     // Bypass lots of virtual calls in case of long latency.
 | |
|     CurCycle = NextCycle;
 | |
|   }
 | |
|   else {
 | |
|     for (; CurCycle != NextCycle; ++CurCycle) {
 | |
|       HazardRec->RecedeCycle();
 | |
|     }
 | |
|   }
 | |
|   // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
 | |
|   // available Q to release pending nodes at least once before popping.
 | |
|   ReleasePending();
 | |
| }
 | |
| 
 | |
| /// Move the scheduler state forward until the specified node's dependents are
 | |
| /// ready and can be scheduled with no resource conflicts.
 | |
| void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
 | |
|   if (DisableSchedCycles)
 | |
|     return;
 | |
| 
 | |
|   // FIXME: Nodes such as CopyFromReg probably should not advance the current
 | |
|   // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
 | |
|   // has predecessors the cycle will be advanced when they are scheduled.
 | |
|   // But given the crude nature of modeling latency though such nodes, we
 | |
|   // currently need to treat these nodes like real instructions.
 | |
|   // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
 | |
| 
 | |
|   unsigned ReadyCycle = SU->getHeight();
 | |
| 
 | |
|   // Bump CurCycle to account for latency. We assume the latency of other
 | |
|   // available instructions may be hidden by the stall (not a full pipe stall).
 | |
|   // This updates the hazard recognizer's cycle before reserving resources for
 | |
|   // this instruction.
 | |
|   AdvanceToCycle(ReadyCycle);
 | |
| 
 | |
|   // Calls are scheduled in their preceding cycle, so don't conflict with
 | |
|   // hazards from instructions after the call. EmitNode will reset the
 | |
|   // scoreboard state before emitting the call.
 | |
|   if (SU->isCall)
 | |
|     return;
 | |
| 
 | |
|   // FIXME: For resource conflicts in very long non-pipelined stages, we
 | |
|   // should probably skip ahead here to avoid useless scoreboard checks.
 | |
|   int Stalls = 0;
 | |
|   while (true) {
 | |
|     ScheduleHazardRecognizer::HazardType HT =
 | |
|       HazardRec->getHazardType(SU, -Stalls);
 | |
| 
 | |
|     if (HT == ScheduleHazardRecognizer::NoHazard)
 | |
|       break;
 | |
| 
 | |
|     ++Stalls;
 | |
|   }
 | |
|   AdvanceToCycle(CurCycle + Stalls);
 | |
| }
 | |
| 
 | |
| /// Record this SUnit in the HazardRecognizer.
 | |
| /// Does not update CurCycle.
 | |
| void ScheduleDAGRRList::EmitNode(SUnit *SU) {
 | |
|   if (!HazardRec->isEnabled())
 | |
|     return;
 | |
| 
 | |
|   // Check for phys reg copy.
 | |
|   if (!SU->getNode())
 | |
|     return;
 | |
| 
 | |
|   switch (SU->getNode()->getOpcode()) {
 | |
|   default:
 | |
|     assert(SU->getNode()->isMachineOpcode() &&
 | |
|            "This target-independent node should not be scheduled.");
 | |
|     break;
 | |
|   case ISD::MERGE_VALUES:
 | |
|   case ISD::TokenFactor:
 | |
|   case ISD::LIFETIME_START:
 | |
|   case ISD::LIFETIME_END:
 | |
|   case ISD::CopyToReg:
 | |
|   case ISD::CopyFromReg:
 | |
|   case ISD::EH_LABEL:
 | |
|     // Noops don't affect the scoreboard state. Copies are likely to be
 | |
|     // removed.
 | |
|     return;
 | |
|   case ISD::INLINEASM:
 | |
|     // For inline asm, clear the pipeline state.
 | |
|     HazardRec->Reset();
 | |
|     return;
 | |
|   }
 | |
|   if (SU->isCall) {
 | |
|     // Calls are scheduled with their preceding instructions. For bottom-up
 | |
|     // scheduling, clear the pipeline state before emitting.
 | |
|     HazardRec->Reset();
 | |
|   }
 | |
| 
 | |
|   HazardRec->EmitInstruction(SU);
 | |
| }
 | |
| 
 | |
| static void resetVRegCycle(SUnit *SU);
 | |
| 
 | |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | |
| /// count of its predecessors. If a predecessor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
 | |
|   DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(this));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (CurCycle < SU->getHeight())
 | |
|     DEBUG(dbgs() << "   Height [" << SU->getHeight()
 | |
|           << "] pipeline stall!\n");
 | |
| #endif
 | |
| 
 | |
|   // FIXME: Do not modify node height. It may interfere with
 | |
|   // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
 | |
|   // node its ready cycle can aid heuristics, and after scheduling it can
 | |
|   // indicate the scheduled cycle.
 | |
|   SU->setHeightToAtLeast(CurCycle);
 | |
| 
 | |
|   // Reserve resources for the scheduled intruction.
 | |
|   EmitNode(SU);
 | |
| 
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   AvailableQueue->scheduledNode(SU);
 | |
| 
 | |
|   // If HazardRec is disabled, and each inst counts as one cycle, then
 | |
|   // advance CurCycle before ReleasePredecessors to avoid useless pushes to
 | |
|   // PendingQueue for schedulers that implement HasReadyFilter.
 | |
|   if (!HazardRec->isEnabled() && AvgIPC < 2)
 | |
|     AdvanceToCycle(CurCycle + 1);
 | |
| 
 | |
|   // Update liveness of predecessors before successors to avoid treating a
 | |
|   // two-address node as a live range def.
 | |
|   ReleasePredecessors(SU);
 | |
| 
 | |
|   // Release all the implicit physical register defs that are live.
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
 | |
|     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
 | |
|       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | |
|       --NumLiveRegs;
 | |
|       LiveRegDefs[I->getReg()] = NULL;
 | |
|       LiveRegGens[I->getReg()] = NULL;
 | |
|     }
 | |
|   }
 | |
|   // Release the special call resource dependence, if this is the beginning
 | |
|   // of a call.
 | |
|   unsigned CallResource = TRI->getNumRegs();
 | |
|   if (LiveRegDefs[CallResource] == SU)
 | |
|     for (const SDNode *SUNode = SU->getNode(); SUNode;
 | |
|          SUNode = SUNode->getGluedNode()) {
 | |
|       if (SUNode->isMachineOpcode() &&
 | |
|           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
 | |
|         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | |
|         --NumLiveRegs;
 | |
|         LiveRegDefs[CallResource] = NULL;
 | |
|         LiveRegGens[CallResource] = NULL;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   resetVRegCycle(SU);
 | |
| 
 | |
|   SU->isScheduled = true;
 | |
| 
 | |
|   // Conditions under which the scheduler should eagerly advance the cycle:
 | |
|   // (1) No available instructions
 | |
|   // (2) All pipelines full, so available instructions must have hazards.
 | |
|   //
 | |
|   // If HazardRec is disabled, the cycle was pre-advanced before calling
 | |
|   // ReleasePredecessors. In that case, IssueCount should remain 0.
 | |
|   //
 | |
|   // Check AvailableQueue after ReleasePredecessors in case of zero latency.
 | |
|   if (HazardRec->isEnabled() || AvgIPC > 1) {
 | |
|     if (SU->getNode() && SU->getNode()->isMachineOpcode())
 | |
|       ++IssueCount;
 | |
|     if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
 | |
|         || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
 | |
|       AdvanceToCycle(CurCycle + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CapturePred - This does the opposite of ReleasePred. Since SU is being
 | |
| /// unscheduled, incrcease the succ left count of its predecessors. Remove
 | |
| /// them from AvailableQueue if necessary.
 | |
| void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
 | |
|   SUnit *PredSU = PredEdge->getSUnit();
 | |
|   if (PredSU->isAvailable) {
 | |
|     PredSU->isAvailable = false;
 | |
|     if (!PredSU->isPending)
 | |
|       AvailableQueue->remove(PredSU);
 | |
|   }
 | |
| 
 | |
|   assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
 | |
|   ++PredSU->NumSuccsLeft;
 | |
| }
 | |
| 
 | |
| /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
 | |
| /// its predecessor states to reflect the change.
 | |
| void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
 | |
|   DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
 | |
|   DEBUG(SU->dump(this));
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     CapturePred(&*I);
 | |
|     if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
 | |
|       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | |
|       assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
 | |
|              "Physical register dependency violated?");
 | |
|       --NumLiveRegs;
 | |
|       LiveRegDefs[I->getReg()] = NULL;
 | |
|       LiveRegGens[I->getReg()] = NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reclaim the special call resource dependence, if this is the beginning
 | |
|   // of a call.
 | |
|   unsigned CallResource = TRI->getNumRegs();
 | |
|   for (const SDNode *SUNode = SU->getNode(); SUNode;
 | |
|        SUNode = SUNode->getGluedNode()) {
 | |
|     if (SUNode->isMachineOpcode() &&
 | |
|         SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
 | |
|       ++NumLiveRegs;
 | |
|       LiveRegDefs[CallResource] = SU;
 | |
|       LiveRegGens[CallResource] = CallSeqEndForStart[SU];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Release the special call resource dependence, if this is the end
 | |
|   // of a call.
 | |
|   if (LiveRegGens[CallResource] == SU)
 | |
|     for (const SDNode *SUNode = SU->getNode(); SUNode;
 | |
|          SUNode = SUNode->getGluedNode()) {
 | |
|       if (SUNode->isMachineOpcode() &&
 | |
|           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
 | |
|         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | |
|         --NumLiveRegs;
 | |
|         LiveRegDefs[CallResource] = NULL;
 | |
|         LiveRegGens[CallResource] = NULL;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isAssignedRegDep()) {
 | |
|       if (!LiveRegDefs[I->getReg()])
 | |
|         ++NumLiveRegs;
 | |
|       // This becomes the nearest def. Note that an earlier def may still be
 | |
|       // pending if this is a two-address node.
 | |
|       LiveRegDefs[I->getReg()] = SU;
 | |
|       if (LiveRegGens[I->getReg()] == NULL ||
 | |
|           I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
 | |
|         LiveRegGens[I->getReg()] = I->getSUnit();
 | |
|     }
 | |
|   }
 | |
|   if (SU->getHeight() < MinAvailableCycle)
 | |
|     MinAvailableCycle = SU->getHeight();
 | |
| 
 | |
|   SU->setHeightDirty();
 | |
|   SU->isScheduled = false;
 | |
|   SU->isAvailable = true;
 | |
|   if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
 | |
|     // Don't make available until backtracking is complete.
 | |
|     SU->isPending = true;
 | |
|     PendingQueue.push_back(SU);
 | |
|   }
 | |
|   else {
 | |
|     AvailableQueue->push(SU);
 | |
|   }
 | |
|   AvailableQueue->unscheduledNode(SU);
 | |
| }
 | |
| 
 | |
| /// After backtracking, the hazard checker needs to be restored to a state
 | |
| /// corresponding the current cycle.
