mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126082 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2083 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2083 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements routines for folding instructions into simpler forms
 | 
						|
// that do not require creating new instructions.  This does constant folding
 | 
						|
// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
 | 
						|
// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
 | 
						|
// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
 | 
						|
// simplified: This is usually true and assuming it simplifies the logic (if
 | 
						|
// they have not been simplified then results are correct but maybe suboptimal).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "instsimplify"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
enum { RecursionLimit = 3 };
 | 
						|
 | 
						|
STATISTIC(NumExpand,  "Number of expansions");
 | 
						|
STATISTIC(NumFactor , "Number of factorizations");
 | 
						|
STATISTIC(NumReassoc, "Number of reassociations");
 | 
						|
 | 
						|
static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
 | 
						|
                              const DominatorTree *, unsigned);
 | 
						|
static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
 | 
						|
                            const DominatorTree *, unsigned);
 | 
						|
static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
 | 
						|
                              const DominatorTree *, unsigned);
 | 
						|
static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
 | 
						|
                             const DominatorTree *, unsigned);
 | 
						|
static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
 | 
						|
                              const DominatorTree *, unsigned);
 | 
						|
 | 
						|
/// ValueDominatesPHI - Does the given value dominate the specified phi node?
 | 
						|
static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I)
 | 
						|
    // Arguments and constants dominate all instructions.
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we have a DominatorTree then do a precise test.
 | 
						|
  if (DT)
 | 
						|
    return DT->dominates(I, P);
 | 
						|
 | 
						|
  // Otherwise, if the instruction is in the entry block, and is not an invoke,
 | 
						|
  // then it obviously dominates all phi nodes.
 | 
						|
  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
 | 
						|
      !isa<InvokeInst>(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
 | 
						|
/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
 | 
						|
/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
 | 
						|
/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
 | 
						|
/// Returns the simplified value, or null if no simplification was performed.
 | 
						|
static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | 
						|
                          unsigned OpcToExpand, const TargetData *TD,
 | 
						|
                          const DominatorTree *DT, unsigned MaxRecurse) {
 | 
						|
  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
 | 
						|
  // Recursion is always used, so bail out at once if we already hit the limit.
 | 
						|
  if (!MaxRecurse--)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Check whether the expression has the form "(A op' B) op C".
 | 
						|
  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
 | 
						|
    if (Op0->getOpcode() == OpcodeToExpand) {
 | 
						|
      // It does!  Try turning it into "(A op C) op' (B op C)".
 | 
						|
      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
 | 
						|
      // Do "A op C" and "B op C" both simplify?
 | 
						|
      if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
 | 
						|
        if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
 | 
						|
          // They do! Return "L op' R" if it simplifies or is already available.
 | 
						|
          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
 | 
						|
          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
 | 
						|
                                     && L == B && R == A)) {
 | 
						|
            ++NumExpand;
 | 
						|
            return LHS;
 | 
						|
          }
 | 
						|
          // Otherwise return "L op' R" if it simplifies.
 | 
						|
          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
 | 
						|
                                       MaxRecurse)) {
 | 
						|
            ++NumExpand;
 | 
						|
            return V;
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  // Check whether the expression has the form "A op (B op' C)".
 | 
						|
  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
 | 
						|
    if (Op1->getOpcode() == OpcodeToExpand) {
 | 
						|
      // It does!  Try turning it into "(A op B) op' (A op C)".
 | 
						|
      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
 | 
						|
      // Do "A op B" and "A op C" both simplify?
 | 
						|
      if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
 | 
						|
        if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
 | 
						|
          // They do! Return "L op' R" if it simplifies or is already available.
 | 
						|
          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
 | 
						|
          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
 | 
						|
                                     && L == C && R == B)) {
 | 
						|
            ++NumExpand;
 | 
						|
            return RHS;
 | 
						|
          }
 | 
						|
          // Otherwise return "L op' R" if it simplifies.
 | 
						|
          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
 | 
						|
                                       MaxRecurse)) {
 | 
						|
            ++NumExpand;
 | 
						|
            return V;
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
 | 
						|
/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
 | 
						|
/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
 | 
						|
/// Returns the simplified value, or null if no simplification was performed.
 | 
						|
static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | 
						|
                             unsigned OpcToExtract, const TargetData *TD,
 | 
						|
                             const DominatorTree *DT, unsigned MaxRecurse) {
 | 
						|
  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
 | 
						|
  // Recursion is always used, so bail out at once if we already hit the limit.
 | 
						|
  if (!MaxRecurse--)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | 
						|
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | 
						|
 | 
						|
  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
 | 
						|
      !Op1 || Op1->getOpcode() != OpcodeToExtract)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // The expression has the form "(A op' B) op (C op' D)".
 | 
						|
  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
 | 
						|
  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
 | 
						|
 | 
						|
  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
 | 
						|
  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
 | 
						|
  // commutative case, "(A op' B) op (C op' A)"?
 | 
						|
  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
 | 
						|
    Value *DD = A == C ? D : C;
 | 
						|
    // Form "A op' (B op DD)" if it simplifies completely.
 | 
						|
    // Does "B op DD" simplify?
 | 
						|
    if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
 | 
						|
      // It does!  Return "A op' V" if it simplifies or is already available.
 | 
						|
      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
 | 
						|
      // "A op' V" is just the RHS.
 | 
						|
      if (V == B || V == DD) {
 | 
						|
        ++NumFactor;
 | 
						|
        return V == B ? LHS : RHS;
 | 
						|
      }
 | 
						|
      // Otherwise return "A op' V" if it simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
 | 
						|
        ++NumFactor;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
 | 
						|
  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
 | 
						|
  // commutative case, "(A op' B) op (B op' D)"?
 | 
						|
  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
 | 
						|
    Value *CC = B == D ? C : D;
 | 
						|
    // Form "(A op CC) op' B" if it simplifies completely..
 | 
						|
    // Does "A op CC" simplify?
 | 
						|
    if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
 | 
						|
      // It does!  Return "V op' B" if it simplifies or is already available.
 | 
						|
      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
 | 
						|
      // "V op' B" is just the RHS.
 | 
						|
      if (V == A || V == CC) {
 | 
						|
        ++NumFactor;
 | 
						|
        return V == A ? LHS : RHS;
 | 
						|
      }
 | 
						|
      // Otherwise return "V op' B" if it simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
 | 
						|
        ++NumFactor;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
 | 
						|
/// operations.  Returns the simpler value, or null if none was found.
 | 
						|
static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
 | 
						|
                                       const TargetData *TD,
 | 
						|
                                       const DominatorTree *DT,
 | 
						|
                                       unsigned MaxRecurse) {
 | 
						|
  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
 | 
						|
  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
 | 
						|
 | 
						|
  // Recursion is always used, so bail out at once if we already hit the limit.
 | 
						|
  if (!MaxRecurse--)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | 
						|
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | 
						|
 | 
						|
  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
 | 
						|
  if (Op0 && Op0->getOpcode() == Opcode) {
 | 
						|
    Value *A = Op0->getOperand(0);
 | 
						|
    Value *B = Op0->getOperand(1);
 | 
						|
    Value *C = RHS;
 | 
						|
 | 
						|
    // Does "B op C" simplify?
 | 
						|
    if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
 | 
						|
      // It does!  Return "A op V" if it simplifies or is already available.
 | 
						|
      // If V equals B then "A op V" is just the LHS.
 | 
						|
      if (V == B) return LHS;
 | 
						|
      // Otherwise return "A op V" if it simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
 | 
						|
  if (Op1 && Op1->getOpcode() == Opcode) {
 | 
						|
    Value *A = LHS;
 | 
						|
    Value *B = Op1->getOperand(0);
 | 
						|
    Value *C = Op1->getOperand(1);
 | 
						|
 | 
						|
    // Does "A op B" simplify?
 | 
						|
    if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
 | 
						|
      // It does!  Return "V op C" if it simplifies or is already available.
 | 
						|
      // If V equals B then "V op C" is just the RHS.
 | 
						|
      if (V == B) return RHS;
 | 
						|
      // Otherwise return "V op C" if it simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining transforms require commutativity as well as associativity.
