mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	The comment was made stale in r171735. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235414 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			5110 lines
		
	
	
		
			189 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5110 lines
		
	
	
		
			189 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation analyzes and transforms the induction variables (and
 | 
						|
// computations derived from them) into forms suitable for efficient execution
 | 
						|
// on the target.
 | 
						|
//
 | 
						|
// This pass performs a strength reduction on array references inside loops that
 | 
						|
// have as one or more of their components the loop induction variable, it
 | 
						|
// rewrites expressions to take advantage of scaled-index addressing modes
 | 
						|
// available on the target, and it performs a variety of other optimizations
 | 
						|
// related to loop induction variables.
 | 
						|
//
 | 
						|
// Terminology note: this code has a lot of handling for "post-increment" or
 | 
						|
// "post-inc" users. This is not talking about post-increment addressing modes;
 | 
						|
// it is instead talking about code like this:
 | 
						|
//
 | 
						|
//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
 | 
						|
//   ...
 | 
						|
//   %i.next = add %i, 1
 | 
						|
//   %c = icmp eq %i.next, %n
 | 
						|
//
 | 
						|
// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
 | 
						|
// it's useful to think about these as the same register, with some uses using
 | 
						|
// the value of the register before the add and some using it after. In this
 | 
						|
// example, the icmp is a post-increment user, since it uses %i.next, which is
 | 
						|
// the value of the induction variable after the increment. The other common
 | 
						|
// case of post-increment users is users outside the loop.
 | 
						|
//
 | 
						|
// TODO: More sophistication in the way Formulae are generated and filtered.
 | 
						|
//
 | 
						|
// TODO: Handle multiple loops at a time.
 | 
						|
//
 | 
						|
// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
 | 
						|
//       of a GlobalValue?
 | 
						|
//
 | 
						|
// TODO: When truncation is free, truncate ICmp users' operands to make it a
 | 
						|
//       smaller encoding (on x86 at least).
 | 
						|
//
 | 
						|
// TODO: When a negated register is used by an add (such as in a list of
 | 
						|
//       multiple base registers, or as the increment expression in an addrec),
 | 
						|
//       we may not actually need both reg and (-1 * reg) in registers; the
 | 
						|
//       negation can be implemented by using a sub instead of an add. The
 | 
						|
//       lack of support for taking this into consideration when making
 | 
						|
//       register pressure decisions is partly worked around by the "Special"
 | 
						|
//       use kind.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/Analysis/IVUsers.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-reduce"
 | 
						|
 | 
						|
/// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
 | 
						|
/// bail out. This threshold is far beyond the number of users that LSR can
 | 
						|
/// conceivably solve, so it should not affect generated code, but catches the
 | 
						|
/// worst cases before LSR burns too much compile time and stack space.
 | 
						|
static const unsigned MaxIVUsers = 200;
 | 
						|
 | 
						|
// Temporary flag to cleanup congruent phis after LSR phi expansion.
 | 
						|
// It's currently disabled until we can determine whether it's truly useful or
 | 
						|
// not. The flag should be removed after the v3.0 release.
 | 
						|
// This is now needed for ivchains.
 | 
						|
static cl::opt<bool> EnablePhiElim(
 | 
						|
  "enable-lsr-phielim", cl::Hidden, cl::init(true),
 | 
						|
  cl::desc("Enable LSR phi elimination"));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
// Stress test IV chain generation.
 | 
						|
static cl::opt<bool> StressIVChain(
 | 
						|
  "stress-ivchain", cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Stress test LSR IV chains"));
 | 
						|
#else
 | 
						|
static bool StressIVChain = false;
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// RegSortData - This class holds data which is used to order reuse candidates.
 | 
						|
class RegSortData {
 | 
						|
public:
 | 
						|
  /// UsedByIndices - This represents the set of LSRUse indices which reference
 | 
						|
  /// a particular register.
 | 
						|
  SmallBitVector UsedByIndices;
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void RegSortData::print(raw_ostream &OS) const {
 | 
						|
  OS << "[NumUses=" << UsedByIndices.count() << ']';
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void RegSortData::dump() const {
 | 
						|
  print(errs()); errs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// RegUseTracker - Map register candidates to information about how they are
 | 
						|
/// used.
 | 
						|
class RegUseTracker {
 | 
						|
  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
 | 
						|
 | 
						|
  RegUsesTy RegUsesMap;
 | 
						|
  SmallVector<const SCEV *, 16> RegSequence;
 | 
						|
 | 
						|
public:
 | 
						|
  void CountRegister(const SCEV *Reg, size_t LUIdx);
 | 
						|
  void DropRegister(const SCEV *Reg, size_t LUIdx);
 | 
						|
  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
 | 
						|
 | 
						|
  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
 | 
						|
 | 
						|
  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
 | 
						|
 | 
						|
  void clear();
 | 
						|
 | 
						|
  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
 | 
						|
  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
 | 
						|
  iterator begin() { return RegSequence.begin(); }
 | 
						|
  iterator end()   { return RegSequence.end(); }
 | 
						|
  const_iterator begin() const { return RegSequence.begin(); }
 | 
						|
  const_iterator end() const   { return RegSequence.end(); }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
 | 
						|
  std::pair<RegUsesTy::iterator, bool> Pair =
 | 
						|
    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
 | 
						|
  RegSortData &RSD = Pair.first->second;
 | 
						|
  if (Pair.second)
 | 
						|
    RegSequence.push_back(Reg);
 | 
						|
  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
 | 
						|
  RSD.UsedByIndices.set(LUIdx);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
 | 
						|
  RegUsesTy::iterator It = RegUsesMap.find(Reg);
 | 
						|
  assert(It != RegUsesMap.end());
 | 
						|
  RegSortData &RSD = It->second;
 | 
						|
  assert(RSD.UsedByIndices.size() > LUIdx);
 | 
						|
  RSD.UsedByIndices.reset(LUIdx);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
 | 
						|
  assert(LUIdx <= LastLUIdx);
 | 
						|
 | 
						|
  // Update RegUses. The data structure is not optimized for this purpose;
 | 
						|
  // we must iterate through it and update each of the bit vectors.
 | 
						|
  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
 | 
						|
    if (LUIdx < UsedByIndices.size())
 | 
						|
      UsedByIndices[LUIdx] =
 | 
						|
        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
 | 
						|
    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
 | 
						|
  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
 | 
						|
  if (I == RegUsesMap.end())
 | 
						|
    return false;
 | 
						|
  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
 | 
						|
  int i = UsedByIndices.find_first();
 | 
						|
  if (i == -1) return false;
 | 
						|
  if ((size_t)i != LUIdx) return true;
 | 
						|
  return UsedByIndices.find_next(i) != -1;
 | 
						|
}
 | 
						|
 | 
						|
const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
 | 
						|
  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
 | 
						|
  assert(I != RegUsesMap.end() && "Unknown register!");
 | 
						|
  return I->second.UsedByIndices;
 | 
						|
}
 | 
						|
 | 
						|
void RegUseTracker::clear() {
 | 
						|
  RegUsesMap.clear();
 | 
						|
  RegSequence.clear();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Formula - This class holds information that describes a formula for
 | 
						|
/// computing satisfying a use. It may include broken-out immediates and scaled
 | 
						|
/// registers.
 | 
						|
struct Formula {
 | 
						|
  /// Global base address used for complex addressing.
 | 
						|
  GlobalValue *BaseGV;
 | 
						|
 | 
						|
  /// Base offset for complex addressing.
 | 
						|
  int64_t BaseOffset;
 | 
						|
 | 
						|
  /// Whether any complex addressing has a base register.
 | 
						|
  bool HasBaseReg;
 | 
						|
 | 
						|
  /// The scale of any complex addressing.
 | 
						|
  int64_t Scale;
 | 
						|
 | 
						|
  /// BaseRegs - The list of "base" registers for this use. When this is
 | 
						|
  /// non-empty. The canonical representation of a formula is
 | 
						|
  /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
 | 
						|
  /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
 | 
						|
  /// #1 enforces that the scaled register is always used when at least two
 | 
						|
  /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
 | 
						|
  /// #2 enforces that 1 * reg is reg.
 | 
						|
  /// This invariant can be temporarly broken while building a formula.
 | 
						|
  /// However, every formula inserted into the LSRInstance must be in canonical
 | 
						|
  /// form.
 | 
						|
  SmallVector<const SCEV *, 4> BaseRegs;
 | 
						|
 | 
						|
  /// ScaledReg - The 'scaled' register for this use. This should be non-null
 | 
						|
  /// when Scale is not zero.
 | 
						|
  const SCEV *ScaledReg;
 | 
						|
 | 
						|
  /// UnfoldedOffset - An additional constant offset which added near the
 | 
						|
  /// use. This requires a temporary register, but the offset itself can
 | 
						|
  /// live in an add immediate field rather than a register.
 | 
						|
  int64_t UnfoldedOffset;
 | 
						|
 | 
						|
  Formula()
 | 
						|
      : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
 | 
						|
        ScaledReg(nullptr), UnfoldedOffset(0) {}
 | 
						|
 | 
						|
  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
 | 
						|
 | 
						|
  bool isCanonical() const;
 | 
						|
 | 
						|
  void Canonicalize();
 | 
						|
 | 
						|
  bool Unscale();
 | 
						|
 | 
						|
  size_t getNumRegs() const;
 | 
						|
  Type *getType() const;
 | 
						|
 | 
						|
  void DeleteBaseReg(const SCEV *&S);
 | 
						|
 | 
						|
  bool referencesReg(const SCEV *S) const;
 | 
						|
  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
 | 
						|
                                  const RegUseTracker &RegUses) const;
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// DoInitialMatch - Recursion helper for InitialMatch.
 | 
						|
static void DoInitialMatch(const SCEV *S, Loop *L,
 | 
						|
                           SmallVectorImpl<const SCEV *> &Good,
 | 
						|
                           SmallVectorImpl<const SCEV *> &Bad,
 | 
						|
                           ScalarEvolution &SE) {
 | 
						|
  // Collect expressions which properly dominate the loop header.
 | 
						|
  if (SE.properlyDominates(S, L->getHeader())) {
 | 
						|
    Good.push_back(S);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look at add operands.
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
 | 
						|
         I != E; ++I)
 | 
						|
      DoInitialMatch(*I, L, Good, Bad, SE);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look at addrec operands.
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
 | 
						|
    if (!AR->getStart()->isZero()) {
 | 
						|
      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
 | 
						|
      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
 | 
						|
                                      AR->getStepRecurrence(SE),
 | 
						|
                                      // FIXME: AR->getNoWrapFlags()
 | 
						|
                                      AR->getLoop(), SCEV::FlagAnyWrap),
 | 
						|
                     L, Good, Bad, SE);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  // Handle a multiplication by -1 (negation) if it didn't fold.
 | 
						|
  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
 | 
						|
    if (Mul->getOperand(0)->isAllOnesValue()) {
 | 
						|
      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
 | 
						|
      const SCEV *NewMul = SE.getMulExpr(Ops);
 | 
						|
 | 
						|
      SmallVector<const SCEV *, 4> MyGood;
 | 
						|
      SmallVector<const SCEV *, 4> MyBad;
 | 
						|
      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
 | 
						|
      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
 | 
						|
        SE.getEffectiveSCEVType(NewMul->getType())));
 | 
						|
      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
 | 
						|
           E = MyGood.end(); I != E; ++I)
 | 
						|
        Good.push_back(SE.getMulExpr(NegOne, *I));
 | 
						|
      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
 | 
						|
           E = MyBad.end(); I != E; ++I)
 | 
						|
        Bad.push_back(SE.getMulExpr(NegOne, *I));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  // Ok, we can't do anything interesting. Just stuff the whole thing into a
 | 
						|
  // register and hope for the best.
 | 
						|
  Bad.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
 | 
						|
/// attempting to keep all loop-invariant and loop-computable values in a
 | 
						|
/// single base register.
 | 
						|
void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
 | 
						|
  SmallVector<const SCEV *, 4> Good;
 | 
						|
  SmallVector<const SCEV *, 4> Bad;
 | 
						|
  DoInitialMatch(S, L, Good, Bad, SE);
 | 
						|
  if (!Good.empty()) {
 | 
						|
    const SCEV *Sum = SE.getAddExpr(Good);
 | 
						|
    if (!Sum->isZero())
 | 
						|
      BaseRegs.push_back(Sum);
 | 
						|
    HasBaseReg = true;
 | 
						|
  }
 | 
						|
  if (!Bad.empty()) {
 | 
						|
    const SCEV *Sum = SE.getAddExpr(Bad);
 | 
						|
    if (!Sum->isZero())
 | 
						|
      BaseRegs.push_back(Sum);
 | 
						|
    HasBaseReg = true;
 | 
						|
  }
 | 
						|
  Canonicalize();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether or not this formula statisfies the canonical
 | 
						|
/// representation.
 | 
						|
/// \see Formula::BaseRegs.
 | 
						|
bool Formula::isCanonical() const {
 | 
						|
  if (ScaledReg)
 | 
						|
    return Scale != 1 || !BaseRegs.empty();
 | 
						|
  return BaseRegs.size() <= 1;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper method to morph a formula into its canonical representation.
 | 
						|
/// \see Formula::BaseRegs.
 | 
						|
/// Every formula having more than one base register, must use the ScaledReg
 | 
						|
/// field. Otherwise, we would have to do special cases everywhere in LSR
 | 
						|
/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
 | 
						|
/// On the other hand, 1*reg should be canonicalized into reg.
 | 
						|
void Formula::Canonicalize() {
 | 
						|
  if (isCanonical())
 | 
						|
    return;
 | 
						|
  // So far we did not need this case. This is easy to implement but it is
 | 
						|
  // useless to maintain dead code. Beside it could hurt compile time.
 | 
						|
  assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
 | 
						|
  // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
 | 
						|
  ScaledReg = BaseRegs.back();
 | 
						|
  BaseRegs.pop_back();
 | 
						|
  Scale = 1;
 | 
						|
  size_t BaseRegsSize = BaseRegs.size();
 | 
						|
  size_t Try = 0;
 | 
						|
  // If ScaledReg is an invariant, try to find a variant expression.
 | 
						|
  while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
 | 
						|
    std::swap(ScaledReg, BaseRegs[Try++]);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get rid of the scale in the formula.
 | 
						|
/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
 | 
						|
/// \return true if it was possible to get rid of the scale, false otherwise.
 | 
						|
/// \note After this operation the formula may not be in the canonical form.
 | 
						|
bool Formula::Unscale() {
 | 
						|
  if (Scale != 1)
 | 
						|
    return false;
 | 
						|
  Scale = 0;
 | 
						|
  BaseRegs.push_back(ScaledReg);
 | 
						|
  ScaledReg = nullptr;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getNumRegs - Return the total number of register operands used by this
 | 
						|
/// formula. This does not include register uses implied by non-constant
 | 
						|
/// addrec strides.
 | 
						|
size_t Formula::getNumRegs() const {
 | 
						|
  return !!ScaledReg + BaseRegs.size();
 | 
						|
}
 | 
						|
 | 
						|
/// getType - Return the type of this formula, if it has one, or null
 | 
						|
/// otherwise. This type is meaningless except for the bit size.
 | 
						|
Type *Formula::getType() const {
 | 
						|
  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
 | 
						|
         ScaledReg ? ScaledReg->getType() :
 | 
						|
         BaseGV ? BaseGV->getType() :
 | 
						|
         nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
 | 
						|
void Formula::DeleteBaseReg(const SCEV *&S) {
 | 
						|
  if (&S != &BaseRegs.back())
 | 
						|
    std::swap(S, BaseRegs.back());
 | 
						|
  BaseRegs.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
/// referencesReg - Test if this formula references the given register.
 | 
						|
bool Formula::referencesReg(const SCEV *S) const {
 | 
						|
  return S == ScaledReg ||
 | 
						|
         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
 | 
						|
}
 | 
						|
 | 
						|
/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
 | 
						|
/// which are used by uses other than the use with the given index.
 | 
						|
bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
 | 
						|
                                         const RegUseTracker &RegUses) const {
 | 
						|
  if (ScaledReg)
 | 
						|
    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
 | 
						|
      return true;
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
 | 
						|
       E = BaseRegs.end(); I != E; ++I)
 | 
						|
    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Formula::print(raw_ostream &OS) const {
 | 
						|
  bool First = true;
 | 
						|
  if (BaseGV) {
 | 
						|
    if (!First) OS << " + "; else First = false;
 | 
						|
    BaseGV->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
  }
 | 
						|
  if (BaseOffset != 0) {
 | 
						|
    if (!First) OS << " + "; else First = false;
 | 
						|
    OS << BaseOffset;
 | 
						|
  }
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
 | 
						|
       E = BaseRegs.end(); I != E; ++I) {
 | 
						|
    if (!First) OS << " + "; else First = false;
 | 
						|
    OS << "reg(" << **I << ')';
 | 
						|
  }
 | 
						|
  if (HasBaseReg && BaseRegs.empty()) {
 | 
						|
    if (!First) OS << " + "; else First = false;
 | 
						|
    OS << "**error: HasBaseReg**";
 | 
						|
  } else if (!HasBaseReg && !BaseRegs.empty()) {
 | 
						|
    if (!First) OS << " + "; else First = false;
 | 
						|
    OS << "**error: !HasBaseReg**";
 | 
						|
  }
 | 
						|
  if (Scale != 0) {
 | 
						|
    if (!First) OS << " + "; else First = false;
 | 
						|
    OS << Scale << "*reg(";
 | 
						|
    if (ScaledReg)
 | 
						|
      OS << *ScaledReg;
 | 
						|
    else
 | 
						|
      OS << "<unknown>";
 | 
						|
    OS << ')';
 | 
						|
  }
 | 
						|
  if (UnfoldedOffset != 0) {
 | 
						|
    if (!First) OS << " + ";
 | 
						|
    OS << "imm(" << UnfoldedOffset << ')';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void Formula::dump() const {
 | 
						|
  print(errs()); errs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// isAddRecSExtable - Return true if the given addrec can be sign-extended
 | 
						|
/// without changing its value.
 | 
						|
static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
 | 
						|
  Type *WideTy =
 | 
						|
    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
 | 
						|
  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
 | 
						|
}
 | 
						|
 | 
						|
/// isAddSExtable - Return true if the given add can be sign-extended
 | 
						|
/// without changing its value.
 | 
						|
static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
 | 
						|
  Type *WideTy =
 | 
						|
    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
 | 
						|
  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
 | 
						|
}
 | 
						|
 | 
						|
/// isMulSExtable - Return true if the given mul can be sign-extended
 | 
						|
/// without changing its value.
 | 
						|
static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
 | 
						|
  Type *WideTy =
 | 
						|
    IntegerType::get(SE.getContext(),
 | 
						|
                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
 | 
						|
  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
 | 
						|
}
 | 
						|
 | 
						|
/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
 | 
						|
/// and if the remainder is known to be zero,  or null otherwise. If
 | 
						|
/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
 | 
						|
/// to Y, ignoring that the multiplication may overflow, which is useful when
 | 
						|
/// the result will be used in a context where the most significant bits are
 | 
						|
/// ignored.
 | 
						|
static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                ScalarEvolution &SE,
 | 
						|
                                bool IgnoreSignificantBits = false) {
 | 
						|
  // Handle the trivial case, which works for any SCEV type.
 | 
						|
  if (LHS == RHS)
 | 
						|
    return SE.getConstant(LHS->getType(), 1);
 | 
						|
 | 
						|
  // Handle a few RHS special cases.
 | 
						|
  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
 | 
						|
  if (RC) {
 | 
						|
    const APInt &RA = RC->getValue()->getValue();
 | 
						|
    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
 | 
						|
    // some folding.
 | 
						|
    if (RA.isAllOnesValue())
 | 
						|
      return SE.getMulExpr(LHS, RC);
 | 
						|
    // Handle x /s 1 as x.
 | 
						|
    if (RA == 1)
 | 
						|
      return LHS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for a division of a constant by a constant.
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
 | 
						|
    if (!RC)
 | 
						|
      return nullptr;
 | 
						|
    const APInt &LA = C->getValue()->getValue();
 | 
						|
    const APInt &RA = RC->getValue()->getValue();
 | 
						|
    if (LA.srem(RA) != 0)
 | 
						|
      return nullptr;
 | 
						|
    return SE.getConstant(LA.sdiv(RA));
 | 
						|
  }
 | 
						|
 | 
						|
  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
 | 
						|
    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
 | 
						|
      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
 | 
						|
                                      IgnoreSignificantBits);
 | 
						|
      if (!Step) return nullptr;
 | 
						|
      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
 | 
						|
                                       IgnoreSignificantBits);
 | 
						|
      if (!Start) return nullptr;
 | 
						|
      // FlagNW is independent of the start value, step direction, and is
 | 
						|
      // preserved with smaller magnitude steps.
 | 
						|
      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
 | 
						|
      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Distribute the sdiv over add operands, if the add doesn't overflow.
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
 | 
						|
    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
 | 
						|
      SmallVector<const SCEV *, 8> Ops;
 | 
						|
      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
 | 
						|
           I != E; ++I) {
 | 
						|
        const SCEV *Op = getExactSDiv(*I, RHS, SE,
 | 
						|
                                      IgnoreSignificantBits);
 | 
						|
        if (!Op) return nullptr;
 | 
						|
        Ops.push_back(Op);
 | 
						|
      }
 | 
						|
      return SE.getAddExpr(Ops);
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for a multiply operand that we can pull RHS out of.
 | 
						|
  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
 | 
						|
    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
 | 
						|
      SmallVector<const SCEV *, 4> Ops;
 | 
						|
      bool Found = false;
 | 
						|
      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
 | 
						|
           I != E; ++I) {
 | 
						|
        const SCEV *S = *I;
 | 
						|
        if (!Found)
 | 
						|
          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
 | 
						|
                                           IgnoreSignificantBits)) {
 | 
						|
            S = Q;
 | 
						|
            Found = true;
 | 
						|
          }
 | 
						|
        Ops.push_back(S);
 | 
						|
      }
 | 
						|
      return Found ? SE.getMulExpr(Ops) : nullptr;
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise we don't know.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// ExtractImmediate - If S involves the addition of a constant integer value,
 | 
						|
/// return that integer value, and mutate S to point to a new SCEV with that
 | 
						|
/// value excluded.
 | 
						|
static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
 | 
						|
    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
 | 
						|
      S = SE.getConstant(C->getType(), 0);
 | 
						|
      return C->getValue()->getSExtValue();
 | 
						|
    }
 | 
						|
  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
 | 
						|
    int64_t Result = ExtractImmediate(NewOps.front(), SE);
 | 
						|
    if (Result != 0)
 | 
						|
      S = SE.getAddExpr(NewOps);
 | 
						|
    return Result;
 | 
						|
  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
 | 
						|
    int64_t Result = ExtractImmediate(NewOps.front(), SE);
 | 
						|
    if (Result != 0)
 | 
						|
      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
 | 
						|
                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
 | 
						|
                           SCEV::FlagAnyWrap);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// ExtractSymbol - If S involves the addition of a GlobalValue address,
 | 
						|
/// return that symbol, and mutate S to point to a new SCEV with that
 | 
						|
/// value excluded.
 | 
						|
static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
 | 
						|
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | 
						|
    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
 | 
						|
      S = SE.getConstant(GV->getType(), 0);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
 | 
						|
    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
 | 
						|
    if (Result)
 | 
						|
      S = SE.getAddExpr(NewOps);
 | 
						|
    return Result;
 | 
						|
  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
 | 
						|
    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
 | 
						|
    if (Result)
 | 
						|
      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
 | 
						|
                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
 | 
						|
                           SCEV::FlagAnyWrap);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// isAddressUse - Returns true if the specified instruction is using the
 | 
						|
/// specified value as an address.
 | 
						|
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
 | 
						|
  bool isAddress = isa<LoadInst>(Inst);
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
    if (SI->getOperand(1) == OperandVal)
 | 
						|
      isAddress = true;
 | 
						|
  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | 
						|
    // Addressing modes can also be folded into prefetches and a variety
 | 
						|
    // of intrinsics.
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::prefetch:
 | 
						|
      case Intrinsic::x86_sse_storeu_ps:
 | 
						|
      case Intrinsic::x86_sse2_storeu_pd:
 | 
						|
      case Intrinsic::x86_sse2_storeu_dq:
 | 
						|
      case Intrinsic::x86_sse2_storel_dq:
 | 
						|
        if (II->getArgOperand(0) == OperandVal)
 | 
						|
          isAddress = true;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return isAddress;
 | 
						|
}
 | 
						|
 | 
						|
/// getAccessType - Return the type of the memory being accessed.
 | 
						|
static Type *getAccessType(const Instruction *Inst) {
 | 
						|
  Type *AccessTy = Inst->getType();
 | 
						|
  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
    AccessTy = SI->getOperand(0)->getType();
 | 
						|
  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | 
						|
    // Addressing modes can also be folded into prefetches and a variety
 | 
						|
    // of intrinsics.