 | |
| void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
 | |
|   HazardRec->Reset();
 | |
| 
 | |
|   unsigned LookAhead = std::min((unsigned)Sequence.size(),
 | |
|                                 HazardRec->getMaxLookAhead());
 | |
|   if (LookAhead == 0)
 | |
|     return;
 | |
| 
 | |
|   std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
 | |
|   unsigned HazardCycle = (*I)->getHeight();
 | |
|   for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
 | |
|     SUnit *SU = *I;
 | |
|     for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
 | |
|       HazardRec->RecedeCycle();
 | |
|     }
 | |
|     EmitNode(SU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
 | |
| /// BTCycle in order to schedule a specific node.
 | |
| void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
 | |
|   SUnit *OldSU = Sequence.back();
 | |
|   while (true) {
 | |
|     Sequence.pop_back();
 | |
|     if (SU->isSucc(OldSU))
 | |
|       // Don't try to remove SU from AvailableQueue.
 | |
|       SU->isAvailable = false;
 | |
|     // FIXME: use ready cycle instead of height
 | |
|     CurCycle = OldSU->getHeight();
 | |
|     UnscheduleNodeBottomUp(OldSU);
 | |
|     AvailableQueue->setCurCycle(CurCycle);
 | |
|     if (OldSU == BtSU)
 | |
|       break;
 | |
|     OldSU = Sequence.back();
 | |
|   }
 | |
| 
 | |
|   assert(!SU->isSucc(OldSU) && "Something is wrong!");
 | |
| 
 | |
|   RestoreHazardCheckerBottomUp();
 | |
| 
 | |
|   ReleasePending();
 | |
| 
 | |
|   ++NumBacktracks;
 | |
| }
 | |
| 
 | |
| static bool isOperandOf(const SUnit *SU, SDNode *N) {
 | |
|   for (const SDNode *SUNode = SU->getNode(); SUNode;
 | |
|        SUNode = SUNode->getGluedNode()) {
 | |
|     if (SUNode->isOperandOf(N))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
 | |
| /// successors to the newly created node.
 | |
| SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
 | |
|   SDNode *N = SU->getNode();
 | |
|   if (!N)
 | |
|     return NULL;
 | |
| 
 | |
|   if (SU->getNode()->getGluedNode())
 | |
|     return NULL;
 | |
| 
 | |
|   SUnit *NewSU;
 | |
|   bool TryUnfold = false;
 | |
|   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT == MVT::Glue)
 | |
|       return NULL;
 | |
|     else if (VT == MVT::Other)
 | |
|       TryUnfold = true;
 | |
|   }
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     const SDValue &Op = N->getOperand(i);
 | |
|     EVT VT = Op.getNode()->getValueType(Op.getResNo());
 | |
|     if (VT == MVT::Glue)
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   if (TryUnfold) {
 | |
|     SmallVector<SDNode*, 2> NewNodes;
 | |
|     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
 | |
|       return NULL;
 | |
| 
 | |
|     // unfolding an x86 DEC64m operation results in store, dec, load which
 | |
|     // can't be handled here so quit
 | |
|     if (NewNodes.size() == 3)
 | |
|       return NULL;
 | |
| 
 | |
|     DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
 | |
|     assert(NewNodes.size() == 2 && "Expected a load folding node!");
 | |
| 
 | |
|     N = NewNodes[1];
 | |
|     SDNode *LoadNode = NewNodes[0];
 | |
|     unsigned NumVals = N->getNumValues();
 | |
|     unsigned OldNumVals = SU->getNode()->getNumValues();
 | |
|     for (unsigned i = 0; i != NumVals; ++i)
 | |
|       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
 | |
|     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
 | |
|                                    SDValue(LoadNode, 1));
 | |
| 
 | |
|     // LoadNode may already exist. This can happen when there is another
 | |
|     // load from the same location and producing the same type of value
 | |
|     // but it has different alignment or volatileness.
 | |
|     bool isNewLoad = true;
 | |
|     SUnit *LoadSU;
 | |
|     if (LoadNode->getNodeId() != -1) {
 | |
|       LoadSU = &SUnits[LoadNode->getNodeId()];
 | |
|       isNewLoad = false;
 | |
|     } else {
 | |
|       LoadSU = CreateNewSUnit(LoadNode);
 | |
|       LoadNode->setNodeId(LoadSU->NodeNum);
 | |
| 
 | |
|       InitNumRegDefsLeft(LoadSU);
 | |
|       computeLatency(LoadSU);
 | |
|     }
 | |
| 
 | |
|     SUnit *NewSU = CreateNewSUnit(N);
 | |
|     assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|     N->setNodeId(NewSU->NodeNum);
 | |
| 
 | |
|     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
 | |
|     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
 | |
|       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
 | |
|         NewSU->isTwoAddress = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (MCID.isCommutable())
 | |
|       NewSU->isCommutable = true;
 | |
| 
 | |
|     InitNumRegDefsLeft(NewSU);
 | |
|     computeLatency(NewSU);
 | |
| 
 | |
|     // Record all the edges to and from the old SU, by category.
 | |
|     SmallVector<SDep, 4> ChainPreds;
 | |
|     SmallVector<SDep, 4> ChainSuccs;
 | |
|     SmallVector<SDep, 4> LoadPreds;
 | |
|     SmallVector<SDep, 4> NodePreds;
 | |
|     SmallVector<SDep, 4> NodeSuccs;
 | |
|     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl())
 | |
|         ChainPreds.push_back(*I);
 | |
|       else if (isOperandOf(I->getSUnit(), LoadNode))
 | |
|         LoadPreds.push_back(*I);
 | |
|       else
 | |
|         NodePreds.push_back(*I);
 | |
|     }
 | |
|     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl())
 | |
|         ChainSuccs.push_back(*I);
 | |
|       else
 | |
|         NodeSuccs.push_back(*I);
 | |
|     }
 | |
| 
 | |
|     // Now assign edges to the newly-created nodes.
 | |
|     for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
 | |
|       const SDep &Pred = ChainPreds[i];
 | |
|       RemovePred(SU, Pred);
 | |
|       if (isNewLoad)
 | |
|         AddPred(LoadSU, Pred);
 | |
|     }
 | |
|     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
 | |
|       const SDep &Pred = LoadPreds[i];
 | |
|       RemovePred(SU, Pred);
 | |
|       if (isNewLoad)
 | |
|         AddPred(LoadSU, Pred);
 | |
|     }
 | |
|     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
 | |
|       const SDep &Pred = NodePreds[i];
 | |
|       RemovePred(SU, Pred);
 | |
|       AddPred(NewSU, Pred);
 | |
|     }
 | |
|     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
 | |
|       SDep D = NodeSuccs[i];
 | |
|       SUnit *SuccDep = D.getSUnit();
 | |
|       D.setSUnit(SU);
 | |
|       RemovePred(SuccDep, D);
 | |
|       D.setSUnit(NewSU);
 | |
|       AddPred(SuccDep, D);
 | |
|       // Balance register pressure.
 | |
|       if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
 | |
|           && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
 | |
|         --NewSU->NumRegDefsLeft;
 | |
|     }
 | |
|     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
 | |
|       SDep D = ChainSuccs[i];
 | |
|       SUnit *SuccDep = D.getSUnit();
 | |
|       D.setSUnit(SU);
 | |
|       RemovePred(SuccDep, D);
 | |
|       if (isNewLoad) {
 | |
|         D.setSUnit(LoadSU);
 | |
|         AddPred(SuccDep, D);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add a data dependency to reflect that NewSU reads the value defined
 | |
|     // by LoadSU.
 | |
|     AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
 | |
| 
 | |
|     if (isNewLoad)
 | |
|       AvailableQueue->addNode(LoadSU);
 | |
|     AvailableQueue->addNode(NewSU);
 | |
| 
 | |
|     ++NumUnfolds;
 | |
| 
 | |
|     if (NewSU->NumSuccsLeft == 0) {
 | |
|       NewSU->isAvailable = true;
 | |
|       return NewSU;
 | |
|     }
 | |
|     SU = NewSU;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
 | |
|   NewSU = CreateClone(SU);
 | |
| 
 | |
|   // New SUnit has the exact same predecessors.
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I)
 | |
|     if (!I->isArtificial())
 | |
|       AddPred(NewSU, *I);
 | |
| 
 | |
|   // Only copy scheduled successors. Cut them from old node's successor
 | |
|   // list and move them over.
 | |
|   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isArtificial())
 | |
|       continue;
 | |
|     SUnit *SuccSU = I->getSUnit();
 | |
|     if (SuccSU->isScheduled) {
 | |
|       SDep D = *I;
 | |
|       D.setSUnit(NewSU);
 | |
|       AddPred(SuccSU, D);
 | |
|       D.setSUnit(SU);
 | |
|       DelDeps.push_back(std::make_pair(SuccSU, D));
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
 | |
|     RemovePred(DelDeps[i].first, DelDeps[i].second);
 | |
| 
 | |
|   AvailableQueue->updateNode(SU);
 | |
|   AvailableQueue->addNode(NewSU);
 | |
| 
 | |
|   ++NumDups;
 | |
|   return NewSU;
 | |
| }
 | |
| 
 | |
| /// InsertCopiesAndMoveSuccs - Insert register copies and move all
 | |
| /// scheduled successors of the given SUnit to the last copy.
 | |
| void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
 | |
|                                                const TargetRegisterClass *DestRC,
 | |
|                                                const TargetRegisterClass *SrcRC,
 | |
|                                                SmallVector<SUnit*, 2> &Copies) {
 | |
|   SUnit *CopyFromSU = CreateNewSUnit(NULL);
 | |
|   CopyFromSU->CopySrcRC = SrcRC;
 | |
|   CopyFromSU->CopyDstRC = DestRC;
 | |
| 
 | |
|   SUnit *CopyToSU = CreateNewSUnit(NULL);
 | |
|   CopyToSU->CopySrcRC = DestRC;
 | |
|   CopyToSU->CopyDstRC = SrcRC;
 | |
| 
 | |
|   // Only copy scheduled successors. Cut them from old node's successor
 | |
|   // list and move them over.
 | |
|   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isArtificial())
 | |
|       continue;
 | |
|     SUnit *SuccSU = I->getSUnit();
 | |
|     if (SuccSU->isScheduled) {
 | |
|       SDep D = *I;
 | |
|       D.setSUnit(CopyToSU);
 | |
|       AddPred(SuccSU, D);
 | |
|       DelDeps.push_back(std::make_pair(SuccSU, *I));
 | |
|     }
 | |
|     else {
 | |
|       // Avoid scheduling the def-side copy before other successors. Otherwise
 | |
|       // we could introduce another physreg interference on the copy and
 | |
|       // continue inserting copies indefinitely.
 | |
|       SDep D(CopyFromSU, SDep::Order, /*Latency=*/0,
 | |
|              /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|              /*isMustAlias=*/false, /*isArtificial=*/true);
 | |
|       AddPred(SuccSU, D);
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
 | |
|     RemovePred(DelDeps[i].first, DelDeps[i].second);
 | |
| 
 | |
|   AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
 | |
|   AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
 | |
| 
 | |
|   AvailableQueue->updateNode(SU);
 | |
|   AvailableQueue->addNode(CopyFromSU);
 | |
|   AvailableQueue->addNode(CopyToSU);
 | |
|   Copies.push_back(CopyFromSU);
 | |
|   Copies.push_back(CopyToSU);
 | |
| 
 | |
|   ++NumPRCopies;
 | |
| }
 | |
| 
 | |
| /// getPhysicalRegisterVT - Returns the ValueType of the physical register
 | |
| /// definition of the specified node.
