mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	Intrinsic::dbg_stoppoint Intrinsic::dbg_region_start Intrinsic::dbg_region_end Intrinsic::dbg_func_start AutoUpgrade simply ignores these intrinsics now. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92557 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			643 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			643 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements inlining of a function into a call site, resolving
 | 
						|
// parameters and the return value as appropriate.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Attributes.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/DebugInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD,
 | 
						|
                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
 | 
						|
  return InlineFunction(CallSite(CI), CG, TD, StaticAllocas);
 | 
						|
}
 | 
						|
bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD,
 | 
						|
                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
 | 
						|
  return InlineFunction(CallSite(II), CG, TD, StaticAllocas);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
 | 
						|
/// an invoke, we have to turn all of the calls that can throw into
 | 
						|
/// invokes.  This function analyze BB to see if there are any calls, and if so,
 | 
						|
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
 | 
						|
/// nodes in that block with the values specified in InvokeDestPHIValues.
 | 
						|
///
 | 
						|
static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
 | 
						|
                                                   BasicBlock *InvokeDest,
 | 
						|
                           const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
 | 
						|
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | 
						|
    Instruction *I = BBI++;
 | 
						|
    
 | 
						|
    // We only need to check for function calls: inlined invoke
 | 
						|
    // instructions require no special handling.
 | 
						|
    CallInst *CI = dyn_cast<CallInst>(I);
 | 
						|
    if (CI == 0) continue;
 | 
						|
    
 | 
						|
    // If this call cannot unwind, don't convert it to an invoke.
 | 
						|
    if (CI->doesNotThrow())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Convert this function call into an invoke instruction.
 | 
						|
    // First, split the basic block.
 | 
						|
    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
 | 
						|
    
 | 
						|
    // Next, create the new invoke instruction, inserting it at the end
 | 
						|
    // of the old basic block.
 | 
						|
    SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
 | 
						|
    InvokeInst *II =
 | 
						|
      InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
 | 
						|
                         InvokeArgs.begin(), InvokeArgs.end(),
 | 
						|
                         CI->getName(), BB->getTerminator());
 | 
						|
    II->setCallingConv(CI->getCallingConv());
 | 
						|
    II->setAttributes(CI->getAttributes());
 | 
						|
    
 | 
						|
    // Make sure that anything using the call now uses the invoke!  This also
 | 
						|
    // updates the CallGraph if present.
 | 
						|
    CI->replaceAllUsesWith(II);
 | 
						|
    
 | 
						|
    // Delete the unconditional branch inserted by splitBasicBlock
 | 
						|
    BB->getInstList().pop_back();
 | 
						|
    Split->getInstList().pop_front();  // Delete the original call
 | 
						|
    
 | 
						|
    // Update any PHI nodes in the exceptional block to indicate that
 | 
						|
    // there is now a new entry in them.
 | 
						|
    unsigned i = 0;
 | 
						|
    for (BasicBlock::iterator I = InvokeDest->begin();
 | 
						|
         isa<PHINode>(I); ++I, ++i)
 | 
						|
      cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
 | 
						|
    
 | 
						|
    // This basic block is now complete, the caller will continue scanning the
 | 
						|
    // next one.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
  
 | 
						|
 | 
						|
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
 | 
						|
/// in the body of the inlined function into invokes and turn unwind
 | 
						|
/// instructions into branches to the invoke unwind dest.
 | 
						|
///
 | 
						|
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
 | 
						|
/// block of the inlined code (the last block is the end of the function),
 | 
						|
/// and InlineCodeInfo is information about the code that got inlined.
 | 
						|
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
 | 
						|
                                ClonedCodeInfo &InlinedCodeInfo) {
 | 
						|
  BasicBlock *InvokeDest = II->getUnwindDest();
 | 
						|
  SmallVector<Value*, 8> InvokeDestPHIValues;
 | 
						|
 | 
						|
  // If there are PHI nodes in the unwind destination block, we need to
 | 
						|
  // keep track of which values came into them from this invoke, then remove
 | 
						|
  // the entry for this block.
