mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92548 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			394 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the MachineSSAUpdater class. It's based on SSAUpdater
 | |
| // class in lib/Transforms/Utils.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/MachineSSAUpdater.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
 | |
| typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
 | |
|                 IncomingPredInfoTy;
 | |
| 
 | |
| static AvailableValsTy &getAvailableVals(void *AV) {
 | |
|   return *static_cast<AvailableValsTy*>(AV);
 | |
| }
 | |
| 
 | |
| static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
 | |
|   return *static_cast<IncomingPredInfoTy*>(IPI);
 | |
| }
 | |
| 
 | |
| 
 | |
| MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
 | |
|                                      SmallVectorImpl<MachineInstr*> *NewPHI)
 | |
|   : AV(0), IPI(0), InsertedPHIs(NewPHI) {
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
| }
 | |
| 
 | |
| MachineSSAUpdater::~MachineSSAUpdater() {
 | |
|   delete &getAvailableVals(AV);
 | |
|   delete &getIncomingPredInfo(IPI);
 | |
| }
 | |
| 
 | |
| /// Initialize - Reset this object to get ready for a new set of SSA
 | |
| /// updates.  ProtoValue is the value used to name PHI nodes.
 | |
| void MachineSSAUpdater::Initialize(unsigned V) {
 | |
|   if (AV == 0)
 | |
|     AV = new AvailableValsTy();
 | |
|   else
 | |
|     getAvailableVals(AV).clear();
 | |
| 
 | |
|   if (IPI == 0)
 | |
|     IPI = new IncomingPredInfoTy();
 | |
|   else
 | |
|     getIncomingPredInfo(IPI).clear();
 | |
| 
 | |
|   VR = V;
 | |
|   VRC = MRI->getRegClass(VR);
 | |
| }
 | |
| 
 | |
| /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
 | |
| /// the specified block.
 | |
| bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
 | |
|   return getAvailableVals(AV).count(BB);
 | |
| }
 | |
| 
 | |
| /// AddAvailableValue - Indicate that a rewritten value is available in the
 | |
| /// specified block with the specified value.
 | |
| void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
 | |
|   getAvailableVals(AV)[BB] = V;
 | |
| }
 | |
| 
 | |
| /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
 | |
| /// live at the end of the specified block.
 | |
| unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
 | |
|   return GetValueAtEndOfBlockInternal(BB);
 | |
| }
 | |
| 
 | |
| static
 | |
| unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
 | |
|           SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) {
 | |
|   if (BB->empty())
 | |
|     return 0;
 | |
| 
 | |
|   MachineBasicBlock::iterator I = BB->front();
 | |
|   if (I->getOpcode() != TargetInstrInfo::PHI)
 | |
|     return 0;
 | |
| 
 | |
|   AvailableValsTy AVals;
 | |
|   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
 | |
|     AVals[PredValues[i].first] = PredValues[i].second;
 | |
|   while (I != BB->end() && I->getOpcode() == TargetInstrInfo::PHI) {
 | |
|     bool Same = true;
 | |
|     for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
 | |
|       unsigned SrcReg = I->getOperand(i).getReg();
 | |
|       MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
 | |
|       if (AVals[SrcBB] != SrcReg) {
 | |
|         Same = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (Same)
 | |
|       return I->getOperand(0).getReg();
 | |
|     ++I;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
 | |
| /// a value of the given register class at the start of the specified basic
 | |
| /// block. It returns the virtual register defined by the instruction.
 | |
| static
 | |
| MachineInstr *InsertNewDef(unsigned Opcode,
 | |
|                            MachineBasicBlock *BB, MachineBasicBlock::iterator I,
 | |
|                            const TargetRegisterClass *RC,
 | |
|                            MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
 | |
|   unsigned NewVR = MRI->createVirtualRegister(RC);
 | |
|   return BuildMI(*BB, I, DebugLoc::getUnknownLoc(), TII->get(Opcode), NewVR);
 | |
| }
 | |
|                           
 | |
| /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
 | |
| /// is live in the middle of the specified block.
 | |
| ///
 | |
| /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
 | |
| /// important case: if there is a definition of the rewritten value after the
 | |
| /// 'use' in BB.  Consider code like this:
 | |
| ///
 | |
| ///      X1 = ...
 | |
| ///   SomeBB:
 | |
| ///      use(X)
 | |
| ///      X2 = ...
 | |
| ///      br Cond, SomeBB, OutBB
 | |
| ///
 | |
| /// In this case, there are two values (X1 and X2) added to the AvailableVals
 | |
| /// set by the client of the rewriter, and those values are both live out of
 | |
| /// their respective blocks.  However, the use of X happens in the *middle* of
 | |
| /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
 | |
| /// merge the appropriate values, and this value isn't live out of the block.
 | |
| ///
 | |
| unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
 | |
|   // If there is no definition of the renamed variable in this block, just use
 | |
|   // GetValueAtEndOfBlock to do our work.
 | |
|   if (!getAvailableVals(AV).count(BB))
 | |
|     return GetValueAtEndOfBlockInternal(BB);
 | |
| 
 | |
|   // If there are no predecessors, just return undef.