 | |
| /// FIXME: Move to SelectionDAG?
 | |
| static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
 | |
|                                  const TargetInstrInfo *TII) {
 | |
|   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
 | |
|   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
 | |
|   unsigned NumRes = MCID.getNumDefs();
 | |
|   for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
 | |
|     if (Reg == *ImpDef)
 | |
|       break;
 | |
|     ++NumRes;
 | |
|   }
 | |
|   return N->getValueType(NumRes);
 | |
| }
 | |
| 
 | |
| /// CheckForLiveRegDef - Return true and update live register vector if the
 | |
| /// specified register def of the specified SUnit clobbers any "live" registers.
 | |
| static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
 | |
|                                std::vector<SUnit*> &LiveRegDefs,
 | |
|                                SmallSet<unsigned, 4> &RegAdded,
 | |
|                                SmallVector<unsigned, 4> &LRegs,
 | |
|                                const TargetRegisterInfo *TRI) {
 | |
|   for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
 | |
| 
 | |
|     // Check if Ref is live.
 | |
|     if (!LiveRegDefs[*AliasI]) continue;
 | |
| 
 | |
|     // Allow multiple uses of the same def.
 | |
|     if (LiveRegDefs[*AliasI] == SU) continue;
 | |
| 
 | |
|     // Add Reg to the set of interfering live regs.
 | |
|     if (RegAdded.insert(*AliasI)) {
 | |
|       LRegs.push_back(*AliasI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
 | |
| /// by RegMask, and add them to LRegs.
 | |
| static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
 | |
|                                      std::vector<SUnit*> &LiveRegDefs,
 | |
|                                      SmallSet<unsigned, 4> &RegAdded,
 | |
|                                      SmallVector<unsigned, 4> &LRegs) {
 | |
|   // Look at all live registers. Skip Reg0 and the special CallResource.
 | |
|   for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
 | |
|     if (!LiveRegDefs[i]) continue;
 | |
|     if (LiveRegDefs[i] == SU) continue;
 | |
|     if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
 | |
|     if (RegAdded.insert(i))
 | |
|       LRegs.push_back(i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
 | |
| static const uint32_t *getNodeRegMask(const SDNode *N) {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (const RegisterMaskSDNode *Op =
 | |
|         dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
 | |
|       return Op->getRegMask();
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
 | |
| /// scheduling of the given node to satisfy live physical register dependencies.
 | |
| /// If the specific node is the last one that's available to schedule, do
 | |
| /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
 | |
| bool ScheduleDAGRRList::
 | |
| DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
 | |
|   if (NumLiveRegs == 0)
 | |
|     return false;
 | |
| 
 | |
|   SmallSet<unsigned, 4> RegAdded;
 | |
|   // If this node would clobber any "live" register, then it's not ready.
 | |
|   //
 | |
|   // If SU is the currently live definition of the same register that it uses,
 | |
|   // then we are free to schedule it.
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
 | |
|       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
 | |
|                          RegAdded, LRegs, TRI);
 | |
|   }
 | |
| 
 | |
|   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
 | |
|     if (Node->getOpcode() == ISD::INLINEASM) {
 | |
|       // Inline asm can clobber physical defs.
 | |
|       unsigned NumOps = Node->getNumOperands();
 | |
|       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
 | |
|         --NumOps;  // Ignore the glue operand.
 | |
| 
 | |
|       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | |
|         unsigned Flags =
 | |
|           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
 | |
|         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | |
| 
 | |
|         ++i; // Skip the ID value.
 | |
|         if (InlineAsm::isRegDefKind(Flags) ||
 | |
|             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
 | |
|             InlineAsm::isClobberKind(Flags)) {
 | |
|           // Check for def of register or earlyclobber register.
 | |
|           for (; NumVals; --NumVals, ++i) {
 | |
|             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
|             if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
 | |
|           }
 | |
|         } else
 | |
|           i += NumVals;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!Node->isMachineOpcode())
 | |
|       continue;
 | |
|     // If we're in the middle of scheduling a call, don't begin scheduling
 | |
|     // another call. Also, don't allow any physical registers to be live across
 | |
|     // the call.
 | |
|     if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
 | |
|       // Check the special calling-sequence resource.
 | |
|       unsigned CallResource = TRI->getNumRegs();
 | |
|       if (LiveRegDefs[CallResource]) {
 | |
|         SDNode *Gen = LiveRegGens[CallResource]->getNode();
 | |
|         while (SDNode *Glued = Gen->getGluedNode())
 | |
|           Gen = Glued;
 | |
|         if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
 | |
|           LRegs.push_back(CallResource);
 | |
|       }
 | |
|     }
 | |
|     if (const uint32_t *RegMask = getNodeRegMask(Node))
 | |
|       CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
 | |
| 
 | |
|     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
 | |
|     if (!MCID.ImplicitDefs)
 | |
|       continue;
 | |
|     for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
 | |
|       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
 | |
|   }
 | |
| 
 | |
|   return !LRegs.empty();
 | |
| }
 | |
| 
 | |
| /// Return a node that can be scheduled in this cycle. Requirements:
 | |
| /// (1) Ready: latency has been satisfied
 | |
| /// (2) No Hazards: resources are available
 | |
| /// (3) No Interferences: may unschedule to break register interferences.
 | |
| SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
 | |
|   SmallVector<SUnit*, 4> Interferences;
 | |
|   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
 | |
| 
 | |
|   SUnit *CurSU = AvailableQueue->pop();
 | |
|   while (CurSU) {
 | |
|     SmallVector<unsigned, 4> LRegs;
 | |
|     if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
 | |
|       break;
 | |
|     LRegsMap.insert(std::make_pair(CurSU, LRegs));
 | |
| 
 | |
|     CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
 | |
|     Interferences.push_back(CurSU);
 | |
|     CurSU = AvailableQueue->pop();
 | |
|   }
 | |
|   if (CurSU) {
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
 | |
|       Interferences[i]->isPending = false;
 | |
|       assert(Interferences[i]->isAvailable && "must still be available");
 | |
|       AvailableQueue->push(Interferences[i]);
 | |
|     }
 | |
|     return CurSU;
 | |
|   }
 | |
| 
 | |
|   // All candidates are delayed due to live physical reg dependencies.
 | |
|   // Try backtracking, code duplication, or inserting cross class copies
 | |
|   // to resolve it.
 | |
|   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
 | |
|     SUnit *TrySU = Interferences[i];
 | |
|     SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | |
| 
 | |
|     // Try unscheduling up to the point where it's safe to schedule
 | |
|     // this node.
 | |
|     SUnit *BtSU = NULL;
 | |
|     unsigned LiveCycle = UINT_MAX;
 | |
|     for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
 | |
|       unsigned Reg = LRegs[j];
 | |
|       if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
 | |
|         BtSU = LiveRegGens[Reg];
 | |
|         LiveCycle = BtSU->getHeight();
 | |
|       }
 | |
|     }
 | |
|     if (!WillCreateCycle(TrySU, BtSU))  {
 | |
|       BacktrackBottomUp(TrySU, BtSU);
 | |
| 
 | |
|       // Force the current node to be scheduled before the node that
 | |
|       // requires the physical reg dep.
 | |
|       if (BtSU->isAvailable) {
 | |
|         BtSU->isAvailable = false;
 | |
|         if (!BtSU->isPending)
 | |
|           AvailableQueue->remove(BtSU);
 | |
|       }
 | |
|       AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
 | |
|                           /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                           /*isMustAlias=*/false, /*isArtificial=*/true));
 | |
| 
 | |
|       // If one or more successors has been unscheduled, then the current
 | |
|       // node is no longer avaialable. Schedule a successor that's now
 | |
|       // available instead.
 | |
|       if (!TrySU->isAvailable) {
 | |
|         CurSU = AvailableQueue->pop();
 | |
|       }
 | |
|       else {
 | |
|         CurSU = TrySU;
 | |
|         TrySU->isPending = false;
 | |
|         Interferences.erase(Interferences.begin()+i);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!CurSU) {
 | |
|     // Can't backtrack. If it's too expensive to copy the value, then try
 | |
|     // duplicate the nodes that produces these "too expensive to copy"
 | |
|     // values to break the dependency. In case even that doesn't work,
 | |
|     // insert cross class copies.
 | |
|     // If it's not too expensive, i.e. cost != -1, issue copies.
 | |
|     SUnit *TrySU = Interferences[0];
 | |
|     SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | |
|     assert(LRegs.size() == 1 && "Can't handle this yet!");
 | |
|     unsigned Reg = LRegs[0];
 | |
|     SUnit *LRDef = LiveRegDefs[Reg];
 | |
|     EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
 | |
|     const TargetRegisterClass *RC =
 | |
|       TRI->getMinimalPhysRegClass(Reg, VT);
 | |
|     const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
 | |
| 
 | |
|     // If cross copy register class is the same as RC, then it must be possible
 | |
|     // copy the value directly. Do not try duplicate the def.
 | |
|     // If cross copy register class is not the same as RC, then it's possible to
 | |
|     // copy the value but it require cross register class copies and it is
 | |
|     // expensive.
 | |
|     // If cross copy register class is null, then it's not possible to copy
 | |
|     // the value at all.
 | |
|     SUnit *NewDef = 0;
 | |
|     if (DestRC != RC) {
 | |
|       NewDef = CopyAndMoveSuccessors(LRDef);
 | |
|       if (!DestRC && !NewDef)
 | |
|         report_fatal_error("Can't handle live physical register dependency!");
 | |
|     }
 | |
|     if (!NewDef) {
 | |
|       // Issue copies, these can be expensive cross register class copies.
 | |
|       SmallVector<SUnit*, 2> Copies;
 | |
|       InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
 | |
|       DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
 | |
|             << " to SU #" << Copies.front()->NodeNum << "\n");
 | |
|       AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
 | |
|                           /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                           /*isMustAlias=*/false,
 | |
|                           /*isArtificial=*/true));
 | |
|       NewDef = Copies.back();
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
 | |
|           << " to SU #" << TrySU->NodeNum << "\n");
 | |
|     LiveRegDefs[Reg] = NewDef;
 | |
|     AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
 | |
|                          /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                          /*isMustAlias=*/false,
 | |
|                          /*isArtificial=*/true));
 | |
|     TrySU->isAvailable = false;
 | |
|     CurSU = NewDef;
 | |
|   }
 | |
| 
 | |
|   assert(CurSU && "Unable to resolve live physical register dependencies!");
 | |
| 
 | |
|   // Add the nodes that aren't ready back onto the available list.
 | |
|   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
 | |
|     Interferences[i]->isPending = false;
 | |
|     // May no longer be available due to backtracking.
 | |
|     if (Interferences[i]->isAvailable) {
 | |
|       AvailableQueue->push(Interferences[i]);
 | |
|     }
 | |
|   }
 | |
|   return CurSU;
 | |
| }
 | |
| 
 | |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | |
| /// schedulers.
 | |
| void ScheduleDAGRRList::ListScheduleBottomUp() {
 | |
|   // Release any predecessors of the special Exit node.