 | 
						|
  BasicBlock *InvokeBlock = II->getParent();
 | 
						|
  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    // Save the value to use for this edge.
 | 
						|
    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
 | 
						|
  }
 | 
						|
 | 
						|
  Function *Caller = FirstNewBlock->getParent();
 | 
						|
 | 
						|
  // The inlined code is currently at the end of the function, scan from the
 | 
						|
  // start of the inlined code to its end, checking for stuff we need to
 | 
						|
  // rewrite.  If the code doesn't have calls or unwinds, we know there is
 | 
						|
  // nothing to rewrite.
 | 
						|
  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
 | 
						|
    // Now that everything is happy, we have one final detail.  The PHI nodes in
 | 
						|
    // the exception destination block still have entries due to the original
 | 
						|
    // invoke instruction.  Eliminate these entries (which might even delete the
 | 
						|
    // PHI node) now.
 | 
						|
    InvokeDest->removePredecessor(II->getParent());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
 | 
						|
    if (InlinedCodeInfo.ContainsCalls)
 | 
						|
      HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
 | 
						|
                                             InvokeDestPHIValues);
 | 
						|
 | 
						|
    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
 | 
						|
      // An UnwindInst requires special handling when it gets inlined into an
 | 
						|
      // invoke site.  Once this happens, we know that the unwind would cause
 | 
						|
      // a control transfer to the invoke exception destination, so we can
 | 
						|
      // transform it into a direct branch to the exception destination.
 | 
						|
      BranchInst::Create(InvokeDest, UI);
 | 
						|
 | 
						|
      // Delete the unwind instruction!
 | 
						|
      UI->eraseFromParent();
 | 
						|
 | 
						|
      // Update any PHI nodes in the exceptional block to indicate that
 | 
						|
      // there is now a new entry in them.
 | 
						|
      unsigned i = 0;
 | 
						|
      for (BasicBlock::iterator I = InvokeDest->begin();
 | 
						|
           isa<PHINode>(I); ++I, ++i) {
 | 
						|
        PHINode *PN = cast<PHINode>(I);
 | 
						|
        PN->addIncoming(InvokeDestPHIValues[i], BB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that everything is happy, we have one final detail.  The PHI nodes in
 | 
						|
  // the exception destination block still have entries due to the original
 | 
						|
  // invoke instruction.  Eliminate these entries (which might even delete the
 | 
						|
  // PHI node) now.
 | 
						|
  InvokeDest->removePredecessor(II->getParent());
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
 | 
						|
/// into the caller, update the specified callgraph to reflect the changes we
 | 
						|
/// made.  Note that it's possible that not all code was copied over, so only
 | 
						|
/// some edges of the callgraph may remain.
 | 
						|
static void UpdateCallGraphAfterInlining(CallSite CS,
 | 
						|
                                         Function::iterator FirstNewBlock,
 | 
						|
                                       DenseMap<const Value*, Value*> &ValueMap,
 | 
						|
                                         CallGraph &CG) {
 | 
						|
  const Function *Caller = CS.getInstruction()->getParent()->getParent();
 | 
						|
  const Function *Callee = CS.getCalledFunction();
 | 
						|
  CallGraphNode *CalleeNode = CG[Callee];
 | 
						|
  CallGraphNode *CallerNode = CG[Caller];
 | 
						|
 | 
						|
  // Since we inlined some uninlined call sites in the callee into the caller,
 | 
						|
  // add edges from the caller to all of the callees of the callee.
 | 
						|
  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
 | 
						|
 | 
						|
  // Consider the case where CalleeNode == CallerNode.
