mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125537 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1401 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1401 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines routines for folding instructions into constants.
 | 
						|
//
 | 
						|
// Also, to supplement the basic VMCore ConstantExpr simplifications,
 | 
						|
// this file defines some additional folding routines that can make use of
 | 
						|
// TargetData information. These functions cannot go in VMCore due to library
 | 
						|
// dependency issues.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/FEnv.h"
 | 
						|
#include <cerrno>
 | 
						|
#include <cmath>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constant Folding internal helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with 
 | 
						|
/// TargetData.  This always returns a non-null constant, but it may be a
 | 
						|
/// ConstantExpr if unfoldable.
 | 
						|
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
 | 
						|
                             const TargetData &TD) {
 | 
						|
  
 | 
						|
  // This only handles casts to vectors currently.
 | 
						|
  const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
 | 
						|
  if (DestVTy == 0)
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
  
 | 
						|
  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
 | 
						|
  // vector so the code below can handle it uniformly.
 | 
						|
  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
 | 
						|
    Constant *Ops = C; // don't take the address of C!
 | 
						|
    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is a bitcast from constant vector -> vector, fold it.
 | 
						|
  ConstantVector *CV = dyn_cast<ConstantVector>(C);
 | 
						|
  if (CV == 0)
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
  
 | 
						|
  // If the element types match, VMCore can fold it.
 | 
						|
  unsigned NumDstElt = DestVTy->getNumElements();
 | 
						|
  unsigned NumSrcElt = CV->getNumOperands();
 | 
						|
  if (NumDstElt == NumSrcElt)
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
  
 | 
						|
  const Type *SrcEltTy = CV->getType()->getElementType();
 | 
						|
  const Type *DstEltTy = DestVTy->getElementType();
 | 
						|
  
 | 
						|
  // Otherwise, we're changing the number of elements in a vector, which 
 | 
						|
  // requires endianness information to do the right thing.  For example,
 | 
						|
  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | 
						|
  // folds to (little endian):
 | 
						|
  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
 | 
						|
  // and to (big endian):
 | 
						|
  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
 | 
						|
  
 | 
						|
  // First thing is first.  We only want to think about integer here, so if
 | 
						|
  // we have something in FP form, recast it as integer.
 | 
						|
  if (DstEltTy->isFloatingPointTy()) {
 | 
						|
    // Fold to an vector of integers with same size as our FP type.
 | 
						|
    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
 | 
						|
    const Type *DestIVTy =
 | 
						|
      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
 | 
						|
    // Recursively handle this integer conversion, if possible.
 | 
						|
    C = FoldBitCast(C, DestIVTy, TD);
 | 
						|
    if (!C) return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
    
 | 
						|
    // Finally, VMCore can handle this now that #elts line up.
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, we know the destination is integer, if the input is FP, convert
 | 
						|
  // it to integer first.
 | 
						|
  if (SrcEltTy->isFloatingPointTy()) {
 | 
						|
    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
    const Type *SrcIVTy =
 | 
						|
      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
 | 
						|
    // Ask VMCore to do the conversion now that #elts line up.
 | 
						|
    C = ConstantExpr::getBitCast(C, SrcIVTy);
 | 
						|
    CV = dyn_cast<ConstantVector>(C);
 | 
						|
    if (!CV)  // If VMCore wasn't able to fold it, bail out.
 | 
						|
      return C;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now we know that the input and output vectors are both integer vectors
 | 
						|
  // of the same size, and that their #elements is not the same.  Do the
 | 
						|
  // conversion here, which depends on whether the input or output has
 | 
						|
  // more elements.
 | 
						|
  bool isLittleEndian = TD.isLittleEndian();
 | 
						|
  
 | 
						|
  SmallVector<Constant*, 32> Result;
 | 
						|
  if (NumDstElt < NumSrcElt) {
 | 
						|
    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
 | 
						|
    Constant *Zero = Constant::getNullValue(DstEltTy);
 | 
						|
    unsigned Ratio = NumSrcElt/NumDstElt;
 | 
						|
    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
    unsigned SrcElt = 0;
 | 
						|
    for (unsigned i = 0; i != NumDstElt; ++i) {
 | 
						|
      // Build each element of the result.
 | 
						|
      Constant *Elt = Zero;
 | 
						|
      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
 | 
						|
      for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
 | 
						|
        if (!Src)  // Reject constantexpr elements.
 | 
						|
          return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
        
 | 
						|
        // Zero extend the element to the right size.
 | 
						|
        Src = ConstantExpr::getZExt(Src, Elt->getType());
 | 
						|
        
 | 
						|
        // Shift it to the right place, depending on endianness.
 | 
						|
        Src = ConstantExpr::getShl(Src, 
 | 
						|
                                   ConstantInt::get(Src->getType(), ShiftAmt));
 | 
						|
        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
 | 
						|
        
 | 
						|
        // Mix it in.
 | 
						|
        Elt = ConstantExpr::getOr(Elt, Src);
 | 
						|
      }
 | 
						|
      Result.push_back(Elt);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | 
						|
    unsigned Ratio = NumDstElt/NumSrcElt;
 | 
						|
    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
 | 
						|
    
 | 
						|
    // Loop over each source value, expanding into multiple results.
 | 
						|
    for (unsigned i = 0; i != NumSrcElt; ++i) {
 | 
						|
      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
 | 
						|
      if (!Src)  // Reject constantexpr elements.
 | 
						|
        return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
      
 | 
						|
      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
 | 
						|
      for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
        // Shift the piece of the value into the right place, depending on
 | 
						|
        // endianness.
 | 
						|
        Constant *Elt = ConstantExpr::getLShr(Src, 
 | 
						|
                                    ConstantInt::get(Src->getType(), ShiftAmt));
 | 
						|
        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
 | 
						|
        
 | 
						|
        // Truncate and remember this piece.
 | 
						|
        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return ConstantVector::get(Result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
 | 
						|
/// from a global, return the global and the constant.  Because of
 | 
						|
/// constantexprs, this function is recursive.
 | 
						|
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
 | 
						|
                                       int64_t &Offset, const TargetData &TD) {
 | 
						|
  // Trivial case, constant is the global.
 | 
						|
  if ((GV = dyn_cast<GlobalValue>(C))) {
 | 
						|
    Offset = 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, if this isn't a constant expr, bail out.
 | 
						|
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | 
						|
  if (!CE) return false;
 | 
						|
  