 | 
						|
  if (!Instruction::isCommutative(Opcode))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
 | 
						|
  if (Op0 && Op0->getOpcode() == Opcode) {
 | 
						|
    Value *A = Op0->getOperand(0);
 | 
						|
    Value *B = Op0->getOperand(1);
 | 
						|
    Value *C = RHS;
 | 
						|
 | 
						|
    // Does "C op A" simplify?
 | 
						|
    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
 | 
						|
      // It does!  Return "V op B" if it simplifies or is already available.
 | 
						|
      // If V equals A then "V op B" is just the LHS.
 | 
						|
      if (V == A) return LHS;
 | 
						|
      // Otherwise return "V op B" if it simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
 | 
						|
  if (Op1 && Op1->getOpcode() == Opcode) {
 | 
						|
    Value *A = LHS;
 | 
						|
    Value *B = Op1->getOperand(0);
 | 
						|
    Value *C = Op1->getOperand(1);
 | 
						|
 | 
						|
    // Does "C op A" simplify?
 | 
						|
    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
 | 
						|
      // It does!  Return "B op V" if it simplifies or is already available.
 | 
						|
      // If V equals C then "B op V" is just the RHS.
 | 
						|
      if (V == C) return RHS;
 | 
						|
      // Otherwise return "B op V" if it simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// ThreadBinOpOverSelect - In the case of a binary operation with a select
 | 
						|
/// instruction as an operand, try to simplify the binop by seeing whether
 | 
						|
/// evaluating it on both branches of the select results in the same value.
 | 
						|
/// Returns the common value if so, otherwise returns null.
 | 
						|
static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
 | 
						|
                                    const TargetData *TD,
 | 
						|
                                    const DominatorTree *DT,
 | 
						|
                                    unsigned MaxRecurse) {
 | 
						|
  // Recursion is always used, so bail out at once if we already hit the limit.
 | 
						|
  if (!MaxRecurse--)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  SelectInst *SI;
 | 
						|
  if (isa<SelectInst>(LHS)) {
 | 
						|
    SI = cast<SelectInst>(LHS);
 | 
						|
  } else {
 | 
						|
    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
 | 
						|
    SI = cast<SelectInst>(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Evaluate the BinOp on the true and false branches of the select.
 | 
						|
  Value *TV;
 | 
						|
  Value *FV;
 | 
						|
  if (SI == LHS) {
 | 
						|
    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
 | 
						|
    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
 | 
						|
  } else {
 | 
						|
    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
 | 
						|
    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
 | 
						|
  }
 | 
						|
 | 
						|
  // If they simplified to the same value, then return the common value.
 | 
						|
  // If they both failed to simplify then return null.
 | 
						|
  if (TV == FV)
 | 
						|
    return TV;
 | 
						|
 | 
						|
  // If one branch simplified to undef, return the other one.
 | 
						|
  if (TV && isa<UndefValue>(TV))
 | 
						|
    return FV;
 | 
						|
  if (FV && isa<UndefValue>(FV))
 | 
						|
    return TV;
 | 
						|
 | 
						|
  // If applying the operation did not change the true and false select values,
 | 
						|
  // then the result of the binop is the select itself.
 | 
						|
  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
 | 
						|
    return SI;
 | 
						|
 | 
						|
  // If one branch simplified and the other did not, and the simplified
 | 
						|
  // value is equal to the unsimplified one, return the simplified value.
 | 
						|
  // For example, select (cond, X, X & Z) & Z -> X & Z.
 | 
						|
  if ((FV && !TV) || (TV && !FV)) {
 | 
						|
    // Check that the simplified value has the form "X op Y" where "op" is the
 | 
						|
    // same as the original operation.
 | 
						|
    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
 | 
						|
    if (Simplified && Simplified->getOpcode() == Opcode) {
 | 
						|
      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
 | 
						|
      // We already know that "op" is the same as for the simplified value.  See
 | 
						|
      // if the operands match too.  If so, return the simplified value.
 | 
						|
      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
 | 
						|
      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
 | 
						|
      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
 | 
						|
      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
 | 
						|
          Simplified->getOperand(1) == UnsimplifiedRHS)
 | 
						|
        return Simplified;
 | 
						|
      if (Simplified->isCommutative() &&
 | 
						|
          Simplified->getOperand(1) == UnsimplifiedLHS &&
 | 
						|
          Simplified->getOperand(0) == UnsimplifiedRHS)
 | 
						|
        return Simplified;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
 | 
						|
/// try to simplify the comparison by seeing whether both branches of the select
 | 
						|
/// result in the same value.  Returns the common value if so, otherwise returns
 | 
						|
/// null.
 | 
						|
static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
 | 
						|
                                  Value *RHS, const TargetData *TD,
 | 
						|
                                  const DominatorTree *DT,
 | 
						|
                                  unsigned MaxRecurse) {
 | 
						|
  // Recursion is always used, so bail out at once if we already hit the limit.
 | 
						|
  if (!MaxRecurse--)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Make sure the select is on the LHS.
 | 
						|
  if (!isa<SelectInst>(LHS)) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Pred = CmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
 | 
						|
  SelectInst *SI = cast<SelectInst>(LHS);
 | 
						|
 | 
						|
  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
 | 
						|
  // Does "cmp TV, RHS" simplify?
 | 
						|
  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
 | 
						|
                                    MaxRecurse)) {
 | 
						|
    // It does!  Does "cmp FV, RHS" simplify?
 | 
						|
    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
 | 
						|
                                      MaxRecurse)) {
 | 
						|
      // It does!  If they simplified to the same value, then use it as the
 | 
						|
      // result of the original comparison.
 | 
						|
      if (TCmp == FCmp)
 | 
						|
        return TCmp;
 | 
						|
      Value *Cond = SI->getCondition();
 | 
						|
      // If the false value simplified to false, then the result of the compare
 | 
						|
      // is equal to "Cond && TCmp".  This also catches the case when the false
 | 
						|
      // value simplified to false and the true value to true, returning "Cond".
 | 
						|
      if (match(FCmp, m_Zero()))
 | 
						|
        if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
 | 
						|
          return V;
 | 
						|
      // If the true value simplified to true, then the result of the compare
 | 
						|
      // is equal to "Cond || FCmp".
 | 
						|
      if (match(TCmp, m_One()))
 | 
						|
        if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
 | 
						|
          return V;
 | 
						|
      // Finally, if the false value simplified to true and the true value to
 | 
						|
      // false, then the result of the compare is equal to "!Cond".
 | 
						|
      if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
 | 
						|
        if (Value *V =
 | 
						|
            SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
 | 
						|
                            TD, DT, MaxRecurse))
 | 
						|
          return V;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
 | 
						|
/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
 | 
						|
/// it on the incoming phi values yields the same result for every value.  If so
 | 
						|
/// returns the common value, otherwise returns null.
 | 
						|
static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
 | 
						|
                                 const TargetData *TD, const DominatorTree *DT,
 | 
						|
                                 unsigned MaxRecurse) {
 | 
						|
  // Recursion is always used, so bail out at once if we already hit the limit.
 | 
						|
  if (!MaxRecurse--)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  PHINode *PI;
 | 
						|
  if (isa<PHINode>(LHS)) {
 | 
						|
    PI = cast<PHINode>(LHS);
 | 
						|
    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | 
						|
    if (!ValueDominatesPHI(RHS, PI, DT))
 | 
						|
      return 0;
 | 
						|
  } else {
 | 
						|
    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
 | 
						|
    PI = cast<PHINode>(RHS);
 | 
						|
    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
 | 
						|
    if (!ValueDominatesPHI(LHS, PI, DT))
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Evaluate the BinOp on the incoming phi values.
 | 
						|
  Value *CommonValue = 0;
 | 
						|
  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *Incoming = PI->getIncomingValue(i);
 | 
						|
    // If the incoming value is the phi node itself, it can safely be skipped.
 | 
						|
    if (Incoming == PI) continue;
 | 
						|
    Value *V = PI == LHS ?
 | 
						|
      SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
 | 
						|
      SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
 | 
						|
    // If the operation failed to simplify, or simplified to a different value
 | 
						|
    // to previously, then give up.