 | 
						|
  CallGraphNode::CalledFunctionsVector CallCache;
 | 
						|
  if (CalleeNode == CallerNode) {
 | 
						|
    CallCache.assign(I, E);
 | 
						|
    I = CallCache.begin();
 | 
						|
    E = CallCache.end();
 | 
						|
  }
 | 
						|
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    const Value *OrigCall = I->first;
 | 
						|
 | 
						|
    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
 | 
						|
    // Only copy the edge if the call was inlined!
 | 
						|
    if (VMI == ValueMap.end() || VMI->second == 0)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If the call was inlined, but then constant folded, there is no edge to
 | 
						|
    // add.  Check for this case.
 | 
						|
    if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
 | 
						|
      CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Update the call graph by deleting the edge from Callee to Caller.  We must
 | 
						|
  // do this after the loop above in case Caller and Callee are the same.
 | 
						|
  CallerNode->removeCallEdgeFor(CS);
 | 
						|
}
 | 
						|
 | 
						|
// InlineFunction - This function inlines the called function into the basic
 | 
						|
// block of the caller.  This returns false if it is not possible to inline this
 | 
						|
// call.  The program is still in a well defined state if this occurs though.
 | 
						|
//
 | 
						|
// Note that this only does one level of inlining.  For example, if the
 | 
						|
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
 | 
						|
// exists in the instruction stream.  Similiarly this will inline a recursive
 | 
						|
// function by one level.
 | 
						|
//
 | 
						|
bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD,
 | 
						|
                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
 | 
						|
  Instruction *TheCall = CS.getInstruction();
 | 
						|
  LLVMContext &Context = TheCall->getContext();
 | 
						|
  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
 | 
						|
         "Instruction not in function!");
 | 
						|
 | 
						|
  const Function *CalledFunc = CS.getCalledFunction();
 | 
						|
  if (CalledFunc == 0 ||          // Can't inline external function or indirect
 | 
						|
      CalledFunc->isDeclaration() || // call, or call to a vararg function!
 | 
						|
      CalledFunc->getFunctionType()->isVarArg()) return false;
 | 
						|
 | 
						|
 | 
						|
  // If the call to the callee is not a tail call, we must clear the 'tail'
 | 
						|
  // flags on any calls that we inline.
 | 
						|
  bool MustClearTailCallFlags =
 | 
						|
    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
 | 
						|
 | 
						|
  // If the call to the callee cannot throw, set the 'nounwind' flag on any
 | 
						|
  // calls that we inline.
 | 
						|
  bool MarkNoUnwind = CS.doesNotThrow();
 | 
						|
 | 
						|
  BasicBlock *OrigBB = TheCall->getParent();
 | 
						|
  Function *Caller = OrigBB->getParent();
 | 
						|
 | 
						|
  // GC poses two hazards to inlining, which only occur when the callee has GC:
 | 
						|
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
 | 
						|
  //     caller.
 | 
						|
  //  2. If the caller has a differing GC, it is invalid to inline.
 | 
						|
  if (CalledFunc->hasGC()) {
 | 
						|
    if (!Caller->hasGC())
 | 
						|
      Caller->setGC(CalledFunc->getGC());
 | 
						|
    else if (CalledFunc->getGC() != Caller->getGC())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get an iterator to the last basic block in the function, which will have
 | 
						|
  // the new function inlined after it.
 | 
						|
  //
 | 
						|
  Function::iterator LastBlock = &Caller->back();
 | 
						|
 | 
						|
  // Make sure to capture all of the return instructions from the cloned
 | 
						|
  // function.
 | 
						|
  SmallVector<ReturnInst*, 8> Returns;
 | 
						|
  ClonedCodeInfo InlinedFunctionInfo;
 | 
						|
  Function::iterator FirstNewBlock;
 | 
						|
 | 
						|
  { // Scope to destroy ValueMap after cloning.
 | 
						|
    DenseMap<const Value*, Value*> ValueMap;
 | 
						|
 | 
						|
    assert(CalledFunc->arg_size() == CS.arg_size() &&
 | 
						|
           "No varargs calls can be inlined!");
 | 
						|
 | 
						|
    // Calculate the vector of arguments to pass into the function cloner, which
 | 
						|
    // matches up the formal to the actual argument values.