 | |
|   if (BB->pred_empty()) {
 | |
|     // Insert an implicit_def to represent an undef value.
 | |
|     MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
 | |
|                                         BB, BB->getFirstTerminator(),
 | |
|                                         VRC, MRI, TII);
 | |
|     return NewDef->getOperand(0).getReg();
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have the hard case.  Get the live-in values for each
 | |
|   // predecessor.
 | |
|   SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
 | |
|   unsigned SingularValue = 0;
 | |
| 
 | |
|   bool isFirstPred = true;
 | |
|   for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
 | |
|          E = BB->pred_end(); PI != E; ++PI) {
 | |
|     MachineBasicBlock *PredBB = *PI;
 | |
|     unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
 | |
|     PredValues.push_back(std::make_pair(PredBB, PredVal));
 | |
| 
 | |
|     // Compute SingularValue.
 | |
|     if (isFirstPred) {
 | |
|       SingularValue = PredVal;
 | |
|       isFirstPred = false;
 | |
|     } else if (PredVal != SingularValue)
 | |
|       SingularValue = 0;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if all the merged values are the same, just use it.
 | |
|   if (SingularValue != 0)
 | |
|     return SingularValue;
 | |
| 
 | |
|   // If an identical PHI is already in BB, just reuse it.
 | |
|   unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
 | |
|   if (DupPHI)
 | |
|     return DupPHI;
 | |
| 
 | |
|   // Otherwise, we do need a PHI: insert one now.
 | |
|   MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
 | |
|   MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB,
 | |
|                                            Loc, VRC, MRI, TII);
 | |
| 
 | |
|   // Fill in all the predecessors of the PHI.
 | |
|   MachineInstrBuilder MIB(InsertedPHI);
 | |
|   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
 | |
|     MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
 | |
| 
 | |
|   // See if the PHI node can be merged to a single value.  This can happen in
 | |
|   // loop cases when we get a PHI of itself and one other value.
 | |
|   if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
 | |
|     InsertedPHI->eraseFromParent();
 | |
|     return ConstVal;
 | |
|   }
 | |
| 
 | |
|   // If the client wants to know about all new instructions, tell it.
 | |
|   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
 | |
| 
 | |
|   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
 | |
|   return InsertedPHI->getOperand(0).getReg();
 | |
| }
 | |
| 
 | |
| static
 | |
| MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
 | |
|                                          MachineOperand *U) {
 | |
|   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
 | |
|     if (&MI->getOperand(i) == U)
 | |
|       return MI->getOperand(i+1).getMBB();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("MachineOperand::getParent() failure?");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
 | |
| /// which use their value in the corresponding predecessor.
 | |
| void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
 | |
|   MachineInstr *UseMI = U.getParent();
 | |
|   unsigned NewVR = 0;
 | |
|   if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
 | |
|     MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
 | |
|     NewVR = GetValueAtEndOfBlockInternal(SourceBB);
 | |
|   } else {
 | |
|     NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
 | |
|   }
 | |
| 
 | |
|   U.setReg(NewVR);
 | |
| }
 | |
| 
 | |
| void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
 | |
|   MRI->replaceRegWith(OldReg, NewReg);
 | |
| 
 | |
|   AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | |
|   for (DenseMap<MachineBasicBlock*, unsigned>::iterator
 | |
|          I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I)
 | |
|     if (I->second == OldReg)
 | |
|       I->second = NewReg;
 | |
| }
 | |
| 
 | |
| /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
 | |
| /// for the specified BB and if so, return it.  If not, construct SSA form by
 | |
| /// walking predecessors inserting PHI nodes as needed until we get to a block
 | |
| /// where the value is available.
 | |
| ///
 | |
| unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
 | |
|   AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | |
| 
 | |
|   // Query AvailableVals by doing an insertion of null.
 | |
|   std::pair<AvailableValsTy::iterator, bool> InsertRes =
 | |
|     AvailableVals.insert(std::make_pair(BB, 0));
 | |
| 
 | |
|   // Handle the case when the insertion fails because we have already seen BB.
 | |
|   if (!InsertRes.second) {
 | |
|     // If the insertion failed, there are two cases.  The first case is that the
 | |
|     // value is already available for the specified block.  If we get this, just
 | |
|     // return the value.
 | |
|     if (InsertRes.first->second != 0)
 | |
|       return InsertRes.first->second;
 | |
| 
 | |
|     // Otherwise, if the value we find is null, then this is the value is not
 | |
|     // known but it is being computed elsewhere in our recursion.  This means
 | |
|     // that we have a cycle.  Handle this by inserting a PHI node and returning
 | |
|     // it.  When we get back to the first instance of the recursion we will fill
 | |
|     // in the PHI node.
 | |
|     MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
 | |
|     MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
 | |
|                                         VRC, MRI,TII);
 | |
|     unsigned NewVR = NewPHI->getOperand(0).getReg();
 | |
|     InsertRes.first->second = NewVR;
 | |
|     return NewVR;
 | |
|   }
 | |
| 
 | |
|   // If there are no predecessors, then we must have found an unreachable block
 | |
|   // just return 'undef'.  Since there are no predecessors, InsertRes must not
 | |
|   // be invalidated.