 | |
|   ReleasePredecessors(&ExitSU);
 | |
| 
 | |
|   // Add root to Available queue.
 | |
|   if (!SUnits.empty()) {
 | |
|     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
 | |
|     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
 | |
|     RootSU->isAvailable = true;
 | |
|     AvailableQueue->push(RootSU);
 | |
|   }
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   Sequence.reserve(SUnits.size());
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     DEBUG(dbgs() << "\nExamining Available:\n";
 | |
|           AvailableQueue->dump(this));
 | |
| 
 | |
|     // Pick the best node to schedule taking all constraints into
 | |
|     // consideration.
 | |
|     SUnit *SU = PickNodeToScheduleBottomUp();
 | |
| 
 | |
|     AdvancePastStalls(SU);
 | |
| 
 | |
|     ScheduleNodeBottomUp(SU);
 | |
| 
 | |
|     while (AvailableQueue->empty() && !PendingQueue.empty()) {
 | |
|       // Advance the cycle to free resources. Skip ahead to the next ready SU.
 | |
|       assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
 | |
|       AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reverse the order if it is bottom up.
 | |
|   std::reverse(Sequence.begin(), Sequence.end());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   VerifyScheduledSequence(/*isBottomUp=*/true);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                RegReductionPriorityQueue Definition
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | |
| // to reduce register pressure.
 | |
| //
 | |
| namespace {
 | |
| class RegReductionPQBase;
 | |
| 
 | |
| struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|   bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
 | |
| };
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| template<class SF>
 | |
| struct reverse_sort : public queue_sort {
 | |
|   SF &SortFunc;
 | |
|   reverse_sort(SF &sf) : SortFunc(sf) {}
 | |
|   reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
 | |
| 
 | |
|   bool operator()(SUnit* left, SUnit* right) const {
 | |
|     // reverse left/right rather than simply !SortFunc(left, right)
 | |
|     // to expose different paths in the comparison logic.
 | |
|     return SortFunc(right, left);
 | |
|   }
 | |
| };
 | |
| #endif // NDEBUG
 | |
| 
 | |
| /// bu_ls_rr_sort - Priority function for bottom up register pressure
 | |
| // reduction scheduler.
 | |
| struct bu_ls_rr_sort : public queue_sort {
 | |
|   enum {
 | |
|     IsBottomUp = true,
 | |
|     HasReadyFilter = false
 | |
|   };
 | |
| 
 | |
|   RegReductionPQBase *SPQ;
 | |
|   bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
 | |
|   bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
| 
 | |
|   bool operator()(SUnit* left, SUnit* right) const;
 | |
| };
 | |
| 
 | |
| // src_ls_rr_sort - Priority function for source order scheduler.
 | |
| struct src_ls_rr_sort : public queue_sort {
 | |
|   enum {
 | |
|     IsBottomUp = true,
 | |
|     HasReadyFilter = false
 | |
|   };
 | |
| 
 | |
|   RegReductionPQBase *SPQ;
 | |
|   src_ls_rr_sort(RegReductionPQBase *spq)
 | |
|     : SPQ(spq) {}
 | |
|   src_ls_rr_sort(const src_ls_rr_sort &RHS)
 | |
|     : SPQ(RHS.SPQ) {}
 | |
| 
 | |
|   bool operator()(SUnit* left, SUnit* right) const;
 | |
| };
 | |
| 
 | |
| // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
 | |
| struct hybrid_ls_rr_sort : public queue_sort {
 | |
|   enum {
 | |
|     IsBottomUp = true,
 | |
|     HasReadyFilter = false
 | |
|   };
 | |
| 
 | |
|   RegReductionPQBase *SPQ;
 | |
|   hybrid_ls_rr_sort(RegReductionPQBase *spq)
 | |
|     : SPQ(spq) {}
 | |
|   hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
 | |
|     : SPQ(RHS.SPQ) {}
 | |
| 
 | |
|   bool isReady(SUnit *SU, unsigned CurCycle) const;
 | |
| 
 | |
|   bool operator()(SUnit* left, SUnit* right) const;
 | |
| };
 | |
| 
 | |
| // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
 | |
| // scheduler.
 | |
| struct ilp_ls_rr_sort : public queue_sort {
 | |
|   enum {
 | |
|     IsBottomUp = true,
 | |
|     HasReadyFilter = false
 | |
|   };
 | |
| 
 | |
|   RegReductionPQBase *SPQ;
 | |
|   ilp_ls_rr_sort(RegReductionPQBase *spq)
 | |
|     : SPQ(spq) {}
 | |
|   ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
 | |
|     : SPQ(RHS.SPQ) {}
 | |
| 
 | |
|   bool isReady(SUnit *SU, unsigned CurCycle) const;
 | |
| 
 | |
|   bool operator()(SUnit* left, SUnit* right) const;
 | |
| };
 | |
| 
 | |
| class RegReductionPQBase : public SchedulingPriorityQueue {
 | |
| protected:
 | |
|   std::vector<SUnit*> Queue;
 | |
|   unsigned CurQueueId;
 | |
|   bool TracksRegPressure;
 | |
|   bool SrcOrder;
 | |
| 
 | |
|   // SUnits - The SUnits for the current graph.
 | |
|   std::vector<SUnit> *SUnits;
 | |
| 
 | |
|   MachineFunction &MF;
 | |
|   const TargetInstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   const TargetLowering *TLI;
 | |
|   ScheduleDAGRRList *scheduleDAG;
 | |
| 
 | |
|   // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|   std::vector<unsigned> SethiUllmanNumbers;
 | |
| 
 | |
|   /// RegPressure - Tracking current reg pressure per register class.
 | |
|   ///
 | |
|   std::vector<unsigned> RegPressure;
 | |
| 
 | |
|   /// RegLimit - Tracking the number of allocatable registers per register
 | |
|   /// class.
 | |
|   std::vector<unsigned> RegLimit;
 | |
| 
 | |
| public:
 | |
|   RegReductionPQBase(MachineFunction &mf,
 | |
|                      bool hasReadyFilter,
 | |
|                      bool tracksrp,
 | |
|                      bool srcorder,
 | |
|                      const TargetInstrInfo *tii,
 | |
|                      const TargetRegisterInfo *tri,
 | |
|                      const TargetLowering *tli)
 | |
|     : SchedulingPriorityQueue(hasReadyFilter),
 | |
|       CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
 | |
|       MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
 | |
|     if (TracksRegPressure) {
 | |
|       unsigned NumRC = TRI->getNumRegClasses();
 | |
|       RegLimit.resize(NumRC);
 | |
|       RegPressure.resize(NumRC);
 | |
|       std::fill(RegLimit.begin(), RegLimit.end(), 0);
 | |
|       std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | |
|       for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | |
|              E = TRI->regclass_end(); I != E; ++I)
 | |
|         RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
 | |
|     scheduleDAG = scheduleDag;
 | |
|   }
 | |
| 
 | |
|   ScheduleHazardRecognizer* getHazardRec() {
 | |
|     return scheduleDAG->getHazardRec();
 | |
|   }
 | |
| 
 | |
|   void initNodes(std::vector<SUnit> &sunits);
 | |
| 
 | |
|   void addNode(const SUnit *SU);
 | |
| 
 | |
|   void updateNode(const SUnit *SU);
 | |
| 
 | |
|   void releaseState() {
 | |
|     SUnits = 0;
 | |
|     SethiUllmanNumbers.clear();
 | |
|     std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | |
|   }
 | |
| 
 | |
|   unsigned getNodePriority(const SUnit *SU) const;
 | |
| 
 | |
|   unsigned getNodeOrdering(const SUnit *SU) const {
 | |
|     if (!SU->getNode()) return 0;
 | |
| 
 | |
|     return scheduleDAG->DAG->GetOrdering(SU->getNode());
 | |
|   }
 | |
| 
 | |
|   bool empty() const { return Queue.empty(); }
 | |
| 
 | |
|   void push(SUnit *U) {
 | |
|     assert(!U->NodeQueueId && "Node in the queue already");
 | |
|     U->NodeQueueId = ++CurQueueId;
 | |
|     Queue.push_back(U);
 | |
|   }
 | |
| 
 | |
|   void remove(SUnit *SU) {
 | |
|     assert(!Queue.empty() && "Queue is empty!");
 | |
|     assert(SU->NodeQueueId != 0 && "Not in queue!");
 | |
|     std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
 | |
|                                                  SU);
 | |
|     if (I != prior(Queue.end()))
 | |
|       std::swap(*I, Queue.back());
 | |
|     Queue.pop_back();
 | |
|     SU->NodeQueueId = 0;
 | |
|   }
 | |
| 
 | |
|   bool tracksRegPressure() const { return TracksRegPressure; }
 | |
| 
 | |
|   void dumpRegPressure() const;
 | |
| 
 | |
|   bool HighRegPressure(const SUnit *SU) const;
 | |
| 
 | |
|   bool MayReduceRegPressure(SUnit *SU) const;
 | |
| 
 | |
|   int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
 | |
| 
 | |
|   void scheduledNode(SUnit *SU);
 | |
| 
 | |
|   void unscheduledNode(SUnit *SU);
 | |
| 
 | |
| protected:
 | |
|   bool canClobber(const SUnit *SU, const SUnit *Op);
 | |
|   void AddPseudoTwoAddrDeps();
 | |
|   void PrescheduleNodesWithMultipleUses();
 | |
|   void CalculateSethiUllmanNumbers();
 | |
| };
 | |
| 
 | |
| template<class SF>
 | |
| static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
 | |
|   std::vector<SUnit *>::iterator Best = Q.begin();
 | |
|   for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
 | |
|          E = Q.end(); I != E; ++I)
 | |
|     if (Picker(*Best, *I))
 | |
|       Best = I;
 | |
|   SUnit *V = *Best;
 | |
|   if (Best != prior(Q.end()))
 | |
|     std::swap(*Best, Q.back());
 | |
|   Q.pop_back();
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| template<class SF>
 | |
| SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
 | |
| #ifndef NDEBUG
 | |
|   if (DAG->StressSched) {
 | |
|     reverse_sort<SF> RPicker(Picker);
 | |
|     return popFromQueueImpl(Q, RPicker);
 | |
|   }
 | |
| #endif
 | |
|   (void)DAG;
 | |
|   return popFromQueueImpl(Q, Picker);
 | |
| }
 | |
| 
 | |
| template<class SF>
 | |
| class RegReductionPriorityQueue : public RegReductionPQBase {
 | |
|   SF Picker;
 | |
| 
 | |
| public:
 | |
|   RegReductionPriorityQueue(MachineFunction &mf,
 | |
|                             bool tracksrp,
 | |
|                             bool srcorder,
 | |
|                             const TargetInstrInfo *tii,
 | |
|                             const TargetRegisterInfo *tri,
 | |
|                             const TargetLowering *tli)
 | |
|     : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
 | |
|                          tii, tri, tli),
 | |
|       Picker(this) {}
 | |
| 
 | |
|   bool isBottomUp() const { return SF::IsBottomUp; }
 | |
| 
 | |
|   bool isReady(SUnit *U) const {
 | |
|     return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
 | |
|   }
 | |
| 
 | |
|   SUnit *pop() {
 | |
|     if (Queue.empty()) return NULL;
 | |
| 
 | |
|     SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
 | |
|     V->NodeQueueId = 0;
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   void dump(ScheduleDAG *DAG) const {
 | |
|     // Emulate pop() without clobbering NodeQueueIds.