 | 
						|
    CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | 
						|
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
 | 
						|
      Value *ActualArg = *AI;
 | 
						|
 | 
						|
      // When byval arguments actually inlined, we need to make the copy implied
 | 
						|
      // by them explicit.  However, we don't do this if the callee is readonly
 | 
						|
      // or readnone, because the copy would be unneeded: the callee doesn't
 | 
						|
      // modify the struct.
 | 
						|
      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
 | 
						|
          !CalledFunc->onlyReadsMemory()) {
 | 
						|
        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
 | 
						|
        const Type *VoidPtrTy = 
 | 
						|
            Type::getInt8PtrTy(Context);
 | 
						|
 | 
						|
        // Create the alloca.  If we have TargetData, use nice alignment.
 | 
						|
        unsigned Align = 1;
 | 
						|
        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
 | 
						|
        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, 
 | 
						|
                                          I->getName(), 
 | 
						|
                                          &*Caller->begin()->begin());
 | 
						|
        // Emit a memcpy.
 | 
						|
        const Type *Tys[] = { Type::getInt64Ty(Context) };
 | 
						|
        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
 | 
						|
                                                       Intrinsic::memcpy, 
 | 
						|
                                                       Tys, 1);
 | 
						|
        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
 | 
						|
        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
 | 
						|
 | 
						|
        Value *Size;
 | 
						|
        if (TD == 0)
 | 
						|
          Size = ConstantExpr::getSizeOf(AggTy);
 | 
						|
        else
 | 
						|
          Size = ConstantInt::get(Type::getInt64Ty(Context),
 | 
						|
                                         TD->getTypeStoreSize(AggTy));
 | 
						|
 | 
						|
        // Always generate a memcpy of alignment 1 here because we don't know
 | 
						|
        // the alignment of the src pointer.  Other optimizations can infer
 | 
						|
        // better alignment.
 | 
						|
        Value *CallArgs[] = {
 | 
						|
          DestCast, SrcCast, Size,
 | 
						|
          ConstantInt::get(Type::getInt32Ty(Context), 1)
 | 
						|
        };
 | 
						|
        CallInst *TheMemCpy =
 | 
						|
          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
 | 
						|
 | 
						|
        // If we have a call graph, update it.
 | 
						|
        if (CG) {
 | 
						|
          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
 | 
						|
          CallGraphNode *CallerNode = (*CG)[Caller];
 | 
						|
          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
 | 
						|
        }
 | 
						|
 | 
						|
        // Uses of the argument in the function should use our new alloca
 | 
						|
        // instead.
 | 
						|
        ActualArg = NewAlloca;
 | 
						|
      }
 | 
						|
 | 
						|
      ValueMap[I] = ActualArg;
 | 
						|
    }
 | 
						|
 | 
						|
    // We want the inliner to prune the code as it copies.  We would LOVE to
 | 
						|
    // have no dead or constant instructions leftover after inlining occurs
 | 
						|
    // (which can happen, e.g., because an argument was constant), but we'll be
 | 
						|
    // happy with whatever the cloner can do.
 | 
						|
    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
 | 
						|
                              &InlinedFunctionInfo, TD, TheCall);
 | 
						|
 | 
						|
    // Remember the first block that is newly cloned over.
 | 
						|
    FirstNewBlock = LastBlock; ++FirstNewBlock;
 | 
						|
 | 
						|
    // Update the callgraph if requested.
 | 
						|
    if (CG)
 | 
						|
      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any alloca instructions in the block that used to be the entry
 | 
						|
  // block for the callee, move them to the entry block of the caller.  First
 | 
						|
  // calculate which instruction they should be inserted before.  We insert the
 | 
						|
  // instructions at the end of the current alloca list.