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::x86_sse_storeu_ps:
 | 
						|
    case Intrinsic::x86_sse2_storeu_pd:
 | 
						|
    case Intrinsic::x86_sse2_storeu_dq:
 | 
						|
    case Intrinsic::x86_sse2_storel_dq:
 | 
						|
      AccessTy = II->getArgOperand(0)->getType();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // All pointers have the same requirements, so canonicalize them to an
 | 
						|
  // arbitrary pointer type to minimize variation.
 | 
						|
  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
 | 
						|
    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
 | 
						|
                                PTy->getAddressSpace());
 | 
						|
 | 
						|
  return AccessTy;
 | 
						|
}
 | 
						|
 | 
						|
/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
 | 
						|
static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
 | 
						|
  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
    if (SE.isSCEVable(PN->getType()) &&
 | 
						|
        (SE.getEffectiveSCEVType(PN->getType()) ==
 | 
						|
         SE.getEffectiveSCEVType(AR->getType())) &&
 | 
						|
        SE.getSCEV(PN) == AR)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if expanding this expression is likely to incur significant cost. This
 | 
						|
/// is tricky because SCEV doesn't track which expressions are actually computed
 | 
						|
/// by the current IR.
 | 
						|
///
 | 
						|
/// We currently allow expansion of IV increments that involve adds,
 | 
						|
/// multiplication by constants, and AddRecs from existing phis.
 | 
						|
///
 | 
						|
/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
 | 
						|
/// obvious multiple of the UDivExpr.
 | 
						|
static bool isHighCostExpansion(const SCEV *S,
 | 
						|
                                SmallPtrSetImpl<const SCEV*> &Processed,
 | 
						|
                                ScalarEvolution &SE) {
 | 
						|
  // Zero/One operand expressions
 | 
						|
  switch (S->getSCEVType()) {
 | 
						|
  case scUnknown:
 | 
						|
  case scConstant:
 | 
						|
    return false;
 | 
						|
  case scTruncate:
 | 
						|
    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
 | 
						|
                               Processed, SE);
 | 
						|
  case scZeroExtend:
 | 
						|
    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
 | 
						|
                               Processed, SE);
 | 
						|
  case scSignExtend:
 | 
						|
    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
 | 
						|
                               Processed, SE);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Processed.insert(S).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (isHighCostExpansion(*I, Processed, SE))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | 
						|
    if (Mul->getNumOperands() == 2) {
 | 
						|
      // Multiplication by a constant is ok
 | 
						|
      if (isa<SCEVConstant>(Mul->getOperand(0)))
 | 
						|
        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
 | 
						|
 | 
						|
      // If we have the value of one operand, check if an existing
 | 
						|
      // multiplication already generates this expression.
 | 
						|
      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
 | 
						|
        Value *UVal = U->getValue();
 | 
						|
        for (User *UR : UVal->users()) {
 | 
						|
          // If U is a constant, it may be used by a ConstantExpr.
 | 
						|
          Instruction *UI = dyn_cast<Instruction>(UR);
 | 
						|
          if (UI && UI->getOpcode() == Instruction::Mul &&
 | 
						|
              SE.isSCEVable(UI->getType())) {
 | 
						|
            return SE.getSCEV(UI) == Mul;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    if (isExistingPhi(AR, SE))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | 
						|
/// specified set are trivially dead, delete them and see if this makes any of
 | 
						|
/// their operands subsequently dead.
 | 
						|
static bool
 | 
						|
DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  while (!DeadInsts.empty()) {
 | 
						|
    Value *V = DeadInsts.pop_back_val();
 | 
						|
    Instruction *I = dyn_cast_or_null<Instruction>(V);
 | 
						|
 | 
						|
    if (!I || !isInstructionTriviallyDead(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
 | 
						|
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
 | 
						|
        *OI = nullptr;
 | 
						|
        if (U->use_empty())
 | 
						|
          DeadInsts.push_back(U);
 | 
						|
      }
 | 
						|
 | 
						|
    I->eraseFromParent();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class LSRUse;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check if the addressing mode defined by \p F is completely
 | 
						|
/// folded in \p LU at isel time.
 | 
						|
/// This includes address-mode folding and special icmp tricks.
 | 
						|
/// This function returns true if \p LU can accommodate what \p F
 | 
						|
/// defines and up to 1 base + 1 scaled + offset.
 | 
						|
/// In other words, if \p F has several base registers, this function may
 | 
						|
/// still return true. Therefore, users still need to account for
 | 
						|
/// additional base registers and/or unfolded offsets to derive an
 | 
						|
/// accurate cost model.
 | 
						|
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
 | 
						|
                                 const LSRUse &LU, const Formula &F);
 | 
						|
// Get the cost of the scaling factor used in F for LU.
 | 
						|
static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
 | 
						|
                                     const LSRUse &LU, const Formula &F);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Cost - This class is used to measure and compare candidate formulae.
 | 
						|
class Cost {
 | 
						|
  /// TODO: Some of these could be merged. Also, a lexical ordering
 | 
						|
  /// isn't always optimal.
 | 
						|
  unsigned NumRegs;
 | 
						|
  unsigned AddRecCost;
 | 
						|
  unsigned NumIVMuls;
 | 
						|
  unsigned NumBaseAdds;
 | 
						|
  unsigned ImmCost;
 | 
						|
  unsigned SetupCost;
 | 
						|
  unsigned ScaleCost;
 | 
						|
 | 
						|
public:
 | 
						|
  Cost()
 | 
						|
    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
 | 
						|
      SetupCost(0), ScaleCost(0) {}
 | 
						|
 | 
						|
  bool operator<(const Cost &Other) const;
 | 
						|
 | 
						|
  void Lose();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Once any of the metrics loses, they must all remain losers.
 | 
						|
  bool isValid() {
 | 
						|
    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
 | 
						|
             | ImmCost | SetupCost | ScaleCost) != ~0u)
 | 
						|
      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
 | 
						|
           & ImmCost & SetupCost & ScaleCost) == ~0u);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  bool isLoser() {
 | 
						|
    assert(isValid() && "invalid cost");
 | 
						|
    return NumRegs == ~0u;
 | 
						|
  }
 | 
						|
 | 
						|
  void RateFormula(const TargetTransformInfo &TTI,
 | 
						|
                   const Formula &F,
 | 
						|
                   SmallPtrSetImpl<const SCEV *> &Regs,
 | 
						|
                   const DenseSet<const SCEV *> &VisitedRegs,
 | 
						|
                   const Loop *L,
 | 
						|
                   const SmallVectorImpl<int64_t> &Offsets,
 | 
						|
                   ScalarEvolution &SE, DominatorTree &DT,
 | 
						|
                   const LSRUse &LU,
 | 
						|
                   SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
 | 
						|
private:
 | 
						|
  void RateRegister(const SCEV *Reg,
 | 
						|
                    SmallPtrSetImpl<const SCEV *> &Regs,
 | 
						|
                    const Loop *L,
 | 
						|
                    ScalarEvolution &SE, DominatorTree &DT);
 | 
						|
  void RatePrimaryRegister(const SCEV *Reg,
 | 
						|
                           SmallPtrSetImpl<const SCEV *> &Regs,
 | 
						|
                           const Loop *L,
 | 
						|
                           ScalarEvolution &SE, DominatorTree &DT,
 | 
						|
                           SmallPtrSetImpl<const SCEV *> *LoserRegs);
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// RateRegister - Tally up interesting quantities from the given register.
 | 
						|
void Cost::RateRegister(const SCEV *Reg,
 | 
						|
                        SmallPtrSetImpl<const SCEV *> &Regs,
 | 
						|
                        const Loop *L,
 | 
						|
                        ScalarEvolution &SE, DominatorTree &DT) {
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
 | 
						|
    // If this is an addrec for another loop, don't second-guess its addrec phi
 | 
						|
    // nodes. LSR isn't currently smart enough to reason about more than one
 | 
						|
    // loop at a time. LSR has already run on inner loops, will not run on outer
 | 
						|
    // loops, and cannot be expected to change sibling loops.
 | 
						|
    if (AR->getLoop() != L) {
 | 
						|
      // If the AddRec exists, consider it's register free and leave it alone.
 | 
						|
      if (isExistingPhi(AR, SE))
 | 
						|
        return;
 | 
						|
 | 
						|
      // Otherwise, do not consider this formula at all.
 | 
						|
      Lose();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    AddRecCost += 1; /// TODO: This should be a function of the stride.
 | 
						|
 | 
						|
    // Add the step value register, if it needs one.
 | 
						|
    // TODO: The non-affine case isn't precisely modeled here.
 | 
						|
    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
 | 
						|
      if (!Regs.count(AR->getOperand(1))) {
 | 
						|
        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
 | 
						|
        if (isLoser())
 | 
						|
          return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ++NumRegs;
 | 
						|
 | 
						|
  // Rough heuristic; favor registers which don't require extra setup
 | 
						|
  // instructions in the preheader.
 | 
						|
  if (!isa<SCEVUnknown>(Reg) &&
 | 
						|
      !isa<SCEVConstant>(Reg) &&
 | 
						|
      !(isa<SCEVAddRecExpr>(Reg) &&
 | 
						|
        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
 | 
						|
         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
 | 
						|
    ++SetupCost;
 | 
						|
 | 
						|
    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
 | 
						|
                 SE.hasComputableLoopEvolution(Reg, L);
 | 
						|
}
 | 
						|
 | 
						|
/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
 | 
						|
/// before, rate it. Optional LoserRegs provides a way to declare any formula
 | 
						|
/// that refers to one of those regs an instant loser.
 | 
						|
void Cost::RatePrimaryRegister(const SCEV *Reg,
 | 
						|
                               SmallPtrSetImpl<const SCEV *> &Regs,
 | 
						|
                               const Loop *L,
 | 
						|
                               ScalarEvolution &SE, DominatorTree &DT,
 | 
						|
                               SmallPtrSetImpl<const SCEV *> *LoserRegs) {
 | 
						|
  if (LoserRegs && LoserRegs->count(Reg)) {
 | 
						|
    Lose();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (Regs.insert(Reg).second) {
 | 
						|
    RateRegister(Reg, Regs, L, SE, DT);
 | 
						|
    if (LoserRegs && isLoser())
 | 
						|
      LoserRegs->insert(Reg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Cost::RateFormula(const TargetTransformInfo &TTI,
 | 
						|
                       const Formula &F,
 | 
						|
                       SmallPtrSetImpl<const SCEV *> &Regs,
 | 
						|
                       const DenseSet<const SCEV *> &VisitedRegs,
 | 
						|
                       const Loop *L,
 | 
						|
                       const SmallVectorImpl<int64_t> &Offsets,
 | 
						|
                       ScalarEvolution &SE, DominatorTree &DT,
 | 
						|
                       const LSRUse &LU,
 | 
						|
                       SmallPtrSetImpl<const SCEV *> *LoserRegs) {
 | 
						|
  assert(F.isCanonical() && "Cost is accurate only for canonical formula");
 | 
						|
  // Tally up the registers.
 | 
						|
  if (const SCEV *ScaledReg = F.ScaledReg) {
 | 
						|
    if (VisitedRegs.count(ScaledReg)) {
 | 
						|
      Lose();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
 | 
						|
    if (isLoser())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
 | 
						|
       E = F.BaseRegs.end(); I != E; ++I) {
 | 
						|
    const SCEV *BaseReg = *I;
 | 
						|
    if (VisitedRegs.count(BaseReg)) {
 | 
						|
      Lose();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
 | 
						|
    if (isLoser())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine how many (unfolded) adds we'll need inside the loop.
 | 
						|
  size_t NumBaseParts = F.getNumRegs();
 | 
						|
  if (NumBaseParts > 1)
 | 
						|
    // Do not count the base and a possible second register if the target
 | 
						|
    // allows to fold 2 registers.
 | 
						|
    NumBaseAdds +=
 | 
						|
        NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
 | 
						|
  NumBaseAdds += (F.UnfoldedOffset != 0);
 | 
						|
 | 
						|
  // Accumulate non-free scaling amounts.
 | 
						|
  ScaleCost += getScalingFactorCost(TTI, LU, F);
 | 
						|
 | 
						|
  // Tally up the non-zero immediates.
 | 
						|
  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
 | 
						|
       E = Offsets.end(); I != E; ++I) {
 | 
						|
    int64_t Offset = (uint64_t)*I + F.BaseOffset;
 | 
						|
    if (F.BaseGV)
 | 
						|
      ImmCost += 64; // Handle symbolic values conservatively.
 | 
						|
                     // TODO: This should probably be the pointer size.
 | 
						|
    else if (Offset != 0)
 | 
						|
      ImmCost += APInt(64, Offset, true).getMinSignedBits();
 | 
						|
  }
 | 
						|
  assert(isValid() && "invalid cost");
 | 
						|
}
 | 
						|
 | 
						|
/// Lose - Set this cost to a losing value.
 | 
						|
void Cost::Lose() {
 | 
						|
  NumRegs = ~0u;
 | 
						|
  AddRecCost = ~0u;
 | 
						|
  NumIVMuls = ~0u;
 | 
						|
  NumBaseAdds = ~0u;
 | 
						|
  ImmCost = ~0u;
 | 
						|
  SetupCost = ~0u;
 | 
						|
  ScaleCost = ~0u;
 | 
						|
}
 | 
						|
 | 
						|
/// operator< - Choose the lower cost.
 | 
						|
bool Cost::operator<(const Cost &Other) const {
 | 
						|
  return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
 | 
						|
                  ImmCost, SetupCost) <
 | 
						|
         std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
 | 
						|
                  Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
 | 
						|
                  Other.SetupCost);
 | 
						|
}
 | 
						|
 | 
						|
void Cost::print(raw_ostream &OS) const {
 | 
						|
  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
 | 
						|
  if (AddRecCost != 0)
 | 
						|
    OS << ", with addrec cost " << AddRecCost;
 | 
						|
  if (NumIVMuls != 0)
 | 
						|
    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
 | 
						|
  if (NumBaseAdds != 0)
 | 
						|
    OS << ", plus " << NumBaseAdds << " base add"
 | 
						|
       << (NumBaseAdds == 1 ? "" : "s");
 | 
						|
  if (ScaleCost != 0)
 | 
						|
    OS << ", plus " << ScaleCost << " scale cost";
 | 
						|
  if (ImmCost != 0)
 | 
						|
    OS << ", plus " << ImmCost << " imm cost";
 | 
						|
  if (SetupCost != 0)
 | 
						|
    OS << ", plus " << SetupCost << " setup cost";
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void Cost::dump() const {
 | 
						|
  print(errs()); errs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// LSRFixup - An operand value in an instruction which is to be replaced
 | 
						|
/// with some equivalent, possibly strength-reduced, replacement.
 | 
						|
struct LSRFixup {
 | 
						|
  /// UserInst - The instruction which will be updated.
 | 
						|
  Instruction *UserInst;
 | 
						|
 | 
						|
  /// OperandValToReplace - The operand of the instruction which will
 | 
						|
  /// be replaced. The operand may be used more than once; every instance
 | 
						|
  /// will be replaced.
 | 
						|
  Value *OperandValToReplace;
 | 
						|
 | 
						|
  /// PostIncLoops - If this user is to use the post-incremented value of an
 | 
						|
  /// induction variable, this variable is non-null and holds the loop
 | 
						|
  /// associated with the induction variable.
 | 
						|
  PostIncLoopSet PostIncLoops;
 | 
						|
 | 
						|
  /// LUIdx - The index of the LSRUse describing the expression which
 | 
						|
  /// this fixup needs, minus an offset (below).
 | 
						|
  size_t LUIdx;
 | 
						|
 | 
						|
  /// Offset - A constant offset to be added to the LSRUse expression.
 | 
						|
  /// This allows multiple fixups to share the same LSRUse with different
 | 
						|
  /// offsets, for example in an unrolled loop.
 | 
						|
  int64_t Offset;
 | 
						|
 | 
						|
  bool isUseFullyOutsideLoop(const Loop *L) const;
 | 
						|
 | 
						|
  LSRFixup();
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
LSRFixup::LSRFixup()
 | 
						|
  : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
 | 
						|
    Offset(0) {}
 | 
						|
 | 
						|
/// isUseFullyOutsideLoop - Test whether this fixup always uses its
 | 
						|
/// value outside of the given loop.
 | 
						|
bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
 | 
						|
  // PHI nodes use their value in their incoming blocks.
 | 
						|
  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (PN->getIncomingValue(i) == OperandValToReplace &&
 | 
						|
          L->contains(PN->getIncomingBlock(i)))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return !L->contains(UserInst);
 | 
						|
}
 | 
						|
 | 
						|
void LSRFixup::print(raw_ostream &OS) const {
 | 
						|
  OS << "UserInst=";
 | 
						|
  // Store is common and interesting enough to be worth special-casing.
 | 
						|
  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
 | 
						|
    OS << "store ";
 | 
						|
    Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
  } else if (UserInst->getType()->isVoidTy())
 | 
						|
    OS << UserInst->getOpcodeName();
 | 
						|
  else
 | 
						|
    UserInst->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
 | 
						|
  OS << ", OperandValToReplace=";
 | 
						|
  OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
 | 
						|
  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
 | 
						|
       E = PostIncLoops.end(); I != E; ++I) {
 | 
						|
    OS << ", PostIncLoop=";
 | 
						|
    (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LUIdx != ~size_t(0))
 | 
						|
    OS << ", LUIdx=" << LUIdx;
 | 
						|
 | 
						|
  if (Offset != 0)
 | 
						|
    OS << ", Offset=" << Offset;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void LSRFixup::dump() const {
 | 
						|
  print(errs()); errs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
 | 
						|
/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
 | 
						|
struct UniquifierDenseMapInfo {
 | 
						|
  static SmallVector<const SCEV *, 4> getEmptyKey() {
 | 
						|
    SmallVector<const SCEV *, 4>  V;
 | 
						|
    V.push_back(reinterpret_cast<const SCEV *>(-1));
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  static SmallVector<const SCEV *, 4> getTombstoneKey() {
 | 
						|
    SmallVector<const SCEV *, 4> V;
 | 
						|
    V.push_back(reinterpret_cast<const SCEV *>(-2));
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
 | 
						|
    return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
 | 
						|
                      const SmallVector<const SCEV *, 4> &RHS) {
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// LSRUse - This class holds the state that LSR keeps for each use in
 | 
						|
/// IVUsers, as well as uses invented by LSR itself. It includes information
 | 
						|
/// about what kinds of things can be folded into the user, information about
 | 
						|
/// the user itself, and information about how the use may be satisfied.
 | 
						|
/// TODO: Represent multiple users of the same expression in common?
 | 
						|
class LSRUse {
 | 
						|
  DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
 | 
						|
 | 
						|
public:
 | 
						|
  /// KindType - An enum for a kind of use, indicating what types of
 | 
						|
  /// scaled and immediate operands it might support.
 | 
						|
  enum KindType {
 | 
						|
    Basic,   ///< A normal use, with no folding.
 | 
						|
    Special, ///< A special case of basic, allowing -1 scales.
 | 
						|
    Address, ///< An address use; folding according to TargetLowering
 | 
						|
    ICmpZero ///< An equality icmp with both operands folded into one.
 | 
						|
    // TODO: Add a generic icmp too?
 | 
						|
  };
 | 
						|
 | 
						|
  typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
 | 
						|
 | 
						|
  KindType Kind;
 | 
						|
  Type *AccessTy;
 | 
						|
 | 
						|
  SmallVector<int64_t, 8> Offsets;
 | 
						|
  int64_t MinOffset;
 | 
						|
  int64_t MaxOffset;
 | 
						|
 | 
						|
  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
 | 
						|
  /// LSRUse are outside of the loop, in which case some special-case heuristics
 | 
						|
  /// may be used.
 | 
						|
  bool AllFixupsOutsideLoop;
 | 
						|
 | 
						|
  /// RigidFormula is set to true to guarantee that this use will be associated
 | 
						|
  /// with a single formula--the one that initially matched. Some SCEV
 | 
						|
  /// expressions cannot be expanded. This allows LSR to consider the registers
 | 
						|
  /// used by those expressions without the need to expand them later after
 | 
						|
  /// changing the formula.
 | 
						|
  bool RigidFormula;
 | 
						|
 | 
						|
  /// WidestFixupType - This records the widest use type for any fixup using
 | 
						|
  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
 | 
						|
  /// max fixup widths to be equivalent, because the narrower one may be relying
 | 
						|
  /// on the implicit truncation to truncate away bogus bits.
 | 
						|
  Type *WidestFixupType;
 | 
						|
 | 
						|
  /// Formulae - A list of ways to build a value that can satisfy this user.
 | 
						|
  /// After the list is populated, one of these is selected heuristically and
 | 
						|
  /// used to formulate a replacement for OperandValToReplace in UserInst.
 | 
						|
  SmallVector<Formula, 12> Formulae;
 | 
						|
 | 
						|
  /// Regs - The set of register candidates used by all formulae in this LSRUse.
 | 
						|
  SmallPtrSet<const SCEV *, 4> Regs;
 | 
						|
 | 
						|
  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
 | 
						|
                                      MinOffset(INT64_MAX),
 | 
						|
                                      MaxOffset(INT64_MIN),
 | 
						|
                                      AllFixupsOutsideLoop(true),
 | 
						|
                                      RigidFormula(false),
 | 
						|
                                      WidestFixupType(nullptr) {}
 | 
						|
 | 
						|
  bool HasFormulaWithSameRegs(const Formula &F) const;
 | 
						|
  bool InsertFormula(const Formula &F);
 | 
						|
  void DeleteFormula(Formula &F);
 | 
						|
  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// HasFormula - Test whether this use as a formula which has the same
 | 
						|
/// registers as the given formula.
 | 
						|
bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
 | 
						|
  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
 | 
						|
  if (F.ScaledReg) Key.push_back(F.ScaledReg);
 | 
						|
  // Unstable sort by host order ok, because this is only used for uniquifying.
 | 
						|
  std::sort(Key.begin(), Key.end());
 | 
						|
  return Uniquifier.count(Key);
 | 
						|
}
 | 
						|
 | 
						|
/// InsertFormula - If the given formula has not yet been inserted, add it to
 | 
						|
/// the list, and return true. Return false otherwise.
 | 
						|
/// The formula must be in canonical form.
 | 
						|
bool LSRUse::InsertFormula(const Formula &F) {
 | 
						|
  assert(F.isCanonical() && "Invalid canonical representation");
 | 
						|
 | 
						|
  if (!Formulae.empty() && RigidFormula)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
 | 
						|
  if (F.ScaledReg) Key.push_back(F.ScaledReg);
 | 
						|
  // Unstable sort by host order ok, because this is only used for uniquifying.
 | 
						|
  std::sort(Key.begin(), Key.end());
 | 
						|
 | 
						|
  if (!Uniquifier.insert(Key).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Using a register to hold the value of 0 is not profitable.
 | 
						|
  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
 | 
						|
         "Zero allocated in a scaled register!");
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator I =
 | 
						|
       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
 | 
						|
    assert(!(*I)->isZero() && "Zero allocated in a base register!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Add the formula to the list.
 | 
						|
  Formulae.push_back(F);
 | 
						|
 | 
						|
  // Record registers now being used by this use.
 | 
						|
  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
 | 
						|
  if (F.ScaledReg)
 | 
						|
    Regs.insert(F.ScaledReg);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteFormula - Remove the given formula from this use's list.
 | 
						|
void LSRUse::DeleteFormula(Formula &F) {
 | 
						|
  if (&F != &Formulae.back())
 | 
						|
    std::swap(F, Formulae.back());
 | 
						|
  Formulae.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
/// RecomputeRegs - Recompute the Regs field, and update RegUses.
 | 
						|
void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
 | 
						|
  // Now that we've filtered out some formulae, recompute the Regs set.
 | 
						|
  SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
 | 
						|
  Regs.clear();
 | 
						|
  for (const Formula &F : Formulae) {
 | 
						|
    if (F.ScaledReg) Regs.insert(F.ScaledReg);
 | 
						|
    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the RegTracker.
 | 
						|
  for (const SCEV *S : OldRegs)
 | 
						|
    if (!Regs.count(S))
 | 
						|
      RegUses.DropRegister(S, LUIdx);
 | 
						|
}
 | 
						|
 | 
						|
void LSRUse::print(raw_ostream &OS) const {
 | 
						|
  OS << "LSR Use: Kind=";
 | 
						|
  switch (Kind) {
 | 
						|
  case Basic:    OS << "Basic"; break;
 | 
						|
  case Special:  OS << "Special"; break;
 | 
						|
  case ICmpZero: OS << "ICmpZero"; break;
 | 
						|
  case Address:
 | 
						|
    OS << "Address of ";
 | 
						|
    if (AccessTy->isPointerTy())
 | 
						|
      OS << "pointer"; // the full pointer type could be really verbose
 | 
						|
    else
 | 
						|
      OS << *AccessTy;
 | 
						|
  }
 | 
						|
 | 
						|
  OS << ", Offsets={";
 | 
						|
  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
 | 
						|
       E = Offsets.end(); I != E; ++I) {
 | 
						|
    OS << *I;
 | 
						|
    if (std::next(I) != E)
 | 
						|
      OS << ',';
 | 
						|
  }
 | 
						|
  OS << '}';
 | 
						|
 | 
						|
  if (AllFixupsOutsideLoop)
 | 
						|
    OS << ", all-fixups-outside-loop";
 | 
						|
 | 
						|
  if (WidestFixupType)
 | 
						|
    OS << ", widest fixup type: " << *WidestFixupType;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void LSRUse::dump() const {
 | 
						|
  print(errs()); errs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
 | 
						|
                                 LSRUse::KindType Kind, Type *AccessTy,
 | 
						|
                                 GlobalValue *BaseGV, int64_t BaseOffset,
 | 
						|
                                 bool HasBaseReg, int64_t Scale) {
 | 
						|
  switch (Kind) {
 | 
						|
  case LSRUse::Address:
 | 
						|
    return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
 | 
						|
 | 
						|
  case LSRUse::ICmpZero:
 | 
						|
    // There's not even a target hook for querying whether it would be legal to
 | 
						|
    // fold a GV into an ICmp.