 | |
|     std::vector<SUnit*> DumpQueue = Queue;
 | |
|     SF DumpPicker = Picker;
 | |
|     while (!DumpQueue.empty()) {
 | |
|       SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
 | |
|       dbgs() << "Height " << SU->getHeight() << ": ";
 | |
|       SU->dump(DAG);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| };
 | |
| 
 | |
| typedef RegReductionPriorityQueue<bu_ls_rr_sort>
 | |
| BURegReductionPriorityQueue;
 | |
| 
 | |
| typedef RegReductionPriorityQueue<src_ls_rr_sort>
 | |
| SrcRegReductionPriorityQueue;
 | |
| 
 | |
| typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
 | |
| HybridBURRPriorityQueue;
 | |
| 
 | |
| typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
 | |
| ILPBURRPriorityQueue;
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //           Static Node Priority for Register Pressure Reduction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Check for special nodes that bypass scheduling heuristics.
 | |
| // Currently this pushes TokenFactor nodes down, but may be used for other
 | |
| // pseudo-ops as well.
 | |
| //
 | |
| // Return -1 to schedule right above left, 1 for left above right.
 | |
| // Return 0 if no bias exists.
 | |
| static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
 | |
|   bool LSchedLow = left->isScheduleLow;
 | |
|   bool RSchedLow = right->isScheduleLow;
 | |
|   if (LSchedLow != RSchedLow)
 | |
|     return LSchedLow < RSchedLow ? 1 : -1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
 | |
| /// Smaller number is the higher priority.
 | |
| static unsigned
 | |
| CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
 | |
|   unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != 0)
 | |
|     return SethiUllmanNumber;
 | |
| 
 | |
|   unsigned Extra = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain preds
 | |
|     SUnit *PredSU = I->getSUnit();
 | |
|     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
 | |
|     if (PredSethiUllman > SethiUllmanNumber) {
 | |
|       SethiUllmanNumber = PredSethiUllman;
 | |
|       Extra = 0;
 | |
|     } else if (PredSethiUllman == SethiUllmanNumber)
 | |
|       ++Extra;
 | |
|   }
 | |
| 
 | |
|   SethiUllmanNumber += Extra;
 | |
| 
 | |
|   if (SethiUllmanNumber == 0)
 | |
|     SethiUllmanNumber = 1;
 | |
| 
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | |
| /// scheduling units.
 | |
| void RegReductionPQBase::CalculateSethiUllmanNumbers() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), 0);
 | |
| 
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
 | |
| }
 | |
| 
 | |
| void RegReductionPQBase::addNode(const SUnit *SU) {
 | |
|   unsigned SUSize = SethiUllmanNumbers.size();
 | |
|   if (SUnits->size() > SUSize)
 | |
|     SethiUllmanNumbers.resize(SUSize*2, 0);
 | |
|   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
 | |
| }
 | |
| 
 | |
| void RegReductionPQBase::updateNode(const SUnit *SU) {
 | |
|   SethiUllmanNumbers[SU->NodeNum] = 0;
 | |
|   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
 | |
| }
 | |
| 
 | |
| // Lower priority means schedule further down. For bottom-up scheduling, lower
 | |
| // priority SUs are scheduled before higher priority SUs.
 | |
| unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
 | |
|   assert(SU->NodeNum < SethiUllmanNumbers.size());
 | |
|   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
 | |
|   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|     // CopyToReg should be close to its uses to facilitate coalescing and
 | |
|     // avoid spilling.
 | |
|     return 0;
 | |
|   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|       Opc == TargetOpcode::SUBREG_TO_REG ||
 | |
|       Opc == TargetOpcode::INSERT_SUBREG)
 | |
|     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
 | |
|     // close to their uses to facilitate coalescing.
 | |
|     return 0;
 | |
|   if (SU->NumSuccs == 0 && SU->NumPreds != 0)
 | |
|     // If SU does not have a register use, i.e. it doesn't produce a value
 | |
|     // that would be consumed (e.g. store), then it terminates a chain of
 | |
|     // computation.  Give it a large SethiUllman number so it will be
 | |
|     // scheduled right before its predecessors that it doesn't lengthen
 | |
|     // their live ranges.
 | |
|     return 0xffff;
 | |
|   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
 | |
|     // If SU does not have a register def, schedule it close to its uses
 | |
|     // because it does not lengthen any live ranges.
 | |
|     return 0;
 | |
| #if 1
 | |
|   return SethiUllmanNumbers[SU->NodeNum];
 | |
| #else
 | |
|   unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
 | |
|   if (SU->isCallOp) {
 | |
|     // FIXME: This assumes all of the defs are used as call operands.
 | |
|     int NP = (int)Priority - SU->getNode()->getNumValues();
 | |
|     return (NP > 0) ? NP : 0;
 | |
|   }
 | |
|   return Priority;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     Register Pressure Tracking
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void RegReductionPQBase::dumpRegPressure() const {
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | |
|          E = TRI->regclass_end(); I != E; ++I) {
 | |
|     const TargetRegisterClass *RC = *I;
 | |
|     unsigned Id = RC->getID();
 | |
|     unsigned RP = RegPressure[Id];
 | |
|     if (!RP) continue;
 | |
|     DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
 | |
|           << '\n');
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
 | |
|   if (!TLI)
 | |
|     return false;
 | |
| 
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl())
 | |
|       continue;
 | |
|     SUnit *PredSU = I->getSUnit();
 | |
|     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
 | |
|     // to cover the number of registers defined (they are all live).
 | |
|     if (PredSU->NumRegDefsLeft == 0) {
 | |
|       continue;
 | |
|     }
 | |
|     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
 | |
|          RegDefPos.IsValid(); RegDefPos.Advance()) {
 | |
|       unsigned RCId, Cost;
 | |
|       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
 | |
| 
 | |
|       if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
 | |
|   const SDNode *N = SU->getNode();
 | |
| 
 | |
|   if (!N->isMachineOpcode() || !SU->NumSuccs)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | |
|   for (unsigned i = 0; i != NumDefs; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (!N->hasAnyUseOfValue(i))
 | |
|       continue;
 | |
|     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|     if (RegPressure[RCId] >= RegLimit[RCId])
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Compute the register pressure contribution by this instruction by count up
 | |
| // for uses that are not live and down for defs. Only count register classes
 | |
| // that are already under high pressure. As a side effect, compute the number of
 | |
| // uses of registers that are already live.
 | |
| //
 | |
| // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
 | |
| // so could probably be factored.
 | |
| int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
 | |
|   LiveUses = 0;
 | |
|   int PDiff = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl())
 | |
|       continue;
 | |
|     SUnit *PredSU = I->getSUnit();
 | |
|     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
 | |
|     // to cover the number of registers defined (they are all live).
 | |
|     if (PredSU->NumRegDefsLeft == 0) {
 | |
|       if (PredSU->getNode()->isMachineOpcode())
 | |
|         ++LiveUses;
 | |
|       continue;
 | |
|     }
 | |
|     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
 | |
|          RegDefPos.IsValid(); RegDefPos.Advance()) {
 | |
|       EVT VT = RegDefPos.GetValue();
 | |
|       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|       if (RegPressure[RCId] >= RegLimit[RCId])
 | |
|         ++PDiff;
 | |
|     }
 | |
|   }
 | |
|   const SDNode *N = SU->getNode();
 | |
| 
 | |
|   if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
 | |
|     return PDiff;
 | |
| 
 | |
|   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | |
|   for (unsigned i = 0; i != NumDefs; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (!N->hasAnyUseOfValue(i))
 | |
|       continue;
 | |
|     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|     if (RegPressure[RCId] >= RegLimit[RCId])
 | |
|       --PDiff;
 | |
|   }
 | |
|   return PDiff;
 | |
| }
 | |
| 
 | |
| void RegReductionPQBase::scheduledNode(SUnit *SU) {
 | |
|   if (!TracksRegPressure)
 | |
|     return;
 | |
| 
 | |
|   if (!SU->getNode())
 | |
|     return;
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl())
 | |
|       continue;
 | |
|     SUnit *PredSU = I->getSUnit();
 | |
|     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
 | |
|     // to cover the number of registers defined (they are all live).
 | |
|     if (PredSU->NumRegDefsLeft == 0) {
 | |
|       continue;
 | |
|     }
 | |
|     // FIXME: The ScheduleDAG currently loses information about which of a
 | |
|     // node's values is consumed by each dependence. Consequently, if the node
 | |
|     // defines multiple register classes, we don't know which to pressurize
 | |
|     // here. Instead the following loop consumes the register defs in an
 | |
|     // arbitrary order. At least it handles the common case of clustered loads
 | |
|     // to the same class. For precise liveness, each SDep needs to indicate the
 | |
|     // result number. But that tightly couples the ScheduleDAG with the
 | |
|     // SelectionDAG making updates tricky. A simpler hack would be to attach a
 | |
|     // value type or register class to SDep.
 | |
|     //
 | |
|     // The most important aspect of register tracking is balancing the increase
 | |
|     // here with the reduction further below. Note that this SU may use multiple
 | |
|     // defs in PredSU. The can't be determined here, but we've already
 | |
|     // compensated by reducing NumRegDefsLeft in PredSU during
 | |
|     // ScheduleDAGSDNodes::AddSchedEdges.
 | |
|     --PredSU->NumRegDefsLeft;
 | |
|     unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
 | |
|     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
 | |
|          RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
 | |
|       if (SkipRegDefs)
 | |
|         continue;
 | |
| 
 | |
|       unsigned RCId, Cost;
 | |
|       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
 | |
|       RegPressure[RCId] += Cost;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We should have this assert, but there may be dead SDNodes that never
 | |
|   // materialize as SUnits, so they don't appear to generate liveness.
 | |
|   //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
 | |
|   int SkipRegDefs = (int)SU->NumRegDefsLeft;
 | |
|   for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
 | |
|        RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
 | |
|     if (SkipRegDefs > 0)
 | |
|       continue;
 | |
|     unsigned RCId, Cost;
 | |
|     GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
 | |
|     if (RegPressure[RCId] < Cost) {
 | |
|       // Register pressure tracking is imprecise. This can happen. But we try
 | |
|       // hard not to let it happen because it likely results in poor scheduling.
 | |
|       DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
 | |
|       RegPressure[RCId] = 0;
 | |
|     }
 | |
|     else {
 | |
|       RegPressure[RCId] -= Cost;
 | |
|     }
 | |
|   }
 | |
|   dumpRegPressure();
 | |
| }
 | |
| 
 | |
| void RegReductionPQBase::unscheduledNode(SUnit *SU) {
 | |
|   if (!TracksRegPressure)
 | |
|     return;
 | |
| 
 | |
|   const SDNode *N = SU->getNode();
 | |
|   if (!N) return;
 | |
| 
 | |
|   if (!N->isMachineOpcode()) {
 | |
|     if (N->getOpcode() != ISD::CopyToReg)
 | |
|       return;
 | |
|   } else {
 | |
|     unsigned Opc = N->getMachineOpcode();
 | |
|     if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|         Opc == TargetOpcode::INSERT_SUBREG ||
 | |
|         Opc == TargetOpcode::SUBREG_TO_REG ||
 | |
|         Opc == TargetOpcode::REG_SEQUENCE ||
 | |
|         Opc == TargetOpcode::IMPLICIT_DEF)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl())
 | |
|       continue;
 | |
|     SUnit *PredSU = I->getSUnit();
 | |
|     // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
 | |
|     // counts data deps.
 | |
|     if (PredSU->NumSuccsLeft != PredSU->Succs.size())
 | |
|       continue;
 | |
|     const SDNode *PN = PredSU->getNode();
 | |
|     if (!PN->isMachineOpcode()) {
 | |
|       if (PN->getOpcode() == ISD::CopyFromReg) {
 | |
|         EVT VT = PN->getValueType(0);
 | |
|         unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|         RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     unsigned POpc = PN->getMachineOpcode();
 | |
|     if (POpc == TargetOpcode::IMPLICIT_DEF)
 | |
|       continue;
 | |
|     if (POpc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|         POpc == TargetOpcode::INSERT_SUBREG ||
 | |
|         POpc == TargetOpcode::SUBREG_TO_REG) {
 | |
|       EVT VT = PN->getValueType(0);
 | |
|       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|       continue;
 | |
|     }
 | |
|     unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
 | |
|     for (unsigned i = 0; i != NumDefs; ++i) {
 | |
|       EVT VT = PN->getValueType(i);
 | |
|       if (!PN->hasAnyUseOfValue(i))
 | |
|         continue;
 | |
|       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|       if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
 | |
|         // Register pressure tracking is imprecise. This can happen.
 | |
|         RegPressure[RCId] = 0;
 | |
|       else
 | |
|         RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
 | |
|   // may transfer data dependencies to CopyToReg.
 | |
|   if (SU->NumSuccs && N->isMachineOpcode()) {
 | |
|     unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | |
|     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
 | |
|       EVT VT = N->getValueType(i);
 | |
|       if (VT == MVT::Glue || VT == MVT::Other)
 | |
|         continue;
 | |
|       if (!N->hasAnyUseOfValue(i))
 | |
|         continue;
 | |
|       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   dumpRegPressure();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //           Dynamic Node Priority for Register Pressure Reduction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// closestSucc - Returns the scheduled cycle of the successor which is
 | |
| /// closest to the current cycle.
 | |
| static unsigned closestSucc(const SUnit *SU) {
 | |
|   unsigned MaxHeight = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain succs
 | |
|     unsigned Height = I->getSUnit()->getHeight();
 | |
|     // If there are bunch of CopyToRegs stacked up, they should be considered
 | |
|     // to be at the same position.
 | |
|     if (I->getSUnit()->getNode() &&
 | |
|         I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
 | |
|       Height = closestSucc(I->getSUnit())+1;
 | |
|     if (Height > MaxHeight)
 | |
|       MaxHeight = Height;
 | |
|   }
 | |
|   return MaxHeight;
 | |
| }
 | |
| 
 | |
| /// calcMaxScratches - Returns an cost estimate of the worse case requirement
 | |
| /// for scratch registers, i.e. number of data dependencies.
 | |
| static unsigned calcMaxScratches(const SUnit *SU) {
 | |
|   unsigned Scratches = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain preds
 | |
|     Scratches++;
 | |
|   }
 | |
|   return Scratches;
 | |
| }
 | |
| 
 | |
| /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
 | |
| /// CopyFromReg from a virtual register.
 | |
| static bool hasOnlyLiveInOpers(const SUnit *SU) {
 | |
|   bool RetVal = false;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;
 | |
|     const SUnit *PredSU = I->getSUnit();
 | |
|     if (PredSU->getNode() &&
 | |
|         PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
 | |
|       unsigned Reg =
 | |
|         cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         RetVal = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   return RetVal;
 | |
| }
 | |
| 
 | |
| /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
 | |
| /// CopyToReg to a virtual register. This SU def is probably a liveout and
 | |
| /// it has no other use. It should be scheduled closer to the terminator.
 | |
| static bool hasOnlyLiveOutUses(const SUnit *SU) {
 | |
|   bool RetVal = false;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;
 | |
|     const SUnit *SuccSU = I->getSUnit();
 | |
|     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
 | |
|       unsigned Reg =
 | |
|         cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         RetVal = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   return RetVal;
 | |
| }
 | |
| 
 | |
| // Set isVRegCycle for a node with only live in opers and live out uses. Also
 | |
| // set isVRegCycle for its CopyFromReg operands.
 | |
| //
 | |
| // This is only relevant for single-block loops, in which case the VRegCycle
 | |
| // node is likely an induction variable in which the operand and target virtual
 | |
| // registers should be coalesced (e.g. pre/post increment values). Setting the
 | |
| // isVRegCycle flag helps the scheduler prioritize other uses of the same
 | |
| // CopyFromReg so that this node becomes the virtual register "kill". This
 | |
| // avoids interference between the values live in and out of the block and
 | |
| // eliminates a copy inside the loop.
 | |
| static void initVRegCycle(SUnit *SU) {
 | |
|   if (DisableSchedVRegCycle)
 | |
|     return;
 | |
| 
 | |
|   if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
 | |
|     return;
 | |
| 
 | |
|   DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
 | |
| 
 | |
|   SU->isVRegCycle = true;
 | |
| 
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;
 | |
|     I->getSUnit()->isVRegCycle = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
 | |
| // CopyFromReg operands. We should no longer penalize other uses of this VReg.
 | |
| static void resetVRegCycle(SUnit *SU) {
 | |
|   if (!SU->isVRegCycle)
 | |
|     return;
 | |
| 
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain preds
 | |
|     SUnit *PredSU = I->getSUnit();
 | |
|     if (PredSU->isVRegCycle) {
 | |
|       assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
 | |
|              "VRegCycle def must be CopyFromReg");
 | |
|       I->getSUnit()->isVRegCycle = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
 | |
| // means a node that defines the VRegCycle has not been scheduled yet.
 | |
| static bool hasVRegCycleUse(const SUnit *SU) {
 | |
|   // If this SU also defines the VReg, don't hoist it as a "use".
 | |
|   if (SU->isVRegCycle)
 | |
|     return false;
 | |
| 
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain preds
 | |
|     if (I->getSUnit()->isVRegCycle &&
 | |
|         I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
 | |
|       DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check for either a dependence (latency) or resource (hazard) stall.
 | |
| //
 | |
| // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
 | |
| static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
 | |
|   if ((int)SPQ->getCurCycle() < Height) return true;
 | |
|   if (SPQ->getHazardRec()->getHazardType(SU, 0)
 | |
|       != ScheduleHazardRecognizer::NoHazard)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return -1 if left has higher priority, 1 if right has higher priority.
 | |
| // Return 0 if latency-based priority is equivalent.
 | |
| static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
 | |
|                             RegReductionPQBase *SPQ) {
 | |
|   // Scheduling an instruction that uses a VReg whose postincrement has not yet
 | |
|   // been scheduled will induce a copy. Model this as an extra cycle of latency.
 | |
|   int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
 | |
|   int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
 | |
|   int LHeight = (int)left->getHeight() + LPenalty;
 | |
|   int RHeight = (int)right->getHeight() + RPenalty;
 | |
| 
 | |
|   bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
 | |
|     BUHasStall(left, LHeight, SPQ);
 | |
|   bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
 | |
|     BUHasStall(right, RHeight, SPQ);
 | |
| 
 | |
|   // If scheduling one of the node will cause a pipeline stall, delay it.
 | |
|   // If scheduling either one of the node will cause a pipeline stall, sort
 | |
|   // them according to their height.
 | |
|   if (LStall) {
 | |
|     if (!RStall)
 | |
|       return 1;
 | |
|     if (LHeight != RHeight)
 | |
|       return LHeight > RHeight ? 1 : -1;
 | |
|   } else if (RStall)
 | |
|     return -1;
 | |
| 
 | |
|   // If either node is scheduling for latency, sort them by height/depth
 | |
|   // and latency.
 | |
|   if (!checkPref || (left->SchedulingPref == Sched::ILP ||
 | |
|                      right->SchedulingPref == Sched::ILP)) {
 | |
|     // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
 | |
|     // is enabled, grouping instructions by cycle, then its height is already
 | |
|     // covered so only its depth matters. We also reach this point if both stall
 | |
|     // but have the same height.
 | |
|     if (!SPQ->getHazardRec()->isEnabled()) {
 | |
|       if (LHeight != RHeight)
 | |
|         return LHeight > RHeight ? 1 : -1;
 | |
|     }
 | |
|     int LDepth = left->getDepth() - LPenalty;
 | |
|     int RDepth = right->getDepth() - RPenalty;
 | |
|     if (LDepth != RDepth) {
 | |
|       DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
 | |
|             << ") depth " << LDepth << " vs SU (" << right->NodeNum
 | |
|             << ") depth " << RDepth << "\n");
 | |
|       return LDepth < RDepth ? 1 : -1;
 | |
|     }
 | |
|     if (left->Latency != right->Latency)
 | |
|       return left->Latency > right->Latency ? 1 : -1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
 | |
|   // Schedule physical register definitions close to their use. This is
 | |
|   // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
 | |
|   // long as shortening physreg live ranges is generally good, we can defer
 | |
|   // creating a subtarget hook.
 | |
|   if (!DisableSchedPhysRegJoin) {
 | |
|     bool LHasPhysReg = left->hasPhysRegDefs;
 | |
|     bool RHasPhysReg = right->hasPhysRegDefs;
 | |
|     if (LHasPhysReg != RHasPhysReg) {
 | |
|       #ifndef NDEBUG
 | |
|       const char *const PhysRegMsg[] = {" has no physreg"," defines a physreg"};
 | |
|       #endif
 | |
|       DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
 | |
|             << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
 | |
|             << PhysRegMsg[RHasPhysReg] << "\n");
 | |
|       return LHasPhysReg < RHasPhysReg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
 | |
|   unsigned LPriority = SPQ->getNodePriority(left);
 | |
|   unsigned RPriority = SPQ->getNodePriority(right);
 | |
| 
 | |
|   // Be really careful about hoisting call operands above previous calls.
 | |
|   // Only allows it if it would reduce register pressure.
 | |
|   if (left->isCall && right->isCallOp) {
 | |
|     unsigned RNumVals = right->getNode()->getNumValues();
 | |
|     RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
 | |
|   }
 | |
|   if (right->isCall && left->isCallOp) {
 | |
|     unsigned LNumVals = left->getNode()->getNumValues();
 | |
|     LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
 | |
|   }
 | |
| 
 | |
|   if (LPriority != RPriority)
 | |
|     return LPriority > RPriority;
 | |
| 
 | |
|   // One or both of the nodes are calls and their sethi-ullman numbers are the
 | |
|   // same, then keep source order.