 | 
						|
  //
 | 
						|
  {
 | 
						|
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | 
						|
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
 | 
						|
         E = FirstNewBlock->end(); I != E; ) {
 | 
						|
      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
 | 
						|
      if (AI == 0) continue;
 | 
						|
      
 | 
						|
      // If the alloca is now dead, remove it.  This often occurs due to code
 | 
						|
      // specialization.
 | 
						|
      if (AI->use_empty()) {
 | 
						|
        AI->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!isa<Constant>(AI->getArraySize()))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Keep track of the static allocas that we inline into the caller if the
 | 
						|
      // StaticAllocas pointer is non-null.
 | 
						|
      if (StaticAllocas) StaticAllocas->push_back(AI);
 | 
						|
      
 | 
						|
      // Scan for the block of allocas that we can move over, and move them
 | 
						|
      // all at once.
 | 
						|
      while (isa<AllocaInst>(I) &&
 | 
						|
             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
 | 
						|
        if (StaticAllocas) StaticAllocas->push_back(cast<AllocaInst>(I));
 | 
						|
        ++I;
 | 
						|
      }
 | 
						|
 | 
						|
      // Transfer all of the allocas over in a block.  Using splice means
 | 
						|
      // that the instructions aren't removed from the symbol table, then
 | 
						|
      // reinserted.
 | 
						|
      Caller->getEntryBlock().getInstList().splice(InsertPoint,
 | 
						|
                                                   FirstNewBlock->getInstList(),
 | 
						|
                                                   AI, I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the inlined code contained dynamic alloca instructions, wrap the inlined
 | 
						|
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
 | 
						|
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
 | 
						|
    Module *M = Caller->getParent();
 | 
						|
    // Get the two intrinsics we care about.
 | 
						|
    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
 | 
						|
    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
 | 
						|
 | 
						|
    // If we are preserving the callgraph, add edges to the stacksave/restore
 | 
						|
    // functions for the calls we insert.
 | 
						|
    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
 | 
						|
    if (CG) {
 | 
						|
      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
 | 
						|
      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
 | 
						|
      CallerNode = (*CG)[Caller];
 | 
						|
    }
 | 
						|
 | 
						|
    // Insert the llvm.stacksave.
 | 
						|
    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
 | 
						|
                                          FirstNewBlock->begin());
 | 
						|
    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
 | 
						|
 | 
						|
    // Insert a call to llvm.stackrestore before any return instructions in the
 | 
						|
    // inlined function.
 | 
						|
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | 
						|
      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
 | 
						|
      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
 | 
						|
    }
 | 
						|
 | 
						|
    // Count the number of StackRestore calls we insert.
 | 
						|
    unsigned NumStackRestores = Returns.size();
 | 
						|
 | 
						|
    // If we are inlining an invoke instruction, insert restores before each
 | 
						|
    // unwind.  These unwinds will be rewritten into branches later.
 | 
						|
    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
 | 
						|
      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | 
						|
           BB != E; ++BB)
 | 
						|
        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
 | 
						|
          CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
 | 
						|
          if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
 | 
						|
          ++NumStackRestores;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are inlining tail call instruction through a call site that isn't
 | 
						|
  // marked 'tail', we must remove the tail marker for any calls in the inlined
 | 
						|
  // code.  Also, calls inlined through a 'nounwind' call site should be marked
 | 
						|
  // 'nounwind'.
 | 
						|
  if (InlinedFunctionInfo.ContainsCalls &&
 | 
						|
      (MustClearTailCallFlags || MarkNoUnwind)) {
 | 
						|
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | 
						|
         BB != E; ++BB)
 | 
						|
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
        if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
          if (MustClearTailCallFlags)
 | 
						|
            CI->setTailCall(false);
 | 
						|
          if (MarkNoUnwind)
 | 
						|
            CI->setDoesNotThrow();
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
 | 
						|
  // instructions are unreachable.
 | 
						|
  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
 | 
						|
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | 
						|
         BB != E; ++BB) {
 | 
						|
      TerminatorInst *Term = BB->getTerminator();
 | 
						|
      if (isa<UnwindInst>(Term)) {
 | 
						|
        new UnreachableInst(Context, Term);
 | 
						|
        BB->getInstList().erase(Term);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // If we are inlining for an invoke instruction, we must make sure to rewrite
 | 
						|
  // any inlined 'unwind' instructions into branches to the invoke exception
 | 
						|
  // destination, and call instructions into invoke instructions.