 | 
						|
    if (!V || (CommonValue && V != CommonValue))
 | 
						|
      return 0;
 | 
						|
    CommonValue = V;
 | 
						|
  }
 | 
						|
 | 
						|
  return CommonValue;
 | 
						|
}
 | 
						|
 | 
						|
/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
 | 
						|
/// try to simplify the comparison by seeing whether comparing with all of the
 | 
						|
/// incoming phi values yields the same result every time.  If so returns the
 | 
						|
/// common result, otherwise returns null.
 | 
						|
static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
 | 
						|
                               const TargetData *TD, const DominatorTree *DT,
 | 
						|
                               unsigned MaxRecurse) {
 | 
						|
  // Recursion is always used, so bail out at once if we already hit the limit.
 | 
						|
  if (!MaxRecurse--)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Make sure the phi is on the LHS.
 | 
						|
  if (!isa<PHINode>(LHS)) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Pred = CmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
 | 
						|
  PHINode *PI = cast<PHINode>(LHS);
 | 
						|
 | 
						|
  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | 
						|
  if (!ValueDominatesPHI(RHS, PI, DT))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Evaluate the BinOp on the incoming phi values.
 | 
						|
  Value *CommonValue = 0;
 | 
						|
  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *Incoming = PI->getIncomingValue(i);
 | 
						|
    // If the incoming value is the phi node itself, it can safely be skipped.
 | 
						|
    if (Incoming == PI) continue;
 | 
						|
    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
 | 
						|
    // If the operation failed to simplify, or simplified to a different value
 | 
						|
    // to previously, then give up.
 | 
						|
    if (!V || (CommonValue && V != CommonValue))
 | 
						|
      return 0;
 | 
						|
    CommonValue = V;
 | 
						|
  }
 | 
						|
 | 
						|
  return CommonValue;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyAddInst - Given operands for an Add, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | 
						|
                              const TargetData *TD, const DominatorTree *DT,
 | 
						|
                              unsigned MaxRecurse) {
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | 
						|
      Constant *Ops[] = { CLHS, CRHS };
 | 
						|
      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
 | 
						|
                                      Ops, 2, TD);
 | 
						|
    }
 | 
						|
 | 
						|
    // Canonicalize the constant to the RHS.
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // X + undef -> undef
 | 
						|
  if (match(Op1, m_Undef()))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // X + 0 -> X
 | 
						|
  if (match(Op1, m_Zero()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X + (Y - X) -> Y
 | 
						|
  // (Y - X) + X -> Y
 | 
						|
  // Eg: X + -X -> 0
 | 
						|
  Value *Y = 0;
 | 
						|
  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
 | 
						|
      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
 | 
						|
    return Y;
 | 
						|
 | 
						|
  // X + ~X -> -1   since   ~X = -X-1
 | 
						|
  if (match(Op0, m_Not(m_Specific(Op1))) ||
 | 
						|
      match(Op1, m_Not(m_Specific(Op0))))
 | 
						|
    return Constant::getAllOnesValue(Op0->getType());
 | 
						|
 | 
						|
  /// i1 add -> xor.
 | 
						|
  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | 
						|
    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // Try some generic simplifications for associative operations.
 | 
						|
  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
 | 
						|
                                          MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Mul distributes over Add.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
 | 
						|
                                TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Threading Add over selects and phi nodes is pointless, so don't bother.
 | 
						|
  // Threading over the select in "A + select(cond, B, C)" means evaluating
 | 
						|
  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
 | 
						|
  // only if B and C are equal.  If B and C are equal then (since we assume
 | 
						|
  // that operands have already been simplified) "select(cond, B, C)" should
 | 
						|
  // have been simplified to the common value of B and C already.  Analysing
 | 
						|
  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
 | 
						|
  // for threading over phi nodes.
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | 
						|
                             const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifySubInst - Given operands for a Sub, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | 
						|
                              const TargetData *TD, const DominatorTree *DT,
 | 
						|
                              unsigned MaxRecurse) {
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(Op0))
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | 
						|
      Constant *Ops[] = { CLHS, CRHS };
 | 
						|
      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
 | 
						|
                                      Ops, 2, TD);
 | 
						|
    }
 | 
						|
 | 
						|
  // X - undef -> undef
 | 
						|
  // undef - X -> undef
 | 
						|
  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
 | 
						|
    return UndefValue::get(Op0->getType());
 | 
						|
 | 
						|
  // X - 0 -> X
 | 
						|
  if (match(Op1, m_Zero()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X - X -> 0
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // (X*2) - X -> X
 | 
						|
  // (X<<1) - X -> X
 | 
						|
  Value *X = 0;
 | 
						|
  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
 | 
						|
      match(Op0, m_Shl(m_Specific(Op1), m_One())))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
 | 
						|
  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
 | 
						|
  Value *Y = 0, *Z = Op1;
 | 
						|
  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
 | 
						|
    // See if "V === Y - Z" simplifies.
 | 
						|
    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
 | 
						|
      // It does!  Now see if "X + V" simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
 | 
						|
                                   MaxRecurse-1)) {
 | 
						|
        // It does, we successfully reassociated!
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
    // See if "V === X - Z" simplifies.
 | 
						|
    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
 | 
						|
      // It does!  Now see if "Y + V" simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
 | 
						|
                                   MaxRecurse-1)) {
 | 
						|
        // It does, we successfully reassociated!
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
 | 
						|
  // For example, X - (X + 1) -> -1
 | 
						|
  X = Op0;
 | 
						|
  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
 | 
						|
    // See if "V === X - Y" simplifies.
 | 
						|
    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
 | 
						|
      // It does!  Now see if "V - Z" simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
 | 
						|
                                   MaxRecurse-1)) {
 | 
						|
        // It does, we successfully reassociated!
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
    // See if "V === X - Z" simplifies.
 | 
						|
    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
 | 
						|
      // It does!  Now see if "V - Y" simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
 | 
						|
                                   MaxRecurse-1)) {
 | 
						|
        // It does, we successfully reassociated!
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
 | 
						|
  // For example, X - (X - Y) -> Y.
 | 
						|
  Z = Op0;
 | 
						|
  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
 | 
						|
    // See if "V === Z - X" simplifies.
 | 
						|
    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
 | 
						|
      // It does!  Now see if "V + Y" simplifies.
 | 
						|
      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
 | 
						|
                                   MaxRecurse-1)) {
 | 
						|
        // It does, we successfully reassociated!
 | 
						|
        ++NumReassoc;
 | 
						|
        return W;
 | 
						|
      }
 | 
						|
 | 
						|
  // Mul distributes over Sub.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
 | 
						|
                                TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // i1 sub -> xor.
 | 
						|
  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | 
						|
    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // Threading Sub over selects and phi nodes is pointless, so don't bother.
 | 
						|
  // Threading over the select in "A - select(cond, B, C)" means evaluating
 | 
						|
  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
 | 
						|
  // only if B and C are equal.  If B and C are equal then (since we assume
 | 
						|
  // that operands have already been simplified) "select(cond, B, C)" should
 | 
						|
  // have been simplified to the common value of B and C already.  Analysing
 | 
						|
  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
 | 
						|
  // for threading over phi nodes.
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | 
						|
                             const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyMulInst - Given operands for a Mul, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                              const DominatorTree *DT, unsigned MaxRecurse) {
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | 
						|
      Constant *Ops[] = { CLHS, CRHS };
 | 
						|
      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
 | 
						|
                                      Ops, 2, TD);
 | 
						|
    }
 | 
						|
 | 
						|
    // Canonicalize the constant to the RHS.