 | 
						|
  // Look through ptr->int and ptr->ptr casts.
 | 
						|
  if (CE->getOpcode() == Instruction::PtrToInt ||
 | 
						|
      CE->getOpcode() == Instruction::BitCast)
 | 
						|
    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
 | 
						|
  
 | 
						|
  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)    
 | 
						|
  if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
    // Cannot compute this if the element type of the pointer is missing size
 | 
						|
    // info.
 | 
						|
    if (!cast<PointerType>(CE->getOperand(0)->getType())
 | 
						|
                 ->getElementType()->isSized())
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // If the base isn't a global+constant, we aren't either.
 | 
						|
    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // Otherwise, add any offset that our operands provide.
 | 
						|
    gep_type_iterator GTI = gep_type_begin(CE);
 | 
						|
    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
 | 
						|
         i != e; ++i, ++GTI) {
 | 
						|
      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
 | 
						|
      if (!CI) return false;  // Index isn't a simple constant?
 | 
						|
      if (CI->isZero()) continue;  // Not adding anything.
 | 
						|
      
 | 
						|
      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
 | 
						|
        // N = N + Offset
 | 
						|
        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
 | 
						|
      } else {
 | 
						|
        const SequentialType *SQT = cast<SequentialType>(*GTI);
 | 
						|
        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
 | 
						|
/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
 | 
						|
/// pointer to copy results into and BytesLeft is the number of bytes left in
 | 
						|
/// the CurPtr buffer.  TD is the target data.
 | 
						|
static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
 | 
						|
                               unsigned char *CurPtr, unsigned BytesLeft,
 | 
						|
                               const TargetData &TD) {
 | 
						|
  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
 | 
						|
         "Out of range access");
 | 
						|
  
 | 
						|
  // If this element is zero or undefined, we can just return since *CurPtr is
 | 
						|
  // zero initialized.
 | 
						|
  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
 | 
						|
    if (CI->getBitWidth() > 64 ||
 | 
						|
        (CI->getBitWidth() & 7) != 0)
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    uint64_t Val = CI->getZExtValue();
 | 
						|
    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
 | 
						|
    
 | 
						|
    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
 | 
						|
      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
 | 
						|
      ++ByteOffset;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | 
						|
    if (CFP->getType()->isDoubleTy()) {
 | 
						|
      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
 | 
						|
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
 | 
						|
    }
 | 
						|
    if (CFP->getType()->isFloatTy()){
 | 
						|
      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
 | 
						|
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | 
						|
    const StructLayout *SL = TD.getStructLayout(CS->getType());
 | 
						|
    unsigned Index = SL->getElementContainingOffset(ByteOffset);
 | 
						|
    uint64_t CurEltOffset = SL->getElementOffset(Index);
 | 
						|
    ByteOffset -= CurEltOffset;
 | 
						|
    
 | 
						|
    while (1) {
 | 
						|
      // If the element access is to the element itself and not to tail padding,
 | 
						|
      // read the bytes from the element.
 | 
						|
      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
 | 
						|
 | 
						|
      if (ByteOffset < EltSize &&
 | 
						|
          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
 | 
						|
                              BytesLeft, TD))
 | 
						|
        return false;
 | 
						|
      
 | 
						|
      ++Index;
 | 
						|
      
 | 
						|
      // Check to see if we read from the last struct element, if so we're done.
 | 
						|
      if (Index == CS->getType()->getNumElements())
 | 
						|
        return true;
 | 
						|
 | 
						|
      // If we read all of the bytes we needed from this element we're done.
 | 
						|
      uint64_t NextEltOffset = SL->getElementOffset(Index);
 | 
						|
 | 
						|
      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Move to the next element of the struct.
 | 
						|
      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
 | 
						|
      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
 | 
						|
      ByteOffset = 0;
 | 
						|
      CurEltOffset = NextEltOffset;
 | 
						|
    }
 | 
						|
    // not reached.
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
 | 
						|
    uint64_t Index = ByteOffset / EltSize;
 | 
						|
    uint64_t Offset = ByteOffset - Index * EltSize;
 | 
						|
    for (; Index != CA->getType()->getNumElements(); ++Index) {
 | 
						|
      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
 | 
						|
                              BytesLeft, TD))
 | 
						|
        return false;
 | 
						|
      if (EltSize >= BytesLeft)
 | 
						|
        return true;
 | 
						|
      
 | 
						|
      Offset = 0;
 | 
						|
      BytesLeft -= EltSize;
 | 
						|
      CurPtr += EltSize;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
 | 
						|
    uint64_t Index = ByteOffset / EltSize;
 | 
						|
    uint64_t Offset = ByteOffset - Index * EltSize;
 | 
						|
    for (; Index != CV->getType()->getNumElements(); ++Index) {
 | 
						|
      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
 | 
						|
                              BytesLeft, TD))
 | 
						|
        return false;
 | 
						|
      if (EltSize >= BytesLeft)
 | 
						|
        return true;
 | 
						|
      
 | 
						|
      Offset = 0;
 | 
						|
      BytesLeft -= EltSize;
 | 
						|
      CurPtr += EltSize;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    if (CE->getOpcode() == Instruction::IntToPtr &&
 | 
						|
        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext())) 
 | 
						|
        return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 
 | 
						|
                                  BytesLeft, TD);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, unknown initializer type.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
 | 
						|
                                                 const TargetData &TD) {
 | 
						|
  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
 | 
						|
  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
 | 
						|
  
 | 
						|
  // If this isn't an integer load we can't fold it directly.
 | 
						|
  if (!IntType) {
 | 
						|
    // If this is a float/double load, we can try folding it as an int32/64 load
 | 
						|
    // and then bitcast the result.  This can be useful for union cases.  Note
 | 
						|
    // that address spaces don't matter here since we're not going to result in
 | 
						|
    // an actual new load.
 | 
						|
    const Type *MapTy;
 | 
						|
    if (LoadTy->isFloatTy())
 | 
						|
      MapTy = Type::getInt32PtrTy(C->getContext());
 | 
						|
    else if (LoadTy->isDoubleTy())
 | 
						|
      MapTy = Type::getInt64PtrTy(C->getContext());
 | 
						|
    else if (LoadTy->isVectorTy()) {
 | 
						|
      MapTy = IntegerType::get(C->getContext(),
 | 
						|
                               TD.getTypeAllocSizeInBits(LoadTy));
 | 
						|
      MapTy = PointerType::getUnqual(MapTy);
 | 
						|
    } else
 | 
						|
      return 0;
 | 
						|
 | 
						|
    C = FoldBitCast(C, MapTy, TD);
 | 
						|
    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
 | 
						|
      return FoldBitCast(Res, LoadTy, TD);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
 | 
						|
  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
 | 
						|
  