 | |
|   if (BB->pred_empty()) {
 | |
|     // Insert an implicit_def to represent an undef value.
 | |
|     MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
 | |
|                                         BB, BB->getFirstTerminator(),
 | |
|                                         VRC, MRI, TII);
 | |
|     return InsertRes.first->second = NewDef->getOperand(0).getReg();
 | |
|   }
 | |
| 
 | |
|   // Okay, the value isn't in the map and we just inserted a null in the entry
 | |
|   // to indicate that we're processing the block.  Since we have no idea what
 | |
|   // value is in this block, we have to recurse through our predecessors.
 | |
|   //
 | |
|   // While we're walking our predecessors, we keep track of them in a vector,
 | |
|   // then insert a PHI node in the end if we actually need one.  We could use a
 | |
|   // smallvector here, but that would take a lot of stack space for every level
 | |
|   // of the recursion, just use IncomingPredInfo as an explicit stack.
 | |
|   IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
 | |
|   unsigned FirstPredInfoEntry = IncomingPredInfo.size();
 | |
| 
 | |
|   // As we're walking the predecessors, keep track of whether they are all
 | |
|   // producing the same value.  If so, this value will capture it, if not, it
 | |
|   // will get reset to null.  We distinguish the no-predecessor case explicitly
 | |
|   // below.
 | |
|   unsigned SingularValue = 0;
 | |
|   bool isFirstPred = true;
 | |
|   for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
 | |
|          E = BB->pred_end(); PI != E; ++PI) {
 | |
|     MachineBasicBlock *PredBB = *PI;
 | |
|     unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
 | |
|     IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
 | |
| 
 | |
|     // Compute SingularValue.
 | |
|     if (isFirstPred) {
 | |
|       SingularValue = PredVal;
 | |
|       isFirstPred = false;
 | |
|     } else if (PredVal != SingularValue)
 | |
|       SingularValue = 0;
 | |
|   }
 | |
| 
 | |
|   /// Look up BB's entry in AvailableVals.  'InsertRes' may be invalidated.  If
 | |
|   /// this block is involved in a loop, a no-entry PHI node will have been
 | |
|   /// inserted as InsertedVal.  Otherwise, we'll still have the null we inserted
 | |
|   /// above.
 | |
|   unsigned &InsertedVal = AvailableVals[BB];
 | |
| 
 | |
|   // If all the predecessor values are the same then we don't need to insert a
 | |
|   // PHI.  This is the simple and common case.
 | |
|   if (SingularValue) {
 | |
|     // If a PHI node got inserted, replace it with the singlar value and delete
 | |
|     // it.
 | |
|     if (InsertedVal) {
 | |
|       MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
 | |
|       // Be careful about dead loops.  These RAUW's also update InsertedVal.
 | |
|       assert(InsertedVal != SingularValue && "Dead loop?");
 | |
|       ReplaceRegWith(InsertedVal, SingularValue);
 | |
|       OldVal->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     InsertedVal = SingularValue;
 | |
| 
 | |
|     // Drop the entries we added in IncomingPredInfo to restore the stack.
 | |
|     IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
 | |
|                            IncomingPredInfo.end());
 | |
|     return InsertedVal;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Otherwise, we do need a PHI: insert one now if we don't already have one.
 | |
|   MachineInstr *InsertedPHI;
 | |
|   if (InsertedVal == 0) {
 | |
|     MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
 | |
|     InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
 | |
|                                VRC, MRI, TII);
 | |
|     InsertedVal = InsertedPHI->getOperand(0).getReg();
 | |
|   } else {
 | |
|     InsertedPHI = MRI->getVRegDef(InsertedVal);
 | |
|   }
 | |
| 
 | |
|   // Fill in all the predecessors of the PHI.
 | |
|   MachineInstrBuilder MIB(InsertedPHI);
 | |
|   for (IncomingPredInfoTy::iterator I =
 | |
|          IncomingPredInfo.begin()+FirstPredInfoEntry,
 | |
|          E = IncomingPredInfo.end(); I != E; ++I)
 | |
|     MIB.addReg(I->second).addMBB(I->first);
 | |
| 
 | |
|   // Drop the entries we added in IncomingPredInfo to restore the stack.
 | |
|   IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
 | |
|                          IncomingPredInfo.end());
 | |
| 
 | |
|   // See if the PHI node can be merged to a single value.  This can happen in
 | |
|   // loop cases when we get a PHI of itself and one other value.
 | |
|   if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
 | |
|     MRI->replaceRegWith(InsertedVal, ConstVal);
 | |
|     InsertedPHI->eraseFromParent();
 | |
|     InsertedVal = ConstVal;
 | |
|   } else {
 | |
|     DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
 | |
| 
 | |
|     // If the client wants to know about all new instructions, tell it.
 | |
|     if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
 | |
|   }
 | |
| 
 | |
|   return InsertedVal;
 | |
| }
 |