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // X * undef -> 0
 | 
						|
  if (match(Op1, m_Undef()))
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // X * 0 -> 0
 | 
						|
  if (match(Op1, m_Zero()))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // X * 1 -> X
 | 
						|
  if (match(Op1, m_One()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // (X / Y) * Y -> X if the division is exact.
 | 
						|
  Value *X = 0, *Y = 0;
 | 
						|
  if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
 | 
						|
      (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
 | 
						|
    BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
 | 
						|
    if (Div->isExact())
 | 
						|
      return X;
 | 
						|
  }
 | 
						|
 | 
						|
  // i1 mul -> and.
 | 
						|
  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | 
						|
    if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // Try some generic simplifications for associative operations.
 | 
						|
  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
 | 
						|
                                          MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Mul distributes over Add.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
 | 
						|
                             TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // If the operation is with the result of a select instruction, check whether
 | 
						|
  // operating on either branch of the select always yields the same value.
 | 
						|
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
 | 
						|
                                         MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If the operation is with the result of a phi instruction, check whether
 | 
						|
  // operating on all incoming values of the phi always yields the same value.
 | 
						|
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
 | 
						|
                                      MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                             const DominatorTree *DT) {
 | 
						|
  return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | 
						|
                          const TargetData *TD, const DominatorTree *DT,
 | 
						|
                          unsigned MaxRecurse) {
 | 
						|
  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
 | 
						|
    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
 | 
						|
      Constant *Ops[] = { C0, C1 };
 | 
						|
      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool isSigned = Opcode == Instruction::SDiv;
 | 
						|
 | 
						|
  // X / undef -> undef
 | 
						|
  if (match(Op1, m_Undef()))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // undef / X -> 0
 | 
						|
  if (match(Op0, m_Undef()))
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // 0 / X -> 0, we don't need to preserve faults!
 | 
						|
  if (match(Op0, m_Zero()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X / 1 -> X
 | 
						|
  if (match(Op1, m_One()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  if (Op0->getType()->isIntegerTy(1))
 | 
						|
    // It can't be division by zero, hence it must be division by one.
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X / X -> 1
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return ConstantInt::get(Op0->getType(), 1);
 | 
						|
 | 
						|
  // (X * Y) / Y -> X if the multiplication does not overflow.
 | 
						|
  Value *X = 0, *Y = 0;
 | 
						|
  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
 | 
						|
    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
 | 
						|
    BinaryOperator *Mul = cast<BinaryOperator>(Op0);
 | 
						|
    // If the Mul knows it does not overflow, then we are good to go.
 | 
						|
    if ((isSigned && Mul->hasNoSignedWrap()) ||
 | 
						|
        (!isSigned && Mul->hasNoUnsignedWrap()))
 | 
						|
      return X;
 | 
						|
    // If X has the form X = A / Y then X * Y cannot overflow.
 | 
						|
    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
 | 
						|
      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
 | 
						|
        return X;
 | 
						|
  }
 | 
						|
 | 
						|
  // (X rem Y) / Y -> 0
 | 
						|
  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
 | 
						|
      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // If the operation is with the result of a select instruction, check whether
 | 
						|
  // operating on either branch of the select always yields the same value.
 | 
						|
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If the operation is with the result of a phi instruction, check whether
 | 
						|
  // operating on all incoming values of the phi always yields the same value.
 | 
						|
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifySDivInst - Given operands for an SDiv, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                               const DominatorTree *DT, unsigned MaxRecurse) {
 | 
						|
  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                              const DominatorTree *DT) {
 | 
						|
  return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                               const DominatorTree *DT, unsigned MaxRecurse) {
 | 
						|
  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                              const DominatorTree *DT) {
 | 
						|
  return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
 | 
						|
                               const DominatorTree *, unsigned) {
 | 
						|
  // undef / X -> undef    (the undef could be a snan).
 | 
						|
  if (match(Op0, m_Undef()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X / undef -> undef
 | 
						|
  if (match(Op1, m_Undef()))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                              const DominatorTree *DT) {
 | 
						|
  return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
 | 
						|
                            const TargetData *TD, const DominatorTree *DT,
 | 
						|
                            unsigned MaxRecurse) {
 | 
						|
  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
 | 
						|
    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
 | 
						|
      Constant *Ops[] = { C0, C1 };
 | 
						|
      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // 0 shift by X -> 0
 | 
						|
  if (match(Op0, m_Zero()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X shift by 0 -> X
 | 
						|
  if (match(Op1, m_Zero()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X shift by undef -> undef because it may shift by the bitwidth.
 | 
						|
  if (match(Op1, m_Undef()))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // Shifting by the bitwidth or more is undefined.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
 | 
						|
    if (CI->getValue().getLimitedValue() >=
 | 
						|
        Op0->getType()->getScalarSizeInBits())
 | 
						|
      return UndefValue::get(Op0->getType());
 | 
						|
 | 
						|
  // If the operation is with the result of a select instruction, check whether
 | 
						|
  // operating on either branch of the select always yields the same value.
 | 
						|
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If the operation is with the result of a phi instruction, check whether
 | 
						|
  // operating on all incoming values of the phi always yields the same value.
 | 
						|
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyShlInst - Given operands for an Shl, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | 
						|
                              const TargetData *TD, const DominatorTree *DT,
 | 
						|
                              unsigned MaxRecurse) {
 | 
						|
  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // undef << X -> 0
 | 
						|
  if (match(Op0, m_Undef()))
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // (X >> A) << A -> X
 | 
						|
  Value *X;
 | 
						|
  if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
 | 
						|
      cast<PossiblyExactOperator>(Op0)->isExact())
 | 
						|
    return X;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | 
						|
                             const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyLShrInst - Given operands for an LShr, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | 
						|
                               const TargetData *TD, const DominatorTree *DT,
 | 
						|
                               unsigned MaxRecurse) {
 | 
						|
  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // undef >>l X -> 0
 | 
						|
  if (match(Op0, m_Undef()))
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // (X << A) >> A -> X
 | 
						|
  Value *X;
 | 
						|
  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
 | 
						|
      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
 | 
						|
    return X;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | 
						|
                              const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyAShrInst - Given operands for an AShr, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | 
						|
                               const TargetData *TD, const DominatorTree *DT,
 | 
						|
                               unsigned MaxRecurse) {
 | 
						|
  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // all ones >>a X -> all ones
 | 
						|
  if (match(Op0, m_AllOnes()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // undef >>a X -> all ones
 | 
						|
  if (match(Op0, m_Undef()))
 | 
						|
    return Constant::getAllOnesValue(Op0->getType());
 | 
						|
 | 
						|
  // (X << A) >> A -> X
 | 
						|
  Value *X;
 | 
						|
  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
 | 
						|
      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
 | 
						|
    return X;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | 
						|
                              const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyAndInst - Given operands for an And, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                              const DominatorTree *DT, unsigned MaxRecurse) {
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | 
						|
      Constant *Ops[] = { CLHS, CRHS };
 | 
						|
      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
 | 
						|
                                      Ops, 2, TD);
 | 
						|
    }
 | 
						|
 | 
						|
    // Canonicalize the constant to the RHS.
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // X & undef -> 0
 | 
						|
  if (match(Op1, m_Undef()))
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // X & X = X
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X & 0 = 0
 | 
						|
  if (match(Op1, m_Zero()))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // X & -1 = X
 | 
						|
  if (match(Op1, m_AllOnes()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // A & ~A  =  ~A & A  =  0
 | 
						|
  if (match(Op0, m_Not(m_Specific(Op1))) ||
 | 
						|
      match(Op1, m_Not(m_Specific(Op0))))
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // (A | ?) & A = A
 | 
						|
  Value *A = 0, *B = 0;
 | 
						|
  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
 | 
						|
      (A == Op1 || B == Op1))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // A & (A | ?) = A
 | 
						|
  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
 | 
						|
      (A == Op0 || B == Op0))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // Try some generic simplifications for associative operations.
 | 
						|
  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
 | 
						|
                                          MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // And distributes over Or.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
 | 
						|
                             TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // And distributes over Xor.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
 | 
						|
                             TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Or distributes over And.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
 | 
						|
                                TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // If the operation is with the result of a select instruction, check whether
 | 
						|
  // operating on either branch of the select always yields the same value.
 | 
						|
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
 | 
						|
                                         MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If the operation is with the result of a phi instruction, check whether
 | 
						|
  // operating on all incoming values of the phi always yields the same value.
 | 
						|
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
 | 
						|
                                      MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                             const DominatorTree *DT) {
 | 
						|
  return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyOrInst - Given operands for an Or, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                             const DominatorTree *DT, unsigned MaxRecurse) {
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | 
						|
      Constant *Ops[] = { CLHS, CRHS };
 | 
						|
      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
 | 
						|
                                      Ops, 2, TD);
 | 
						|
    }
 | 
						|
 | 
						|
    // Canonicalize the constant to the RHS.