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
 | 
						|
    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
 | 
						|
 | 
						|
  // If we cloned in _exactly one_ basic block, and if that block ends in a
 | 
						|
  // return instruction, we splice the body of the inlined callee directly into
 | 
						|
  // the calling basic block.
 | 
						|
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
 | 
						|
    // Move all of the instructions right before the call.
 | 
						|
    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
 | 
						|
                                 FirstNewBlock->begin(), FirstNewBlock->end());
 | 
						|
    // Remove the cloned basic block.
 | 
						|
    Caller->getBasicBlockList().pop_back();
 | 
						|
 | 
						|
    // If the call site was an invoke instruction, add a branch to the normal
 | 
						|
    // destination.
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
 | 
						|
      BranchInst::Create(II->getNormalDest(), TheCall);
 | 
						|
 | 
						|
    // If the return instruction returned a value, replace uses of the call with
 | 
						|
    // uses of the returned value.
 | 
						|
    if (!TheCall->use_empty()) {
 | 
						|
      ReturnInst *R = Returns[0];
 | 
						|
      if (TheCall == R->getReturnValue())
 | 
						|
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | 
						|
      else
 | 
						|
        TheCall->replaceAllUsesWith(R->getReturnValue());
 | 
						|
    }
 | 
						|
    // Since we are now done with the Call/Invoke, we can delete it.
 | 
						|
    TheCall->eraseFromParent();
 | 
						|
 | 
						|
    // Since we are now done with the return instruction, delete it also.
 | 
						|
    Returns[0]->eraseFromParent();
 | 
						|
 | 
						|
    // We are now done with the inlining.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have the normal case, of more than one block to inline or
 | 
						|
  // multiple return sites.
 | 
						|
 | 
						|
  // We want to clone the entire callee function into the hole between the
 | 
						|
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | 
						|
  // this is an invoke instruction or a call instruction.
 | 
						|
  BasicBlock *AfterCallBB;
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | 
						|
 | 
						|
    // Add an unconditional branch to make this look like the CallInst case...
 | 
						|
    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
 | 
						|
 | 
						|
    // Split the basic block.  This guarantees that no PHI nodes will have to be
 | 
						|
    // updated due to new incoming edges, and make the invoke case more
 | 
						|
    // symmetric to the call case.
 | 
						|
    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
 | 
						|
                                          CalledFunc->getName()+".exit");
 | 
						|
 | 
						|
  } else {  // It's a call
 | 
						|
    // If this is a call instruction, we need to split the basic block that
 | 
						|
    // the call lives in.
 | 
						|
    //
 | 
						|
    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
 | 
						|
                                          CalledFunc->getName()+".exit");
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the branch that used to go to AfterCallBB to branch to the first
 | 
						|
  // basic block of the inlined function.
 | 
						|
  //
 | 
						|
  TerminatorInst *Br = OrigBB->getTerminator();
 | 
						|
  assert(Br && Br->getOpcode() == Instruction::Br &&
 | 
						|
         "splitBasicBlock broken!");
 | 
						|
  Br->setOperand(0, FirstNewBlock);
 | 
						|
 | 
						|
 | 
						|
  // Now that the function is correct, make it a little bit nicer.  In
 | 
						|
  // particular, move the basic blocks inserted from the end of the function
 | 
						|
  // into the space made by splitting the source basic block.