 | 
						|
  GlobalValue *GVal;
 | 
						|
  int64_t Offset;
 | 
						|
  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
 | 
						|
  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
 | 
						|
      !GV->getInitializer()->getType()->isSized())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If we're loading off the beginning of the global, some bytes may be valid,
 | 
						|
  // but we don't try to handle this.
 | 
						|
  if (Offset < 0) return 0;
 | 
						|
  
 | 
						|
  // If we're not accessing anything in this constant, the result is undefined.
 | 
						|
  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
 | 
						|
    return UndefValue::get(IntType);
 | 
						|
  
 | 
						|
  unsigned char RawBytes[32] = {0};
 | 
						|
  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
 | 
						|
                          BytesLoaded, TD))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
 | 
						|
  for (unsigned i = 1; i != BytesLoaded; ++i) {
 | 
						|
    ResultVal <<= 8;
 | 
						|
    ResultVal |= RawBytes[BytesLoaded-1-i];
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantInt::get(IntType->getContext(), ResultVal);
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
 | 
						|
/// produce if it is constant and determinable.  If this is not determinable,
 | 
						|
/// return null.
 | 
						|
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
 | 
						|
                                             const TargetData *TD) {
 | 
						|
  // First, try the easy cases:
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | 
						|
      return GV->getInitializer();
 | 
						|
 | 
						|
  // If the loaded value isn't a constant expr, we can't handle it.
 | 
						|
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | 
						|
  if (!CE) return 0;
 | 
						|
  
 | 
						|
  if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | 
						|
      if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | 
						|
        if (Constant *V = 
 | 
						|
             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
 | 
						|
          return V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Instead of loading constant c string, use corresponding integer value
 | 
						|
  // directly if string length is small enough.
 | 
						|
  std::string Str;
 | 
						|
  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
 | 
						|
    unsigned StrLen = Str.length();
 | 
						|
    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
 | 
						|
    unsigned NumBits = Ty->getPrimitiveSizeInBits();
 | 
						|
    // Replace load with immediate integer if the result is an integer or fp
 | 
						|
    // value.
 | 
						|
    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
 | 
						|
        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
 | 
						|
      APInt StrVal(NumBits, 0);
 | 
						|
      APInt SingleChar(NumBits, 0);
 | 
						|
      if (TD->isLittleEndian()) {
 | 
						|
        for (signed i = StrLen-1; i >= 0; i--) {
 | 
						|
          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
 | 
						|
          StrVal = (StrVal << 8) | SingleChar;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        for (unsigned i = 0; i < StrLen; i++) {
 | 
						|
          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
 | 
						|
          StrVal = (StrVal << 8) | SingleChar;
 | 
						|
        }
 | 
						|
        // Append NULL at the end.
 | 
						|
        SingleChar = 0;
 | 
						|
        StrVal = (StrVal << 8) | SingleChar;
 | 
						|
      }
 | 
						|
      
 | 
						|
      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
 | 
						|
      if (Ty->isFloatingPointTy())
 | 
						|
        Res = ConstantExpr::getBitCast(Res, Ty);
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this load comes from anywhere in a constant global, and if the global
 | 
						|
  // is all undef or zero, we know what it loads.
 | 
						|
  if (GlobalVariable *GV =
 | 
						|
        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
 | 
						|
      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
 | 
						|
      if (GV->getInitializer()->isNullValue())
 | 
						|
        return Constant::getNullValue(ResTy);
 | 
						|
      if (isa<UndefValue>(GV->getInitializer()))
 | 
						|
        return UndefValue::get(ResTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
 | 
						|
  // currently don't do any of this for big endian systems.  It can be
 | 
						|
  // generalized in the future if someone is interested.
 | 
						|
  if (TD && TD->isLittleEndian())
 | 
						|
    return FoldReinterpretLoadFromConstPtr(CE, *TD);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
 | 
						|
  if (LI->isVolatile()) return 0;
 | 
						|
  
 | 
						|
  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
 | 
						|
    return ConstantFoldLoadFromConstPtr(C, TD);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
 | 
						|
/// Attempt to symbolically evaluate the result of a binary operator merging
 | 
						|
/// these together.  If target data info is available, it is provided as TD, 
 | 
						|
/// otherwise TD is null.
 | 
						|
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
 | 
						|
                                           Constant *Op1, const TargetData *TD){
 | 
						|
  // SROA
 | 
						|
  
 | 
						|
  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
 | 
						|
  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
 | 
						|
  // bits.
 | 
						|
  
 | 
						|
  
 | 
						|
  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
 | 
						|
  // constant.  This happens frequently when iterating over a global array.
 | 
						|
  if (Opc == Instruction::Sub && TD) {
 | 
						|
    GlobalValue *GV1, *GV2;
 | 
						|
    int64_t Offs1, Offs2;
 | 
						|
    
 | 
						|
    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
 | 
						|
      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
 | 
						|
          GV1 == GV2) {
 | 
						|
        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
 | 
						|
        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
 | 
						|
      }
 | 
						|
  }
 | 
						|
    