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // X | undef -> -1
 | 
						|
  if (match(Op1, m_Undef()))
 | 
						|
    return Constant::getAllOnesValue(Op0->getType());
 | 
						|
 | 
						|
  // X | X = X
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X | 0 = X
 | 
						|
  if (match(Op1, m_Zero()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // X | -1 = -1
 | 
						|
  if (match(Op1, m_AllOnes()))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // A | ~A  =  ~A | A  =  -1
 | 
						|
  if (match(Op0, m_Not(m_Specific(Op1))) ||
 | 
						|
      match(Op1, m_Not(m_Specific(Op0))))
 | 
						|
    return Constant::getAllOnesValue(Op0->getType());
 | 
						|
 | 
						|
  // (A & ?) | A = A
 | 
						|
  Value *A = 0, *B = 0;
 | 
						|
  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | 
						|
      (A == Op1 || B == Op1))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // A | (A & ?) = A
 | 
						|
  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
 | 
						|
      (A == Op0 || B == Op0))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // ~(A & ?) | A = -1
 | 
						|
  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
 | 
						|
      (A == Op1 || B == Op1))
 | 
						|
    return Constant::getAllOnesValue(Op1->getType());
 | 
						|
 | 
						|
  // A | ~(A & ?) = -1
 | 
						|
  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
 | 
						|
      (A == Op0 || B == Op0))
 | 
						|
    return Constant::getAllOnesValue(Op0->getType());
 | 
						|
 | 
						|
  // Try some generic simplifications for associative operations.
 | 
						|
  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
 | 
						|
                                          MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Or distributes over And.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
 | 
						|
                             TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // And distributes over Or.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
 | 
						|
                                TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // If the operation is with the result of a select instruction, check whether
 | 
						|
  // operating on either branch of the select always yields the same value.
 | 
						|
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
 | 
						|
                                         MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If the operation is with the result of a phi instruction, check whether
 | 
						|
  // operating on all incoming values of the phi always yields the same value.
 | 
						|
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | 
						|
    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
 | 
						|
                                      MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                            const DominatorTree *DT) {
 | 
						|
  return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyXorInst - Given operands for a Xor, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                              const DominatorTree *DT, unsigned MaxRecurse) {
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | 
						|
      Constant *Ops[] = { CLHS, CRHS };
 | 
						|
      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
 | 
						|
                                      Ops, 2, TD);
 | 
						|
    }
 | 
						|
 | 
						|
    // Canonicalize the constant to the RHS.
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // A ^ undef -> undef
 | 
						|
  if (match(Op1, m_Undef()))
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  // A ^ 0 = A
 | 
						|
  if (match(Op1, m_Zero()))
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  // A ^ A = 0
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return Constant::getNullValue(Op0->getType());
 | 
						|
 | 
						|
  // A ^ ~A  =  ~A ^ A  =  -1
 | 
						|
  if (match(Op0, m_Not(m_Specific(Op1))) ||
 | 
						|
      match(Op1, m_Not(m_Specific(Op0))))
 | 
						|
    return Constant::getAllOnesValue(Op0->getType());
 | 
						|
 | 
						|
  // Try some generic simplifications for associative operations.
 | 
						|
  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
 | 
						|
                                          MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // And distributes over Xor.  Try some generic simplifications based on this.
 | 
						|
  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
 | 
						|
                                TD, DT, MaxRecurse))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Threading Xor over selects and phi nodes is pointless, so don't bother.
 | 
						|
  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
 | 
						|
  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
 | 
						|
  // only if B and C are equal.  If B and C are equal then (since we assume
 | 
						|
  // that operands have already been simplified) "select(cond, B, C)" should
 | 
						|
  // have been simplified to the common value of B and C already.  Analysing
 | 
						|
  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
 | 
						|
  // for threading over phi nodes.
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
 | 
						|
                             const DominatorTree *DT) {
 | 
						|
  return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
static const Type *GetCompareTy(Value *Op) {
 | 
						|
  return CmpInst::makeCmpResultType(Op->getType());
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | 
						|
                               const TargetData *TD, const DominatorTree *DT,
 | 
						|
                               unsigned MaxRecurse) {
 | 
						|
  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | 
						|
  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
 | 
						|
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | 
						|
      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
 | 
						|
 | 
						|
    // If we have a constant, make sure it is on the RHS.
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Pred = CmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  const Type *ITy = GetCompareTy(LHS); // The return type.
 | 
						|
  const Type *OpTy = LHS->getType();   // The operand type.
 | 
						|
 | 
						|
  // icmp X, X -> true/false
 | 
						|
  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
 | 
						|
  // because X could be 0.
 | 
						|
  if (LHS == RHS || isa<UndefValue>(RHS))
 | 
						|
    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
 | 
						|
 | 
						|
  // Special case logic when the operands have i1 type.
 | 
						|
  if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
 | 
						|
       cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
 | 
						|
    switch (Pred) {
 | 
						|
    default: break;
 | 
						|
    case ICmpInst::ICMP_EQ:
 | 
						|
      // X == 1 -> X
 | 
						|
      if (match(RHS, m_One()))
 | 
						|
        return LHS;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_NE:
 | 
						|
      // X != 0 -> X
 | 
						|
      if (match(RHS, m_Zero()))
 | 
						|
        return LHS;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
      // X >u 0 -> X
 | 
						|
      if (match(RHS, m_Zero()))
 | 
						|
        return LHS;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_UGE:
 | 
						|
      // X >=u 1 -> X
 | 
						|
      if (match(RHS, m_One()))
 | 
						|
        return LHS;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SLT:
 | 
						|
      // X <s 0 -> X
 | 
						|
      if (match(RHS, m_Zero()))
 | 
						|
        return LHS;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SLE:
 | 
						|
      // X <=s -1 -> X
 | 
						|
      if (match(RHS, m_One()))
 | 
						|
        return LHS;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
 | 
						|
  // different addresses, and what's more the address of a stack variable is
 | 
						|
  // never null or equal to the address of a global.  Note that generalizing
 | 
						|
  // to the case where LHS is a global variable address or null is pointless,
 | 
						|
  // since if both LHS and RHS are constants then we already constant folded
 | 
						|
  // the compare, and if only one of them is then we moved it to RHS already.
 | 
						|
  if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
 | 
						|
                               isa<ConstantPointerNull>(RHS)))
 | 
						|
    // We already know that LHS != LHS.
 | 
						|
    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
 | 
						|
 | 
						|
  // If we are comparing with zero then try hard since this is a common case.