 | 
						|
    if (BaseGV)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // ICmp only has two operands; don't allow more than two non-trivial parts.
 | 
						|
    if (Scale != 0 && HasBaseReg && BaseOffset != 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
 | 
						|
    // putting the scaled register in the other operand of the icmp.
 | 
						|
    if (Scale != 0 && Scale != -1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If we have low-level target information, ask the target if it can fold an
 | 
						|
    // integer immediate on an icmp.
 | 
						|
    if (BaseOffset != 0) {
 | 
						|
      // We have one of:
 | 
						|
      // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
 | 
						|
      // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
 | 
						|
      // Offs is the ICmp immediate.
 | 
						|
      if (Scale == 0)
 | 
						|
        // The cast does the right thing with INT64_MIN.
 | 
						|
        BaseOffset = -(uint64_t)BaseOffset;
 | 
						|
      return TTI.isLegalICmpImmediate(BaseOffset);
 | 
						|
    }
 | 
						|
 | 
						|
    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
 | 
						|
    return true;
 | 
						|
 | 
						|
  case LSRUse::Basic:
 | 
						|
    // Only handle single-register values.
 | 
						|
    return !BaseGV && Scale == 0 && BaseOffset == 0;
 | 
						|
 | 
						|
  case LSRUse::Special:
 | 
						|
    // Special case Basic to handle -1 scales.
 | 
						|
    return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid LSRUse Kind!");
 | 
						|
}
 | 
						|
 | 
						|
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
 | 
						|
                                 int64_t MinOffset, int64_t MaxOffset,
 | 
						|
                                 LSRUse::KindType Kind, Type *AccessTy,
 | 
						|
                                 GlobalValue *BaseGV, int64_t BaseOffset,
 | 
						|
                                 bool HasBaseReg, int64_t Scale) {
 | 
						|
  // Check for overflow.
 | 
						|
  if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
 | 
						|
      (MinOffset > 0))
 | 
						|
    return false;
 | 
						|
  MinOffset = (uint64_t)BaseOffset + MinOffset;
 | 
						|
  if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
 | 
						|
      (MaxOffset > 0))
 | 
						|
    return false;
 | 
						|
  MaxOffset = (uint64_t)BaseOffset + MaxOffset;
 | 
						|
 | 
						|
  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
 | 
						|
                              HasBaseReg, Scale) &&
 | 
						|
         isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
 | 
						|
                              HasBaseReg, Scale);
 | 
						|
}
 | 
						|
 | 
						|
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
 | 
						|
                                 int64_t MinOffset, int64_t MaxOffset,
 | 
						|
                                 LSRUse::KindType Kind, Type *AccessTy,
 | 
						|
                                 const Formula &F) {
 | 
						|
  // For the purpose of isAMCompletelyFolded either having a canonical formula
 | 
						|
  // or a scale not equal to zero is correct.
 | 
						|
  // Problems may arise from non canonical formulae having a scale == 0.
 | 
						|
  // Strictly speaking it would best to just rely on canonical formulae.
 | 
						|
  // However, when we generate the scaled formulae, we first check that the
 | 
						|
  // scaling factor is profitable before computing the actual ScaledReg for
 | 
						|
  // compile time sake.
 | 
						|
  assert((F.isCanonical() || F.Scale != 0));
 | 
						|
  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
 | 
						|
                              F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalUse - Test whether we know how to expand the current formula.
 | 
						|
static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
 | 
						|
                       int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
 | 
						|
                       GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
 | 
						|
                       int64_t Scale) {
 | 
						|
  // We know how to expand completely foldable formulae.
 | 
						|
  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
 | 
						|
                              BaseOffset, HasBaseReg, Scale) ||
 | 
						|
         // Or formulae that use a base register produced by a sum of base
 | 
						|
         // registers.
 | 
						|
         (Scale == 1 &&
 | 
						|
          isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
 | 
						|
                               BaseGV, BaseOffset, true, 0));
 | 
						|
}
 | 
						|
 | 
						|
static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
 | 
						|
                       int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
 | 
						|
                       const Formula &F) {
 | 
						|
  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
 | 
						|
                    F.BaseOffset, F.HasBaseReg, F.Scale);
 | 
						|
}
 | 
						|
 | 
						|
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
 | 
						|
                                 const LSRUse &LU, const Formula &F) {
 | 
						|
  return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
 | 
						|
                              LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
 | 
						|
                              F.Scale);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
 | 
						|
                                     const LSRUse &LU, const Formula &F) {
 | 
						|
  if (!F.Scale)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If the use is not completely folded in that instruction, we will have to
 | 
						|
  // pay an extra cost only for scale != 1.
 | 
						|
  if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
 | 
						|
                            LU.AccessTy, F))
 | 
						|
    return F.Scale != 1;
 | 
						|
 | 
						|
  switch (LU.Kind) {
 | 
						|
  case LSRUse::Address: {
 | 
						|
    // Check the scaling factor cost with both the min and max offsets.
 | 
						|
    int ScaleCostMinOffset =
 | 
						|
      TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
 | 
						|
                               F.BaseOffset + LU.MinOffset,
 | 
						|
                               F.HasBaseReg, F.Scale);
 | 
						|
    int ScaleCostMaxOffset =
 | 
						|
      TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
 | 
						|
                               F.BaseOffset + LU.MaxOffset,
 | 
						|
                               F.HasBaseReg, F.Scale);
 | 
						|
 | 
						|
    assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
 | 
						|
           "Legal addressing mode has an illegal cost!");
 | 
						|
    return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
 | 
						|
  }
 | 
						|
  case LSRUse::ICmpZero:
 | 
						|
  case LSRUse::Basic:
 | 
						|
  case LSRUse::Special:
 | 
						|
    // The use is completely folded, i.e., everything is folded into the
 | 
						|
    // instruction.
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid LSRUse Kind!");
 | 
						|
}
 | 
						|
 | 
						|
static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
 | 
						|
                             LSRUse::KindType Kind, Type *AccessTy,
 | 
						|
                             GlobalValue *BaseGV, int64_t BaseOffset,
 | 
						|
                             bool HasBaseReg) {
 | 
						|
  // Fast-path: zero is always foldable.
 | 
						|
  if (BaseOffset == 0 && !BaseGV) return true;
 | 
						|
 | 
						|
  // Conservatively, create an address with an immediate and a
 | 
						|
  // base and a scale.
 | 
						|
  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
 | 
						|
 | 
						|
  // Canonicalize a scale of 1 to a base register if the formula doesn't
 | 
						|
  // already have a base register.
 | 
						|
  if (!HasBaseReg && Scale == 1) {
 | 
						|
    Scale = 0;
 | 
						|
    HasBaseReg = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
 | 
						|
                              HasBaseReg, Scale);
 | 
						|
}
 | 
						|
 | 
						|
static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
 | 
						|
                             ScalarEvolution &SE, int64_t MinOffset,
 | 
						|
                             int64_t MaxOffset, LSRUse::KindType Kind,
 | 
						|
                             Type *AccessTy, const SCEV *S, bool HasBaseReg) {
 | 
						|
  // Fast-path: zero is always foldable.
 | 
						|
  if (S->isZero()) return true;
 | 
						|
 | 
						|
  // Conservatively, create an address with an immediate and a
 | 
						|
  // base and a scale.
 | 
						|
  int64_t BaseOffset = ExtractImmediate(S, SE);
 | 
						|
  GlobalValue *BaseGV = ExtractSymbol(S, SE);
 | 
						|
 | 
						|
  // If there's anything else involved, it's not foldable.
 | 
						|
  if (!S->isZero()) return false;
 | 
						|
 | 
						|
  // Fast-path: zero is always foldable.
 | 
						|
  if (BaseOffset == 0 && !BaseGV) return true;
 | 
						|
 | 
						|
  // Conservatively, create an address with an immediate and a
 | 
						|
  // base and a scale.
 | 
						|
  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
 | 
						|
 | 
						|
  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
 | 
						|
                              BaseOffset, HasBaseReg, Scale);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// IVInc - An individual increment in a Chain of IV increments.
 | 
						|
/// Relate an IV user to an expression that computes the IV it uses from the IV
 | 
						|
/// used by the previous link in the Chain.
 | 
						|
///
 | 
						|
/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
 | 
						|
/// original IVOperand. The head of the chain's IVOperand is only valid during
 | 
						|
/// chain collection, before LSR replaces IV users. During chain generation,
 | 
						|
/// IncExpr can be used to find the new IVOperand that computes the same
 | 
						|
/// expression.
 | 
						|
struct IVInc {
 | 
						|
  Instruction *UserInst;
 | 
						|
  Value* IVOperand;
 | 
						|
  const SCEV *IncExpr;
 | 
						|
 | 
						|
  IVInc(Instruction *U, Value *O, const SCEV *E):
 | 
						|
    UserInst(U), IVOperand(O), IncExpr(E) {}
 | 
						|
};
 | 
						|
 | 
						|
// IVChain - The list of IV increments in program order.
 | 
						|
// We typically add the head of a chain without finding subsequent links.
 | 
						|
struct IVChain {
 | 
						|
  SmallVector<IVInc,1> Incs;
 | 
						|
  const SCEV *ExprBase;
 | 
						|
 | 
						|
  IVChain() : ExprBase(nullptr) {}
 | 
						|
 | 
						|
  IVChain(const IVInc &Head, const SCEV *Base)
 | 
						|
    : Incs(1, Head), ExprBase(Base) {}
 | 
						|
 | 
						|
  typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
 | 
						|
 | 
						|
  // begin - return the first increment in the chain.
 | 
						|
  const_iterator begin() const {
 | 
						|
    assert(!Incs.empty());
 | 
						|
    return std::next(Incs.begin());
 | 
						|
  }
 | 
						|
  const_iterator end() const {
 | 
						|
    return Incs.end();
 | 
						|
  }
 | 
						|
 | 
						|
  // hasIncs - Returns true if this chain contains any increments.
 | 
						|
  bool hasIncs() const { return Incs.size() >= 2; }
 | 
						|
 | 
						|
  // add - Add an IVInc to the end of this chain.
 | 
						|
  void add(const IVInc &X) { Incs.push_back(X); }
 | 
						|
 | 
						|
  // tailUserInst - Returns the last UserInst in the chain.
 | 
						|
  Instruction *tailUserInst() const { return Incs.back().UserInst; }
 | 
						|
 | 
						|
  // isProfitableIncrement - Returns true if IncExpr can be profitably added to
 | 
						|
  // this chain.
 | 
						|
  bool isProfitableIncrement(const SCEV *OperExpr,
 | 
						|
                             const SCEV *IncExpr,
 | 
						|
                             ScalarEvolution&);
 | 
						|
};
 | 
						|
 | 
						|
/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
 | 
						|
/// Distinguish between FarUsers that definitely cross IV increments and
 | 
						|
/// NearUsers that may be used between IV increments.
 | 
						|
struct ChainUsers {
 | 
						|
  SmallPtrSet<Instruction*, 4> FarUsers;
 | 
						|
  SmallPtrSet<Instruction*, 4> NearUsers;
 | 
						|
};
 | 
						|
 | 
						|
/// LSRInstance - This class holds state for the main loop strength reduction
 | 
						|
/// logic.
 | 
						|
class LSRInstance {
 | 
						|
  IVUsers &IU;
 | 
						|
  ScalarEvolution &SE;
 | 
						|
  DominatorTree &DT;
 | 
						|
  LoopInfo &LI;
 | 
						|
  const TargetTransformInfo &TTI;
 | 
						|
  Loop *const L;
 | 
						|
  bool Changed;
 | 
						|
 | 
						|
  /// IVIncInsertPos - This is the insert position that the current loop's
 | 
						|
  /// induction variable increment should be placed. In simple loops, this is
 | 
						|
  /// the latch block's terminator. But in more complicated cases, this is a
 | 
						|
  /// position which will dominate all the in-loop post-increment users.
 | 
						|
  Instruction *IVIncInsertPos;
 | 
						|
 | 
						|
  /// Factors - Interesting factors between use strides.
 | 
						|
  SmallSetVector<int64_t, 8> Factors;
 | 
						|
 | 
						|
  /// Types - Interesting use types, to facilitate truncation reuse.
 | 
						|
  SmallSetVector<Type *, 4> Types;
 | 
						|
 | 
						|
  /// Fixups - The list of operands which are to be replaced.
 | 
						|
  SmallVector<LSRFixup, 16> Fixups;
 | 
						|
 | 
						|
  /// Uses - The list of interesting uses.
 | 
						|
  SmallVector<LSRUse, 16> Uses;
 | 
						|
 | 
						|
  /// RegUses - Track which uses use which register candidates.
 | 
						|
  RegUseTracker RegUses;
 | 
						|
 | 
						|
  // Limit the number of chains to avoid quadratic behavior. We don't expect to
 | 
						|
  // have more than a few IV increment chains in a loop. Missing a Chain falls
 | 
						|
  // back to normal LSR behavior for those uses.
 | 
						|
  static const unsigned MaxChains = 8;
 | 
						|
 | 
						|
  /// IVChainVec - IV users can form a chain of IV increments.
 | 
						|
  SmallVector<IVChain, MaxChains> IVChainVec;
 | 
						|
 | 
						|
  /// IVIncSet - IV users that belong to profitable IVChains.
 | 
						|
  SmallPtrSet<Use*, MaxChains> IVIncSet;
 | 
						|
 | 
						|
  void OptimizeShadowIV();
 | 
						|
  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
 | 
						|
  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
 | 
						|
  void OptimizeLoopTermCond();
 | 
						|
 | 
						|
  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
 | 
						|
                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
 | 
						|
  void FinalizeChain(IVChain &Chain);
 | 
						|
  void CollectChains();
 | 
						|
  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
 | 
						|
                       SmallVectorImpl<WeakVH> &DeadInsts);
 | 
						|
 | 
						|
  void CollectInterestingTypesAndFactors();
 | 
						|
  void CollectFixupsAndInitialFormulae();
 | 
						|
 | 
						|
  LSRFixup &getNewFixup() {
 | 
						|
    Fixups.push_back(LSRFixup());
 | 
						|
    return Fixups.back();
 | 
						|
  }
 | 
						|
 | 
						|
  // Support for sharing of LSRUses between LSRFixups.
 | 
						|
  typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
 | 
						|
  UseMapTy UseMap;
 | 
						|
 | 
						|
  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
 | 
						|
                          LSRUse::KindType Kind, Type *AccessTy);
 | 
						|
 | 
						|
  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
 | 
						|
                                    LSRUse::KindType Kind,
 | 
						|
                                    Type *AccessTy);
 | 
						|
 | 
						|
  void DeleteUse(LSRUse &LU, size_t LUIdx);
 | 
						|
 | 
						|
  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
 | 
						|
 | 
						|
  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
 | 
						|
  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
 | 
						|
  void CountRegisters(const Formula &F, size_t LUIdx);
 | 
						|
  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
 | 
						|
 | 
						|
  void CollectLoopInvariantFixupsAndFormulae();
 | 
						|
 | 
						|
  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
 | 
						|
                              unsigned Depth = 0);
 | 
						|
 | 
						|
  void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                  const Formula &Base, unsigned Depth,
 | 
						|
                                  size_t Idx, bool IsScaledReg = false);
 | 
						|
  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
 | 
						|
  void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                   const Formula &Base, size_t Idx,
 | 
						|
                                   bool IsScaledReg = false);
 | 
						|
  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
 | 
						|
  void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                   const Formula &Base,
 | 
						|
                                   const SmallVectorImpl<int64_t> &Worklist,
 | 
						|
                                   size_t Idx, bool IsScaledReg = false);
 | 
						|
  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
 | 
						|
  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
 | 
						|
  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
 | 
						|
  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
 | 
						|
  void GenerateCrossUseConstantOffsets();
 | 
						|
  void GenerateAllReuseFormulae();
 | 
						|
 | 
						|
  void FilterOutUndesirableDedicatedRegisters();
 | 
						|
 | 
						|
  size_t EstimateSearchSpaceComplexity() const;
 | 
						|
  void NarrowSearchSpaceByDetectingSupersets();
 | 
						|
  void NarrowSearchSpaceByCollapsingUnrolledCode();
 | 
						|
  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
 | 
						|
  void NarrowSearchSpaceByPickingWinnerRegs();
 | 
						|
  void NarrowSearchSpaceUsingHeuristics();
 | 
						|
 | 
						|
  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
 | 
						|
                    Cost &SolutionCost,
 | 
						|
                    SmallVectorImpl<const Formula *> &Workspace,
 | 
						|
                    const Cost &CurCost,
 | 
						|
                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
 | 
						|
                    DenseSet<const SCEV *> &VisitedRegs) const;
 | 
						|
  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
 | 
						|
 | 
						|
  BasicBlock::iterator
 | 
						|
    HoistInsertPosition(BasicBlock::iterator IP,
 | 
						|
                        const SmallVectorImpl<Instruction *> &Inputs) const;
 | 
						|
  BasicBlock::iterator
 | 
						|
    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
 | 
						|
                                  const LSRFixup &LF,
 | 
						|
                                  const LSRUse &LU,
 | 
						|
                                  SCEVExpander &Rewriter) const;
 | 
						|
 | 
						|
  Value *Expand(const LSRFixup &LF,
 | 
						|
                const Formula &F,
 | 
						|
                BasicBlock::iterator IP,
 | 
						|
                SCEVExpander &Rewriter,
 | 
						|
                SmallVectorImpl<WeakVH> &DeadInsts) const;
 | 
						|
  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
 | 
						|
                     const Formula &F,
 | 
						|
                     SCEVExpander &Rewriter,
 | 
						|
                     SmallVectorImpl<WeakVH> &DeadInsts,
 | 
						|
                     Pass *P) const;
 | 
						|
  void Rewrite(const LSRFixup &LF,
 | 
						|
               const Formula &F,
 | 
						|
               SCEVExpander &Rewriter,
 | 
						|
               SmallVectorImpl<WeakVH> &DeadInsts,
 | 
						|
               Pass *P) const;
 | 
						|
  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
 | 
						|
                         Pass *P);
 | 
						|
 | 
						|
public:
 | 
						|
  LSRInstance(Loop *L, Pass *P);
 | 
						|
 | 
						|
  bool getChanged() const { return Changed; }
 | 
						|
 | 
						|
  void print_factors_and_types(raw_ostream &OS) const;
 | 
						|
  void print_fixups(raw_ostream &OS) const;
 | 
						|
  void print_uses(raw_ostream &OS) const;
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeShadowIV - If IV is used in a int-to-float cast
 | 
						|
/// inside the loop then try to eliminate the cast operation.
 | 
						|
void LSRInstance::OptimizeShadowIV() {
 | 
						|
  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | 
						|
    return;
 | 
						|
 | 
						|
  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
 | 
						|
       UI != E; /* empty */) {
 | 
						|
    IVUsers::const_iterator CandidateUI = UI;
 | 
						|
    ++UI;
 | 
						|
    Instruction *ShadowUse = CandidateUI->getUser();
 | 
						|
    Type *DestTy = nullptr;
 | 
						|
    bool IsSigned = false;
 | 
						|
 | 
						|
    /* If shadow use is a int->float cast then insert a second IV
 | 
						|
       to eliminate this cast.
 | 
						|
 | 
						|
         for (unsigned i = 0; i < n; ++i)
 | 
						|
           foo((double)i);
 | 
						|
 | 
						|
       is transformed into
 | 
						|
 | 
						|
         double d = 0.0;
 | 
						|
         for (unsigned i = 0; i < n; ++i, ++d)
 | 
						|
           foo(d);
 | 
						|
    */
 | 
						|
    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
 | 
						|
      IsSigned = false;
 | 
						|
      DestTy = UCast->getDestTy();
 | 
						|
    }
 | 
						|
    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
 | 
						|
      IsSigned = true;
 | 
						|
      DestTy = SCast->getDestTy();
 | 
						|
    }
 | 
						|
    if (!DestTy) continue;
 | 
						|
 | 
						|
    // If target does not support DestTy natively then do not apply
 | 
						|
    // this transformation.
 | 
						|
    if (!TTI.isTypeLegal(DestTy)) continue;
 | 
						|
 | 
						|
    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
 | 
						|
    if (!PH) continue;
 | 
						|
    if (PH->getNumIncomingValues() != 2) continue;
 | 
						|
 | 
						|
    Type *SrcTy = PH->getType();
 | 
						|
    int Mantissa = DestTy->getFPMantissaWidth();
 | 
						|
    if (Mantissa == -1) continue;
 | 
						|
    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Entry, Latch;
 | 
						|
    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
 | 
						|
      Entry = 0;
 | 
						|
      Latch = 1;
 | 
						|
    } else {
 | 
						|
      Entry = 1;
 | 
						|
      Latch = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
 | 
						|
    if (!Init) continue;
 | 
						|
    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
 | 
						|
                                        (double)Init->getSExtValue() :
 | 
						|
                                        (double)Init->getZExtValue());
 | 
						|
 | 
						|
    BinaryOperator *Incr =
 | 
						|
      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
 | 
						|
    if (!Incr) continue;
 | 
						|
    if (Incr->getOpcode() != Instruction::Add
 | 
						|
        && Incr->getOpcode() != Instruction::Sub)
 | 
						|
      continue;
 | 
						|
 | 
						|
    /* Initialize new IV, double d = 0.0 in above example. */
 | 
						|
    ConstantInt *C = nullptr;
 | 
						|
    if (Incr->getOperand(0) == PH)
 | 
						|
      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
 | 
						|
    else if (Incr->getOperand(1) == PH)
 | 
						|
      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
 | 
						|
    else
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!C) continue;
 | 
						|
 | 
						|
    // Ignore negative constants, as the code below doesn't handle them
 | 
						|
    // correctly. TODO: Remove this restriction.
 | 
						|
    if (!C->getValue().isStrictlyPositive()) continue;
 | 
						|
 | 
						|
    /* Add new PHINode. */
 | 
						|
    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
 | 
						|
 | 
						|
    /* create new increment. '++d' in above example. */
 | 
						|
    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
 | 
						|
    BinaryOperator *NewIncr =
 | 
						|
      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
 | 
						|
                               Instruction::FAdd : Instruction::FSub,
 | 
						|
                             NewPH, CFP, "IV.S.next.", Incr);
 | 
						|
 | 
						|
    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
 | 
						|
    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
 | 
						|
 | 
						|
    /* Remove cast operation */
 | 
						|
    ShadowUse->replaceAllUsesWith(NewPH);
 | 
						|
    ShadowUse->eraseFromParent();
 | 
						|
    Changed = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
 | 
						|
/// set the IV user and stride information and return true, otherwise return
 | 
						|
/// false.
 | 
						|
bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
 | 
						|
  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
 | 
						|
    if (UI->getUser() == Cond) {
 | 
						|
      // NOTE: we could handle setcc instructions with multiple uses here, but
 | 
						|
      // InstCombine does it as well for simple uses, it's not clear that it
 | 
						|
      // occurs enough in real life to handle.
 | 
						|
      CondUse = UI;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeMax - Rewrite the loop's terminating condition if it uses
 | 
						|
/// a max computation.
 | 
						|
///
 | 
						|
/// This is a narrow solution to a specific, but acute, problem. For loops
 | 
						|
/// like this:
 | 
						|
///
 | 
						|
///   i = 0;
 | 
						|
///   do {
 | 
						|
///     p[i] = 0.0;
 | 
						|
///   } while (++i < n);
 | 
						|
///
 | 
						|
/// the trip count isn't just 'n', because 'n' might not be positive. And
 | 
						|
/// unfortunately this can come up even for loops where the user didn't use
 | 
						|
/// a C do-while loop. For example, seemingly well-behaved top-test loops
 | 
						|
/// will commonly be lowered like this:
 | 
						|
//
 | 
						|
///   if (n > 0) {
 | 
						|
///     i = 0;
 | 
						|
///     do {
 | 
						|
///       p[i] = 0.0;
 | 
						|
///     } while (++i < n);
 | 
						|
///   }
 | 
						|
///
 | 
						|
/// and then it's possible for subsequent optimization to obscure the if
 | 
						|
/// test in such a way that indvars can't find it.
 | 
						|
///
 | 
						|
/// When indvars can't find the if test in loops like this, it creates a
 | 
						|
/// max expression, which allows it to give the loop a canonical
 | 
						|
/// induction variable:
 | 
						|
///
 | 
						|
///   i = 0;
 | 
						|
///   max = n < 1 ? 1 : n;
 | 
						|
///   do {
 | 
						|
///     p[i] = 0.0;
 | 
						|
///   } while (++i != max);
 | 
						|
///
 | 
						|
/// Canonical induction variables are necessary because the loop passes
 | 
						|
/// are designed around them. The most obvious example of this is the
 | 
						|
/// LoopInfo analysis, which doesn't remember trip count values. It
 | 
						|
/// expects to be able to rediscover the trip count each time it is
 | 
						|
/// needed, and it does this using a simple analysis that only succeeds if
 | 
						|
/// the loop has a canonical induction variable.
 | 
						|
///
 | 
						|
/// However, when it comes time to generate code, the maximum operation
 | 
						|
/// can be quite costly, especially if it's inside of an outer loop.
 | 
						|
///
 | 
						|
/// This function solves this problem by detecting this type of loop and
 | 
						|
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
 | 
						|
/// the instructions for the maximum computation.
 | 
						|
///
 | 
						|
ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
 | 
						|
  // Check that the loop matches the pattern we're looking for.
 | 
						|
  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
 | 
						|
      Cond->getPredicate() != CmpInst::ICMP_NE)
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
 | 
						|
  if (!Sel || !Sel->hasOneUse()) return Cond;
 | 
						|
 | 
						|
  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | 
						|
    return Cond;
 | 
						|
  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
 | 
						|
 | 
						|
  // Add one to the backedge-taken count to get the trip count.
 | 
						|
  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
 | 
						|
  if (IterationCount != SE.getSCEV(Sel)) return Cond;
 | 
						|
 | 
						|
  // Check for a max calculation that matches the pattern. There's no check
 | 
						|
  // for ICMP_ULE here because the comparison would be with zero, which
 | 
						|
  // isn't interesting.
 | 
						|
  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
 | 
						|
  const SCEVNAryExpr *Max = nullptr;
 | 
						|
  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
 | 
						|
    Pred = ICmpInst::ICMP_SLE;
 | 
						|
    Max = S;
 | 
						|
  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
 | 
						|
    Pred = ICmpInst::ICMP_SLT;
 | 
						|
    Max = S;
 | 
						|
  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
 | 
						|
    Pred = ICmpInst::ICMP_ULT;
 | 
						|
    Max = U;
 | 
						|
  } else {
 | 
						|
    // No match; bail.
 | 
						|
    return Cond;
 | 
						|
  }
 | 
						|
 | 
						|
  // To handle a max with more than two operands, this optimization would
 | 
						|
  // require additional checking and setup.
 | 
						|
  if (Max->getNumOperands() != 2)
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  const SCEV *MaxLHS = Max->getOperand(0);
 | 
						|
  const SCEV *MaxRHS = Max->getOperand(1);
 | 
						|
 | 
						|
  // ScalarEvolution canonicalizes constants to the left. For < and >, look
 | 
						|
  // for a comparison with 1. For <= and >=, a comparison with zero.
 | 
						|
  if (!MaxLHS ||
 | 
						|
      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  // Check the relevant induction variable for conformance to
 | 
						|
  // the pattern.
 | 
						|
  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
 | 
						|
  if (!AR || !AR->isAffine() ||
 | 
						|
      AR->getStart() != One ||
 | 
						|
      AR->getStepRecurrence(SE) != One)
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  assert(AR->getLoop() == L &&
 | 
						|
         "Loop condition operand is an addrec in a different loop!");
 | 
						|
 | 
						|
  // Check the right operand of the select, and remember it, as it will
 | 
						|
  // be used in the new comparison instruction.
 | 
						|
  Value *NewRHS = nullptr;
 | 
						|
  if (ICmpInst::isTrueWhenEqual(Pred)) {
 | 
						|
    // Look for n+1, and grab n.
 | 
						|
    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
 | 
						|
      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
 | 
						|
         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
 | 
						|
           NewRHS = BO->getOperand(0);
 | 
						|
    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
 | 
						|
      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
 | 
						|
        if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
 | 
						|
          NewRHS = BO->getOperand(0);
 | 
						|
    if (!NewRHS)
 | 
						|
      return Cond;
 | 
						|
  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
 | 
						|
    NewRHS = Sel->getOperand(1);
 | 
						|
  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
 | 
						|
    NewRHS = Sel->getOperand(2);
 | 
						|
  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
 | 
						|
    NewRHS = SU->getValue();
 | 
						|
  else
 | 
						|
    // Max doesn't match expected pattern.
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  // Determine the new comparison opcode. It may be signed or unsigned,
 | 
						|
  // and the original comparison may be either equality or inequality.
 | 
						|
  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
 | 
						|
    Pred = CmpInst::getInversePredicate(Pred);
 | 
						|
 | 
						|
  // Ok, everything looks ok to change the condition into an SLT or SGE and
 | 
						|
  // delete the max calculation.
 | 
						|
  ICmpInst *NewCond =
 | 
						|
    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
 | 
						|
 | 
						|
  // Delete the max calculation instructions.
 | 
						|
  Cond->replaceAllUsesWith(NewCond);
 | 
						|
  CondUse->setUser(NewCond);
 | 
						|
  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
 | 
						|
  Cond->eraseFromParent();
 | 
						|
  Sel->eraseFromParent();
 | 
						|
  if (Cmp->use_empty())
 | 
						|
    Cmp->eraseFromParent();
 | 
						|
  return NewCond;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeLoopTermCond - Change loop terminating condition to use the
 | 
						|
/// postinc iv when possible.
 | 
						|
void
 | 
						|
LSRInstance::OptimizeLoopTermCond() {
 | 
						|
  SmallPtrSet<Instruction *, 4> PostIncs;
 | 
						|
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  SmallVector<BasicBlock*, 8> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *ExitingBlock = ExitingBlocks[i];
 | 
						|
 | 
						|
    // Get the terminating condition for the loop if possible.  If we
 | 
						|
    // can, we want to change it to use a post-incremented version of its
 | 
						|
    // induction variable, to allow coalescing the live ranges for the IV into
 | 
						|
    // one register value.
 | 
						|
 | 
						|
    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | 
						|
    if (!TermBr)
 | 
						|
      continue;
 | 
						|
    // FIXME: Overly conservative, termination condition could be an 'or' etc..
 | 
						|
    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Search IVUsesByStride to find Cond's IVUse if there is one.
 | 
						|
    IVStrideUse *CondUse = nullptr;
 | 
						|
    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
 | 
						|
    if (!FindIVUserForCond(Cond, CondUse))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the trip count is computed in terms of a max (due to ScalarEvolution
 | 
						|
    // being unable to find a sufficient guard, for example), change the loop
 | 
						|
    // comparison to use SLT or ULT instead of NE.
 | 
						|
    // One consequence of doing this now is that it disrupts the count-down
 | 
						|
    // optimization. That's not always a bad thing though, because in such
 | 
						|
    // cases it may still be worthwhile to avoid a max.
 | 
						|
    Cond = OptimizeMax(Cond, CondUse);
 | 
						|
 | 
						|
    // If this exiting block dominates the latch block, it may also use
 | 
						|
    // the post-inc value if it won't be shared with other uses.
 | 
						|
    // Check for dominance.
 | 
						|
    if (!DT.dominates(ExitingBlock, LatchBlock))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Conservatively avoid trying to use the post-inc value in non-latch
 | 
						|
    // exits if there may be pre-inc users in intervening blocks.
 | 
						|
    if (LatchBlock != ExitingBlock)
 | 
						|
      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
 | 
						|
        // Test if the use is reachable from the exiting block. This dominator
 | 
						|
        // query is a conservative approximation of reachability.
 | 
						|
        if (&*UI != CondUse &&
 | 
						|
            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
 | 
						|
          // Conservatively assume there may be reuse if the quotient of their
 | 
						|
          // strides could be a legal scale.
 | 
						|
          const SCEV *A = IU.getStride(*CondUse, L);
 | 
						|
          const SCEV *B = IU.getStride(*UI, L);
 | 
						|
          if (!A || !B) continue;
 | 
						|
          if (SE.getTypeSizeInBits(A->getType()) !=
 | 
						|
              SE.getTypeSizeInBits(B->getType())) {
 | 
						|
            if (SE.getTypeSizeInBits(A->getType()) >
 | 
						|
                SE.getTypeSizeInBits(B->getType()))
 | 
						|
              B = SE.getSignExtendExpr(B, A->getType());
 | 
						|
            else
 | 
						|
              A = SE.getSignExtendExpr(A, B->getType());
 | 
						|
          }
 | 
						|
          if (const SCEVConstant *D =
 | 
						|
                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
 | 
						|
            const ConstantInt *C = D->getValue();
 | 
						|
            // Stride of one or negative one can have reuse with non-addresses.
 | 
						|
            if (C->isOne() || C->isAllOnesValue())
 | 
						|
              goto decline_post_inc;
 | 
						|
            // Avoid weird situations.
 | 
						|
            if (C->getValue().getMinSignedBits() >= 64 ||
 | 
						|
                C->getValue().isMinSignedValue())
 | 
						|
              goto decline_post_inc;
 | 
						|
            // Check for possible scaled-address reuse.
 | 
						|
            Type *AccessTy = getAccessType(UI->getUser());
 | 
						|
            int64_t Scale = C->getSExtValue();
 | 
						|
            if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
 | 
						|
                                          /*BaseOffset=*/ 0,
 | 
						|
                                          /*HasBaseReg=*/ false, Scale))
 | 
						|
              goto decline_post_inc;
 | 
						|
            Scale = -Scale;
 | 
						|
            if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
 | 
						|
                                          /*BaseOffset=*/ 0,
 | 
						|
                                          /*HasBaseReg=*/ false, Scale))
 | 
						|
              goto decline_post_inc;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
 | 
						|
                 << *Cond << '\n');
 | 
						|
 | 
						|
    // It's possible for the setcc instruction to be anywhere in the loop, and
 | 
						|
    // possible for it to have multiple users.  If it is not immediately before
 | 
						|
    // the exiting block branch, move it.
 | 
						|
    if (&*++BasicBlock::iterator(Cond) != TermBr) {
 | 
						|
      if (Cond->hasOneUse()) {
 | 
						|
        Cond->moveBefore(TermBr);
 | 
						|
      } else {
 | 
						|
        // Clone the terminating condition and insert into the loopend.
 | 
						|
        ICmpInst *OldCond = Cond;
 | 
						|
        Cond = cast<ICmpInst>(Cond->clone());
 | 
						|
        Cond->setName(L->getHeader()->getName() + ".termcond");
 | 
						|
        ExitingBlock->getInstList().insert(TermBr, Cond);
 | 
						|
 | 
						|
        // Clone the IVUse, as the old use still exists!
 | 
						|
        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
 | 
						|
        TermBr->replaceUsesOfWith(OldCond, Cond);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we get to here, we know that we can transform the setcc instruction to
 | 
						|
    // use the post-incremented version of the IV, allowing us to coalesce the
 | 
						|
    // live ranges for the IV correctly.
 | 
						|
    CondUse->transformToPostInc(L);
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    PostIncs.insert(Cond);
 | 
						|
  decline_post_inc:;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine an insertion point for the loop induction variable increment. It
 | 
						|
  // must dominate all the post-inc comparisons we just set up, and it must
 | 
						|
  // dominate the loop latch edge.
 | 
						|
  IVIncInsertPos = L->getLoopLatch()->getTerminator();
 | 
						|
  for (Instruction *Inst : PostIncs) {
 | 
						|
    BasicBlock *BB =
 | 
						|
      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
 | 
						|
                                    Inst->getParent());
 | 
						|
    if (BB == Inst->getParent())
 | 
						|
      IVIncInsertPos = Inst;
 | 
						|
    else if (BB != IVIncInsertPos->getParent())
 | 
						|
      IVIncInsertPos = BB->getTerminator();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// reconcileNewOffset - Determine if the given use can accommodate a fixup
 | 
						|
/// at the given offset and other details. If so, update the use and
 | 
						|
/// return true.
 | 
						|
bool
 | 
						|
LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
 | 
						|
                                LSRUse::KindType Kind, Type *AccessTy) {
 | 
						|
  int64_t NewMinOffset = LU.MinOffset;
 | 
						|
  int64_t NewMaxOffset = LU.MaxOffset;
 | 
						|
  Type *NewAccessTy = AccessTy;
 | 
						|
 | 
						|
  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
 | 
						|
  // something conservative, however this can pessimize in the case that one of
 | 
						|
  // the uses will have all its uses outside the loop, for example.
 | 
						|
  if (LU.Kind != Kind)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check for a mismatched access type, and fall back conservatively as needed.
 | 
						|
  // TODO: Be less conservative when the type is similar and can use the same
 | 
						|
  // addressing modes.
 | 
						|
  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
 | 
						|
    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
 | 
						|
 | 
						|
  // Conservatively assume HasBaseReg is true for now.
 | 
						|
  if (NewOffset < LU.MinOffset) {
 | 
						|
    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
 | 
						|
                          LU.MaxOffset - NewOffset, HasBaseReg))
 | 
						|
      return false;
 | 
						|
    NewMinOffset = NewOffset;
 | 
						|
  } else if (NewOffset > LU.MaxOffset) {
 | 
						|
    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
 | 
						|
                          NewOffset - LU.MinOffset, HasBaseReg))
 | 
						|
      return false;
 | 
						|
    NewMaxOffset = NewOffset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the use.
 | 
						|
  LU.MinOffset = NewMinOffset;
 | 
						|
  LU.MaxOffset = NewMaxOffset;
 | 
						|
  LU.AccessTy = NewAccessTy;
 | 
						|
  if (NewOffset != LU.Offsets.back())
 | 
						|
    LU.Offsets.push_back(NewOffset);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getUse - Return an LSRUse index and an offset value for a fixup which
 | 
						|
/// needs the given expression, with the given kind and optional access type.
 | 
						|
/// Either reuse an existing use or create a new one, as needed.
 | 
						|
std::pair<size_t, int64_t>
 | 
						|
LSRInstance::getUse(const SCEV *&Expr,
 | 
						|
                    LSRUse::KindType Kind, Type *AccessTy) {
 | 
						|
  const SCEV *Copy = Expr;
 | 
						|
  int64_t Offset = ExtractImmediate(Expr, SE);
 | 
						|
 | 
						|
  // Basic uses can't accept any offset, for example.
 | 
						|
  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
 | 
						|
                        Offset, /*HasBaseReg=*/ true)) {
 | 
						|
    Expr = Copy;
 | 
						|
    Offset = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  std::pair<UseMapTy::iterator, bool> P =
 | 
						|
    UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
 | 
						|
  if (!P.second) {
 | 
						|
    // A use already existed with this base.
 | 
						|
    size_t LUIdx = P.first->second;
 | 
						|
    LSRUse &LU = Uses[LUIdx];
 | 
						|
    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
 | 
						|
      // Reuse this use.
 | 
						|
      return std::make_pair(LUIdx, Offset);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a new use.
 | 
						|
  size_t LUIdx = Uses.size();
 | 
						|
  P.first->second = LUIdx;
 | 
						|
  Uses.push_back(LSRUse(Kind, AccessTy));
 | 
						|
  LSRUse &LU = Uses[LUIdx];
 | 
						|
 | 
						|
  // We don't need to track redundant offsets, but we don't need to go out
 | 
						|
  // of our way here to avoid them.
 | 
						|
  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
 | 
						|
    LU.Offsets.push_back(Offset);
 | 
						|
 | 
						|
  LU.MinOffset = Offset;
 | 
						|
  LU.MaxOffset = Offset;
 | 
						|
  return std::make_pair(LUIdx, Offset);
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteUse - Delete the given use from the Uses list.
 | 
						|
void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
 | 
						|
  if (&LU != &Uses.back())
 | 
						|
    std::swap(LU, Uses.back());
 | 
						|
  Uses.pop_back();
 | 
						|
 | 
						|
  // Update RegUses.
 | 
						|
  RegUses.SwapAndDropUse(LUIdx, Uses.size());
 | 
						|
}
 | 
						|
 | 
						|
/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
 | 
						|
/// a formula that has the same registers as the given formula.
 | 
						|
LSRUse *
 | 
						|
LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
 | 
						|
                                       const LSRUse &OrigLU) {
 | 
						|
  // Search all uses for the formula. This could be more clever.
 | 
						|
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
 | 
						|
    LSRUse &LU = Uses[LUIdx];
 | 
						|
    // Check whether this use is close enough to OrigLU, to see whether it's
 | 
						|
    // worthwhile looking through its formulae.
 | 
						|
    // Ignore ICmpZero uses because they may contain formulae generated by
 | 
						|
    // GenerateICmpZeroScales, in which case adding fixup offsets may
 | 
						|
    // be invalid.
 | 
						|
    if (&LU != &OrigLU &&
 | 
						|
        LU.Kind != LSRUse::ICmpZero &&
 | 
						|
        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
 | 
						|
        LU.WidestFixupType == OrigLU.WidestFixupType &&
 | 
						|
        LU.HasFormulaWithSameRegs(OrigF)) {
 | 
						|
      // Scan through this use's formulae.
 | 
						|
      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
 | 
						|
           E = LU.Formulae.end(); I != E; ++I) {
 | 
						|
        const Formula &F = *I;
 | 
						|
        // Check to see if this formula has the same registers and symbols
 | 
						|
        // as OrigF.
 | 
						|
        if (F.BaseRegs == OrigF.BaseRegs &&
 | 
						|
            F.ScaledReg == OrigF.ScaledReg &&
 | 
						|
            F.BaseGV == OrigF.BaseGV &&
 | 
						|
            F.Scale == OrigF.Scale &&
 | 
						|
            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
 | 
						|
          if (F.BaseOffset == 0)
 | 
						|
            return &LU;
 | 
						|
          // This is the formula where all the registers and symbols matched;
 | 
						|
          // there aren't going to be any others. Since we declined it, we
 | 
						|
          // can skip the rest of the formulae and proceed to the next LSRUse.
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Nothing looked good.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void LSRInstance::CollectInterestingTypesAndFactors() {
 | 
						|
  SmallSetVector<const SCEV *, 4> Strides;
 | 
						|
 | 
						|
  // Collect interesting types and strides.
 | 
						|
  SmallVector<const SCEV *, 4> Worklist;
 | 
						|
  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
 | 
						|
    const SCEV *Expr = IU.getExpr(*UI);
 | 
						|
 | 
						|
    // Collect interesting types.
 | 
						|
    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
 | 
						|
 | 
						|
    // Add strides for mentioned loops.
 | 
						|
    Worklist.push_back(Expr);
 | 
						|
    do {
 | 
						|
      const SCEV *S = Worklist.pop_back_val();
 | 
						|
      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
        if (AR->getLoop() == L)
 | 
						|
          Strides.insert(AR->getStepRecurrence(SE));
 | 
						|
        Worklist.push_back(AR->getStart());
 | 
						|
      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
        Worklist.append(Add->op_begin(), Add->op_end());
 | 
						|
      }
 | 
						|
    } while (!Worklist.empty());
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute interesting factors from the set of interesting strides.
 | 
						|
  for (SmallSetVector<const SCEV *, 4>::const_iterator
 | 
						|
       I = Strides.begin(), E = Strides.end(); I != E; ++I)
 | 
						|
    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
 | 
						|
         std::next(I); NewStrideIter != E; ++NewStrideIter) {
 | 
						|
      const SCEV *OldStride = *I;
 | 
						|
      const SCEV *NewStride = *NewStrideIter;
 | 
						|
 | 
						|
      if (SE.getTypeSizeInBits(OldStride->getType()) !=
 | 
						|
          SE.getTypeSizeInBits(NewStride->getType())) {
 | 
						|
        if (SE.getTypeSizeInBits(OldStride->getType()) >
 | 
						|
            SE.getTypeSizeInBits(NewStride->getType()))
 | 
						|
          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
 | 
						|
        else
 | 
						|
          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
 | 
						|
      }
 | 
						|
      if (const SCEVConstant *Factor =
 | 
						|
            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
 | 
						|
                                                        SE, true))) {
 | 
						|
        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
 | 
						|
          Factors.insert(Factor->getValue()->getValue().getSExtValue());
 | 
						|
      } else if (const SCEVConstant *Factor =
 | 
						|
                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
 | 
						|
                                                               NewStride,
 | 
						|
                                                               SE, true))) {
 | 
						|
        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
 | 
						|
          Factors.insert(Factor->getValue()->getValue().getSExtValue());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // If all uses use the same type, don't bother looking for truncation-based
 | 
						|
  // reuse.
 | 
						|
  if (Types.size() == 1)
 | 
						|
    Types.clear();
 | 
						|
 | 
						|
  DEBUG(print_factors_and_types(dbgs()));
 | 
						|
}
 | 
						|
 | 
						|
/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
 | 
						|
/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
 | 
						|
/// Instructions to IVStrideUses, we could partially skip this.
 | 
						|
static User::op_iterator
 | 
						|
findIVOperand(User::op_iterator OI, User::op_iterator OE,
 | 
						|
              Loop *L, ScalarEvolution &SE) {
 | 
						|
  for(; OI != OE; ++OI) {
 | 
						|
    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
 | 
						|
      if (!SE.isSCEVable(Oper->getType()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (const SCEVAddRecExpr *AR =
 | 
						|
          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
 | 
						|
        if (AR->getLoop() == L)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OI;
 | 
						|
}
 | 
						|
 | 
						|
/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
 | 
						|
/// operands, so wrap it in a convenient helper.
 | 
						|
static Value *getWideOperand(Value *Oper) {
 | 
						|
  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
 | 
						|
    return Trunc->getOperand(0);
 | 
						|
  return Oper;
 | 
						|
}
 | 
						|
 | 
						|
/// isCompatibleIVType - Return true if we allow an IV chain to include both
 | 
						|
/// types.
 | 
						|
static bool isCompatibleIVType(Value *LVal, Value *RVal) {
 | 
						|
  Type *LType = LVal->getType();
 | 
						|
  Type *RType = RVal->getType();
 | 
						|
  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
 | 
						|
}
 | 
						|
 | 
						|
/// getExprBase - Return an approximation of this SCEV expression's "base", or
 | 
						|
/// NULL for any constant. Returning the expression itself is
 | 
						|
/// conservative. Returning a deeper subexpression is more precise and valid as
 | 
						|
/// long as it isn't less complex than another subexpression. For expressions
 | 
						|
/// involving multiple unscaled values, we need to return the pointer-type
 | 
						|
/// SCEVUnknown. This avoids forming chains across objects, such as:
 | 
						|
/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
 | 
						|
///
 | 
						|
/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
 | 
						|
/// SCEVUnknown, we simply return the rightmost SCEV operand.
 | 
						|
static const SCEV *getExprBase(const SCEV *S) {
 | 
						|
  switch (S->getSCEVType()) {
 | 
						|
  default: // uncluding scUnknown.
 | 
						|
    return S;
 | 
						|
  case scConstant:
 | 
						|
    return nullptr;
 | 
						|
  case scTruncate:
 | 
						|
    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
 | 
						|
  case scZeroExtend:
 | 
						|
    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
 | 
						|
  case scSignExtend:
 | 
						|
    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
 | 
						|
  case scAddExpr: {
 | 
						|
    // Skip over scaled operands (scMulExpr) to follow add operands as long as
 | 
						|
    // there's nothing more complex.
 | 
						|
    // FIXME: not sure if we want to recognize negation.
 | 
						|
    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
 | 
						|
    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
 | 
						|
           E(Add->op_begin()); I != E; ++I) {
 | 
						|
      const SCEV *SubExpr = *I;
 | 
						|
      if (SubExpr->getSCEVType() == scAddExpr)
 | 
						|
        return getExprBase(SubExpr);
 | 
						|
 | 
						|
      if (SubExpr->getSCEVType() != scMulExpr)
 | 
						|
        return SubExpr;
 | 
						|
    }
 | 
						|
    return S; // all operands are scaled, be conservative.
 | 
						|
  }
 | 
						|
  case scAddRecExpr:
 | 
						|
    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the chain increment is profitable to expand into a loop
 | 
						|
/// invariant value, which may require its own register. A profitable chain
 | 
						|
/// increment will be an offset relative to the same base. We allow such offsets
 | 
						|
/// to potentially be used as chain increment as long as it's not obviously
 | 
						|
/// expensive to expand using real instructions.
 | 
						|
bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
 | 
						|
                                    const SCEV *IncExpr,
 | 
						|
                                    ScalarEvolution &SE) {
 | 
						|
  // Aggressively form chains when -stress-ivchain.
 | 
						|
  if (StressIVChain)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Do not replace a constant offset from IV head with a nonconstant IV
 | 
						|
  // increment.
 | 
						|
  if (!isa<SCEVConstant>(IncExpr)) {
 | 
						|
    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
 | 
						|
    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallPtrSet<const SCEV*, 8> Processed;
 | 
						|
  return !isHighCostExpansion(IncExpr, Processed, SE);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the number of registers needed for the chain is estimated to
 | 
						|
/// be less than the number required for the individual IV users. First prohibit
 | 
						|
/// any IV users that keep the IV live across increments (the Users set should
 | 
						|
/// be empty). Next count the number and type of increments in the chain.
 | 
						|
///
 | 
						|
/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
 | 
						|
/// effectively use postinc addressing modes. Only consider it profitable it the
 | 
						|
/// increments can be computed in fewer registers when chained.
 | 
						|
///
 | 
						|
/// TODO: Consider IVInc free if it's already used in another chains.
 | 
						|
static bool
 | 
						|
isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
 | 
						|
                  ScalarEvolution &SE, const TargetTransformInfo &TTI) {
 | 
						|
  if (StressIVChain)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!Chain.hasIncs())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!Users.empty()) {
 | 
						|
    DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
 | 
						|
          for (Instruction *Inst : Users) {
 | 
						|
            dbgs() << "  " << *Inst << "\n";
 | 
						|
          });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
 | 
						|
 | 
						|
  // The chain itself may require a register, so intialize cost to 1.
 | 
						|
  int cost = 1;
 | 
						|
 | 
						|
  // A complete chain likely eliminates the need for keeping the original IV in
 | 
						|
  // a register. LSR does not currently know how to form a complete chain unless
 | 
						|
  // the header phi already exists.
 | 
						|
  if (isa<PHINode>(Chain.tailUserInst())
 | 
						|
      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
 | 
						|
    --cost;
 | 
						|
  }
 | 
						|
  const SCEV *LastIncExpr = nullptr;
 | 
						|
  unsigned NumConstIncrements = 0;
 | 
						|
  unsigned NumVarIncrements = 0;
 | 
						|
  unsigned NumReusedIncrements = 0;
 | 
						|
  for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
 | 
						|
       I != E; ++I) {
 | 
						|
 | 
						|
    if (I->IncExpr->isZero())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Incrementing by zero or some constant is neutral. We assume constants can
 | 
						|
    // be folded into an addressing mode or an add's immediate operand.
 | 
						|
    if (isa<SCEVConstant>(I->IncExpr)) {
 | 
						|
      ++NumConstIncrements;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I->IncExpr == LastIncExpr)
 | 
						|
      ++NumReusedIncrements;
 | 
						|
    else
 | 
						|
      ++NumVarIncrements;
 | 
						|
 | 
						|
    LastIncExpr = I->IncExpr;
 | 
						|
  }
 | 
						|
  // An IV chain with a single increment is handled by LSR's postinc
 | 
						|
  // uses. However, a chain with multiple increments requires keeping the IV's
 | 
						|
  // value live longer than it needs to be if chained.
 | 
						|
  if (NumConstIncrements > 1)
 | 
						|
    --cost;
 | 
						|
 | 
						|
  // Materializing increment expressions in the preheader that didn't exist in
 | 
						|
  // the original code may cost a register. For example, sign-extended array
 | 
						|
  // indices can produce ridiculous increments like this:
 | 
						|
  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
 | 
						|
  cost += NumVarIncrements;
 | 
						|
 | 
						|
  // Reusing variable increments likely saves a register to hold the multiple of
 | 
						|
  // the stride.
 | 
						|
  cost -= NumReusedIncrements;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
 | 
						|
               << "\n");
 | 
						|
 | 
						|
  return cost < 0;
 | 
						|
}
 | 
						|
 | 
						|
/// ChainInstruction - Add this IV user to an existing chain or make it the head
 | 
						|
/// of a new chain.
 | 
						|
void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
 | 
						|
                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
 | 
						|
  // When IVs are used as types of varying widths, they are generally converted
 | 
						|
  // to a wider type with some uses remaining narrow under a (free) trunc.
 | 
						|
  Value *const NextIV = getWideOperand(IVOper);
 | 
						|
  const SCEV *const OperExpr = SE.getSCEV(NextIV);
 | 
						|
  const SCEV *const OperExprBase = getExprBase(OperExpr);
 | 
						|
 | 
						|
  // Visit all existing chains. Check if its IVOper can be computed as a
 | 
						|
  // profitable loop invariant increment from the last link in the Chain.
 | 
						|
  unsigned ChainIdx = 0, NChains = IVChainVec.size();
 | 
						|
  const SCEV *LastIncExpr = nullptr;
 | 
						|
  for (; ChainIdx < NChains; ++ChainIdx) {
 | 
						|
    IVChain &Chain = IVChainVec[ChainIdx];
 | 
						|
 | 
						|
    // Prune the solution space aggressively by checking that both IV operands
 | 
						|
    // are expressions that operate on the same unscaled SCEVUnknown. This
 | 
						|
    // "base" will be canceled by the subsequent getMinusSCEV call. Checking
 | 
						|
    // first avoids creating extra SCEV expressions.
 | 
						|
    if (!StressIVChain && Chain.ExprBase != OperExprBase)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
 | 
						|
    if (!isCompatibleIVType(PrevIV, NextIV))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A phi node terminates a chain.
 | 
						|
    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // The increment must be loop-invariant so it can be kept in a register.
 | 
						|
    const SCEV *PrevExpr = SE.getSCEV(PrevIV);
 | 
						|
    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
 | 
						|
    if (!SE.isLoopInvariant(IncExpr, L))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
 | 
						|
      LastIncExpr = IncExpr;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If we haven't found a chain, create a new one, unless we hit the max. Don't
 | 
						|
  // bother for phi nodes, because they must be last in the chain.
 | 
						|
  if (ChainIdx == NChains) {
 | 
						|
    if (isa<PHINode>(UserInst))
 | 
						|
      return;
 | 
						|
    if (NChains >= MaxChains && !StressIVChain) {
 | 
						|
      DEBUG(dbgs() << "IV Chain Limit\n");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    LastIncExpr = OperExpr;
 | 
						|
    // IVUsers may have skipped over sign/zero extensions. We don't currently
 | 
						|
    // attempt to form chains involving extensions unless they can be hoisted
 | 
						|
    // into this loop's AddRec.
 | 
						|
    if (!isa<SCEVAddRecExpr>(LastIncExpr))
 | 
						|
      return;
 | 
						|
    ++NChains;
 | 
						|
    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
 | 
						|
                                 OperExprBase));
 | 
						|
    ChainUsersVec.resize(NChains);
 | 
						|
    DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
 | 
						|
                 << ") IV=" << *LastIncExpr << "\n");
 | 
						|
  } else {
 | 
						|
    DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
 | 
						|
                 << ") IV+" << *LastIncExpr << "\n");
 | 
						|
    // Add this IV user to the end of the chain.
 | 
						|
    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
 | 
						|
  }
 | 
						|
  IVChain &Chain = IVChainVec[ChainIdx];
 | 
						|
 | 
						|
  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
 | 
						|
  // This chain's NearUsers become FarUsers.
 | 
						|
  if (!LastIncExpr->isZero()) {
 | 
						|
    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
 | 
						|
                                            NearUsers.end());
 | 
						|
    NearUsers.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // All other uses of IVOperand become near uses of the chain.
 | 
						|
  // We currently ignore intermediate values within SCEV expressions, assuming
 | 
						|
  // they will eventually be used be the current chain, or can be computed
 | 
						|
  // from one of the chain increments. To be more precise we could
 | 
						|
  // transitively follow its user and only add leaf IV users to the set.
 | 
						|
  for (User *U : IVOper->users()) {
 | 
						|
    Instruction *OtherUse = dyn_cast<Instruction>(U);
 | 
						|
    if (!OtherUse)
 | 
						|
      continue;
 | 
						|
    // Uses in the chain will no longer be uses if the chain is formed.
 | 
						|
    // Include the head of the chain in this iteration (not Chain.begin()).
 | 
						|
    IVChain::const_iterator IncIter = Chain.Incs.begin();
 | 
						|
    IVChain::const_iterator IncEnd = Chain.Incs.end();
 | 
						|
    for( ; IncIter != IncEnd; ++IncIter) {
 | 
						|
      if (IncIter->UserInst == OtherUse)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (IncIter != IncEnd)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SE.isSCEVable(OtherUse->getType())
 | 
						|
        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
 | 
						|
        && IU.isIVUserOrOperand(OtherUse)) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    NearUsers.insert(OtherUse);
 | 
						|
  }
 | 
						|
 | 
						|
  // Since this user is part of the chain, it's no longer considered a use
 | 
						|
  // of the chain.
 | 
						|
  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
 | 
						|
}
 | 
						|
 | 
						|
/// CollectChains - Populate the vector of Chains.
 | 
						|
///
 | 
						|
/// This decreases ILP at the architecture level. Targets with ample registers,
 | 
						|
/// multiple memory ports, and no register renaming probably don't want
 | 
						|
/// this. However, such targets should probably disable LSR altogether.
 | 
						|
///
 | 
						|
/// The job of LSR is to make a reasonable choice of induction variables across
 | 
						|
/// the loop. Subsequent passes can easily "unchain" computation exposing more
 | 
						|
/// ILP *within the loop* if the target wants it.
 | 
						|
///
 | 
						|
/// Finding the best IV chain is potentially a scheduling problem. Since LSR
 | 
						|
/// will not reorder memory operations, it will recognize this as a chain, but
 | 
						|
/// will generate redundant IV increments. Ideally this would be corrected later
 | 
						|
/// by a smart scheduler:
 | 
						|
///        = A[i]
 | 
						|
///        = A[i+x]
 | 
						|
/// A[i]   =
 | 
						|
/// A[i+x] =
 | 
						|
///
 | 
						|
/// TODO: Walk the entire domtree within this loop, not just the path to the
 | 
						|
/// loop latch. This will discover chains on side paths, but requires
 | 
						|
/// maintaining multiple copies of the Chains state.
 | 
						|
void LSRInstance::CollectChains() {
 | 
						|
  DEBUG(dbgs() << "Collecting IV Chains.\n");
 | 
						|
  SmallVector<ChainUsers, 8> ChainUsersVec;
 | 
						|
 | 
						|
  SmallVector<BasicBlock *,8> LatchPath;
 | 
						|
  BasicBlock *LoopHeader = L->getHeader();
 | 
						|
  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
 | 
						|
       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
 | 
						|
    LatchPath.push_back(Rung->getBlock());
 | 
						|
  }
 | 
						|
  LatchPath.push_back(LoopHeader);
 | 
						|
 | 
						|
  // Walk the instruction stream from the loop header to the loop latch.
 | 
						|
  for (SmallVectorImpl<BasicBlock *>::reverse_iterator
 | 
						|
         BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
 | 
						|
       BBIter != BBEnd; ++BBIter) {
 | 
						|
    for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      // Skip instructions that weren't seen by IVUsers analysis.
 | 
						|
      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Ignore users that are part of a SCEV expression. This way we only
 | 
						|
      // consider leaf IV Users. This effectively rediscovers a portion of
 | 
						|
      // IVUsers analysis but in program order this time.
 | 
						|
      if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Remove this instruction from any NearUsers set it may be in.
 | 
						|
      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
 | 
						|
           ChainIdx < NChains; ++ChainIdx) {
 | 
						|
        ChainUsersVec[ChainIdx].NearUsers.erase(I);
 | 
						|
      }
 | 
						|
      // Search for operands that can be chained.
 | 
						|
      SmallPtrSet<Instruction*, 4> UniqueOperands;
 | 
						|
      User::op_iterator IVOpEnd = I->op_end();
 | 
						|
      User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
 | 
						|
      while (IVOpIter != IVOpEnd) {
 | 
						|
        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
 | 
						|
        if (UniqueOperands.insert(IVOpInst).second)
 | 
						|
          ChainInstruction(I, IVOpInst, ChainUsersVec);
 | 
						|
        IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
 | 
						|
      }
 | 
						|
    } // Continue walking down the instructions.
 | 
						|
  } // Continue walking down the domtree.
 | 
						|
  // Visit phi backedges to determine if the chain can generate the IV postinc.
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
    if (!SE.isSCEVable(PN->getType()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Instruction *IncV =
 | 
						|
      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
 | 
						|
    if (IncV)
 | 
						|
      ChainInstruction(PN, IncV, ChainUsersVec);
 | 
						|
  }
 | 
						|
  // Remove any unprofitable chains.
 | 
						|
  unsigned ChainIdx = 0;
 | 
						|
  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
 | 
						|
       UsersIdx < NChains; ++UsersIdx) {
 | 
						|
    if (!isProfitableChain(IVChainVec[UsersIdx],
 | 
						|
                           ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
 | 
						|
      continue;
 | 
						|
    // Preserve the chain at UsesIdx.
 | 
						|
    if (ChainIdx != UsersIdx)
 | 
						|
      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
 | 
						|
    FinalizeChain(IVChainVec[ChainIdx]);
 | 
						|
    ++ChainIdx;
 | 
						|
  }
 | 
						|
  IVChainVec.resize(ChainIdx);
 | 
						|
}
 | 
						|
 | 
						|
void LSRInstance::FinalizeChain(IVChain &Chain) {
 | 
						|
  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
 | 
						|
  DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
 | 
						|
 | 
						|
  for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
 | 
						|
    User::op_iterator UseI =
 | 
						|
      std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
 | 
						|
    assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
 | 
						|
    IVIncSet.insert(UseI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the IVInc can be folded into an addressing mode.
 | 
						|
static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
 | 
						|
                             Value *Operand, const TargetTransformInfo &TTI) {
 | 
						|
  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
 | 
						|
  if (!IncConst || !isAddressUse(UserInst, Operand))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  int64_t IncOffset = IncConst->getValue()->getSExtValue();
 | 
						|
  if (!isAlwaysFoldable(TTI, LSRUse::Address,
 | 
						|
                        getAccessType(UserInst), /*BaseGV=*/ nullptr,
 | 
						|
                        IncOffset, /*HaseBaseReg=*/ false))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
 | 
						|
/// materialize the IV user's operand from the previous IV user's operand.
 | 
						|
void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
 | 
						|
                                  SmallVectorImpl<WeakVH> &DeadInsts) {
 | 
						|
  // Find the new IVOperand for the head of the chain. It may have been replaced
 | 
						|
  // by LSR.
 | 
						|
  const IVInc &Head = Chain.Incs[0];
 | 
						|
  User::op_iterator IVOpEnd = Head.UserInst->op_end();
 | 
						|
  // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
 | 
						|
  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
 | 
						|
                                             IVOpEnd, L, SE);
 | 
						|
  Value *IVSrc = nullptr;
 | 
						|
  while (IVOpIter != IVOpEnd) {
 | 
						|
    IVSrc = getWideOperand(*IVOpIter);
 | 
						|
 | 
						|
    // If this operand computes the expression that the chain needs, we may use
 | 
						|
    // it. (Check this after setting IVSrc which is used below.)
 | 
						|
    //
 | 
						|
    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
 | 
						|
    // narrow for the chain, so we can no longer use it. We do allow using a
 | 
						|
    // wider phi, assuming the LSR checked for free truncation. In that case we
 | 
						|
    // should already have a truncate on this operand such that
 | 
						|
    // getSCEV(IVSrc) == IncExpr.
 | 
						|
    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
 | 
						|
        || SE.getSCEV(IVSrc) == Head.IncExpr) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
 | 
						|
  }
 | 
						|
  if (IVOpIter == IVOpEnd) {
 | 
						|
    // Gracefully give up on this chain.
 | 
						|
    DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
 | 
						|
  Type *IVTy = IVSrc->getType();
 | 
						|
  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
 | 
						|
  const SCEV *LeftOverExpr = nullptr;
 | 
						|
  for (IVChain::const_iterator IncI = Chain.begin(),
 | 
						|
         IncE = Chain.end(); IncI != IncE; ++IncI) {
 | 
						|
 | 
						|
    Instruction *InsertPt = IncI->UserInst;
 | 
						|
    if (isa<PHINode>(InsertPt))
 | 
						|
      InsertPt = L->getLoopLatch()->getTerminator();
 | 
						|
 | 
						|
    // IVOper will replace the current IV User's operand. IVSrc is the IV
 | 
						|
    // value currently held in a register.
 | 
						|
    Value *IVOper = IVSrc;
 | 
						|
    if (!IncI->IncExpr->isZero()) {
 | 
						|
      // IncExpr was the result of subtraction of two narrow values, so must
 | 
						|
      // be signed.
 | 
						|
      const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
 | 
						|
      LeftOverExpr = LeftOverExpr ?
 | 
						|
        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
 | 
						|
    }
 | 
						|
    if (LeftOverExpr && !LeftOverExpr->isZero()) {
 | 
						|
      // Expand the IV increment.
 | 
						|
      Rewriter.clearPostInc();
 | 
						|
      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
 | 
						|
      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
 | 
						|
                                             SE.getUnknown(IncV));
 | 
						|
      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
 | 
						|
 | 
						|
      // If an IV increment can't be folded, use it as the next IV value.
 | 
						|
      if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
 | 
						|
                            TTI)) {
 | 
						|
        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
 | 
						|
        IVSrc = IVOper;
 | 
						|
        LeftOverExpr = nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Type *OperTy = IncI->IVOperand->getType();
 | 
						|
    if (IVTy != OperTy) {
 | 
						|
      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
 | 
						|
             "cannot extend a chained IV");
 | 
						|
      IRBuilder<> Builder(InsertPt);
 | 
						|
      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
 | 
						|
    }
 | 
						|
    IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
 | 
						|
    DeadInsts.push_back(IncI->IVOperand);
 | 
						|
  }
 | 
						|
  // If LSR created a new, wider phi, we may also replace its postinc. We only
 | 
						|
  // do this if we also found a wide value for the head of the chain.
 | 
						|
  if (isa<PHINode>(Chain.tailUserInst())) {
 | 
						|
    for (BasicBlock::iterator I = L->getHeader()->begin();
 | 
						|
         PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
 | 
						|
      if (!isCompatibleIVType(Phi, IVSrc))
 | 
						|
        continue;
 | 
						|
      Instruction *PostIncV = dyn_cast<Instruction>(
 | 
						|
        Phi->getIncomingValueForBlock(L->getLoopLatch()));
 | 
						|
      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
 | 
						|
        continue;
 | 
						|
      Value *IVOper = IVSrc;
 | 
						|
      Type *PostIncTy = PostIncV->getType();
 | 
						|
      if (IVTy != PostIncTy) {
 | 
						|
        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
 | 
						|
        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
 | 
						|
        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
 | 
						|
        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
 | 
						|
      }
 | 
						|
      Phi->replaceUsesOfWith(PostIncV, IVOper);
 | 
						|
      DeadInsts.push_back(PostIncV);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LSRInstance::CollectFixupsAndInitialFormulae() {
 | 
						|
  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
 | 
						|
    Instruction *UserInst = UI->getUser();
 | 
						|
    // Skip IV users that are part of profitable IV Chains.
 | 
						|
    User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
 | 
						|
                                       UI->getOperandValToReplace());
 | 
						|
    assert(UseI != UserInst->op_end() && "cannot find IV operand");
 | 
						|
    if (IVIncSet.count(UseI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Record the uses.
 | 
						|
    LSRFixup &LF = getNewFixup();
 | 
						|
    LF.UserInst = UserInst;
 | 
						|
    LF.OperandValToReplace = UI->getOperandValToReplace();
 | 
						|
    LF.PostIncLoops = UI->getPostIncLoops();
 | 
						|
 | 
						|
    LSRUse::KindType Kind = LSRUse::Basic;
 | 
						|
    Type *AccessTy = nullptr;
 | 
						|
    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
 | 
						|
      Kind = LSRUse::Address;
 | 
						|
      AccessTy = getAccessType(LF.UserInst);
 | 
						|
    }
 | 
						|
 | 
						|
    const SCEV *S = IU.getExpr(*UI);
 | 
						|
 | 
						|
    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
 | 
						|
    // (N - i == 0), and this allows (N - i) to be the expression that we work
 | 
						|
    // with rather than just N or i, so we can consider the register
 | 
						|
    // requirements for both N and i at the same time. Limiting this code to
 | 
						|
    // equality icmps is not a problem because all interesting loops use
 | 
						|
    // equality icmps, thanks to IndVarSimplify.
 | 
						|
    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
 | 
						|
      if (CI->isEquality()) {
 | 
						|
        // Swap the operands if needed to put the OperandValToReplace on the
 | 
						|
        // left, for consistency.
 | 
						|
        Value *NV = CI->getOperand(1);
 | 
						|
        if (NV == LF.OperandValToReplace) {
 | 
						|
          CI->setOperand(1, CI->getOperand(0));
 | 
						|
          CI->setOperand(0, NV);
 | 
						|
          NV = CI->getOperand(1);
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // x == y  -->  x - y == 0
 | 
						|
        const SCEV *N = SE.getSCEV(NV);
 | 
						|
        if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
 | 
						|
          // S is normalized, so normalize N before folding it into S
 | 
						|
          // to keep the result normalized.
 | 
						|
          N = TransformForPostIncUse(Normalize, N, CI, nullptr,
 | 
						|
                                     LF.PostIncLoops, SE, DT);
 | 
						|
          Kind = LSRUse::ICmpZero;
 | 
						|
          S = SE.getMinusSCEV(N, S);
 | 
						|
        }
 | 
						|
 | 
						|
        // -1 and the negations of all interesting strides (except the negation
 | 
						|
        // of -1) are now also interesting.
 | 
						|
        for (size_t i = 0, e = Factors.size(); i != e; ++i)
 | 
						|
          if (Factors[i] != -1)
 | 
						|
            Factors.insert(-(uint64_t)Factors[i]);
 | 
						|
        Factors.insert(-1);
 | 
						|
      }
 | 
						|
 | 
						|
    // Set up the initial formula for this use.
 | 
						|
    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
 | 
						|
    LF.LUIdx = P.first;
 | 
						|
    LF.Offset = P.second;
 | 
						|
    LSRUse &LU = Uses[LF.LUIdx];
 | 
						|
    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
 | 
						|
    if (!LU.WidestFixupType ||
 | 
						|
        SE.getTypeSizeInBits(LU.WidestFixupType) <
 | 
						|
        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
 | 
						|
      LU.WidestFixupType = LF.OperandValToReplace->getType();
 | 
						|
 | 
						|
    // If this is the first use of this LSRUse, give it a formula.
 | 
						|
    if (LU.Formulae.empty()) {
 | 
						|
      InsertInitialFormula(S, LU, LF.LUIdx);
 | 
						|
      CountRegisters(LU.Formulae.back(), LF.LUIdx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(print_fixups(dbgs()));
 | 
						|
}
 | 
						|
 | 
						|
/// InsertInitialFormula - Insert a formula for the given expression into
 | 
						|
/// the given use, separating out loop-variant portions from loop-invariant
 | 
						|
/// and loop-computable portions.
 | 
						|
void
 | 
						|
LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
 | 
						|
  // Mark uses whose expressions cannot be expanded.
 | 
						|
  if (!isSafeToExpand(S, SE))
 | 
						|
    LU.RigidFormula = true;
 | 
						|
 | 
						|
  Formula F;
 | 
						|
  F.InitialMatch(S, L, SE);
 | 
						|
  bool Inserted = InsertFormula(LU, LUIdx, F);
 | 
						|
  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertSupplementalFormula - Insert a simple single-register formula for
 | 
						|
/// the given expression into the given use.
 | 
						|
void
 | 
						|
LSRInstance::InsertSupplementalFormula(const SCEV *S,
 | 
						|
                                       LSRUse &LU, size_t LUIdx) {
 | 
						|
  Formula F;
 | 
						|
  F.BaseRegs.push_back(S);
 | 
						|
  F.HasBaseReg = true;
 | 
						|
  bool Inserted = InsertFormula(LU, LUIdx, F);
 | 
						|
  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
 | 
						|
}
 | 
						|
 | 
						|
/// CountRegisters - Note which registers are used by the given formula,
 | 
						|
/// updating RegUses.
 | 
						|
void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
 | 
						|
  if (F.ScaledReg)
 | 
						|
    RegUses.CountRegister(F.ScaledReg, LUIdx);
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
 | 
						|
       E = F.BaseRegs.end(); I != E; ++I)
 | 
						|
    RegUses.CountRegister(*I, LUIdx);
 | 
						|
}
 | 
						|
 | 
						|
/// InsertFormula - If the given formula has not yet been inserted, add it to
 | 
						|
/// the list, and return true. Return false otherwise.
 | 
						|
bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
 | 
						|
  // Do not insert formula that we will not be able to expand.
 | 
						|
  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
 | 
						|
         "Formula is illegal");
 | 
						|
  if (!LU.InsertFormula(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  CountRegisters(F, LUIdx);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
 | 
						|
/// loop-invariant values which we're tracking. These other uses will pin these
 | 
						|
/// values in registers, making them less profitable for elimination.
 | 
						|
/// TODO: This currently misses non-constant addrec step registers.
 | 
						|
/// TODO: Should this give more weight to users inside the loop?
 | 
						|
void
 | 
						|
LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
 | 
						|
  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
 | 
						|
  SmallPtrSet<const SCEV *, 32> Visited;
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    const SCEV *S = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // Don't process the same SCEV twice
 | 
						|
    if (!Visited.insert(S).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
 | 
						|
      Worklist.append(N->op_begin(), N->op_end());
 | 
						|
    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
 | 
						|
      Worklist.push_back(C->getOperand());
 | 
						|
    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
 | 
						|
      Worklist.push_back(D->getLHS());
 | 
						|
      Worklist.push_back(D->getRHS());
 | 
						|
    } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
 | 
						|
      const Value *V = US->getValue();
 | 
						|
      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
 | 
						|
        // Look for instructions defined outside the loop.
 | 
						|
        if (L->contains(Inst)) continue;
 | 
						|
      } else if (isa<UndefValue>(V))
 | 
						|
        // Undef doesn't have a live range, so it doesn't matter.
 | 
						|
        continue;
 | 
						|
      for (const Use &U : V->uses()) {
 | 
						|
        const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
 | 
						|
        // Ignore non-instructions.
 | 
						|
        if (!UserInst)
 | 
						|
          continue;
 | 
						|
        // Ignore instructions in other functions (as can happen with
 | 
						|
        // Constants).
 | 
						|
        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
 | 
						|
          continue;
 | 
						|
        // Ignore instructions not dominated by the loop.
 | 
						|
        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
 | 
						|
          UserInst->getParent() :
 | 
						|
          cast<PHINode>(UserInst)->getIncomingBlock(
 | 
						|
            PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
 | 
						|
        if (!DT.dominates(L->getHeader(), UseBB))
 | 
						|
          continue;
 | 
						|
        // Ignore uses which are part of other SCEV expressions, to avoid
 | 
						|
        // analyzing them multiple times.
 | 
						|
        if (SE.isSCEVable(UserInst->getType())) {
 | 
						|
          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
 | 
						|
          // If the user is a no-op, look through to its uses.
 | 
						|
          if (!isa<SCEVUnknown>(UserS))
 | 
						|
            continue;
 | 
						|
          if (UserS == US) {
 | 
						|
            Worklist.push_back(
 | 
						|
              SE.getUnknown(const_cast<Instruction *>(UserInst)));
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // Ignore icmp instructions which are already being analyzed.
 | 
						|
        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
 | 
						|
          unsigned OtherIdx = !U.getOperandNo();
 | 
						|
          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
 | 
						|
          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        LSRFixup &LF = getNewFixup();
 | 
						|
        LF.UserInst = const_cast<Instruction *>(UserInst);
 | 
						|
        LF.OperandValToReplace = U;
 | 
						|
        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr);
 | 
						|
        LF.LUIdx = P.first;
 | 
						|
        LF.Offset = P.second;
 | 
						|
        LSRUse &LU = Uses[LF.LUIdx];
 | 
						|
        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
 | 
						|
        if (!LU.WidestFixupType ||
 | 
						|
            SE.getTypeSizeInBits(LU.WidestFixupType) <
 | 
						|
            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
 | 
						|
          LU.WidestFixupType = LF.OperandValToReplace->getType();
 | 
						|
        InsertSupplementalFormula(US, LU, LF.LUIdx);
 | 
						|
        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CollectSubexprs - Split S into subexpressions which can be pulled out into
 | 
						|
/// separate registers. If C is non-null, multiply each subexpression by C.
 | 
						|
///
 | 
						|
/// Return remainder expression after factoring the subexpressions captured by
 | 
						|
/// Ops. If Ops is complete, return NULL.
 | 
						|
static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
 | 
						|
                                   SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                                   const Loop *L,
 | 
						|
                                   ScalarEvolution &SE,
 | 
						|
                                   unsigned Depth = 0) {
 | 
						|
  // Arbitrarily cap recursion to protect compile time.
 | 
						|
  if (Depth >= 3)
 | 
						|
    return S;
 | 
						|
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    // Break out add operands.
 | 
						|
    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
 | 
						|
      if (Remainder)
 | 
						|
        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    // Split a non-zero base out of an addrec.
 | 
						|
    if (AR->getStart()->isZero())
 | 
						|
      return S;
 | 
						|
 | 
						|
    const SCEV *Remainder = CollectSubexprs(AR->getStart(),
 | 
						|
                                            C, Ops, L, SE, Depth+1);
 | 
						|
    // Split the non-zero AddRec unless it is part of a nested recurrence that
 | 
						|
    // does not pertain to this loop.
 | 
						|
    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
 | 
						|
      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
 | 
						|
      Remainder = nullptr;
 | 
						|
    }
 | 
						|
    if (Remainder != AR->getStart()) {
 | 
						|
      if (!Remainder)
 | 
						|
        Remainder = SE.getConstant(AR->getType(), 0);
 | 
						|
      return SE.getAddRecExpr(Remainder,
 | 
						|
                              AR->getStepRecurrence(SE),
 | 
						|
                              AR->getLoop(),
 | 
						|
                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
 | 
						|
                              SCEV::FlagAnyWrap);
 | 
						|
    }
 | 
						|
  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | 
						|
    // Break (C * (a + b + c)) into C*a + C*b + C*c.
 | 
						|
    if (Mul->getNumOperands() != 2)
 | 
						|
      return S;
 | 
						|
    if (const SCEVConstant *Op0 =
 | 
						|
        dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
 | 
						|
      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
 | 
						|
      const SCEV *Remainder =
 | 
						|
        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
 | 
						|
      if (Remainder)
 | 
						|
        Ops.push_back(SE.getMulExpr(C, Remainder));
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function for LSRInstance::GenerateReassociations.
 | 
						|
void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                             const Formula &Base,
 | 
						|
                                             unsigned Depth, size_t Idx,
 | 
						|
                                             bool IsScaledReg) {
 | 
						|
  const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
 | 
						|
  SmallVector<const SCEV *, 8> AddOps;
 | 
						|
  const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
 | 
						|
  if (Remainder)
 | 
						|
    AddOps.push_back(Remainder);
 | 
						|
 | 
						|
  if (AddOps.size() == 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
 | 
						|
                                                     JE = AddOps.end();
 | 
						|
       J != JE; ++J) {
 | 
						|
 | 
						|
    // Loop-variant "unknown" values are uninteresting; we won't be able to
 | 
						|
    // do anything meaningful with them.
 | 
						|
    if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't pull a constant into a register if the constant could be folded
 | 
						|
    // into an immediate field.
 | 
						|
    if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
 | 
						|
                         LU.AccessTy, *J, Base.getNumRegs() > 1))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Collect all operands except *J.
 | 
						|
    SmallVector<const SCEV *, 8> InnerAddOps(
 | 
						|
        ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
 | 
						|
    InnerAddOps.append(std::next(J),
 | 
						|
                       ((const SmallVector<const SCEV *, 8> &)AddOps).end());
 | 
						|
 | 
						|
    // Don't leave just a constant behind in a register if the constant could
 | 
						|
    // be folded into an immediate field.
 | 
						|
    if (InnerAddOps.size() == 1 &&
 | 
						|
        isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
 | 
						|
                         LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
 | 
						|
    if (InnerSum->isZero())
 | 
						|
      continue;
 | 
						|
    Formula F = Base;
 | 
						|
 | 
						|
    // Add the remaining pieces of the add back into the new formula.
 | 
						|
    const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
 | 
						|
    if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
 | 
						|
        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
 | 
						|
                                InnerSumSC->getValue()->getZExtValue())) {
 | 
						|
      F.UnfoldedOffset =
 | 
						|
          (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
 | 
						|
      if (IsScaledReg)
 | 
						|
        F.ScaledReg = nullptr;
 | 
						|
      else
 | 
						|
        F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
 | 
						|
    } else if (IsScaledReg)
 | 
						|
      F.ScaledReg = InnerSum;
 | 
						|
    else
 | 
						|
      F.BaseRegs[Idx] = InnerSum;
 | 
						|
 | 
						|
    // Add J as its own register, or an unfolded immediate.
 | 
						|
    const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
 | 
						|
    if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
 | 
						|
        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
 | 
						|
                                SC->getValue()->getZExtValue()))
 | 
						|
      F.UnfoldedOffset =
 | 
						|
          (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
 | 
						|
    else
 | 
						|
      F.BaseRegs.push_back(*J);
 | 
						|
    // We may have changed the number of register in base regs, adjust the
 | 
						|
    // formula accordingly.
 | 
						|
    F.Canonicalize();
 | 
						|
 | 
						|
    if (InsertFormula(LU, LUIdx, F))
 | 
						|
      // If that formula hadn't been seen before, recurse to find more like
 | 
						|
      // it.
 | 
						|
      GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateReassociations - Split out subexpressions from adds and the bases of
 | 
						|
/// addrecs.
 | 
						|
void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                         Formula Base, unsigned Depth) {
 | 
						|
  assert(Base.isCanonical() && "Input must be in the canonical form");
 | 
						|
  // Arbitrarily cap recursion to protect compile time.
 | 
						|
  if (Depth >= 3)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
 | 
						|
    GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
 | 
						|
 | 
						|
  if (Base.Scale == 1)
 | 
						|
    GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
 | 
						|
                               /* Idx */ -1, /* IsScaledReg */ true);
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateCombinations - Generate a formula consisting of all of the
 | 
						|
/// loop-dominating registers added into a single register.
 | 
						|
void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                       Formula Base) {
 | 
						|
  // This method is only interesting on a plurality of registers.
 | 
						|
  if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
 | 
						|
  // processing the formula.
 | 
						|
  Base.Unscale();
 | 
						|
  Formula F = Base;
 | 
						|
  F.BaseRegs.clear();
 | 
						|
  SmallVector<const SCEV *, 4> Ops;
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator
 | 
						|
       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
 | 
						|
    const SCEV *BaseReg = *I;
 | 
						|
    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
 | 
						|
        !SE.hasComputableLoopEvolution(BaseReg, L))
 | 
						|
      Ops.push_back(BaseReg);
 | 
						|
    else
 | 
						|
      F.BaseRegs.push_back(BaseReg);
 | 
						|
  }
 | 
						|
  if (Ops.size() > 1) {
 | 
						|
    const SCEV *Sum = SE.getAddExpr(Ops);
 | 
						|
    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
 | 
						|
    // opportunity to fold something. For now, just ignore such cases
 | 
						|
    // rather than proceed with zero in a register.
 | 
						|
    if (!Sum->isZero()) {
 | 
						|
      F.BaseRegs.push_back(Sum);
 | 
						|
      F.Canonicalize();
 | 
						|
      (void)InsertFormula(LU, LUIdx, F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
 | 
						|
void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                              const Formula &Base, size_t Idx,
 | 
						|
                                              bool IsScaledReg) {
 | 
						|
  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
 | 
						|
  GlobalValue *GV = ExtractSymbol(G, SE);
 | 
						|
  if (G->isZero() || !GV)
 | 
						|
    return;
 | 
						|
  Formula F = Base;
 | 
						|
  F.BaseGV = GV;
 | 
						|
  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
 | 
						|
    return;
 | 
						|
  if (IsScaledReg)
 | 
						|
    F.ScaledReg = G;
 | 
						|
  else
 | 
						|
    F.BaseRegs[Idx] = G;
 | 
						|
  (void)InsertFormula(LU, LUIdx, F);
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
 | 
						|
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                          Formula Base) {
 | 
						|
  // We can't add a symbolic offset if the address already contains one.
 | 
						|
  if (Base.BaseGV) return;
 | 
						|
 | 
						|
  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
 | 
						|
    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
 | 
						|
  if (Base.Scale == 1)
 | 
						|
    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
 | 
						|
                                /* IsScaledReg */ true);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function for LSRInstance::GenerateConstantOffsets.
 | 
						|
void LSRInstance::GenerateConstantOffsetsImpl(
 | 
						|
    LSRUse &LU, unsigned LUIdx, const Formula &Base,
 | 
						|
    const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
 | 
						|
  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
 | 
						|
  for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
 | 
						|
                                                E = Worklist.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Formula F = Base;
 | 
						|
    F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
 | 
						|
    if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
 | 
						|
                   LU.AccessTy, F)) {
 | 
						|
      // Add the offset to the base register.
 | 
						|
      const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
 | 
						|
      // If it cancelled out, drop the base register, otherwise update it.
 | 
						|
      if (NewG->isZero()) {
 | 
						|
        if (IsScaledReg) {
 | 
						|
          F.Scale = 0;
 | 
						|
          F.ScaledReg = nullptr;
 | 
						|
        } else
 | 
						|
          F.DeleteBaseReg(F.BaseRegs[Idx]);
 | 
						|
        F.Canonicalize();
 | 
						|
      } else if (IsScaledReg)
 | 
						|
        F.ScaledReg = NewG;
 | 
						|
      else
 | 
						|
        F.BaseRegs[Idx] = NewG;
 | 
						|
 | 
						|
      (void)InsertFormula(LU, LUIdx, F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  int64_t Imm = ExtractImmediate(G, SE);
 | 
						|
  if (G->isZero() || Imm == 0)
 | 
						|
    return;
 | 
						|
  Formula F = Base;
 | 
						|
  F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
 | 
						|
  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
 | 
						|
    return;
 | 
						|
  if (IsScaledReg)
 | 
						|
    F.ScaledReg = G;
 | 
						|
  else
 | 
						|
    F.BaseRegs[Idx] = G;
 | 
						|
  (void)InsertFormula(LU, LUIdx, F);
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
 | 
						|
void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                          Formula Base) {
 | 
						|
  // TODO: For now, just add the min and max offset, because it usually isn't
 | 
						|
  // worthwhile looking at everything inbetween.
 | 
						|
  SmallVector<int64_t, 2> Worklist;
 | 
						|
  Worklist.push_back(LU.MinOffset);
 | 
						|
  if (LU.MaxOffset != LU.MinOffset)
 | 
						|
    Worklist.push_back(LU.MaxOffset);
 | 
						|
 | 
						|
  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
 | 
						|
    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
 | 
						|
  if (Base.Scale == 1)
 | 
						|
    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
 | 
						|
                                /* IsScaledReg */ true);
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
 | 
						|
/// the comparison. For example, x == y -> x*c == y*c.
 | 
						|
void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
 | 
						|
                                         Formula Base) {
 | 
						|
  if (LU.Kind != LSRUse::ICmpZero) return;
 | 
						|
 | 
						|
  // Determine the integer type for the base formula.
 | 
						|
  Type *IntTy = Base.getType();
 | 
						|
  if (!IntTy) return;
 | 
						|
  if (SE.getTypeSizeInBits(IntTy) > 64) return;
 | 
						|
 | 
						|
  // Don't do this if there is more than one offset.
 | 
						|
  if (LU.MinOffset != LU.MaxOffset) return;
 | 
						|
 | 
						|
  assert(!Base.BaseGV && "ICmpZero use is not legal!");
 | 
						|
 | 
						|
  // Check each interesting stride.
 | 
						|
  for (SmallSetVector<int64_t, 8>::const_iterator
 | 
						|
       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
 | 
						|
    int64_t Factor = *I;
 | 
						|
 | 
						|
    // Check that the multiplication doesn't overflow.
 | 
						|
    if (Base.BaseOffset == INT64_MIN && Factor == -1)
 | 
						|
      continue;
 | 
						|
    int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
 | 
						|
    if (NewBaseOffset / Factor != Base.BaseOffset)
 | 
						|
      continue;
 | 
						|
    // If the offset will be truncated at this use, check that it is in bounds.
 | 
						|
    if (!IntTy->isPointerTy() &&
 | 
						|
        !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check that multiplying with the use offset doesn't overflow.
 | 
						|
    int64_t Offset = LU.MinOffset;
 | 
						|
    if (Offset == INT64_MIN && Factor == -1)
 | 
						|
      continue;
 | 
						|
    Offset = (uint64_t)Offset * Factor;
 | 
						|
    if (Offset / Factor != LU.MinOffset)
 | 
						|
      continue;
 | 
						|
    // If the offset will be truncated at this use, check that it is in bounds.
 | 
						|
    if (!IntTy->isPointerTy() &&
 | 
						|
        !ConstantInt::isValueValidForType(IntTy, Offset))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Formula F = Base;
 | 
						|
    F.BaseOffset = NewBaseOffset;
 | 
						|
 | 
						|
    // Check that this scale is legal.
 | 
						|
    if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Compensate for the use having MinOffset built into it.
 | 
						|
    F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
 | 
						|
 | 
						|
    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
 | 
						|
 | 
						|
    // Check that multiplying with each base register doesn't overflow.
 | 
						|
    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
 | 
						|
      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
 | 
						|
      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
 | 
						|
        goto next;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check that multiplying with the scaled register doesn't overflow.
 | 
						|
    if (F.ScaledReg) {
 | 
						|
      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
 | 
						|
      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check that multiplying with the unfolded offset doesn't overflow.
 | 
						|
    if (F.UnfoldedOffset != 0) {
 | 
						|
      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
 | 
						|
        continue;
 | 
						|
      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
 | 
						|
      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
 | 
						|
        continue;
 | 
						|
      // If the offset will be truncated, check that it is in bounds.
 | 
						|
      if (!IntTy->isPointerTy() &&
 | 
						|
          !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we make it here and it's legal, add it.
 | 
						|
    (void)InsertFormula(LU, LUIdx, F);
 | 
						|
  next:;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateScales - Generate stride factor reuse formulae by making use of
 | 
						|
/// scaled-offset address modes, for example.
 | 
						|
void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
 | 
						|
  // Determine the integer type for the base formula.
 | 
						|
  Type *IntTy = Base.getType();
 | 
						|
  if (!IntTy) return;
 | 
						|
 | 
						|
  // If this Formula already has a scaled register, we can't add another one.
 | 
						|
  // Try to unscale the formula to generate a better scale.
 | 
						|
  if (Base.Scale != 0 && !Base.Unscale())
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(Base.Scale == 0 && "Unscale did not did its job!");
 | 
						|
 | 
						|
  // Check each interesting stride.
 | 
						|
  for (SmallSetVector<int64_t, 8>::const_iterator
 | 
						|
       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
 | 
						|
    int64_t Factor = *I;
 | 
						|
 | 
						|
    Base.Scale = Factor;
 | 
						|
    Base.HasBaseReg = Base.BaseRegs.size() > 1;
 | 
						|
    // Check whether this scale is going to be legal.
 | 
						|
    if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
 | 
						|
                    Base)) {
 | 
						|
      // As a special-case, handle special out-of-loop Basic users specially.
 | 
						|
      // TODO: Reconsider this special case.
 | 
						|
      if (LU.Kind == LSRUse::Basic &&
 | 
						|
          isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
 | 
						|
                     LU.AccessTy, Base) &&
 | 
						|
          LU.AllFixupsOutsideLoop)
 | 
						|
        LU.Kind = LSRUse::Special;
 | 
						|
      else
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    // For an ICmpZero, negating a solitary base register won't lead to
 | 
						|
    // new solutions.
 | 
						|
    if (LU.Kind == LSRUse::ICmpZero &&
 | 
						|
        !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
 | 
						|
      continue;
 | 
						|
    // For each addrec base reg, apply the scale, if possible.
 | 
						|
    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
 | 
						|
      if (const SCEVAddRecExpr *AR =
 | 
						|
            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
 | 
						|
        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
 | 
						|
        if (FactorS->isZero())
 | 
						|
          continue;
 | 
						|
        // Divide out the factor, ignoring high bits, since we'll be
 | 
						|
        // scaling the value back up in the end.
 | 
						|
        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
 | 
						|
          // TODO: This could be optimized to avoid all the copying.
 | 
						|
          Formula F = Base;
 | 
						|
          F.ScaledReg = Quotient;
 | 
						|
          F.DeleteBaseReg(F.BaseRegs[i]);
 | 
						|
          // The canonical representation of 1*reg is reg, which is already in
 | 
						|
          // Base. In that case, do not try to insert the formula, it will be
 | 
						|
          // rejected anyway.
 | 
						|
          if (F.Scale == 1 && F.BaseRegs.empty())
 | 
						|
            continue;
 | 
						|
          (void)InsertFormula(LU, LUIdx, F);
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateTruncates - Generate reuse formulae from different IV types.
 | 
						|
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
 | 
						|
  // Don't bother truncating symbolic values.
 | 
						|
  if (Base.BaseGV) return;
 | 
						|
 | 
						|
  // Determine the integer type for the base formula.
 | 
						|
  Type *DstTy = Base.getType();
 | 
						|
  if (!DstTy) return;
 | 
						|
  DstTy = SE.getEffectiveSCEVType(DstTy);
 | 
						|
 | 
						|
  for (SmallSetVector<Type *, 4>::const_iterator
 | 
						|
       I = Types.begin(), E = Types.end(); I != E; ++I) {
 | 
						|
    Type *SrcTy = *I;
 | 
						|
    if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
 | 
						|
      Formula F = Base;
 | 
						|
 | 
						|
      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
 | 
						|
      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
 | 
						|
           JE = F.BaseRegs.end(); J != JE; ++J)
 | 
						|
        *J = SE.getAnyExtendExpr(*J, SrcTy);
 | 
						|
 | 
						|
      // TODO: This assumes we've done basic processing on all uses and
 | 
						|
      // have an idea what the register usage is.
 | 
						|
      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
 | 
						|
        continue;
 | 
						|
 | 
						|
      (void)InsertFormula(LU, LUIdx, F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
 | 
						|
/// defer modifications so that the search phase doesn't have to worry about
 | 
						|
/// the data structures moving underneath it.
 | 
						|
struct WorkItem {
 | 
						|
  size_t LUIdx;
 | 
						|
  int64_t Imm;
 | 
						|
  const SCEV *OrigReg;
 | 
						|
 | 
						|
  WorkItem(size_t LI, int64_t I, const SCEV *R)
 | 
						|
    : LUIdx(LI), Imm(I), OrigReg(R) {}
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void WorkItem::print(raw_ostream &OS) const {
 | 
						|
  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
 | 
						|
     << " , add offset " << Imm;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void WorkItem::dump() const {
 | 
						|
  print(errs()); errs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
 | 
						|
/// distance apart and try to form reuse opportunities between them.
 | 
						|
void LSRInstance::GenerateCrossUseConstantOffsets() {
 | 
						|
  // Group the registers by their value without any added constant offset.
 | 
						|
  typedef std::map<int64_t, const SCEV *> ImmMapTy;
 | 
						|
  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
 | 
						|
  RegMapTy Map;
 | 
						|
  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
 | 
						|
  SmallVector<const SCEV *, 8> Sequence;
 | 
						|
  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const SCEV *Reg = *I;
 | 
						|
    int64_t Imm = ExtractImmediate(Reg, SE);
 | 
						|
    std::pair<RegMapTy::iterator, bool> Pair =
 | 
						|
      Map.insert(std::make_pair(Reg, ImmMapTy()));
 | 
						|
    if (Pair.second)
 | 
						|
      Sequence.push_back(Reg);
 | 
						|
    Pair.first->second.insert(std::make_pair(Imm, *I));
 | 
						|
    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now examine each set of registers with the same base value. Build up
 | 
						|
  // a list of work to do and do the work in a separate step so that we're
 | 
						|
  // not adding formulae and register counts while we're searching.
 | 
						|
  SmallVector<WorkItem, 32> WorkItems;
 | 
						|
  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
 | 
						|
       E = Sequence.end(); I != E; ++I) {
 | 
						|
    const SCEV *Reg = *I;
 | 
						|
    const ImmMapTy &Imms = Map.find(Reg)->second;
 | 
						|
 | 
						|
    // It's not worthwhile looking for reuse if there's only one offset.
 | 
						|
    if (Imms.size() == 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
 | 
						|
          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
 | 
						|
               J != JE; ++J)
 | 
						|
            dbgs() << ' ' << J->first;
 | 
						|
          dbgs() << '\n');
 | 
						|
 | 
						|
    // Examine each offset.
 | 
						|
    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
 | 
						|
         J != JE; ++J) {
 | 
						|
      const SCEV *OrigReg = J->second;
 | 
						|
 | 
						|
      int64_t JImm = J->first;
 | 
						|
      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
 | 
						|
 | 
						|
      if (!isa<SCEVConstant>(OrigReg) &&
 | 
						|
          UsedByIndicesMap[Reg].count() == 1) {
 | 
						|
        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Conservatively examine offsets between this orig reg a few selected
 | 
						|
      // other orig regs.
 | 
						|
      ImmMapTy::const_iterator OtherImms[] = {
 | 
						|
        Imms.begin(), std::prev(Imms.end()),
 | 
						|
        Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
 | 
						|
                         2)
 | 
						|
      };
 | 
						|
      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
 | 
						|
        ImmMapTy::const_iterator M = OtherImms[i];
 | 
						|
        if (M == J || M == JE) continue;
 | 
						|
 | 
						|
        // Compute the difference between the two.
 | 
						|
        int64_t Imm = (uint64_t)JImm - M->first;
 | 
						|
        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
 | 
						|
             LUIdx = UsedByIndices.find_next(LUIdx))
 | 
						|
          // Make a memo of this use, offset, and register tuple.
 | 
						|
          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
 | 
						|
            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Map.clear();
 | 
						|
  Sequence.clear();
 | 
						|
  UsedByIndicesMap.clear();
 | 
						|
  UniqueItems.clear();
 | 
						|
 | 
						|
  // Now iterate through the worklist and add new formulae.
 | 
						|
  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
 | 
						|
       E = WorkItems.end(); I != E; ++I) {
 | 
						|
    const WorkItem &WI = *I;
 | 
						|
    size_t LUIdx = WI.LUIdx;
 | 
						|
    LSRUse &LU = Uses[LUIdx];
 | 
						|
    int64_t Imm = WI.Imm;
 | 
						|
    const SCEV *OrigReg = WI.OrigReg;
 | 
						|
 | 
						|
    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
 | 
						|
    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
 | 
						|
    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
 | 
						|
 | 
						|
    // TODO: Use a more targeted data structure.
 | 
						|
    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
 | 
						|
      Formula F = LU.Formulae[L];
 | 
						|
      // FIXME: The code for the scaled and unscaled registers looks
 | 
						|
      // very similar but slightly different. Investigate if they
 | 
						|
      // could be merged. That way, we would not have to unscale the
 | 
						|
      // Formula.
 | 
						|
      F.Unscale();
 | 
						|
      // Use the immediate in the scaled register.
 | 
						|
      if (F.ScaledReg == OrigReg) {
 | 
						|
        int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
 | 
						|
        // Don't create 50 + reg(-50).
 | 
						|
        if (F.referencesReg(SE.getSCEV(
 | 
						|
                   ConstantInt::get(IntTy, -(uint64_t)Offset))))
 | 
						|
          continue;
 | 
						|
        Formula NewF = F;
 | 
						|
        NewF.BaseOffset = Offset;
 | 
						|
        if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
 | 
						|
                        NewF))
 | 
						|
          continue;
 | 
						|
        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
 | 
						|
 | 
						|
        // If the new scale is a constant in a register, and adding the constant
 | 
						|
        // value to the immediate would produce a value closer to zero than the
 | 
						|
        // immediate itself, then the formula isn't worthwhile.
 | 
						|
        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
 | 
						|
          if (C->getValue()->isNegative() !=
 | 
						|
                (NewF.BaseOffset < 0) &&
 | 
						|
              (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
 | 
						|
                .ule(std::abs(NewF.BaseOffset)))
 | 
						|
            continue;
 | 
						|
 | 
						|
        // OK, looks good.
 | 
						|
        NewF.Canonicalize();
 | 
						|
        (void)InsertFormula(LU, LUIdx, NewF);
 | 
						|
      } else {
 | 
						|
        // Use the immediate in a base register.
 | 
						|
        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
 | 
						|
          const SCEV *BaseReg = F.BaseRegs[N];
 | 
						|
          if (BaseReg != OrigReg)
 | 
						|
            continue;
 | 
						|
          Formula NewF = F;
 | 
						|
          NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
 | 
						|
          if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
 | 
						|
                          LU.Kind, LU.AccessTy, NewF)) {
 | 
						|
            if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
 | 
						|
              continue;
 | 
						|
            NewF = F;
 | 
						|
            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
 | 
						|
          }
 | 
						|
          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
 | 
						|
 | 
						|
          // If the new formula has a constant in a register, and adding the
 | 
						|
          // constant value to the immediate would produce a value closer to
 | 
						|
          // zero than the immediate itself, then the formula isn't worthwhile.
 | 
						|
          for (SmallVectorImpl<const SCEV *>::const_iterator
 | 
						|
               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
 | 
						|
               J != JE; ++J)
 | 
						|
            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
 | 
						|
              if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
 | 
						|
                   std::abs(NewF.BaseOffset)) &&
 | 
						|
                  (C->getValue()->getValue() +
 | 
						|
                   NewF.BaseOffset).countTrailingZeros() >=
 | 
						|
                   countTrailingZeros<uint64_t>(NewF.BaseOffset))
 | 
						|
                goto skip_formula;
 | 
						|
 | 
						|
          // Ok, looks good.
 | 
						|
          NewF.Canonicalize();
 | 
						|
          (void)InsertFormula(LU, LUIdx, NewF);
 | 
						|
          break;
 | 
						|
        skip_formula:;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateAllReuseFormulae - Generate formulae for each use.
 | 
						|
void
 | 
						|
LSRInstance::GenerateAllReuseFormulae() {
 | 
						|
  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
 | 
						|
  // queries are more precise.
 | 
						|
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
 | 
						|
    LSRUse &LU = Uses[LUIdx];
 | 
						|
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
 | 
						|
      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
 | 
						|
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
 | 
						|
      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
 | 
						|
  }
 | 
						|
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
 | 
						|
    LSRUse &LU = Uses[LUIdx];
 | 
						|
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
 | 
						|
      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
 | 
						|
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
 | 
						|
      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
 | 
						|
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
 | 
						|
      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
 | 
						|
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
 | 
						|
      GenerateScales(LU, LUIdx, LU.Formulae[i]);
 | 
						|
  }
 | 
						|
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
 | 
						|
    LSRUse &LU = Uses[LUIdx];
 | 
						|
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
 | 
						|
      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  GenerateCrossUseConstantOffsets();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n"
 | 
						|
                  "After generating reuse formulae:\n";
 | 
						|
        print_uses(dbgs()));
 | 
						|
}
 | 
						|
 | 
						|
/// If there are multiple formulae with the same set of registers used
 | 
						|
/// by other uses, pick the best one and delete the others.
 | 
						|
void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
 | 
						|
  DenseSet<const SCEV *> VisitedRegs;
 | 
						|
  SmallPtrSet<const SCEV *, 16> Regs;
 | 
						|
  SmallPtrSet<const SCEV *, 16> LoserRegs;
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool ChangedFormulae = false;
 | 
						|
#endif
 | 
						|
 | 
						|
  // Collect the best formula for each unique set of shared registers. This
 | 
						|
  // is reset for each use.
 | 
						|
  typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
 | 
						|
    BestFormulaeTy;
 | 
						|
  BestFormulaeTy BestFormulae;
 | 
						|
 | 
						|
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
 | 
						|
    LSRUse &LU = Uses[LUIdx];
 | 
						|
    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
 | 
						|
 | 
						|
    bool Any = false;
 | 
						|
    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
 | 
						|
         FIdx != NumForms; ++FIdx) {
 | 
						|
      Formula &F = LU.Formulae[FIdx];
 | 
						|
 | 
						|
      // Some formulas are instant losers. For example, they may depend on
 | 
						|
      // nonexistent AddRecs from other loops. These need to be filtered
 | 
						|
      // immediately, otherwise heuristics could choose them over others leading
 | 
						|
      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
 | 
						|
      // avoids the need to recompute this information across formulae using the
 | 
						|
      // same bad AddRec. Passing LoserRegs is also essential unless we remove
 | 
						|
      // the corresponding bad register from the Regs set.
 | 
						|
      Cost CostF;
 | 
						|
      Regs.clear();
 | 
						|
      CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
 | 
						|
                        &LoserRegs);
 | 
						|
      if (CostF.isLoser()) {
 | 
						|
        // During initial formula generation, undesirable formulae are generated
 | 
						|
        // by uses within other loops that have some non-trivial address mode or
 | 
						|
        // use the postinc form of the IV. LSR needs to provide these formulae
 | 
						|
        // as the basis of rediscovering the desired formula that uses an AddRec
 | 
						|
        // corresponding to the existing phi. Once all formulae have been
 | 
						|
        // generated, these initial losers may be pruned.
 | 
						|
        DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
 | 
						|
              dbgs() << "\n");
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SmallVector<const SCEV *, 4> Key;
 | 
						|
        for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
 | 
						|
               JE = F.BaseRegs.end(); J != JE; ++J) {
 | 
						|
          const SCEV *Reg = *J;
 | 
						|
          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
 | 
						|
            Key.push_back(Reg);
 | 
						|
        }
 | 
						|
        if (F.ScaledReg &&
 | 
						|
            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
 | 
						|
          Key.push_back(F.ScaledReg);
 | 
						|
        // Unstable sort by host order ok, because this is only used for
 | 
						|
        // uniquifying.
 | 
						|
        std::sort(Key.begin(), Key.end());
 | 
						|
 | 
						|
        std::pair<BestFormulaeTy::const_iterator, bool> P =
 | 
						|
          BestFormulae.insert(std::make_pair(Key, FIdx));
 | 
						|
        if (P.second)
 | 
						|
          continue;
 | 
						|
 | 
						|
        Formula &Best = LU.Formulae[P.first->second];
 | 
						|
 | 
						|
        Cost CostBest;
 | 
						|
        Regs.clear();
 | 
						|
        CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
 | 
						|
                             DT, LU);
 | 
						|
        if (CostF < CostBest)
 | 
						|
          std::swap(F, Best);
 | 
						|
        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
 | 
						|
              dbgs() << "\n"
 | 
						|
                        "    in favor of formula "; Best.print(dbgs());
 | 
						|
              dbgs() << '\n');
 | 
						|
      }
 | 
						|
#ifndef NDEBUG
 | 
						|
      ChangedFormulae = true;
 | 
						|
#endif
 | 
						|
      LU.DeleteFormula(F);
 | 
						|
      --FIdx;
 | 
						|
      --NumForms;
 | 
						|
      Any = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we've filtered out some formulae, recompute the Regs set.
 | 
						|
    if (Any)
 | 
						|
      LU.RecomputeRegs(LUIdx, RegUses);
 | 
						|
 | 
						|
    // Reset this to prepare for the next use.
 | 
						|
    BestFormulae.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(if (ChangedFormulae) {
 | 
						|
          dbgs() << "\n"
 | 
						|
                    "After filtering out undesirable candidates:\n";
 | 
						|
          print_uses(dbgs());
 | 
						|
        });
 | 
						|
}
 | 
						|
 | 
						|
// This is a rough guess that seems to work fairly well.
 | 
						|
static const size_t ComplexityLimit = UINT16_MAX;
 | 
						|
 | 
						|
/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
 | 
						|
/// solutions the solver might have to consider. It almost never considers
 | 
						|
/// this many solutions because it prune the search space, but the pruning
 | 
						|
/// isn't always sufficient.
 | 
						|
size_t LSRInstance::EstimateSearchSpaceComplexity() const {
 | 
						|
  size_t Power = 1;
 | 
						|
  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
 | 
						|
       E = Uses.end(); I != E; ++I) {
 | 
						|
    size_t FSize = I->Formulae.size();
 | 
						|
    if (FSize >= ComplexityLimit) {
 | 
						|
      Power = ComplexityLimit;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    Power *= FSize;
 | 
						|
    if (Power >= ComplexityLimit)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return Power;
 | 
						|
}
 | 
						|
 | 
						|
/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
 | 
						|
/// of the registers of another formula, it won't help reduce register
 | 
						|
/// pressure (though it may not necessarily hurt register pressure); remove
 | 
						|
/// it to simplify the system.
 | 
						|
void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
 | 
						|
  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
 | 
						|
    DEBUG(dbgs() << "The search space is too complex.\n");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
 | 
						|
                    "which use a superset of registers used by other "
 | 
						|
                    "formulae.\n");
 | 
						|
 | 
						|
    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
 | 
						|
      LSRUse &LU = Uses[LUIdx];
 | 
						|
      bool Any = false;
 | 
						|
      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
 | 
						|
        Formula &F = LU.Formulae[i];
 | 
						|
        // Look for a formula with a constant or GV in a register. If the use
 | 
						|
        // also has a formula with that same value in an immediate field,
 | 
						|
        // delete the one that uses a register.
 | 
						|
        for (SmallVectorImpl<const SCEV *>::const_iterator
 | 
						|
             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
 | 
						|
          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
 | 
						|
            Formula NewF = F;
 | 
						|
            NewF.BaseOffset += C->getValue()->getSExtValue();
 | 
						|
            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
 | 
						|
                                (I - F.BaseRegs.begin()));
 | 
						|
            if (LU.HasFormulaWithSameRegs(NewF)) {
 | 
						|
              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
 | 
						|
              LU.DeleteFormula(F);
 | 
						|
              --i;
 | 
						|
              --e;
 | 
						|
              Any = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
 | 
						|
            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
 | 
						|
              if (!F.BaseGV) {
 | 
						|
                Formula NewF = F;
 | 
						|
                NewF.BaseGV = GV;
 | 
						|
                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
 | 
						|
                                    (I - F.BaseRegs.begin()));
 | 
						|
                if (LU.HasFormulaWithSameRegs(NewF)) {
 | 
						|
                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
 | 
						|
                        dbgs() << '\n');
 | 
						|
                  LU.DeleteFormula(F);
 | 
						|
                  --i;
 | 
						|
                  --e;
 | 
						|
                  Any = true;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
              }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Any)
 | 
						|
        LU.RecomputeRegs(LUIdx, RegUses);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "After pre-selection:\n";
 | 
						|
          print_uses(dbgs()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
 | 
						|
/// for expressions like A, A+1, A+2, etc., allocate a single register for
 | 
						|
/// them.
 | 
						|
void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
 | 
						|
  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "The search space is too complex.\n"
 | 
						|
                  "Narrowing the search space by assuming that uses separated "
 | 
						|
                  "by a constant offset will use the same registers.\n");
 | 
						|
 | 
						|
  // This is especially useful for unrolled loops.
 | 
						|
 | 
						|
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
 | 
						|
    LSRUse &LU = Uses[LUIdx];
 | 
						|
    for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
 | 
						|
         E = LU.Formulae.end(); I != E; ++I) {
 | 
						|
      const Formula &F = *I;
 | 
						|
      if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
 | 
						|
        continue;
 | 
						|
 | 
						|
      LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
 | 
						|
      if (!LUThatHas)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
 | 
						|
                              LU.Kind, LU.AccessTy))
 | 
						|
        continue;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
 | 
						|
 | 
						|
      LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
 | 
						|
 | 
						|
      // Update the relocs to reference the new use.
 | 
						|
      for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
 | 
						|
           E = Fixups.end(); I != E; ++I) {
 | 
						|
        LSRFixup &Fixup = *I;
 | 
						|
        if (Fixup.LUIdx == LUIdx) {
 | 
						|
          Fixup.LUIdx = LUThatHas - &Uses.front();
 | 
						|
          Fixup.Offset += F.BaseOffset;
 | 
						|
          // Add the new offset to LUThatHas' offset list.
 | 
						|
          if (LUThatHas->Offsets.back() != Fixup.Offset) {
 | 
						|
            LUThatHas->Offsets.push_back(Fixup.Offset);
 | 
						|
            if (Fixup.Offset > LUThatHas->MaxOffset)
 | 
						|
              LUThatHas->MaxOffset = Fixup.Offset;
 | 
						|
            if (Fixup.Offset < LUThatHas->MinOffset)
 | 
						|
              LUThatHas->MinOffset = Fixup.Offset;
 | 
						|
          }
 | 
						|
          DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
 | 
						|
        }
 | 
						|
        if (Fixup.LUIdx == NumUses-1)
 | 
						|
          Fixup.LUIdx = LUIdx;
 | 
						|
      }
 | 
						|
 | 
						|
      // Delete formulae from the new use which are no longer legal.
 | 
						|
      bool Any = false;
 | 
						|
      for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
 | 
						|
        Formula &F = LUThatHas->Formulae[i];
 | 
						|
        if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
 | 
						|
                        LUThatHas->Kind, LUThatHas->AccessTy, F)) {
 | 
						|
          DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
 | 
						|
                dbgs() << '\n');
 | 
						|
          LUThatHas->DeleteFormula(F);
 | 
						|
          --i;
 | 
						|
          --e;
 | 
						|
          Any = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (Any)
 | 
						|
        LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
 | 
						|
 | 
						|
      // Delete the old use.
 | 
						|
      DeleteUse(LU, LUIdx);
 | 
						|
      --LUIdx;
 | 
						|
      --NumUses;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
 | 
						|
}
 | 
						|
 | 
						|
/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
 | 
						|
/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
 | 
						|
/// we've done more filtering, as it may be able to find more formulae to
 | 
						|
/// eliminate.
 | 
						|
void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
 | 
						|
  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
 | 
						|
    DEBUG(dbgs() << "The search space is too complex.\n");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
 | 
						|
                    "undesirable dedicated registers.\n");
 | 
						|
 | 
						|
    FilterOutUndesirableDedicatedRegisters();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "After pre-selection:\n";
 | 
						|
          print_uses(dbgs()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
 | 
						|
/// to be profitable, and then in any use which has any reference to that
 | 
						|
/// register, delete all formulae which do not reference that register.
 | 
						|
void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
 | 
						|
  // With all other options exhausted, loop until the system is simple
 | 
						|
  // enough to handle.
 | 
						|
  SmallPtrSet<const SCEV *, 4> Taken;
 | 
						|
  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
 | 
						|
    // Ok, we have too many of formulae on our hands to conveniently handle.
 | 
						|
    // Use a rough heuristic to thin out the list.
 | 
						|
    DEBUG(dbgs() << "The search space is too complex.\n");
 | 
						|
 | 
						|
    // Pick the register which is used by the most LSRUses, which is likely
 | 
						|
    // to be a good reuse register candidate.
 | 
						|
    const SCEV *Best = nullptr;
 | 
						|
    unsigned BestNum = 0;
 | 
						|
    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      const SCEV *Reg = *I;
 | 
						|
      if (Taken.count(Reg))
 | 
						|
        continue;
 | 
						|
      if (!Best)
 | 
						|
        Best = Reg;
 | 
						|
      else {
 | 
						|
        unsigned Count = RegUses.getUsedByIndices(Reg).count();
 | 
						|
        if (Count > BestNum) {
 | 
						|
          Best = Reg;
 | 
						|
          BestNum = Count;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
 | 
						|
                 << " will yield profitable reuse.\n");
 | 
						|
    Taken.insert(Best);
 | 
						|
 | 
						|
    // In any use with formulae which references this register, delete formulae
 | 
						|
    // which don't reference it.
 | 
						|
    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
 | 
						|
      LSRUse &LU = Uses[LUIdx];
 | 
						|
      if (!LU.Regs.count(Best)) continue;
 | 
						|
 | 
						|
      bool Any = false;
 | 
						|
      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
 | 
						|
        Formula &F = LU.Formulae[i];
 | 
						|
        if (!F.referencesReg(Best)) {
 | 
						|
          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
 | 
						|
          LU.DeleteFormula(F);
 | 
						|
          --e;
 | 
						|
          --i;
 | 
						|
          Any = true;
 | 
						|
          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (Any)
 | 
						|
        LU.RecomputeRegs(LUIdx, RegUses);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "After pre-selection:\n";
 | 
						|
          print_uses(dbgs()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
 | 
						|
/// formulae to choose from, use some rough heuristics to prune down the number
 | 
						|
/// of formulae. This keeps the main solver from taking an extraordinary amount
 | 
						|
/// of time in some worst-case scenarios.
 | 
						|
void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
 | 
						|
  NarrowSearchSpaceByDetectingSupersets();
 | 
						|
  NarrowSearchSpaceByCollapsingUnrolledCode();
 | 
						|
  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
 | 
						|
  NarrowSearchSpaceByPickingWinnerRegs();
 | 
						|
}
 | 
						|
 | 
						|
/// SolveRecurse - This is the recursive solver.
 | 
						|
void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
 | 
						|
                               Cost &SolutionCost,
 | 
						|
                               SmallVectorImpl<const Formula *> &Workspace,
 | 
						|
                               const Cost &CurCost,
 | 
						|
                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
 | 
						|
                               DenseSet<const SCEV *> &VisitedRegs) const {
 | 
						|
  // Some ideas:
 | 
						|
  //  - prune more:
 | 
						|
  //    - use more aggressive filtering
 | 
						|
  //    - sort the formula so that the most profitable solutions are found first
 | 
						|
  //    - sort the uses too
 | 
						|
  //  - search faster:
 | 
						|
  //    - don't compute a cost, and then compare. compare while computing a cost
 | 
						|
  //      and bail early.
 | 
						|
  //    - track register sets with SmallBitVector
 | 
						|
 | 
						|
  const LSRUse &LU = Uses[Workspace.size()];
 | 
						|
 | 
						|
  // If this use references any register that's already a part of the
 | 
						|
  // in-progress solution, consider it a requirement that a formula must
 | 
						|
  // reference that register in order to be considered. This prunes out
 | 
						|
  // unprofitable searching.
 | 
						|
  SmallSetVector<const SCEV *, 4> ReqRegs;
 | 
						|
  for (const SCEV *S : CurRegs)
 | 
						|
    if (LU.Regs.count(S))
 | 
						|
      ReqRegs.insert(S);
 | 
						|
 | 
						|
  SmallPtrSet<const SCEV *, 16> NewRegs;
 | 
						|
  Cost NewCost;
 | 
						|
  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
 | 
						|
       E = LU.Formulae.end(); I != E; ++I) {
 | 
						|
    const Formula &F = *I;
 | 
						|
 | 
						|
    // Ignore formulae which may not be ideal in terms of register reuse of
 | 
						|
    // ReqRegs.  The formula should use all required registers before
 | 
						|
    // introducing new ones.
 | 
						|
    int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
 | 
						|
    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
 | 
						|
         JE = ReqRegs.end(); J != JE; ++J) {
 | 
						|
      const SCEV *Reg = *J;
 | 
						|
      if ((F.ScaledReg && F.ScaledReg == Reg) ||
 | 
						|
          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
 | 
						|
          F.BaseRegs.end()) {
 | 
						|
        --NumReqRegsToFind;
 | 
						|
        if (NumReqRegsToFind == 0)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NumReqRegsToFind != 0) {
 | 
						|
      // If none of the formulae satisfied the required registers, then we could
 | 
						|
      // clear ReqRegs and try again. Currently, we simply give up in this case.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Evaluate the cost of the current formula. If it's already worse than
 | 
						|
    // the current best, prune the search at that point.
 | 
						|
    NewCost = CurCost;
 | 
						|
    NewRegs = CurRegs;
 | 
						|
    NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
 | 
						|
                        LU);
 | 
						|
    if (NewCost < SolutionCost) {
 | 
						|
      Workspace.push_back(&F);
 | 
						|
      if (Workspace.size() != Uses.size()) {
 | 
						|
        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
 | 
						|
                     NewRegs, VisitedRegs);
 | 
						|
        if (F.getNumRegs() == 1 && Workspace.size() == 1)
 | 
						|
          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
 | 
						|
      } else {
 | 
						|
        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
 | 
						|
              dbgs() << ".\n Regs:";
 | 
						|
              for (const SCEV *S : NewRegs)
 | 
						|
                dbgs() << ' ' << *S;
 | 
						|
              dbgs() << '\n');
 | 
						|
 | 
						|
        SolutionCost = NewCost;
 | 
						|
        Solution = Workspace;
 | 
						|
      }
 | 
						|
      Workspace.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Solve - Choose one formula from each use. Return the results in the given
 | 
						|
/// Solution vector.
 | 
						|
void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
 | 
						|
  SmallVector<const Formula *, 8> Workspace;
 | 
						|
  Cost SolutionCost;
 | 
						|
  SolutionCost.Lose();
 | 
						|
  Cost CurCost;
 | 
						|
  SmallPtrSet<const SCEV *, 16> CurRegs;
 | 
						|
  DenseSet<const SCEV *> VisitedRegs;
 | 
						|
  Workspace.reserve(Uses.size());
 | 
						|
 | 
						|
  // SolveRecurse does all the work.
 | 
						|
  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
 | 
						|
               CurRegs, VisitedRegs);
 | 
						|
  if (Solution.empty()) {
 | 
						|
    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, we've now made all our decisions.
 | 
						|
  DEBUG(dbgs() << "\n"
 | 
						|
                  "The chosen solution requires "; SolutionCost.print(dbgs());
 | 
						|
        dbgs() << ":\n";
 | 
						|
        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
 | 
						|
          dbgs() << "  ";
 | 
						|
          Uses[i].print(dbgs());
 | 
						|
          dbgs() << "\n"
 | 
						|
                    "    ";
 | 
						|
          Solution[i]->print(dbgs());
 | 
						|
          dbgs() << '\n';
 | 
						|
        });
 | 
						|
 | 
						|
  assert(Solution.size() == Uses.size() && "Malformed solution!");
 | 
						|
}
 | 
						|
 | 
						|
/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
 | 
						|
/// the dominator tree far as we can go while still being dominated by the
 | 
						|
/// input positions. This helps canonicalize the insert position, which
 | 
						|
/// encourages sharing.
 | 
						|
BasicBlock::iterator
 | 
						|
LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
 | 
						|
                                 const SmallVectorImpl<Instruction *> &Inputs)
 | 
						|
                                                                         const {
 | 
						|
  for (;;) {
 | 
						|
    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
 | 
						|
    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
 | 
						|
 | 
						|
    BasicBlock *IDom;
 | 
						|
    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
 | 
						|
      if (!Rung) return IP;
 | 
						|
      Rung = Rung->getIDom();
 | 
						|
      if (!Rung) return IP;
 | 
						|
      IDom = Rung->getBlock();
 | 
						|
 | 
						|
      // Don't climb into a loop though.
 | 
						|
      const Loop *IDomLoop = LI.getLoopFor(IDom);
 | 
						|
      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
 | 
						|
      if (IDomDepth <= IPLoopDepth &&
 | 
						|
          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    bool AllDominate = true;
 | 
						|
    Instruction *BetterPos = nullptr;
 | 
						|
    Instruction *Tentative = IDom->getTerminator();
 | 
						|
    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
 | 
						|
         E = Inputs.end(); I != E; ++I) {
 | 
						|
      Instruction *Inst = *I;
 | 
						|
      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
 | 
						|
        AllDominate = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Attempt to find an insert position in the middle of the block,
 | 
						|
      // instead of at the end, so that it can be used for other expansions.
 | 
						|
      if (IDom == Inst->getParent() &&
 | 
						|
          (!BetterPos || !DT.dominates(Inst, BetterPos)))
 | 
						|
        BetterPos = std::next(BasicBlock::iterator(Inst));
 | 
						|
    }
 | 
						|
    if (!AllDominate)
 | 
						|
      break;
 | 
						|
    if (BetterPos)
 | 
						|
      IP = BetterPos;
 | 
						|
    else
 | 
						|
      IP = Tentative;
 | 
						|
  }
 | 
						|
 | 
						|
  return IP;
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustInsertPositionForExpand - Determine an input position which will be
 | 
						|
/// dominated by the operands and which will dominate the result.
 | 
						|
BasicBlock::iterator
 | 
						|
LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
 | 
						|
                                           const LSRFixup &LF,
 | 
						|
                                           const LSRUse &LU,
 | 
						|
                                           SCEVExpander &Rewriter) const {
 | 
						|
  // Collect some instructions which must be dominated by the
 | 
						|
  // expanding replacement. These must be dominated by any operands that
 | 
						|
  // will be required in the expansion.
 | 
						|
  SmallVector<Instruction *, 4> Inputs;
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
 | 
						|
    Inputs.push_back(I);
 | 
						|
  if (LU.Kind == LSRUse::ICmpZero)
 | 
						|
    if (Instruction *I =
 | 
						|
          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
 | 
						|
      Inputs.push_back(I);
 | 
						|
  if (LF.PostIncLoops.count(L)) {
 | 
						|
    if (LF.isUseFullyOutsideLoop(L))
 | 
						|
      Inputs.push_back(L->getLoopLatch()->getTerminator());
 | 
						|
    else
 | 
						|
      Inputs.push_back(IVIncInsertPos);
 | 
						|
  }
 | 
						|
  // The expansion must also be dominated by the increment positions of any
 | 
						|
  // loops it for which it is using post-inc mode.