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// CastGEPIndices - If array indices are not pointer-sized integers,
 | 
						|
/// explicitly cast them so that they aren't implicitly casted by the
 | 
						|
/// getelementptr.
 | 
						|
static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
 | 
						|
                                const Type *ResultTy,
 | 
						|
                                const TargetData *TD) {
 | 
						|
  if (!TD) return 0;
 | 
						|
  const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
 | 
						|
 | 
						|
  bool Any = false;
 | 
						|
  SmallVector<Constant*, 32> NewIdxs;
 | 
						|
  for (unsigned i = 1; i != NumOps; ++i) {
 | 
						|
    if ((i == 1 ||
 | 
						|
         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
 | 
						|
                                        reinterpret_cast<Value *const *>(Ops+1),
 | 
						|
                                                            i-1))) &&
 | 
						|
        Ops[i]->getType() != IntPtrTy) {
 | 
						|
      Any = true;
 | 
						|
      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
 | 
						|
                                                                      true,
 | 
						|
                                                                      IntPtrTy,
 | 
						|
                                                                      true),
 | 
						|
                                              Ops[i], IntPtrTy));
 | 
						|
    } else
 | 
						|
      NewIdxs.push_back(Ops[i]);
 | 
						|
  }
 | 
						|
  if (!Any) return 0;
 | 
						|
 | 
						|
  Constant *C =
 | 
						|
    ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | 
						|
    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
 | 
						|
      C = Folded;
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
 | 
						|
/// constant expression, do so.
 | 
						|
static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
 | 
						|
                                         const Type *ResultTy,
 | 
						|
                                         const TargetData *TD) {
 | 
						|
  Constant *Ptr = Ops[0];
 | 
						|
  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  const Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
 | 
						|
 | 
						|
  // If this is a constant expr gep that is effectively computing an
 | 
						|
  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
 | 
						|
  for (unsigned i = 1; i != NumOps; ++i)
 | 
						|
    if (!isa<ConstantInt>(Ops[i])) {
 | 
						|
      
 | 
						|
      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
 | 
						|
      // "inttoptr (sub (ptrtoint Ptr), V)"
 | 
						|
      if (NumOps == 2 &&
 | 
						|
          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
 | 
						|
        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
 | 
						|
        assert((CE == 0 || CE->getType() == IntPtrTy) &&
 | 
						|
               "CastGEPIndices didn't canonicalize index types!");
 | 
						|
        if (CE && CE->getOpcode() == Instruction::Sub &&
 | 
						|
            CE->getOperand(0)->isNullValue()) {
 | 
						|
          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
 | 
						|
          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
 | 
						|
          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
 | 
						|
          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
 | 
						|
            Res = ConstantFoldConstantExpression(ResCE, TD);
 | 
						|
          return Res;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  
 | 
						|
  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
 | 
						|
  APInt Offset = APInt(BitWidth,
 | 
						|
                       TD->getIndexedOffset(Ptr->getType(),
 | 
						|
                                            (Value**)Ops+1, NumOps-1));
 | 
						|
  Ptr = cast<Constant>(Ptr->stripPointerCasts());
 | 
						|
 | 
						|
  // If this is a GEP of a GEP, fold it all into a single GEP.
 | 
						|
  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
 | 
						|
    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
 | 
						|
 | 
						|
    // Do not try the incorporate the sub-GEP if some index is not a number.
 | 
						|
    bool AllConstantInt = true;
 | 
						|
    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
 | 
						|
      if (!isa<ConstantInt>(NestedOps[i])) {
 | 
						|
        AllConstantInt = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (!AllConstantInt)
 | 
						|
      break;
 | 
						|
 | 
						|
    Ptr = cast<Constant>(GEP->getOperand(0));
 | 
						|
    Offset += APInt(BitWidth,
 | 
						|
                    TD->getIndexedOffset(Ptr->getType(),
 | 
						|
                                         (Value**)NestedOps.data(),
 | 
						|
                                         NestedOps.size()));
 | 
						|
    Ptr = cast<Constant>(Ptr->stripPointerCasts());
 | 
						|
  }
 | 
						|
 | 
						|
  // If the base value for this address is a literal integer value, fold the
 | 
						|
  // getelementptr to the resulting integer value casted to the pointer type.
 | 
						|
  APInt BasePtr(BitWidth, 0);
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | 
						|
    if (CE->getOpcode() == Instruction::IntToPtr)
 | 
						|
      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
 | 
						|
        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
 | 
						|
  if (Ptr->isNullValue() || BasePtr != 0) {
 | 
						|
    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
 | 
						|
    return ConstantExpr::getIntToPtr(C, ResultTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise form a regular getelementptr. Recompute the indices so that
 | 
						|
  // we eliminate over-indexing of the notional static type array bounds.
 | 
						|
  // This makes it easy to determine if the getelementptr is "inbounds".
 | 
						|
  // Also, this helps GlobalOpt do SROA on GlobalVariables.
 | 
						|
  const Type *Ty = Ptr->getType();
 | 
						|
  SmallVector<Constant*, 32> NewIdxs;
 | 
						|
  do {
 | 
						|
    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
 | 
						|
      if (ATy->isPointerTy()) {
 | 
						|
        // The only pointer indexing we'll do is on the first index of the GEP.
 | 
						|
        if (!NewIdxs.empty())
 | 
						|
          break;
 | 
						|
       
 | 
						|
        // Only handle pointers to sized types, not pointers to functions.
 | 
						|
        if (!ATy->getElementType()->isSized())
 | 
						|
          return 0;
 | 
						|
      }
 | 
						|
        