 | 
						|
  if (match(RHS, m_Zero())) {
 | 
						|
    bool LHSKnownNonNegative, LHSKnownNegative;
 | 
						|
    switch (Pred) {
 | 
						|
    default:
 | 
						|
      assert(false && "Unknown ICmp predicate!");
 | 
						|
    case ICmpInst::ICMP_ULT:
 | 
						|
      return ConstantInt::getFalse(LHS->getContext());
 | 
						|
    case ICmpInst::ICMP_UGE:
 | 
						|
      return ConstantInt::getTrue(LHS->getContext());
 | 
						|
    case ICmpInst::ICMP_EQ:
 | 
						|
    case ICmpInst::ICMP_ULE:
 | 
						|
      if (isKnownNonZero(LHS, TD))
 | 
						|
        return ConstantInt::getFalse(LHS->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_NE:
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
      if (isKnownNonZero(LHS, TD))
 | 
						|
        return ConstantInt::getTrue(LHS->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SLT:
 | 
						|
      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
 | 
						|
      if (LHSKnownNegative)
 | 
						|
        return ConstantInt::getTrue(LHS->getContext());
 | 
						|
      if (LHSKnownNonNegative)
 | 
						|
        return ConstantInt::getFalse(LHS->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SLE:
 | 
						|
      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
 | 
						|
      if (LHSKnownNegative)
 | 
						|
        return ConstantInt::getTrue(LHS->getContext());
 | 
						|
      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
 | 
						|
        return ConstantInt::getFalse(LHS->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SGE:
 | 
						|
      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
 | 
						|
      if (LHSKnownNegative)
 | 
						|
        return ConstantInt::getFalse(LHS->getContext());
 | 
						|
      if (LHSKnownNonNegative)
 | 
						|
        return ConstantInt::getTrue(LHS->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SGT:
 | 
						|
      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
 | 
						|
      if (LHSKnownNegative)
 | 
						|
        return ConstantInt::getFalse(LHS->getContext());
 | 
						|
      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
 | 
						|
        return ConstantInt::getTrue(LHS->getContext());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we are doing a comparison with a constant integer.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | 
						|
    switch (Pred) {
 | 
						|
    default: break;
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
      if (CI->isMaxValue(false))                 // A >u MAX -> FALSE
 | 
						|
        return ConstantInt::getFalse(CI->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_UGE:
 | 
						|
      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
 | 
						|
        return ConstantInt::getTrue(CI->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_ULT:
 | 
						|
      if (CI->isMinValue(false))                 // A <u MIN -> FALSE
 | 
						|
        return ConstantInt::getFalse(CI->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_ULE:
 | 
						|
      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
 | 
						|
        return ConstantInt::getTrue(CI->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SGT:
 | 
						|
      if (CI->isMaxValue(true))                  // A >s MAX -> FALSE
 | 
						|
        return ConstantInt::getFalse(CI->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SGE:
 | 
						|
      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
 | 
						|
        return ConstantInt::getTrue(CI->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SLT:
 | 
						|
      if (CI->isMinValue(true))                  // A <s MIN -> FALSE
 | 
						|
        return ConstantInt::getFalse(CI->getContext());
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SLE:
 | 
						|
      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
 | 
						|
        return ConstantInt::getTrue(CI->getContext());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare of cast, for example (zext X) != 0 -> X != 0
 | 
						|
  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
 | 
						|
    Instruction *LI = cast<CastInst>(LHS);
 | 
						|
    Value *SrcOp = LI->getOperand(0);
 | 
						|
    const Type *SrcTy = SrcOp->getType();
 | 
						|
    const Type *DstTy = LI->getType();
 | 
						|
 | 
						|
    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
 | 
						|
    // if the integer type is the same size as the pointer type.
 | 
						|
    if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
 | 
						|
        TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
 | 
						|
      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | 
						|
        // Transfer the cast to the constant.
 | 
						|
        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
 | 
						|
                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
 | 
						|
                                        TD, DT, MaxRecurse-1))
 | 
						|
          return V;
 | 
						|
      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
 | 
						|
        if (RI->getOperand(0)->getType() == SrcTy)
 | 
						|
          // Compare without the cast.
 | 
						|
          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | 
						|
                                          TD, DT, MaxRecurse-1))
 | 
						|
            return V;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<ZExtInst>(LHS)) {
 | 
						|
      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
 | 
						|
      // same type.
 | 
						|
      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
 | 
						|
        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | 
						|
          // Compare X and Y.  Note that signed predicates become unsigned.
 | 
						|
          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | 
						|
                                          SrcOp, RI->getOperand(0), TD, DT,
 | 
						|
                                          MaxRecurse-1))
 | 
						|
            return V;
 | 
						|
      }
 | 
						|
      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
 | 
						|
      // too.  If not, then try to deduce the result of the comparison.
 | 
						|
      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | 
						|
        // Compute the constant that would happen if we truncated to SrcTy then
 | 
						|
        // reextended to DstTy.
 | 
						|
        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | 
						|
        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
 | 
						|
 | 
						|
        // If the re-extended constant didn't change then this is effectively
 | 
						|
        // also a case of comparing two zero-extended values.
 | 
						|
        if (RExt == CI && MaxRecurse)
 | 
						|
          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | 
						|
                                          SrcOp, Trunc, TD, DT, MaxRecurse-1))
 | 
						|
            return V;
 | 
						|
 | 
						|
        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
 | 
						|
        // there.  Use this to work out the result of the comparison.
 | 
						|
        if (RExt != CI) {
 | 
						|
          switch (Pred) {
 | 
						|
          default:
 | 
						|
            assert(false && "Unknown ICmp predicate!");
 | 
						|
          // LHS <u RHS.
 | 
						|
          case ICmpInst::ICMP_EQ:
 | 
						|
          case ICmpInst::ICMP_UGT:
 | 
						|
          case ICmpInst::ICMP_UGE:
 | 
						|
            return ConstantInt::getFalse(CI->getContext());
 | 
						|
 | 
						|
          case ICmpInst::ICMP_NE:
 | 
						|
          case ICmpInst::ICMP_ULT:
 | 
						|
          case ICmpInst::ICMP_ULE:
 | 
						|
            return ConstantInt::getTrue(CI->getContext());
 | 
						|
 | 
						|
          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
 | 
						|
          // is non-negative then LHS <s RHS.
 | 
						|
          case ICmpInst::ICMP_SGT:
 | 
						|
          case ICmpInst::ICMP_SGE:
 | 
						|
            return CI->getValue().isNegative() ?
 | 
						|
              ConstantInt::getTrue(CI->getContext()) :
 | 
						|
              ConstantInt::getFalse(CI->getContext());
 | 
						|
 | 
						|
          case ICmpInst::ICMP_SLT:
 | 
						|
          case ICmpInst::ICMP_SLE:
 | 
						|
            return CI->getValue().isNegative() ?
 | 
						|
              ConstantInt::getFalse(CI->getContext()) :
 | 
						|
              ConstantInt::getTrue(CI->getContext());
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<SExtInst>(LHS)) {
 | 
						|
      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
 | 
						|
      // same type.
 | 
						|
      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
 | 
						|
        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | 
						|
          // Compare X and Y.  Note that the predicate does not change.
 | 
						|
          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | 
						|
                                          TD, DT, MaxRecurse-1))
 | 
						|
            return V;
 | 
						|
      }
 | 
						|
      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
 | 
						|
      // too.  If not, then try to deduce the result of the comparison.
 | 
						|
      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | 
						|
        // Compute the constant that would happen if we truncated to SrcTy then
 | 
						|
        // reextended to DstTy.
 | 
						|
        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | 
						|
        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
 | 
						|
 | 
						|
        // If the re-extended constant didn't change then this is effectively
 | 
						|
        // also a case of comparing two sign-extended values.
 | 
						|
        if (RExt == CI && MaxRecurse)
 | 
						|
          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
 | 
						|
                                          MaxRecurse-1))
 | 
						|
            return V;
 | 
						|
 | 
						|
        // Otherwise the upper bits of LHS are all equal, while RHS has varying
 | 
						|
        // bits there.  Use this to work out the result of the comparison.
 | 
						|
        if (RExt != CI) {
 | 
						|
          switch (Pred) {
 | 
						|
          default:
 | 
						|
            assert(false && "Unknown ICmp predicate!");
 | 
						|
          case ICmpInst::ICMP_EQ:
 | 
						|
            return ConstantInt::getFalse(CI->getContext());
 | 
						|
          case ICmpInst::ICMP_NE:
 | 
						|
            return ConstantInt::getTrue(CI->getContext());
 | 
						|
 | 
						|
          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
 | 
						|
          // LHS >s RHS.
 | 
						|
          case ICmpInst::ICMP_SGT:
 | 
						|
          case ICmpInst::ICMP_SGE:
 | 
						|
            return CI->getValue().isNegative() ?
 | 
						|
              ConstantInt::getTrue(CI->getContext()) :
 | 
						|
              ConstantInt::getFalse(CI->getContext());
 | 
						|
          case ICmpInst::ICMP_SLT:
 | 
						|
          case ICmpInst::ICMP_SLE:
 | 
						|
            return CI->getValue().isNegative() ?
 | 
						|
              ConstantInt::getFalse(CI->getContext()) :
 | 
						|
              ConstantInt::getTrue(CI->getContext());
 | 
						|
 | 
						|
          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
 | 
						|
          // LHS >u RHS.