 | |
|   if (left->isCall || right->isCall) {
 | |
|     unsigned LOrder = SPQ->getNodeOrdering(left);
 | |
|     unsigned ROrder = SPQ->getNodeOrdering(right);
 | |
| 
 | |
|     // Prefer an ordering where the lower the non-zero order number, the higher
 | |
|     // the preference.
 | |
|     if ((LOrder || ROrder) && LOrder != ROrder)
 | |
|       return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
 | |
|   }
 | |
| 
 | |
|   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
 | |
|   // e.g.
 | |
|   // t1 = op t2, c1
 | |
|   // t3 = op t4, c2
 | |
|   //
 | |
|   // and the following instructions are both ready.
 | |
|   // t2 = op c3
 | |
|   // t4 = op c4
 | |
|   //
 | |
|   // Then schedule t2 = op first.
 | |
|   // i.e.
 | |
|   // t4 = op c4
 | |
|   // t2 = op c3
 | |
|   // t1 = op t2, c1
 | |
|   // t3 = op t4, c2
 | |
|   //
 | |
|   // This creates more short live intervals.
 | |
|   unsigned LDist = closestSucc(left);
 | |
|   unsigned RDist = closestSucc(right);
 | |
|   if (LDist != RDist)
 | |
|     return LDist < RDist;
 | |
| 
 | |
|   // How many registers becomes live when the node is scheduled.
 | |
|   unsigned LScratch = calcMaxScratches(left);
 | |
|   unsigned RScratch = calcMaxScratches(right);
 | |
|   if (LScratch != RScratch)
 | |
|     return LScratch > RScratch;
 | |
| 
 | |
|   // Comparing latency against a call makes little sense unless the node
 | |
|   // is register pressure-neutral.
 | |
|   if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
 | |
|     return (left->NodeQueueId > right->NodeQueueId);
 | |
| 
 | |
|   // Do not compare latencies when one or both of the nodes are calls.
 | |
|   if (!DisableSchedCycles &&
 | |
|       !(left->isCall || right->isCall)) {
 | |
|     int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
 | |
|     if (result != 0)
 | |
|       return result > 0;
 | |
|   }
 | |
|   else {
 | |
|     if (left->getHeight() != right->getHeight())
 | |
|       return left->getHeight() > right->getHeight();
 | |
| 
 | |
|     if (left->getDepth() != right->getDepth())
 | |
|       return left->getDepth() < right->getDepth();
 | |
|   }
 | |
| 
 | |
|   assert(left->NodeQueueId && right->NodeQueueId &&
 | |
|          "NodeQueueId cannot be zero");
 | |
|   return (left->NodeQueueId > right->NodeQueueId);
 | |
| }
 | |
| 
 | |
| // Bottom up
 | |
| bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
 | |
|   if (int res = checkSpecialNodes(left, right))
 | |
|     return res > 0;
 | |
| 
 | |
|   return BURRSort(left, right, SPQ);
 | |
| }
 | |
| 
 | |
| // Source order, otherwise bottom up.
 | |
| bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
 | |
|   if (int res = checkSpecialNodes(left, right))
 | |
|     return res > 0;
 | |
| 
 | |
|   unsigned LOrder = SPQ->getNodeOrdering(left);
 | |
|   unsigned ROrder = SPQ->getNodeOrdering(right);
 | |
| 
 | |
|   // Prefer an ordering where the lower the non-zero order number, the higher
 | |
|   // the preference.
 | |
|   if ((LOrder || ROrder) && LOrder != ROrder)
 | |
|     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
 | |
| 
 | |
|   return BURRSort(left, right, SPQ);
 | |
| }
 | |
| 
 | |
| // If the time between now and when the instruction will be ready can cover
 | |
| // the spill code, then avoid adding it to the ready queue. This gives long
 | |
| // stalls highest priority and allows hoisting across calls. It should also
 | |
| // speed up processing the available queue.
 | |
| bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
 | |
|   static const unsigned ReadyDelay = 3;
 | |
| 
 | |
|   if (SPQ->MayReduceRegPressure(SU)) return true;
 | |
| 
 | |
|   if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
 | |
| 
 | |
|   if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
 | |
|       != ScheduleHazardRecognizer::NoHazard)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return true if right should be scheduled with higher priority than left.
 | |
| bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
 | |
|   if (int res = checkSpecialNodes(left, right))
 | |
|     return res > 0;
 | |
| 
 | |
|   if (left->isCall || right->isCall)
 | |
|     // No way to compute latency of calls.
 | |
|     return BURRSort(left, right, SPQ);
 | |
| 
 | |
|   bool LHigh = SPQ->HighRegPressure(left);
 | |
|   bool RHigh = SPQ->HighRegPressure(right);
 | |
|   // Avoid causing spills. If register pressure is high, schedule for
 | |
|   // register pressure reduction.
 | |
|   if (LHigh && !RHigh) {
 | |
|     DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
 | |
|           << right->NodeNum << ")\n");
 | |
|     return true;
 | |
|   }
 | |
|   else if (!LHigh && RHigh) {
 | |
|     DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
 | |
|           << left->NodeNum << ")\n");
 | |
|     return false;
 | |
|   }
 | |
|   if (!LHigh && !RHigh) {
 | |
|     int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
 | |
|     if (result != 0)
 | |
|       return result > 0;
 | |
|   }
 | |
|   return BURRSort(left, right, SPQ);
 | |
| }
 | |
| 
 | |
| // Schedule as many instructions in each cycle as possible. So don't make an
 | |
| // instruction available unless it is ready in the current cycle.
 | |
| bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
 | |
|   if (SU->getHeight() > CurCycle) return false;
 | |
| 
 | |
|   if (SPQ->getHazardRec()->getHazardType(SU, 0)
 | |
|       != ScheduleHazardRecognizer::NoHazard)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool canEnableCoalescing(SUnit *SU) {
 | |
|   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
 | |
|   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|     // CopyToReg should be close to its uses to facilitate coalescing and
 | |
|     // avoid spilling.
 | |
|     return true;
 | |
| 
 | |
|   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|       Opc == TargetOpcode::SUBREG_TO_REG ||
 | |
|       Opc == TargetOpcode::INSERT_SUBREG)
 | |
|     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
 | |
|     // close to their uses to facilitate coalescing.
 | |
|     return true;
 | |
| 
 | |
|   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
 | |
|     // If SU does not have a register def, schedule it close to its uses
 | |
|     // because it does not lengthen any live ranges.
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // list-ilp is currently an experimental scheduler that allows various
 | |
| // heuristics to be enabled prior to the normal register reduction logic.
 | |
| bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
 | |
|   if (int res = checkSpecialNodes(left, right))
 | |
|     return res > 0;
 | |
| 
 | |
|   if (left->isCall || right->isCall)
 | |
|     // No way to compute latency of calls.
 | |
|     return BURRSort(left, right, SPQ);
 | |
| 
 | |
|   unsigned LLiveUses = 0, RLiveUses = 0;
 | |
|   int LPDiff = 0, RPDiff = 0;
 | |
|   if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
 | |
|     LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
 | |
|     RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
 | |
|   }
 | |
|   if (!DisableSchedRegPressure && LPDiff != RPDiff) {
 | |
|     DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
 | |
|           << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
 | |
|     return LPDiff > RPDiff;
 | |
|   }
 | |
| 
 | |
|   if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
 | |
|     bool LReduce = canEnableCoalescing(left);
 | |
|     bool RReduce = canEnableCoalescing(right);
 | |
|     if (LReduce && !RReduce) return false;
 | |
|     if (RReduce && !LReduce) return true;
 | |
|   }
 | |
| 
 | |
|   if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
 | |
|     DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
 | |
|           << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
 | |
|     return LLiveUses < RLiveUses;
 | |
|   }
 | |
| 
 | |
|   if (!DisableSchedStalls) {
 | |
|     bool LStall = BUHasStall(left, left->getHeight(), SPQ);
 | |
|     bool RStall = BUHasStall(right, right->getHeight(), SPQ);
 | |
|     if (LStall != RStall)
 | |
|       return left->getHeight() > right->getHeight();
 | |
|   }
 | |
| 
 | |
|   if (!DisableSchedCriticalPath) {
 | |
|     int spread = (int)left->getDepth() - (int)right->getDepth();
 | |
|     if (std::abs(spread) > MaxReorderWindow) {
 | |
|       DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
 | |
|             << left->getDepth() << " != SU(" << right->NodeNum << "): "
 | |
|             << right->getDepth() << "\n");
 | |
|       return left->getDepth() < right->getDepth();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
 | |
|     int spread = (int)left->getHeight() - (int)right->getHeight();
 | |
|     if (std::abs(spread) > MaxReorderWindow)
 | |
|       return left->getHeight() > right->getHeight();
 | |
|   }
 | |
| 
 | |
|   return BURRSort(left, right, SPQ);
 | |
| }
 | |
| 
 | |
| void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
 | |
|   SUnits = &sunits;
 | |
|   // Add pseudo dependency edges for two-address nodes.
 | |
|   if (!Disable2AddrHack)
 | |
|     AddPseudoTwoAddrDeps();
 | |
|   // Reroute edges to nodes with multiple uses.
 | |
|   if (!TracksRegPressure && !SrcOrder)
 | |
|     PrescheduleNodesWithMultipleUses();
 | |
|   // Calculate node priorities.
 | |
|   CalculateSethiUllmanNumbers();
 | |
| 
 | |
|   // For single block loops, mark nodes that look like canonical IV increments.
 | |
|   if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
 | |
|     for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
 | |
|       initVRegCycle(&sunits[i]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    Preschedule for Register Pressure
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
 | |
|   if (SU->isTwoAddress) {
 | |
|     unsigned Opc = SU->getNode()->getMachineOpcode();
 | |
|     const MCInstrDesc &MCID = TII->get(Opc);
 | |
|     unsigned NumRes = MCID.getNumDefs();
 | |
|     unsigned NumOps = MCID.getNumOperands() - NumRes;
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
 | |
|         SDNode *DU = SU->getNode()->getOperand(i).getNode();
 | |
|         if (DU->getNodeId() != -1 &&
 | |
|             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
 | |
| /// successor's explicit physregs whose definition can reach DepSU.
 | |
| /// i.e. DepSU should not be scheduled above SU.
 | |
| static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
 | |
|                                          ScheduleDAGRRList *scheduleDAG,
 | |
|                                          const TargetInstrInfo *TII,
 | |
|                                          const TargetRegisterInfo *TRI) {
 | |
|   const uint16_t *ImpDefs
 | |
|     = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
 | |
|   const uint32_t *RegMask = getNodeRegMask(SU->getNode());
 | |
|   if(!ImpDefs && !RegMask)
 | |
|     return false;
 | |
| 
 | |
|   for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
 | |
|        SI != SE; ++SI) {
 | |
|     SUnit *SuccSU = SI->getSUnit();
 | |
|     for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
 | |
|            PE = SuccSU->Preds.end(); PI != PE; ++PI) {
 | |
|       if (!PI->isAssignedRegDep())
 | |
|         continue;
 | |
| 
 | |
|       if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
 | |
|           scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
 | |
|         return true;
 | |
| 
 | |
|       if (ImpDefs)
 | |
|         for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
 | |
|           // Return true if SU clobbers this physical register use and the
 | |
|           // definition of the register reaches from DepSU. IsReachable queries
 | |
|           // a topological forward sort of the DAG (following the successors).
 | |
|           if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
 | |
|               scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
 | |
|             return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
 | |
| /// physical register defs.
 | |
| static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
 | |
|                                   const TargetInstrInfo *TII,
 | |
|                                   const TargetRegisterInfo *TRI) {
 | |
|   SDNode *N = SuccSU->getNode();
 | |
|   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | |
|   const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
 | |
|   assert(ImpDefs && "Caller should check hasPhysRegDefs");
 | |
|   for (const SDNode *SUNode = SU->getNode(); SUNode;
 | |
|        SUNode = SUNode->getGluedNode()) {
 | |
|     if (!SUNode->isMachineOpcode())
 | |
|       continue;
 | |
|     const uint16_t *SUImpDefs =
 | |
|       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
 | |
|     const uint32_t *SURegMask = getNodeRegMask(SUNode);
 | |
|     if (!SUImpDefs && !SURegMask)
 | |
|       continue;
 | |
|     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
 | |
|       EVT VT = N->getValueType(i);
 | |
|       if (VT == MVT::Glue || VT == MVT::Other)
 | |
|         continue;
 | |
|       if (!N->hasAnyUseOfValue(i))
 | |
|         continue;
 | |
|       unsigned Reg = ImpDefs[i - NumDefs];
 | |
|       if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
 | |
|         return true;
 | |
|       if (!SUImpDefs)
 | |
|         continue;
 | |
|       for (;*SUImpDefs; ++SUImpDefs) {
 | |
|         unsigned SUReg = *SUImpDefs;
 | |
|         if (TRI->regsOverlap(Reg, SUReg))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
 | |
| /// are not handled well by the general register pressure reduction
 | |
| /// heuristics. When presented with code like this:
 | |
| ///
 | |
| ///      N
 | |
| ///    / |
 | |
| ///   /  |
 | |
| ///  U  store
 | |
| ///  |
 | |
| /// ...
 | |
| ///
 | |
| /// the heuristics tend to push the store up, but since the
 | |
| /// operand of the store has another use (U), this would increase
 | |
| /// the length of that other use (the U->N edge).
 | |
| ///
 | |
| /// This function transforms code like the above to route U's
 | |
| /// dependence through the store when possible, like this:
 | |
| ///
 | |
| ///      N
 | |
| ///      ||
 | |
| ///      ||
 | |
| ///     store
 | |
| ///       |
 | |
| ///       U
 | |
| ///       |
 | |
| ///      ...
 | |
| ///
 | |
| /// This results in the store being scheduled immediately
 | |
| /// after N, which shortens the U->N live range, reducing
 | |
| /// register pressure.
 | |
| ///
 | |
| void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
 | |
|   // Visit all the nodes in topological order, working top-down.
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | |
|     SUnit *SU = &(*SUnits)[i];
 | |
|     // For now, only look at nodes with no data successors, such as stores.
 | |
|     // These are especially important, due to the heuristics in
 | |
|     // getNodePriority for nodes with no data successors.
 | |
|     if (SU->NumSuccs != 0)
 | |
|       continue;
 | |
|     // For now, only look at nodes with exactly one data predecessor.
 | |
|     if (SU->NumPreds != 1)
 | |
|       continue;
 | |
|     // Avoid prescheduling copies to virtual registers, which don't behave
 | |
|     // like other nodes from the perspective of scheduling heuristics.
 | |
|     if (SDNode *N = SU->getNode())
 | |
|       if (N->getOpcode() == ISD::CopyToReg &&
 | |
|           TargetRegisterInfo::isVirtualRegister
 | |
|             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
 | |
|         continue;
 | |
| 
 | |
|     // Locate the single data predecessor.
 | |
|     SUnit *PredSU = 0;
 | |
|     for (SUnit::const_pred_iterator II = SU->Preds.begin(),
 | |
|          EE = SU->Preds.end(); II != EE; ++II)
 | |
|       if (!II->isCtrl()) {
 | |
|         PredSU = II->getSUnit();
 | |
|         break;
 | |
|       }
 | |
|     assert(PredSU);
 | |
| 
 | |
|     // Don't rewrite edges that carry physregs, because that requires additional
 | |
|     // support infrastructure.
 | |
|     if (PredSU->hasPhysRegDefs)
 | |
|       continue;
 | |
|     // Short-circuit the case where SU is PredSU's only data successor.
 | |
|     if (PredSU->NumSuccs == 1)
 | |
|       continue;
 | |
|     // Avoid prescheduling to copies from virtual registers, which don't behave
 | |
|     // like other nodes from the perspective of scheduling heuristics.
 | |
|     if (SDNode *N = SU->getNode())
 | |
|       if (N->getOpcode() == ISD::CopyFromReg &&
 | |
|           TargetRegisterInfo::isVirtualRegister
 | |
|             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
 | |
|         continue;
 | |
| 
 | |
|     // Perform checks on the successors of PredSU.
 | |
|     for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
 | |
|          EE = PredSU->Succs.end(); II != EE; ++II) {
 | |
|       SUnit *PredSuccSU = II->getSUnit();
 | |
|       if (PredSuccSU == SU) continue;
 | |
|       // If PredSU has another successor with no data successors, for
 | |
|       // now don't attempt to choose either over the other.
 | |
|       if (PredSuccSU->NumSuccs == 0)
 | |
|         goto outer_loop_continue;
 | |
|       // Don't break physical register dependencies.
 | |
|       if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
 | |
|         if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
 | |
|           goto outer_loop_continue;
 | |
|       // Don't introduce graph cycles.
 | |
|       if (scheduleDAG->IsReachable(SU, PredSuccSU))
 | |
|         goto outer_loop_continue;
 | |
|     }
 | |
| 
 | |
|     // Ok, the transformation is safe and the heuristics suggest it is
 | |
|     // profitable. Update the graph.
 | |
|     DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
 | |
|                  << " next to PredSU #" << PredSU->NodeNum
 | |
|                  << " to guide scheduling in the presence of multiple uses\n");
 | |
|     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
 | |
|       SDep Edge = PredSU->Succs[i];
 | |
|       assert(!Edge.isAssignedRegDep());
 | |
|       SUnit *SuccSU = Edge.getSUnit();
 | |
|       if (SuccSU != SU) {
 | |
|         Edge.setSUnit(PredSU);
 | |
|         scheduleDAG->RemovePred(SuccSU, Edge);
 | |
|         scheduleDAG->AddPred(SU, Edge);
 | |
|         Edge.setSUnit(SU);
 | |
|         scheduleDAG->AddPred(SuccSU, Edge);
 | |
|         --i;
 | |
|       }
 | |
|     }
 | |
|   outer_loop_continue:;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | |
| /// it as a def&use operand. Add a pseudo control edge from it to the other
 | |
| /// node (if it won't create a cycle) so the two-address one will be scheduled
 | |
| /// first (lower in the schedule). If both nodes are two-address, favor the
 | |
| /// one that has a CopyToReg use (more likely to be a loop induction update).
 | |
| /// If both are two-address, but one is commutable while the other is not
 | |
| /// commutable, favor the one that's not commutable.
 | |
| void RegReductionPQBase::AddPseudoTwoAddrDeps() {
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | |
|     SUnit *SU = &(*SUnits)[i];
 | |
|     if (!SU->isTwoAddress)
 | |
|       continue;
 | |
| 
 | |
|     SDNode *Node = SU->getNode();
 | |
|     if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
 | |
|       continue;
 | |
| 
 | |
|     bool isLiveOut = hasOnlyLiveOutUses(SU);
 | |
|     unsigned Opc = Node->getMachineOpcode();
 | |
|     const MCInstrDesc &MCID = TII->get(Opc);
 | |
|     unsigned NumRes = MCID.getNumDefs();
 | |
|     unsigned NumOps = MCID.getNumOperands() - NumRes;
 | |
|     for (unsigned j = 0; j != NumOps; ++j) {
 | |
|       if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
 | |
|         continue;
 | |
|       SDNode *DU = SU->getNode()->getOperand(j).getNode();
 | |
|       if (DU->getNodeId() == -1)
 | |
|         continue;
 | |
|       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
 | |
|       if (!DUSU) continue;
 | |
|       for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
 | |
|            E = DUSU->Succs.end(); I != E; ++I) {
 | |
|         if (I->isCtrl()) continue;
 | |
|         SUnit *SuccSU = I->getSUnit();
 | |
|         if (SuccSU == SU)
 | |
|           continue;
 | |
|         // Be conservative. Ignore if nodes aren't at roughly the same
 | |
|         // depth and height.
 | |
|         if (SuccSU->getHeight() < SU->getHeight() &&
 | |
|             (SU->getHeight() - SuccSU->getHeight()) > 1)
 | |
|           continue;
 | |
|         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
 | |
|         // constrains whatever is using the copy, instead of the copy
 | |
|         // itself. In the case that the copy is coalesced, this
 | |
|         // preserves the intent of the pseudo two-address heurietics.
 | |
|         while (SuccSU->Succs.size() == 1 &&
 | |
|                SuccSU->getNode()->isMachineOpcode() &&
 | |
|                SuccSU->getNode()->getMachineOpcode() ==
 | |
|                  TargetOpcode::COPY_TO_REGCLASS)
 | |
|           SuccSU = SuccSU->Succs.front().getSUnit();
 | |
|         // Don't constrain non-instruction nodes.
 | |
|         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
 | |
|           continue;
 | |
|         // Don't constrain nodes with physical register defs if the
 | |
|         // predecessor can clobber them.
 | |
|         if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
 | |
|           if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
 | |
|             continue;
 | |
|         }
 | |
|         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
 | |
|         // these may be coalesced away. We want them close to their uses.
 | |
|         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
 | |
|         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|             SuccOpc == TargetOpcode::INSERT_SUBREG ||
 | |
|             SuccOpc == TargetOpcode::SUBREG_TO_REG)
 | |
|           continue;
 | |
|         if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
 | |
|             (!canClobber(SuccSU, DUSU) ||
 | |
|              (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
 | |
|              (!SU->isCommutable && SuccSU->isCommutable)) &&
 | |
|             !scheduleDAG->IsReachable(SuccSU, SU)) {
 | |
|           DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
 | |
|                        << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
 | |
|           scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
 | |
|                                         /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                                         /*isMustAlias=*/false,
 | |
|                                         /*isArtificial=*/true));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                  CodeGenOpt::Level OptLevel) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
| 
 | |
|   BURegReductionPriorityQueue *PQ =
 | |
|     new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, 0);
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                    CodeGenOpt::Level OptLevel) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
| 
 | |
|   SrcRegReductionPriorityQueue *PQ =
 | |
|     new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, 0);
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                    CodeGenOpt::Level OptLevel) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
|   const TargetLowering *TLI = &IS->getTargetLowering();
 | |
| 
 | |
|   HybridBURRPriorityQueue *PQ =
 | |
|     new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
 | |
| 
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                 CodeGenOpt::Level OptLevel) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
|   const TargetLowering *TLI = &IS->getTargetLowering();
 | |
| 
 | |
|   ILPBURRPriorityQueue *PQ =
 | |
|     new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;
 | |
| }
 |