 | 
						|
  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
 | 
						|
       E = LF.PostIncLoops.end(); I != E; ++I) {
 | 
						|
    const Loop *PIL = *I;
 | 
						|
    if (PIL == L) continue;
 | 
						|
 | 
						|
    // Be dominated by the loop exit.
 | 
						|
    SmallVector<BasicBlock *, 4> ExitingBlocks;
 | 
						|
    PIL->getExitingBlocks(ExitingBlocks);
 | 
						|
    if (!ExitingBlocks.empty()) {
 | 
						|
      BasicBlock *BB = ExitingBlocks[0];
 | 
						|
      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
 | 
						|
        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
 | 
						|
      Inputs.push_back(BB->getTerminator());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
 | 
						|
         && !isa<DbgInfoIntrinsic>(LowestIP) &&
 | 
						|
         "Insertion point must be a normal instruction");
 | 
						|
 | 
						|
  // Then, climb up the immediate dominator tree as far as we can go while
 | 
						|
  // still being dominated by the input positions.
 | 
						|
  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
 | 
						|
 | 
						|
  // Don't insert instructions before PHI nodes.
 | 
						|
  while (isa<PHINode>(IP)) ++IP;
 | 
						|
 | 
						|
  // Ignore landingpad instructions.
 | 
						|
  while (isa<LandingPadInst>(IP)) ++IP;
 | 
						|
 | 
						|
  // Ignore debug intrinsics.
 | 
						|
  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
 | 
						|
 | 
						|
  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
 | 
						|
  // IP consistent across expansions and allows the previously inserted
 | 
						|
  // instructions to be reused by subsequent expansion.
 | 
						|
  while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
 | 
						|
 | 
						|
  return IP;
 | 
						|
}
 | 
						|
 | 
						|
/// Expand - Emit instructions for the leading candidate expression for this
 | 
						|
/// LSRUse (this is called "expanding").
 | 
						|
Value *LSRInstance::Expand(const LSRFixup &LF,
 | 
						|
                           const Formula &F,
 | 
						|
                           BasicBlock::iterator IP,
 | 
						|
                           SCEVExpander &Rewriter,
 | 
						|
                           SmallVectorImpl<WeakVH> &DeadInsts) const {
 | 
						|
  const LSRUse &LU = Uses[LF.LUIdx];
 | 
						|
  if (LU.RigidFormula)
 | 
						|
    return LF.OperandValToReplace;
 | 
						|
 | 
						|
  // Determine an input position which will be dominated by the operands and
 | 
						|
  // which will dominate the result.
 | 
						|
  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
 | 
						|
 | 
						|
  // Inform the Rewriter if we have a post-increment use, so that it can
 | 
						|
  // perform an advantageous expansion.
 | 
						|
  Rewriter.setPostInc(LF.PostIncLoops);
 | 
						|
 | 
						|
  // This is the type that the user actually needs.
 | 
						|
  Type *OpTy = LF.OperandValToReplace->getType();
 | 
						|
  // This will be the type that we'll initially expand to.
 | 
						|
  Type *Ty = F.getType();
 | 
						|
  if (!Ty)
 | 
						|
    // No type known; just expand directly to the ultimate type.
 | 
						|
    Ty = OpTy;
 | 
						|
  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
 | 
						|
    // Expand directly to the ultimate type if it's the right size.
 | 
						|
    Ty = OpTy;
 | 
						|
  // This is the type to do integer arithmetic in.
 | 
						|
  Type *IntTy = SE.getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  // Build up a list of operands to add together to form the full base.
 | 
						|
  SmallVector<const SCEV *, 8> Ops;
 | 
						|
 | 
						|
  // Expand the BaseRegs portion.
 | 
						|
  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
 | 
						|
       E = F.BaseRegs.end(); I != E; ++I) {
 | 
						|
    const SCEV *Reg = *I;
 | 
						|
    assert(!Reg->isZero() && "Zero allocated in a base register!");
 | 
						|
 | 
						|
    // If we're expanding for a post-inc user, make the post-inc adjustment.
 | 
						|
    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
 | 
						|
    Reg = TransformForPostIncUse(Denormalize, Reg,
 | 
						|
                                 LF.UserInst, LF.OperandValToReplace,
 | 
						|
                                 Loops, SE, DT);
 | 
						|
 | 
						|
    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP)));
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the ScaledReg portion.
 | 
						|
  Value *ICmpScaledV = nullptr;
 | 
						|
  if (F.Scale != 0) {
 | 
						|
    const SCEV *ScaledS = F.ScaledReg;
 | 
						|
 | 
						|
    // If we're expanding for a post-inc user, make the post-inc adjustment.
 | 
						|
    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
 | 
						|
    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
 | 
						|
                                     LF.UserInst, LF.OperandValToReplace,
 | 
						|
                                     Loops, SE, DT);
 | 
						|
 | 
						|
    if (LU.Kind == LSRUse::ICmpZero) {
 | 
						|
      // Expand ScaleReg as if it was part of the base regs.
 | 
						|
      if (F.Scale == 1)
 | 
						|
        Ops.push_back(
 | 
						|
            SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)));
 | 
						|
      else {
 | 
						|
        // An interesting way of "folding" with an icmp is to use a negated
 | 
						|
        // scale, which we'll implement by inserting it into the other operand
 | 
						|
        // of the icmp.
 | 
						|
        assert(F.Scale == -1 &&
 | 
						|
               "The only scale supported by ICmpZero uses is -1!");
 | 
						|
        ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Otherwise just expand the scaled register and an explicit scale,
 | 
						|
      // which is expected to be matched as part of the address.
 | 
						|
 | 
						|
      // Flush the operand list to suppress SCEVExpander hoisting address modes.
 | 
						|
      // Unless the addressing mode will not be folded.
 | 
						|
      if (!Ops.empty() && LU.Kind == LSRUse::Address &&
 | 
						|
          isAMCompletelyFolded(TTI, LU, F)) {
 | 
						|
        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
 | 
						|
        Ops.clear();
 | 
						|
        Ops.push_back(SE.getUnknown(FullV));
 | 
						|
      }
 | 
						|
      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP));
 | 
						|
      if (F.Scale != 1)
 | 
						|
        ScaledS =
 | 
						|
            SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
 | 
						|
      Ops.push_back(ScaledS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the GV portion.
 | 
						|
  if (F.BaseGV) {
 | 
						|
    // Flush the operand list to suppress SCEVExpander hoisting.
 | 
						|
    if (!Ops.empty()) {
 | 
						|
      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
 | 
						|
      Ops.clear();
 | 
						|
      Ops.push_back(SE.getUnknown(FullV));
 | 
						|
    }
 | 
						|
    Ops.push_back(SE.getUnknown(F.BaseGV));
 | 
						|
  }
 | 
						|
 | 
						|
  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
 | 
						|
  // unfolded offsets. LSR assumes they both live next to their uses.
 | 
						|
  if (!Ops.empty()) {
 | 
						|
    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
 | 
						|
    Ops.clear();
 | 
						|
    Ops.push_back(SE.getUnknown(FullV));
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the immediate portion.
 | 
						|
  int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
 | 
						|
  if (Offset != 0) {
 | 
						|
    if (LU.Kind == LSRUse::ICmpZero) {
 | 
						|
      // The other interesting way of "folding" with an ICmpZero is to use a
 | 
						|
      // negated immediate.
 | 
						|
      if (!ICmpScaledV)
 | 
						|
        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
 | 
						|
      else {
 | 
						|
        Ops.push_back(SE.getUnknown(ICmpScaledV));
 | 
						|
        ICmpScaledV = ConstantInt::get(IntTy, Offset);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Just add the immediate values. These again are expected to be matched
 | 
						|
      // as part of the address.
 | 
						|
      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the unfolded offset portion.
 | 
						|
  int64_t UnfoldedOffset = F.UnfoldedOffset;
 | 
						|
  if (UnfoldedOffset != 0) {
 | 
						|
    // Just add the immediate values.
 | 
						|
    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
 | 
						|
                                                       UnfoldedOffset)));
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit instructions summing all the operands.
 | 
						|
  const SCEV *FullS = Ops.empty() ?
 | 
						|
                      SE.getConstant(IntTy, 0) :
 | 
						|
                      SE.getAddExpr(Ops);
 | 
						|
  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
 | 
						|
 | 
						|
  // We're done expanding now, so reset the rewriter.
 | 
						|
  Rewriter.clearPostInc();
 | 
						|
 | 
						|
  // An ICmpZero Formula represents an ICmp which we're handling as a
 | 
						|
  // comparison against zero. Now that we've expanded an expression for that
 | 
						|
  // form, update the ICmp's other operand.
 | 
						|
  if (LU.Kind == LSRUse::ICmpZero) {
 | 
						|
    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
 | 
						|
    DeadInsts.push_back(CI->getOperand(1));
 | 
						|
    assert(!F.BaseGV && "ICmp does not support folding a global value and "
 | 
						|
                           "a scale at the same time!");
 | 
						|
    if (F.Scale == -1) {
 | 
						|
      if (ICmpScaledV->getType() != OpTy) {
 | 
						|
        Instruction *Cast =
 | 
						|
          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
 | 
						|
                                                   OpTy, false),
 | 
						|
                           ICmpScaledV, OpTy, "tmp", CI);
 | 
						|
        ICmpScaledV = Cast;
 | 
						|
      }
 | 
						|
      CI->setOperand(1, ICmpScaledV);
 | 
						|
    } else {
 | 
						|
      // A scale of 1 means that the scale has been expanded as part of the
 | 
						|
      // base regs.
 | 
						|
      assert((F.Scale == 0 || F.Scale == 1) &&
 | 
						|
             "ICmp does not support folding a global value and "
 | 
						|
             "a scale at the same time!");
 | 
						|
      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
 | 
						|
                                           -(uint64_t)Offset);
 | 
						|
      if (C->getType() != OpTy)
 | 
						|
        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | 
						|
                                                          OpTy, false),
 | 
						|
                                  C, OpTy);
 | 
						|
 | 
						|
      CI->setOperand(1, C);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return FullV;
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
 | 
						|
/// of their operands effectively happens in their predecessor blocks, so the
 | 
						|
/// expression may need to be expanded in multiple places.
 | 
						|
void LSRInstance::RewriteForPHI(PHINode *PN,
 | 
						|
                                const LSRFixup &LF,
 | 
						|
                                const Formula &F,
 | 
						|
                                SCEVExpander &Rewriter,
 | 
						|
                                SmallVectorImpl<WeakVH> &DeadInsts,
 | 
						|
                                Pass *P) const {
 | 
						|
  DenseMap<BasicBlock *, Value *> Inserted;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
 | 
						|
      BasicBlock *BB = PN->getIncomingBlock(i);
 | 
						|
 | 
						|
      // If this is a critical edge, split the edge so that we do not insert
 | 
						|
      // the code on all predecessor/successor paths.  We do this unless this
 | 
						|
      // is the canonical backedge for this loop, which complicates post-inc
 | 
						|
      // users.
 | 
						|
      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
 | 
						|
          !isa<IndirectBrInst>(BB->getTerminator())) {
 | 
						|
        BasicBlock *Parent = PN->getParent();
 | 
						|
        Loop *PNLoop = LI.getLoopFor(Parent);
 | 
						|
        if (!PNLoop || Parent != PNLoop->getHeader()) {
 | 
						|
          // Split the critical edge.
 | 
						|
          BasicBlock *NewBB = nullptr;
 | 
						|
          if (!Parent->isLandingPad()) {
 | 
						|
            NewBB = SplitCriticalEdge(BB, Parent,
 | 
						|
                                      CriticalEdgeSplittingOptions(&DT, &LI)
 | 
						|
                                          .setMergeIdenticalEdges()
 | 
						|
                                          .setDontDeleteUselessPHIs());
 | 
						|
          } else {
 | 
						|
            SmallVector<BasicBlock*, 2> NewBBs;
 | 
						|
            SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs,
 | 
						|
                                        /*AliasAnalysis*/ nullptr, &DT, &LI);
 | 
						|
            NewBB = NewBBs[0];
 | 
						|
          }
 | 
						|
          // If NewBB==NULL, then SplitCriticalEdge refused to split because all
 | 
						|
          // phi predecessors are identical. The simple thing to do is skip
 | 
						|
          // splitting in this case rather than complicate the API.
 | 
						|
          if (NewBB) {
 | 
						|
            // If PN is outside of the loop and BB is in the loop, we want to
 | 
						|
            // move the block to be immediately before the PHI block, not
 | 
						|
            // immediately after BB.
 | 
						|
            if (L->contains(BB) && !L->contains(PN))
 | 
						|
              NewBB->moveBefore(PN->getParent());
 | 
						|
 | 
						|
            // Splitting the edge can reduce the number of PHI entries we have.
 | 
						|
            e = PN->getNumIncomingValues();
 | 
						|
            BB = NewBB;
 | 
						|
            i = PN->getBasicBlockIndex(BB);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
 | 
						|
        Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
 | 
						|
      if (!Pair.second)
 | 
						|
        PN->setIncomingValue(i, Pair.first->second);
 | 
						|
      else {
 | 
						|
        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
 | 
						|
 | 
						|
        // If this is reuse-by-noop-cast, insert the noop cast.
 | 
						|
        Type *OpTy = LF.OperandValToReplace->getType();
 | 
						|
        if (FullV->getType() != OpTy)
 | 
						|
          FullV =
 | 
						|
            CastInst::Create(CastInst::getCastOpcode(FullV, false,
 | 
						|
                                                     OpTy, false),
 | 
						|
                             FullV, LF.OperandValToReplace->getType(),
 | 
						|
                             "tmp", BB->getTerminator());
 | 
						|
 | 
						|
        PN->setIncomingValue(i, FullV);
 | 
						|
        Pair.first->second = FullV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// Rewrite - Emit instructions for the leading candidate expression for this
 | 
						|
/// LSRUse (this is called "expanding"), and update the UserInst to reference
 | 
						|
/// the newly expanded value.
 | 
						|
void LSRInstance::Rewrite(const LSRFixup &LF,
 | 
						|
                          const Formula &F,
 | 
						|
                          SCEVExpander &Rewriter,
 | 
						|
                          SmallVectorImpl<WeakVH> &DeadInsts,
 | 
						|
                          Pass *P) const {
 | 
						|
  // First, find an insertion point that dominates UserInst. For PHI nodes,
 | 
						|
  // find the nearest block which dominates all the relevant uses.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
 | 
						|
    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
 | 
						|
  } else {
 | 
						|
    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
 | 
						|
 | 
						|
    // If this is reuse-by-noop-cast, insert the noop cast.
 | 
						|
    Type *OpTy = LF.OperandValToReplace->getType();
 | 
						|
    if (FullV->getType() != OpTy) {
 | 
						|
      Instruction *Cast =
 | 
						|
        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
 | 
						|
                         FullV, OpTy, "tmp", LF.UserInst);
 | 
						|
      FullV = Cast;
 | 
						|
    }
 | 
						|
 | 
						|
    // Update the user. ICmpZero is handled specially here (for now) because
 | 
						|
    // Expand may have updated one of the operands of the icmp already, and
 | 
						|
    // its new value may happen to be equal to LF.OperandValToReplace, in
 | 
						|
    // which case doing replaceUsesOfWith leads to replacing both operands
 | 
						|
    // with the same value. TODO: Reorganize this.
 | 
						|
    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
 | 
						|
      LF.UserInst->setOperand(0, FullV);
 | 
						|
    else
 | 
						|
      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
 | 
						|
  }
 | 
						|
 | 
						|
  DeadInsts.push_back(LF.OperandValToReplace);
 | 
						|
}
 | 
						|
 | 
						|
/// ImplementSolution - Rewrite all the fixup locations with new values,
 | 
						|
/// following the chosen solution.
 | 
						|
void
 | 
						|
LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
 | 
						|
                               Pass *P) {
 | 
						|
  // Keep track of instructions we may have made dead, so that
 | 
						|
  // we can remove them after we are done working.
 | 
						|
  SmallVector<WeakVH, 16> DeadInsts;
 | 
						|
 | 
						|
  SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
 | 
						|
                        "lsr");
 | 
						|
#ifndef NDEBUG
 | 
						|
  Rewriter.setDebugType(DEBUG_TYPE);
 | 
						|
#endif
 | 
						|
  Rewriter.disableCanonicalMode();
 | 
						|
  Rewriter.enableLSRMode();
 | 
						|
  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
 | 
						|
 | 
						|
  // Mark phi nodes that terminate chains so the expander tries to reuse them.
 | 
						|
  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
 | 
						|
         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
 | 
						|
      Rewriter.setChainedPhi(PN);
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the new value definitions and update the users.
 | 
						|
  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
 | 
						|
       E = Fixups.end(); I != E; ++I) {
 | 
						|
    const LSRFixup &Fixup = *I;
 | 
						|
 | 
						|
    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
 | 
						|
         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
 | 
						|
    GenerateIVChain(*ChainI, Rewriter, DeadInsts);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
  // Clean up after ourselves. This must be done before deleting any
 | 
						|
  // instructions.
 | 
						|
  Rewriter.clear();
 | 
						|
 | 
						|
  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
}
 | 
						|
 | 
						|
LSRInstance::LSRInstance(Loop *L, Pass *P)
 | 
						|
    : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
 | 
						|
      DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
 | 
						|
      LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()),
 | 
						|
      TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | 
						|
          *L->getHeader()->getParent())),
 | 
						|
      L(L), Changed(false), IVIncInsertPos(nullptr) {
 | 
						|
  // If LoopSimplify form is not available, stay out of trouble.
 | 
						|
  if (!L->isLoopSimplifyForm())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If there's no interesting work to be done, bail early.
 | 
						|
  if (IU.empty()) return;
 | 
						|
 | 
						|
  // If there's too much analysis to be done, bail early. We won't be able to
 | 
						|
  // model the problem anyway.
 | 
						|
  unsigned NumUsers = 0;
 | 
						|
  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
 | 
						|
    if (++NumUsers > MaxIVUsers) {
 | 
						|
      DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
 | 
						|
            << "\n");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // All dominating loops must have preheaders, or SCEVExpander may not be able
 | 
						|
  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
 | 
						|
  //
 | 
						|
  // IVUsers analysis should only create users that are dominated by simple loop
 | 
						|
  // headers. Since this loop should dominate all of its users, its user list
 | 
						|
  // should be empty if this loop itself is not within a simple loop nest.
 | 
						|
  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
 | 
						|
       Rung; Rung = Rung->getIDom()) {
 | 
						|
    BasicBlock *BB = Rung->getBlock();
 | 
						|
    const Loop *DomLoop = LI.getLoopFor(BB);
 | 
						|
    if (DomLoop && DomLoop->getHeader() == BB) {
 | 
						|
      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif // DEBUG
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\nLSR on loop ";
 | 
						|
        L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
 | 
						|
        dbgs() << ":\n");
 | 
						|
 | 
						|
  // First, perform some low-level loop optimizations.
 | 
						|
  OptimizeShadowIV();
 | 
						|
  OptimizeLoopTermCond();
 | 
						|
 | 
						|
  // If loop preparation eliminates all interesting IV users, bail.
 | 
						|
  if (IU.empty()) return;
 | 
						|
 | 
						|
  // Skip nested loops until we can model them better with formulae.
 | 
						|
  if (!L->empty()) {
 | 
						|
    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Start collecting data and preparing for the solver.
 | 
						|
  CollectChains();
 | 
						|
  CollectInterestingTypesAndFactors();
 | 
						|
  CollectFixupsAndInitialFormulae();
 | 
						|
  CollectLoopInvariantFixupsAndFormulae();
 | 
						|
 | 
						|
  assert(!Uses.empty() && "IVUsers reported at least one use");
 | 
						|
  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
 | 
						|
        print_uses(dbgs()));
 | 
						|
 | 
						|
  // Now use the reuse data to generate a bunch of interesting ways
 | 
						|
  // to formulate the values needed for the uses.
 | 
						|
  GenerateAllReuseFormulae();
 | 
						|
 | 
						|
  FilterOutUndesirableDedicatedRegisters();
 | 
						|
  NarrowSearchSpaceUsingHeuristics();
 | 
						|
 | 
						|
  SmallVector<const Formula *, 8> Solution;
 | 
						|
  Solve(Solution);
 | 
						|
 | 
						|
  // Release memory that is no longer needed.
 | 
						|
  Factors.clear();
 | 
						|
  Types.clear();
 | 
						|
  RegUses.clear();
 | 
						|
 | 
						|
  if (Solution.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Formulae should be legal.
 | 
						|
  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const LSRUse &LU = *I;
 | 
						|
    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
 | 
						|
                                                  JE = LU.Formulae.end();
 | 
						|
         J != JE; ++J)
 | 
						|
      assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
 | 
						|
                        *J) && "Illegal formula generated!");
 | 
						|
  };
 | 
						|
#endif
 | 
						|
 | 
						|
  // Now that we've decided what we want, make it so.
 | 
						|
  ImplementSolution(Solution, P);
 | 
						|
}
 | 
						|
 | 
						|
void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
 | 
						|
  if (Factors.empty() && Types.empty()) return;
 | 
						|
 | 
						|
  OS << "LSR has identified the following interesting factors and types: ";
 | 
						|
  bool First = true;
 | 
						|
 | 
						|
  for (SmallSetVector<int64_t, 8>::const_iterator
 | 
						|
       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
 | 
						|
    if (!First) OS << ", ";
 | 
						|
    First = false;
 | 
						|
    OS << '*' << *I;
 | 
						|
  }
 | 
						|
 | 
						|
  for (SmallSetVector<Type *, 4>::const_iterator
 | 
						|
       I = Types.begin(), E = Types.end(); I != E; ++I) {
 | 
						|
    if (!First) OS << ", ";
 | 
						|
    First = false;
 | 
						|
    OS << '(' << **I << ')';
 | 
						|
  }
 | 
						|
  OS << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void LSRInstance::print_fixups(raw_ostream &OS) const {
 | 
						|
  OS << "LSR is examining the following fixup sites:\n";
 | 
						|
  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
 | 
						|
       E = Fixups.end(); I != E; ++I) {
 | 
						|
    dbgs() << "  ";
 | 
						|
    I->print(OS);
 | 
						|
    OS << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LSRInstance::print_uses(raw_ostream &OS) const {
 | 
						|
  OS << "LSR is examining the following uses:\n";
 | 
						|
  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
 | 
						|
       E = Uses.end(); I != E; ++I) {
 | 
						|
    const LSRUse &LU = *I;
 | 
						|
    dbgs() << "  ";
 | 
						|
    LU.print(OS);
 | 
						|
    OS << '\n';
 | 
						|
    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
 | 
						|
         JE = LU.Formulae.end(); J != JE; ++J) {
 | 
						|
      OS << "    ";
 | 
						|
      J->print(OS);
 | 
						|
      OS << '\n';
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LSRInstance::print(raw_ostream &OS) const {
 | 
						|
  print_factors_and_types(OS);
 | 
						|
  print_fixups(OS);
 | 
						|
  print_uses(OS);
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void LSRInstance::dump() const {
 | 
						|
  print(errs()); errs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class LoopStrengthReduce : public LoopPass {
 | 
						|
public:
 | 
						|
  static char ID; // Pass ID, replacement for typeid
 | 
						|
  LoopStrengthReduce();
 | 
						|
 | 
						|
private:
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
char LoopStrengthReduce::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
 | 
						|
                "Loop Strength Reduction", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(IVUsers)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
 | 
						|
                "Loop Strength Reduction", false, false)
 | 
						|
 | 
						|
 | 
						|
Pass *llvm::createLoopStrengthReducePass() {
 | 
						|
  return new LoopStrengthReduce();
 | 
						|
}
 | 
						|
 | 
						|
LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
 | 
						|
  initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  // We split critical edges, so we change the CFG.  However, we do update
 | 
						|
  // many analyses if they are around.
 | 
						|
  AU.addPreservedID(LoopSimplifyID);
 | 
						|
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
  AU.addRequiredID(LoopSimplifyID);
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<ScalarEvolution>();
 | 
						|
  AU.addPreserved<ScalarEvolution>();
 | 
						|
  // Requiring LoopSimplify a second time here prevents IVUsers from running
 | 
						|
  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
 | 
						|
  AU.addRequiredID(LoopSimplifyID);
 | 
						|
  AU.addRequired<IVUsers>();
 | 
						|
  AU.addPreserved<IVUsers>();
 | 
						|
  AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
 | 
						|
  if (skipOptnoneFunction(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Run the main LSR transformation.
 | 
						|
  Changed |= LSRInstance(L, this).getChanged();
 | 
						|
 | 
						|
  // Remove any extra phis created by processing inner loops.
 | 
						|
  Changed |= DeleteDeadPHIs(L->getHeader());
 | 
						|
  if (EnablePhiElim && L->isLoopSimplifyForm()) {
 | 
						|
    SmallVector<WeakVH, 16> DeadInsts;
 | 
						|
    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | 
						|
    SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr");
 | 
						|
#ifndef NDEBUG
 | 
						|
    Rewriter.setDebugType(DEBUG_TYPE);
 | 
						|
#endif
 | 
						|
    unsigned numFolded = Rewriter.replaceCongruentIVs(
 | 
						|
        L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
 | 
						|
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | 
						|
            *L->getHeader()->getParent()));
 | 
						|
    if (numFolded) {
 | 
						|
      Changed = true;
 | 
						|
      DeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
      DeleteDeadPHIs(L->getHeader());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 |