 | 
						|
          case ICmpInst::ICMP_UGT:
 | 
						|
          case ICmpInst::ICMP_UGE:
 | 
						|
            // Comparison is true iff the LHS <s 0.
 | 
						|
            if (MaxRecurse)
 | 
						|
              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
 | 
						|
                                              Constant::getNullValue(SrcTy),
 | 
						|
                                              TD, DT, MaxRecurse-1))
 | 
						|
                return V;
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_ULT:
 | 
						|
          case ICmpInst::ICMP_ULE:
 | 
						|
            // Comparison is true iff the LHS >=s 0.
 | 
						|
            if (MaxRecurse)
 | 
						|
              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
 | 
						|
                                              Constant::getNullValue(SrcTy),
 | 
						|
                                              TD, DT, MaxRecurse-1))
 | 
						|
                return V;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Special logic for binary operators.
 | 
						|
  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
 | 
						|
  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
 | 
						|
  if (MaxRecurse && (LBO || RBO)) {
 | 
						|
    // Analyze the case when either LHS or RHS is an add instruction.
 | 
						|
    Value *A = 0, *B = 0, *C = 0, *D = 0;
 | 
						|
    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
 | 
						|
    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
 | 
						|
    if (LBO && LBO->getOpcode() == Instruction::Add) {
 | 
						|
      A = LBO->getOperand(0); B = LBO->getOperand(1);
 | 
						|
      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
 | 
						|
        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
 | 
						|
        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
 | 
						|
    }
 | 
						|
    if (RBO && RBO->getOpcode() == Instruction::Add) {
 | 
						|
      C = RBO->getOperand(0); D = RBO->getOperand(1);
 | 
						|
      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
 | 
						|
        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
 | 
						|
        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
 | 
						|
    }
 | 
						|
 | 
						|
    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
 | 
						|
    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
 | 
						|
      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
 | 
						|
                                      Constant::getNullValue(RHS->getType()),
 | 
						|
                                      TD, DT, MaxRecurse-1))
 | 
						|
        return V;
 | 
						|
 | 
						|
    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
 | 
						|
    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
 | 
						|
      if (Value *V = SimplifyICmpInst(Pred,
 | 
						|
                                      Constant::getNullValue(LHS->getType()),
 | 
						|
                                      C == LHS ? D : C, TD, DT, MaxRecurse-1))
 | 
						|
        return V;
 | 
						|
 | 
						|
    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
 | 
						|
    if (A && C && (A == C || A == D || B == C || B == D) &&
 | 
						|
        NoLHSWrapProblem && NoRHSWrapProblem) {
 | 
						|
      // Determine Y and Z in the form icmp (X+Y), (X+Z).
 | 
						|
      Value *Y = (A == C || A == D) ? B : A;
 | 
						|
      Value *Z = (C == A || C == B) ? D : C;
 | 
						|
      if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
 | 
						|
        return V;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the comparison is with the result of a select instruction, check whether
 | 
						|
  // comparing with either branch of the select always yields the same value.
 | 
						|
  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | 
						|
    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If the comparison is with the result of a phi instruction, check whether
 | 
						|
  // doing the compare with each incoming phi value yields a common result.
 | 
						|
  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | 
						|
    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | 
						|
                              const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | 
						|
                               const TargetData *TD, const DominatorTree *DT,
 | 
						|
                               unsigned MaxRecurse) {
 | 
						|
  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | 
						|
  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
 | 
						|
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | 
						|
      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
 | 
						|
 | 
						|
    // If we have a constant, make sure it is on the RHS.
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Pred = CmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  // Fold trivial predicates.
 | 
						|
  if (Pred == FCmpInst::FCMP_FALSE)
 | 
						|
    return ConstantInt::get(GetCompareTy(LHS), 0);
 | 
						|
  if (Pred == FCmpInst::FCMP_TRUE)
 | 
						|
    return ConstantInt::get(GetCompareTy(LHS), 1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
 | 
						|
    return UndefValue::get(GetCompareTy(LHS));
 | 
						|
 | 
						|
  // fcmp x,x -> true/false.  Not all compares are foldable.
 | 
						|
  if (LHS == RHS) {
 | 
						|
    if (CmpInst::isTrueWhenEqual(Pred))
 | 
						|
      return ConstantInt::get(GetCompareTy(LHS), 1);
 | 
						|
    if (CmpInst::isFalseWhenEqual(Pred))
 | 
						|
      return ConstantInt::get(GetCompareTy(LHS), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle fcmp with constant RHS
 | 
						|
  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | 
						|
    // If the constant is a nan, see if we can fold the comparison based on it.
 | 
						|
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
 | 
						|
      if (CFP->getValueAPF().isNaN()) {
 | 
						|
        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
 | 
						|
          return ConstantInt::getFalse(CFP->getContext());
 | 
						|
        assert(FCmpInst::isUnordered(Pred) &&
 | 
						|
               "Comparison must be either ordered or unordered!");
 | 
						|
        // True if unordered.
 | 
						|
        return ConstantInt::getTrue(CFP->getContext());
 | 
						|
      }
 | 
						|
      // Check whether the constant is an infinity.
 | 
						|
      if (CFP->getValueAPF().isInfinity()) {
 | 
						|
        if (CFP->getValueAPF().isNegative()) {
 | 
						|
          switch (Pred) {
 | 
						|
          case FCmpInst::FCMP_OLT:
 | 
						|
            // No value is ordered and less than negative infinity.
 | 
						|
            return ConstantInt::getFalse(CFP->getContext());
 | 
						|
          case FCmpInst::FCMP_UGE:
 | 
						|
            // All values are unordered with or at least negative infinity.
 | 
						|
            return ConstantInt::getTrue(CFP->getContext());
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          switch (Pred) {
 | 
						|
          case FCmpInst::FCMP_OGT:
 | 
						|
            // No value is ordered and greater than infinity.
 | 
						|
            return ConstantInt::getFalse(CFP->getContext());
 | 
						|
          case FCmpInst::FCMP_ULE:
 | 
						|
            // All values are unordered with and at most infinity.
 | 
						|
            return ConstantInt::getTrue(CFP->getContext());
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the comparison is with the result of a select instruction, check whether
 | 
						|
  // comparing with either branch of the select always yields the same value.
 | 
						|
  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | 
						|
    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If the comparison is with the result of a phi instruction, check whether
 | 
						|
  // doing the compare with each incoming phi value yields a common result.
 | 
						|
  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | 
						|
    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
 | 
						|
      return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | 
						|
                              const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
 | 
						|
/// the result.  If not, this returns null.
 | 
						|
Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
 | 
						|
                                const TargetData *TD, const DominatorTree *) {
 | 
						|
  // select true, X, Y  -> X
 | 
						|
  // select false, X, Y -> Y
 | 
						|
  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
 | 
						|
    return CB->getZExtValue() ? TrueVal : FalseVal;
 | 
						|
 | 
						|
  // select C, X, X -> X
 | 
						|
  if (TrueVal == FalseVal)
 | 
						|
    return TrueVal;
 | 
						|
 | 
						|
  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | 
						|
    return FalseVal;
 | 
						|
  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | 
						|
    return TrueVal;
 | 
						|
  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | 
						|
    if (isa<Constant>(TrueVal))
 | 
						|
      return TrueVal;
 | 
						|
    return FalseVal;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
 | 
						|
                             const TargetData *TD, const DominatorTree *) {
 | 
						|
  // The type of the GEP pointer operand.
 | 
						|
  const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
 | 
						|
 | 
						|
  // getelementptr P -> P.
 | 
						|
  if (NumOps == 1)
 | 
						|
    return Ops[0];
 | 
						|
 | 
						|
  if (isa<UndefValue>(Ops[0])) {
 | 
						|
    // Compute the (pointer) type returned by the GEP instruction.
 | 
						|
    const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
 | 
						|
                                                             NumOps-1);
 | 
						|
    const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
 | 
						|
    return UndefValue::get(GEPTy);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumOps == 2) {
 | 
						|
    // getelementptr P, 0 -> P.
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
 | 
						|
      if (C->isZero())
 | 
						|
        return Ops[0];
 | 
						|
    // getelementptr P, N -> P if P points to a type of zero size.
 | 
						|
    if (TD) {
 | 
						|
      const Type *Ty = PtrTy->getElementType();
 | 
						|
      if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
 | 
						|
        return Ops[0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this is constant foldable.
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i)
 | 
						|
    if (!isa<Constant>(Ops[i]))
 | 
						|
      return 0;
 | 
						|
 | 
						|
  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
 | 
						|
                                        (Constant *const*)Ops+1, NumOps-1);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
 | 
						|
static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
 | 
						|
  // If all of the PHI's incoming values are the same then replace the PHI node
 | 
						|
  // with the common value.
 | 
						|
  Value *CommonValue = 0;
 | 
						|
  bool HasUndefInput = false;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *Incoming = PN->getIncomingValue(i);
 | 
						|
    // If the incoming value is the phi node itself, it can safely be skipped.
 | 
						|
    if (Incoming == PN) continue;
 | 
						|
    if (isa<UndefValue>(Incoming)) {
 | 
						|
      // Remember that we saw an undef value, but otherwise ignore them.
 | 
						|
      HasUndefInput = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (CommonValue && Incoming != CommonValue)
 | 
						|
      return 0;  // Not the same, bail out.
 | 
						|
    CommonValue = Incoming;
 | 
						|
  }
 | 
						|
 | 
						|
  // If CommonValue is null then all of the incoming values were either undef or
 | 
						|
  // equal to the phi node itself.
 | 
						|
  if (!CommonValue)
 | 
						|
    return UndefValue::get(PN->getType());
 | 
						|
 | 
						|
  // If we have a PHI node like phi(X, undef, X), where X is defined by some
 | 
						|
  // instruction, we cannot return X as the result of the PHI node unless it
 | 
						|
  // dominates the PHI block.
 | 
						|
  if (HasUndefInput)
 | 
						|
    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
 | 
						|
 | 
						|
  return CommonValue;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//=== Helper functions for higher up the class hierarchy.
 | 
						|
 | 
						|
/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
 | 
						|
/// fold the result.  If not, this returns null.
 | 
						|
static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | 
						|
                            const TargetData *TD, const DominatorTree *DT,
 | 
						|
                            unsigned MaxRecurse) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | 
						|
                           TD, DT, MaxRecurse);
 | 
						|
  case Instruction::Sub:
 | 
						|
    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | 
						|
                           TD, DT, MaxRecurse);
 | 
						|
  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
  case Instruction::Shl:
 | 
						|
    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | 
						|
                           TD, DT, MaxRecurse);
 | 
						|
  case Instruction::LShr:
 | 
						|
    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
 | 
						|
  case Instruction::AShr:
 | 
						|
    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
 | 
						|
  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
  default:
 | 
						|
    if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | 
						|
      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
 | 
						|
        Constant *COps[] = {CLHS, CRHS};
 | 
						|
        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
 | 
						|
      }
 | 
						|
 | 
						|
    // If the operation is associative, try some generic simplifications.
 | 
						|
    if (Instruction::isAssociative(Opcode))
 | 
						|
      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
 | 
						|
                                              MaxRecurse))
 | 
						|
        return V;
 | 
						|
 | 
						|
    // If the operation is with the result of a select instruction, check whether
 | 
						|
    // operating on either branch of the select always yields the same value.
 | 
						|
    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | 
						|
      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
 | 
						|
                                           MaxRecurse))
 | 
						|
        return V;
 | 
						|
 | 
						|
    // If the operation is with the result of a phi instruction, check whether
 | 
						|
    // operating on all incoming values of the phi always yields the same value.
 | 
						|
    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | 
						|
      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
 | 
						|
        return V;
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | 
						|
                           const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
 | 
						|
/// fold the result.
 | 
						|
static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | 
						|
                              const TargetData *TD, const DominatorTree *DT,
 | 
						|
                              unsigned MaxRecurse) {
 | 
						|
  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
 | 
						|
    return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | 
						|
                             const TargetData *TD, const DominatorTree *DT) {
 | 
						|
  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyInstruction - See if we can compute a simplified version of this
 | 
						|
/// instruction.  If not, this returns null.
 | 
						|
Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
 | 
						|
                                 const DominatorTree *DT) {
 | 
						|
  Value *Result;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default:
 | 
						|
    Result = ConstantFoldInstruction(I, TD);
 | 
						|
    break;
 | 
						|
  case Instruction::Add:
 | 
						|
    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
 | 
						|
                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | 
						|
                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
 | 
						|
                             TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::Sub:
 | 
						|
    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
 | 
						|
                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | 
						|
                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
 | 
						|
                             TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::Mul:
 | 
						|
    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::SDiv:
 | 
						|
    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::UDiv:
 | 
						|
    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::FDiv:
 | 
						|
    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
 | 
						|
                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | 
						|
                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
 | 
						|
                             TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
 | 
						|
                              cast<BinaryOperator>(I)->isExact(),
 | 
						|
                              TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::AShr:
 | 
						|
    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
 | 
						|
                              cast<BinaryOperator>(I)->isExact(),
 | 
						|
                              TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::And:
 | 
						|
    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::Xor:
 | 
						|
    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::ICmp:
 | 
						|
    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
 | 
						|
                              I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::FCmp:
 | 
						|
    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
 | 
						|
                              I->getOperand(0), I->getOperand(1), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::Select:
 | 
						|
    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
 | 
						|
                                I->getOperand(2), TD, DT);
 | 
						|
    break;
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
 | 
						|
    Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::PHI:
 | 
						|
    Result = SimplifyPHINode(cast<PHINode>(I), DT);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  /// If called on unreachable code, the above logic may report that the
 | 
						|
  /// instruction simplified to itself.  Make life easier for users by
 | 
						|
  /// detecting that case here, returning a safe value instead.
 | 
						|
  return Result == I ? UndefValue::get(I->getType()) : Result;
 | 
						|
}
 | 
						|
 | 
						|
/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
 | 
						|
/// delete the From instruction.  In addition to a basic RAUW, this does a
 | 
						|
/// recursive simplification of the newly formed instructions.  This catches
 | 
						|
/// things where one simplification exposes other opportunities.  This only
 | 
						|
/// simplifies and deletes scalar operations, it does not change the CFG.
 | 
						|
///
 | 
						|
void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
 | 
						|
                                     const TargetData *TD,
 | 
						|
                                     const DominatorTree *DT) {
 | 
						|
  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
 | 
						|
 | 
						|
  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
 | 
						|
  // we can know if it gets deleted out from under us or replaced in a
 | 
						|
  // recursive simplification.
 | 
						|
  WeakVH FromHandle(From);
 | 
						|
  WeakVH ToHandle(To);
 | 
						|
 | 
						|
  while (!From->use_empty()) {
 | 
						|
    // Update the instruction to use the new value.
 | 
						|
    Use &TheUse = From->use_begin().getUse();
 | 
						|
    Instruction *User = cast<Instruction>(TheUse.getUser());
 | 
						|
    TheUse = To;
 | 
						|
 | 
						|
    // Check to see if the instruction can be folded due to the operand
 | 
						|
    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
 | 
						|
    // the 'or' with -1.
 | 
						|
    Value *SimplifiedVal;
 | 
						|
    {
 | 
						|
      // Sanity check to make sure 'User' doesn't dangle across
 | 
						|
      // SimplifyInstruction.
 | 
						|
      AssertingVH<> UserHandle(User);
 | 
						|
 | 
						|
      SimplifiedVal = SimplifyInstruction(User, TD, DT);
 | 
						|
      if (SimplifiedVal == 0) continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Recursively simplify this user to the new value.
 | 
						|
    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
 | 
						|
    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
 | 
						|
    To = ToHandle;
 | 
						|
 | 
						|
    assert(ToHandle && "To value deleted by recursive simplification?");
 | 
						|
 | 
						|
    // If the recursive simplification ended up revisiting and deleting
 | 
						|
    // 'From' then we're done.
 | 
						|
    if (From == 0)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If 'From' has value handles referring to it, do a real RAUW to update them.
 | 
						|
  From->replaceAllUsesWith(To);
 | 
						|
 | 
						|
  From->eraseFromParent();
 | 
						|
}
 |