 | 
						|
      // Determine which element of the array the offset points into.
 | 
						|
      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
 | 
						|
      const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
 | 
						|
      if (ElemSize == 0)
 | 
						|
        // The element size is 0. This may be [0 x Ty]*, so just use a zero
 | 
						|
        // index for this level and proceed to the next level to see if it can
 | 
						|
        // accommodate the offset.
 | 
						|
        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
 | 
						|
      else {
 | 
						|
        // The element size is non-zero divide the offset by the element
 | 
						|
        // size (rounding down), to compute the index at this level.
 | 
						|
        APInt NewIdx = Offset.udiv(ElemSize);
 | 
						|
        Offset -= NewIdx * ElemSize;
 | 
						|
        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
 | 
						|
      }
 | 
						|
      Ty = ATy->getElementType();
 | 
						|
    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
      // Determine which field of the struct the offset points into. The
 | 
						|
      // getZExtValue is at least as safe as the StructLayout API because we
 | 
						|
      // know the offset is within the struct at this point.
 | 
						|
      const StructLayout &SL = *TD->getStructLayout(STy);
 | 
						|
      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
 | 
						|
      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | 
						|
                                         ElIdx));
 | 
						|
      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
 | 
						|
      Ty = STy->getTypeAtIndex(ElIdx);
 | 
						|
    } else {
 | 
						|
      // We've reached some non-indexable type.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
 | 
						|
 | 
						|
  // If we haven't used up the entire offset by descending the static
 | 
						|
  // type, then the offset is pointing into the middle of an indivisible
 | 
						|
  // member, so we can't simplify it.
 | 
						|
  if (Offset != 0)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Create a GEP.
 | 
						|
  Constant *C =
 | 
						|
    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
 | 
						|
  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
 | 
						|
         "Computed GetElementPtr has unexpected type!");
 | 
						|
 | 
						|
  // If we ended up indexing a member with a type that doesn't match
 | 
						|
  // the type of what the original indices indexed, add a cast.
 | 
						|
  if (Ty != cast<PointerType>(ResultTy)->getElementType())
 | 
						|
    C = FoldBitCast(C, ResultTy, *TD);
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constant Folding public APIs
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ConstantFoldInstruction - Try to constant fold the specified instruction.
 | 
						|
/// If successful, the constant result is returned, if not, null is returned.
 | 
						|
/// Note that this fails if not all of the operands are constant.  Otherwise,
 | 
						|
/// this function can only fail when attempting to fold instructions like loads
 | 
						|
/// and stores, which have no constant expression form.
 | 
						|
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
 | 
						|
  // Handle PHI nodes quickly here...
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    Constant *CommonValue = 0;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *Incoming = PN->getIncomingValue(i);
 | 
						|
      // If the incoming value is undef then skip it.  Note that while we could
 | 
						|
      // skip the value if it is equal to the phi node itself we choose not to
 | 
						|
      // because that would break the rule that constant folding only applies if
 | 
						|
      // all operands are constants.
 | 
						|
      if (isa<UndefValue>(Incoming))
 | 
						|
        continue;
 | 
						|
      // If the incoming value is not a constant, or is a different constant to
 | 
						|
      // the one we saw previously, then give up.
 | 
						|
      Constant *C = dyn_cast<Constant>(Incoming);
 | 
						|
      if (!C || (CommonValue && C != CommonValue))
 | 
						|
        return 0;
 | 
						|
      CommonValue = C;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we reach here, all incoming values are the same constant or undef.
 | 
						|
    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the operand list, checking to see if they are all constants, if so,
 | 
						|
  // hand off to ConstantFoldInstOperands.
 | 
						|
  SmallVector<Constant*, 8> Ops;
 | 
						|
  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
 | 
						|
    if (Constant *Op = dyn_cast<Constant>(*i))
 | 
						|
      Ops.push_back(Op);
 | 
						|
    else
 | 
						|
      return 0;  // All operands not constant!
 | 
						|
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
 | 
						|
                                           TD);
 | 
						|
  
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return ConstantFoldLoadInst(LI, TD);
 | 
						|
 | 
						|
  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
 | 
						|
    return ConstantExpr::getInsertValue(
 | 
						|
                                cast<Constant>(IVI->getAggregateOperand()),
 | 
						|
                                cast<Constant>(IVI->getInsertedValueOperand()),
 | 
						|
                                IVI->idx_begin(), IVI->getNumIndices());
 | 
						|
 | 
						|
  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
 | 
						|
    return ConstantExpr::getExtractValue(
 | 
						|
                                    cast<Constant>(EVI->getAggregateOperand()),
 | 
						|
                                    EVI->idx_begin(), EVI->getNumIndices());
 | 
						|
 | 
						|
  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | 
						|
                                  Ops.data(), Ops.size(), TD);
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
 | 
						|
/// using the specified TargetData.  If successful, the constant result is
 | 
						|
/// result is returned, if not, null is returned.
 | 
						|
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
 | 
						|
                                               const TargetData *TD) {
 | 
						|
  SmallVector<Constant*, 8> Ops;
 | 
						|
  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    Constant *NewC = cast<Constant>(*i);
 | 
						|
    // Recursively fold the ConstantExpr's operands.
 | 
						|
    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
 | 
						|
      NewC = ConstantFoldConstantExpression(NewCE, TD);
 | 
						|
    Ops.push_back(NewC);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CE->isCompare())
 | 
						|
    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
 | 
						|
                                           TD);
 | 
						|
  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
 | 
						|
                                  Ops.data(), Ops.size(), TD);
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
 | 
						|
/// specified opcode and operands.  If successful, the constant result is
 | 
						|
/// returned, if not, null is returned.  Note that this function can fail when
 | 
						|
/// attempting to fold instructions like loads and stores, which have no
 | 
						|
/// constant expression form.
 | 
						|
///
 | 
						|
/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
 | 
						|
/// information, due to only being passed an opcode and operands. Constant
 | 
						|
/// folding using this function strips this information.
 | 
						|
///
 | 
						|
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, 
 | 
						|
                                         Constant* const* Ops, unsigned NumOps,
 | 
						|
                                         const TargetData *TD) {
 | 
						|
  // Handle easy binops first.
 | 
						|
  if (Instruction::isBinaryOp(Opcode)) {
 | 
						|
    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
 | 
						|
      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
 | 
						|
        return C;
 | 
						|
    
 | 
						|
    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return 0;
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp: assert(0 && "Invalid for compares");
 | 
						|
  case Instruction::Call:
 | 
						|
    if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
 | 
						|
      if (canConstantFoldCallTo(F))
 | 
						|
        return ConstantFoldCall(F, Ops, NumOps - 1);
 | 
						|
    return 0;
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // If the input is a inttoptr, eliminate the pair.  This requires knowing
 | 
						|
    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
 | 
						|
      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
 | 
						|
        Constant *Input = CE->getOperand(0);
 | 
						|
        unsigned InWidth = Input->getType()->getScalarSizeInBits();
 | 
						|
        if (TD->getPointerSizeInBits() < InWidth) {
 | 
						|
          Constant *Mask = 
 | 
						|
            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
 | 
						|
                                                  TD->getPointerSizeInBits()));
 | 
						|
          Input = ConstantExpr::getAnd(Input, Mask);
 | 
						|
        }
 | 
						|
        // Do a zext or trunc to get to the dest size.
 | 
						|
        return ConstantExpr::getIntegerCast(Input, DestTy, false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
 | 
						|
    // the int size is >= the ptr size.  This requires knowing the width of a
 | 
						|
    // pointer, so it can't be done in ConstantExpr::getCast.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
 | 
						|
      if (TD &&
 | 
						|
          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
 | 
						|
          CE->getOpcode() == Instruction::PtrToInt)
 | 
						|
        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
 | 
						|
 | 
						|
    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::BitCast:
 | 
						|
    if (TD)
 | 
						|
      return FoldBitCast(Ops[0], DestTy, *TD);
 | 
						|
    return ConstantExpr::getBitCast(Ops[0], DestTy);
 | 
						|
  case Instruction::Select:
 | 
						|
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
 | 
						|
      return C;
 | 
						|
    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
 | 
						|
      return C;
 | 
						|
    
 | 
						|
    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
 | 
						|
/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
 | 
						|
/// returns a constant expression of the specified operands.
 | 
						|
///
 | 
						|
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
 | 
						|
                                                Constant *Ops0, Constant *Ops1, 
 | 
						|
                                                const TargetData *TD) {
 | 
						|
  // fold: icmp (inttoptr x), null         -> icmp x, 0
 | 
						|
  // fold: icmp (ptrtoint x), 0            -> icmp x, null
 | 
						|
  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
 | 
						|
  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
 | 
						|
  //
 | 
						|
  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
 | 
						|
  // around to know if bit truncation is happening.
 | 
						|
  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
 | 
						|
    if (TD && Ops1->isNullValue()) {
 | 
						|
      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
 | 
						|
      if (CE0->getOpcode() == Instruction::IntToPtr) {
 | 
						|
        // Convert the integer value to the right size to ensure we get the
 | 
						|
        // proper extension or truncation.
 | 
						|
        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | 
						|
                                                   IntPtrTy, false);
 | 
						|
        Constant *Null = Constant::getNullValue(C->getType());
 | 
						|
        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Only do this transformation if the int is intptrty in size, otherwise
 | 
						|
      // there is a truncation or extension that we aren't modeling.
 | 
						|
      if (CE0->getOpcode() == Instruction::PtrToInt && 
 | 
						|
          CE0->getType() == IntPtrTy) {
 | 
						|
        Constant *C = CE0->getOperand(0);
 | 
						|
        Constant *Null = Constant::getNullValue(C->getType());
 | 
						|
        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
 | 
						|
      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
 | 
						|
        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
 | 
						|
 | 
						|
        if (CE0->getOpcode() == Instruction::IntToPtr) {
 | 
						|
          // Convert the integer value to the right size to ensure we get the
 | 
						|
          // proper extension or truncation.
 | 
						|
          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | 
						|
                                                      IntPtrTy, false);
 | 
						|
          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
 | 
						|
                                                      IntPtrTy, false);
 | 
						|
          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
 | 
						|
        }
 | 
						|
 | 
						|
        // Only do this transformation if the int is intptrty in size, otherwise
 | 
						|
        // there is a truncation or extension that we aren't modeling.
 | 
						|
        if ((CE0->getOpcode() == Instruction::PtrToInt &&
 | 
						|
             CE0->getType() == IntPtrTy &&
 | 
						|
             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
 | 
						|
          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
 | 
						|
                                                 CE1->getOperand(0), TD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
 | 
						|
    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
 | 
						|
    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
 | 
						|
        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
 | 
						|
      Constant *LHS = 
 | 
						|
        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
 | 
						|
      Constant *RHS = 
 | 
						|
        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
 | 
						|
      unsigned OpC = 
 | 
						|
        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | 
						|
      Constant *Ops[] = { LHS, RHS };
 | 
						|
      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
 | 
						|
/// getelementptr constantexpr, return the constant value being addressed by the
 | 
						|
/// constant expression, or null if something is funny and we can't decide.
 | 
						|
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 
 | 
						|
                                                       ConstantExpr *CE) {
 | 
						|
  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
 | 
						|
    return 0;  // Do not allow stepping over the value!
 | 
						|
  
 | 
						|
  // Loop over all of the operands, tracking down which value we are
 | 
						|
  // addressing...
 | 
						|
  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | 
						|
  for (++I; I != E; ++I)
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(*I)) {
 | 
						|
      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
 | 
						|
      assert(CU->getZExtValue() < STy->getNumElements() &&
 | 
						|
             "Struct index out of range!");
 | 
						|
      unsigned El = (unsigned)CU->getZExtValue();
 | 
						|
      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | 
						|
        C = CS->getOperand(El);
 | 
						|
      } else if (isa<ConstantAggregateZero>(C)) {
 | 
						|
        C = Constant::getNullValue(STy->getElementType(El));
 | 
						|
      } else if (isa<UndefValue>(C)) {
 | 
						|
        C = UndefValue::get(STy->getElementType(El));
 | 
						|
      } else {
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
 | 
						|
      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
 | 
						|
        if (CI->getZExtValue() >= ATy->getNumElements())
 | 
						|
         return 0;
 | 
						|
        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
 | 
						|
          C = CA->getOperand(CI->getZExtValue());
 | 
						|
        else if (isa<ConstantAggregateZero>(C))
 | 
						|
          C = Constant::getNullValue(ATy->getElementType());
 | 
						|
        else if (isa<UndefValue>(C))
 | 
						|
          C = UndefValue::get(ATy->getElementType());
 | 
						|
        else
 | 
						|
          return 0;
 | 
						|
      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
 | 
						|
        if (CI->getZExtValue() >= VTy->getNumElements())
 | 
						|
          return 0;
 | 
						|
        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
 | 
						|
          C = CP->getOperand(CI->getZExtValue());
 | 
						|
        else if (isa<ConstantAggregateZero>(C))
 | 
						|
          C = Constant::getNullValue(VTy->getElementType());
 | 
						|
        else if (isa<UndefValue>(C))
 | 
						|
          C = UndefValue::get(VTy->getElementType());
 | 
						|
        else
 | 
						|
          return 0;
 | 
						|
      } else {
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Constant Folding for Calls
 | 
						|
//
 | 
						|
 | 
						|
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
 | 
						|
/// the specified function.
 | 
						|
bool
 | 
						|
llvm::canConstantFoldCallTo(const Function *F) {
 | 
						|
  switch (F->getIntrinsicID()) {
 | 
						|
  case Intrinsic::sqrt:
 | 
						|
  case Intrinsic::powi:
 | 
						|
  case Intrinsic::bswap:
 | 
						|
  case Intrinsic::ctpop:
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
  case Intrinsic::smul_with_overflow:
 | 
						|
  case Intrinsic::convert_from_fp16:
 | 
						|
  case Intrinsic::convert_to_fp16:
 | 
						|
  case Intrinsic::x86_sse_cvtss2si:
 | 
						|
  case Intrinsic::x86_sse_cvtss2si64:
 | 
						|
  case Intrinsic::x86_sse_cvttss2si:
 | 
						|
  case Intrinsic::x86_sse_cvttss2si64:
 | 
						|
  case Intrinsic::x86_sse2_cvtsd2si:
 | 
						|
  case Intrinsic::x86_sse2_cvtsd2si64:
 | 
						|
  case Intrinsic::x86_sse2_cvttsd2si:
 | 
						|
  case Intrinsic::x86_sse2_cvttsd2si64:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case 0: break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!F->hasName()) return false;
 | 
						|
  StringRef Name = F->getName();
 | 
						|
  
 | 
						|
  // In these cases, the check of the length is required.  We don't want to
 | 
						|
  // return true for a name like "cos\0blah" which strcmp would return equal to
 | 
						|
  // "cos", but has length 8.
 | 
						|
  switch (Name[0]) {
 | 
						|
  default: return false;
 | 
						|
  case 'a':
 | 
						|
    return Name == "acos" || Name == "asin" || 
 | 
						|
      Name == "atan" || Name == "atan2";
 | 
						|
  case 'c':
 | 
						|
    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
 | 
						|
  case 'e':
 | 
						|
    return Name == "exp";
 | 
						|
  case 'f':
 | 
						|
    return Name == "fabs" || Name == "fmod" || Name == "floor";
 | 
						|
  case 'l':
 | 
						|
    return Name == "log" || Name == "log10";
 | 
						|
  case 'p':
 | 
						|
    return Name == "pow";
 | 
						|
  case 's':
 | 
						|
    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
 | 
						|
      Name == "sinf" || Name == "sqrtf";
 | 
						|
  case 't':
 | 
						|
    return Name == "tan" || Name == "tanh";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
 | 
						|
                                const Type *Ty) {
 | 
						|
  sys::llvm_fenv_clearexcept();
 | 
						|
  V = NativeFP(V);
 | 
						|
  if (sys::llvm_fenv_testexcept()) {
 | 
						|
    sys::llvm_fenv_clearexcept();
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Ty->isFloatTy())
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
 | 
						|
  if (Ty->isDoubleTy())
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat(V));
 | 
						|
  llvm_unreachable("Can only constant fold float/double");
 | 
						|
  return 0; // dummy return to suppress warning
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
 | 
						|
                                      double V, double W, const Type *Ty) {
 | 
						|
  sys::llvm_fenv_clearexcept();
 | 
						|
  V = NativeFP(V, W);
 | 
						|
  if (sys::llvm_fenv_testexcept()) {
 | 
						|
    sys::llvm_fenv_clearexcept();
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Ty->isFloatTy())
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
 | 
						|
  if (Ty->isDoubleTy())
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat(V));
 | 
						|
  llvm_unreachable("Can only constant fold float/double");
 | 
						|
  return 0; // dummy return to suppress warning
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
 | 
						|
/// conversion of a constant floating point. If roundTowardZero is false, the
 | 
						|
/// default IEEE rounding is used (toward nearest, ties to even). This matches
 | 
						|
/// the behavior of the non-truncating SSE instructions in the default rounding
 | 
						|
/// mode. The desired integer type Ty is used to select how many bits are
 | 
						|
/// available for the result. Returns null if the conversion cannot be
 | 
						|
/// performed, otherwise returns the Constant value resulting from the
 | 
						|
/// conversion.
 | 
						|
static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
 | 
						|
                                          const Type *Ty) {
 | 
						|
  assert(Op && "Called with NULL operand");
 | 
						|
  APFloat Val(Op->getValueAPF());
 | 
						|
 | 
						|
  // All of these conversion intrinsics form an integer of at most 64bits.
 | 
						|
  unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
  assert(ResultWidth <= 64 &&
 | 
						|
         "Can only constant fold conversions to 64 and 32 bit ints");
 | 
						|
 | 
						|
  uint64_t UIntVal;
 | 
						|
  bool isExact = false;
 | 
						|
  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
 | 
						|
                                              : APFloat::rmNearestTiesToEven;
 | 
						|
  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
 | 
						|
                                                  /*isSigned=*/true, mode,
 | 
						|
                                                  &isExact);
 | 
						|
  if (status != APFloat::opOK && status != APFloat::opInexact)
 | 
						|
    return 0;
 | 
						|
  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
 | 
						|
/// with the specified arguments, returning null if unsuccessful.
 | 
						|
Constant *
 | 
						|
llvm::ConstantFoldCall(Function *F, 
 | 
						|
                       Constant *const *Operands, unsigned NumOperands) {
 | 
						|
  if (!F->hasName()) return 0;
 | 
						|
  StringRef Name = F->getName();
 | 
						|
 | 
						|
  const Type *Ty = F->getReturnType();
 | 
						|
  if (NumOperands == 1) {
 | 
						|
    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
 | 
						|
        APFloat Val(Op->getValueAPF());
 | 
						|
 | 
						|
        bool lost = false;
 | 
						|
        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
 | 
						|
 | 
						|
        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
 | 
						|
        return 0;
 | 
						|
 | 
						|
      /// We only fold functions with finite arguments. Folding NaN and inf is
 | 
						|
      /// likely to be aborted with an exception anyway, and some host libms
 | 
						|
      /// have known errors raising exceptions.
 | 
						|
      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
 | 
						|
        return 0;
 | 
						|
 | 
						|
      /// Currently APFloat versions of these functions do not exist, so we use
 | 
						|
      /// the host native double versions.  Float versions are not called
 | 
						|
      /// directly but for all these it is true (float)(f((double)arg)) ==
 | 
						|
      /// f(arg).  Long double not supported yet.
 | 
						|
      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
 | 
						|
                                     Op->getValueAPF().convertToDouble();
 | 
						|
      switch (Name[0]) {
 | 
						|
      case 'a':
 | 
						|
        if (Name == "acos")
 | 
						|
          return ConstantFoldFP(acos, V, Ty);
 | 
						|
        else if (Name == "asin")
 | 
						|
          return ConstantFoldFP(asin, V, Ty);
 | 
						|
        else if (Name == "atan")
 | 
						|
          return ConstantFoldFP(atan, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'c':
 | 
						|
        if (Name == "ceil")
 | 
						|
          return ConstantFoldFP(ceil, V, Ty);
 | 
						|
        else if (Name == "cos")
 | 
						|
          return ConstantFoldFP(cos, V, Ty);
 | 
						|
        else if (Name == "cosh")
 | 
						|
          return ConstantFoldFP(cosh, V, Ty);
 | 
						|
        else if (Name == "cosf")
 | 
						|
          return ConstantFoldFP(cos, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'e':
 | 
						|
        if (Name == "exp")
 | 
						|
          return ConstantFoldFP(exp, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'f':
 | 
						|
        if (Name == "fabs")
 | 
						|
          return ConstantFoldFP(fabs, V, Ty);
 | 
						|
        else if (Name == "floor")
 | 
						|
          return ConstantFoldFP(floor, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'l':
 | 
						|
        if (Name == "log" && V > 0)
 | 
						|
          return ConstantFoldFP(log, V, Ty);
 | 
						|
        else if (Name == "log10" && V > 0)
 | 
						|
          return ConstantFoldFP(log10, V, Ty);
 | 
						|
        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
 | 
						|
                 (Ty->isFloatTy() || Ty->isDoubleTy())) {
 | 
						|
          if (V >= -0.0)
 | 
						|
            return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
          else // Undefined
 | 
						|
            return Constant::getNullValue(Ty);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case 's':
 | 
						|
        if (Name == "sin")
 | 
						|
          return ConstantFoldFP(sin, V, Ty);
 | 
						|
        else if (Name == "sinh")
 | 
						|
          return ConstantFoldFP(sinh, V, Ty);
 | 
						|
        else if (Name == "sqrt" && V >= 0)
 | 
						|
          return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
        else if (Name == "sqrtf" && V >= 0)
 | 
						|
          return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
        else if (Name == "sinf")
 | 
						|
          return ConstantFoldFP(sin, V, Ty);
 | 
						|
        break;
 | 
						|
      case 't':
 | 
						|
        if (Name == "tan")
 | 
						|
          return ConstantFoldFP(tan, V, Ty);
 | 
						|
        else if (Name == "tanh")
 | 
						|
          return ConstantFoldFP(tanh, V, Ty);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | 
						|
      switch (F->getIntrinsicID()) {
 | 
						|
      case Intrinsic::bswap:
 | 
						|
        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
 | 
						|
      case Intrinsic::ctpop:
 | 
						|
        return ConstantInt::get(Ty, Op->getValue().countPopulation());
 | 
						|
      case Intrinsic::cttz:
 | 
						|
        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
 | 
						|
      case Intrinsic::ctlz:
 | 
						|
        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
 | 
						|
      case Intrinsic::convert_from_fp16: {
 | 
						|
        APFloat Val(Op->getValue());
 | 
						|
 | 
						|
        bool lost = false;
 | 
						|
        APFloat::opStatus status =
 | 
						|
          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
 | 
						|
 | 
						|
        // Conversion is always precise.
 | 
						|
        (void)status;
 | 
						|
        assert(status == APFloat::opOK && !lost &&
 | 
						|
               "Precision lost during fp16 constfolding");
 | 
						|
 | 
						|
        return ConstantFP::get(F->getContext(), Val);
 | 
						|
      }
 | 
						|
      default:
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
 | 
						|
      switch (F->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::x86_sse_cvtss2si:
 | 
						|
      case Intrinsic::x86_sse_cvtss2si64:
 | 
						|
      case Intrinsic::x86_sse2_cvtsd2si:
 | 
						|
      case Intrinsic::x86_sse2_cvtsd2si64:
 | 
						|
        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
 | 
						|
          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
 | 
						|
      case Intrinsic::x86_sse_cvttss2si:
 | 
						|
      case Intrinsic::x86_sse_cvttss2si64:
 | 
						|
      case Intrinsic::x86_sse2_cvttsd2si:
 | 
						|
      case Intrinsic::x86_sse2_cvttsd2si64:
 | 
						|
        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
 | 
						|
          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<UndefValue>(Operands[0])) {
 | 
						|
      if (F->getIntrinsicID() == Intrinsic::bswap)
 | 
						|
        return Operands[0];
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumOperands == 2) {
 | 
						|
    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
 | 
						|
        return 0;
 | 
						|
      double Op1V = Ty->isFloatTy() ? 
 | 
						|
                      (double)Op1->getValueAPF().convertToFloat() :
 | 
						|
                      Op1->getValueAPF().convertToDouble();
 | 
						|
      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | 
						|
        if (Op2->getType() != Op1->getType())
 | 
						|
          return 0;
 | 
						|
        
 | 
						|
        double Op2V = Ty->isFloatTy() ? 
 | 
						|
                      (double)Op2->getValueAPF().convertToFloat():
 | 
						|
                      Op2->getValueAPF().convertToDouble();
 | 
						|
 | 
						|
        if (Name == "pow")
 | 
						|
          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | 
						|
        if (Name == "fmod")
 | 
						|
          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
 | 
						|
        if (Name == "atan2")
 | 
						|
          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
 | 
						|
      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
 | 
						|
        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
 | 
						|
          return ConstantFP::get(F->getContext(),
 | 
						|
                                 APFloat((float)std::pow((float)Op1V,
 | 
						|
                                                 (int)Op2C->getZExtValue())));
 | 
						|
        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
 | 
						|
          return ConstantFP::get(F->getContext(),
 | 
						|
                                 APFloat((double)std::pow((double)Op1V,
 | 
						|
                                                   (int)Op2C->getZExtValue())));
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
 | 
						|
      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
 | 
						|
        switch (F->getIntrinsicID()) {
 | 
						|
        default: break;
 | 
						|
        case Intrinsic::sadd_with_overflow:
 | 
						|
        case Intrinsic::uadd_with_overflow:
 | 
						|
        case Intrinsic::ssub_with_overflow:
 | 
						|
        case Intrinsic::usub_with_overflow:
 | 
						|
        case Intrinsic::smul_with_overflow: {
 | 
						|
          APInt Res;
 | 
						|
          bool Overflow;
 | 
						|
          switch (F->getIntrinsicID()) {
 | 
						|
          default: assert(0 && "Invalid case");
 | 
						|
          case Intrinsic::sadd_with_overflow:
 | 
						|
            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::uadd_with_overflow:
 | 
						|
            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::ssub_with_overflow:
 | 
						|
            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::usub_with_overflow:
 | 
						|
            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          case Intrinsic::smul_with_overflow:
 | 
						|
            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          Constant *Ops[] = {
 | 
						|
            ConstantInt::get(F->getContext(), Res),
 | 
						|
            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
 | 
						|
          };
 | 
						|
          return ConstantStruct::get(F->getContext(), Ops, 2, false);
 | 
						|
        }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 |