 | 
						|
  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
 | 
						|
                                     FirstNewBlock, Caller->end());
 | 
						|
 | 
						|
  // Handle all of the return instructions that we just cloned in, and eliminate
 | 
						|
  // any users of the original call/invoke instruction.
 | 
						|
  const Type *RTy = CalledFunc->getReturnType();
 | 
						|
 | 
						|
  if (Returns.size() > 1) {
 | 
						|
    // The PHI node should go at the front of the new basic block to merge all
 | 
						|
    // possible incoming values.
 | 
						|
    PHINode *PHI = 0;
 | 
						|
    if (!TheCall->use_empty()) {
 | 
						|
      PHI = PHINode::Create(RTy, TheCall->getName(),
 | 
						|
                            AfterCallBB->begin());
 | 
						|
      // Anything that used the result of the function call should now use the
 | 
						|
      // PHI node as their operand.
 | 
						|
      TheCall->replaceAllUsesWith(PHI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over all of the return instructions adding entries to the PHI node
 | 
						|
    // as appropriate.
 | 
						|
    if (PHI) {
 | 
						|
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | 
						|
        ReturnInst *RI = Returns[i];
 | 
						|
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
 | 
						|
               "Ret value not consistent in function!");
 | 
						|
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
 | 
						|
      }
 | 
						|
    
 | 
						|
      // Now that we inserted the PHI, check to see if it has a single value
 | 
						|
      // (e.g. all the entries are the same or undef).  If so, remove the PHI so
 | 
						|
      // it doesn't block other optimizations.
 | 
						|
      if (Value *V = PHI->hasConstantValue()) {
 | 
						|
        PHI->replaceAllUsesWith(V);
 | 
						|
        PHI->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Add a branch to the merge points and remove return instructions.
 | 
						|
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | 
						|
      ReturnInst *RI = Returns[i];
 | 
						|
      BranchInst::Create(AfterCallBB, RI);
 | 
						|
      RI->eraseFromParent();
 | 
						|
    }
 | 
						|
  } else if (!Returns.empty()) {
 | 
						|
    // Otherwise, if there is exactly one return value, just replace anything
 | 
						|
    // using the return value of the call with the computed value.
 | 
						|
    if (!TheCall->use_empty()) {
 | 
						|
      if (TheCall == Returns[0]->getReturnValue())
 | 
						|
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | 
						|
      else
 | 
						|
        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
 | 
						|
    }
 | 
						|
 | 
						|
    // Splice the code from the return block into the block that it will return
 | 
						|
    // to, which contains the code that was after the call.
 | 
						|
    BasicBlock *ReturnBB = Returns[0]->getParent();
 | 
						|
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
 | 
						|
                                      ReturnBB->getInstList());
 | 
						|
 | 
						|
    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
 | 
						|
    ReturnBB->replaceAllUsesWith(AfterCallBB);
 | 
						|
 | 
						|
    // Delete the return instruction now and empty ReturnBB now.
 | 
						|
    Returns[0]->eraseFromParent();
 | 
						|
    ReturnBB->eraseFromParent();
 | 
						|
  } else if (!TheCall->use_empty()) {
 | 
						|
    // No returns, but something is using the return value of the call.  Just
 | 
						|
    // nuke the result.
 | 
						|
    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we are now done with the Call/Invoke, we can delete it.
 | 
						|
  TheCall->eraseFromParent();
 | 
						|
 | 
						|
  // We should always be able to fold the entry block of the function into the
 | 
						|
  // single predecessor of the block...
 | 
						|
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | 
						|
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | 
						|
 | 
						|
  // Splice the code entry block into calling block, right before the
 | 
						|
  // unconditional branch.
 | 
						|
  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
 | 
						|
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
 | 
						|
 | 
						|
  // Remove the unconditional branch.
 | 
						|
  OrigBB->getInstList().erase(Br);
 | 
						|
 | 
						|
  // Now we can remove the CalleeEntry block, which is now empty.
 | 
						|
  Caller->getBasicBlockList().erase(CalleeEntry);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |