mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	These are used by MachO only at the moment, and (much like the existing MOVW/MOVT set) work around the fact that the labels used in the actual instructions often contain PC-dependent components, which means that repeatedly materialising the same global can't be CSEed. With small modifications, it could be adapted to how ELF finds the address of _GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196090 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3523 lines
		
	
	
		
			133 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3523 lines
		
	
	
		
			133 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines an instruction selector for the ARM target.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "arm-isel"
 | 
						|
#include "ARM.h"
 | 
						|
#include "ARMBaseInstrInfo.h"
 | 
						|
#include "ARMTargetMachine.h"
 | 
						|
#include "MCTargetDesc/ARMAddressingModes.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
DisableShifterOp("disable-shifter-op", cl::Hidden,
 | 
						|
  cl::desc("Disable isel of shifter-op"),
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
 | 
						|
  cl::desc("Check fp vmla / vmls hazard at isel time"),
 | 
						|
  cl::init(true));
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
/// ARMDAGToDAGISel - ARM specific code to select ARM machine
 | 
						|
/// instructions for SelectionDAG operations.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
 | 
						|
enum AddrMode2Type {
 | 
						|
  AM2_BASE, // Simple AM2 (+-imm12)
 | 
						|
  AM2_SHOP  // Shifter-op AM2
 | 
						|
};
 | 
						|
 | 
						|
class ARMDAGToDAGISel : public SelectionDAGISel {
 | 
						|
  ARMBaseTargetMachine &TM;
 | 
						|
 | 
						|
  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
 | 
						|
  /// make the right decision when generating code for different targets.
 | 
						|
  const ARMSubtarget *Subtarget;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
 | 
						|
                           CodeGenOpt::Level OptLevel)
 | 
						|
    : SelectionDAGISel(tm, OptLevel), TM(tm),
 | 
						|
      Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
 | 
						|
  }
 | 
						|
 | 
						|
  virtual const char *getPassName() const {
 | 
						|
    return "ARM Instruction Selection";
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void PreprocessISelDAG();
 | 
						|
 | 
						|
  /// getI32Imm - Return a target constant of type i32 with the specified
 | 
						|
  /// value.
 | 
						|
  inline SDValue getI32Imm(unsigned Imm) {
 | 
						|
    return CurDAG->getTargetConstant(Imm, MVT::i32);
 | 
						|
  }
 | 
						|
 | 
						|
  SDNode *Select(SDNode *N);
 | 
						|
 | 
						|
 | 
						|
  bool hasNoVMLxHazardUse(SDNode *N) const;
 | 
						|
  bool isShifterOpProfitable(const SDValue &Shift,
 | 
						|
                             ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
 | 
						|
  bool SelectRegShifterOperand(SDValue N, SDValue &A,
 | 
						|
                               SDValue &B, SDValue &C,
 | 
						|
                               bool CheckProfitability = true);
 | 
						|
  bool SelectImmShifterOperand(SDValue N, SDValue &A,
 | 
						|
                               SDValue &B, bool CheckProfitability = true);
 | 
						|
  bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
 | 
						|
                                    SDValue &B, SDValue &C) {
 | 
						|
    // Don't apply the profitability check
 | 
						|
    return SelectRegShifterOperand(N, A, B, C, false);
 | 
						|
  }
 | 
						|
  bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
 | 
						|
                                    SDValue &B) {
 | 
						|
    // Don't apply the profitability check
 | 
						|
    return SelectImmShifterOperand(N, A, B, false);
 | 
						|
  }
 | 
						|
 | 
						|
  bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
  bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
 | 
						|
 | 
						|
  AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
 | 
						|
                                      SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
 | 
						|
                           SDValue &Opc) {
 | 
						|
    return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
 | 
						|
  }
 | 
						|
 | 
						|
  bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
 | 
						|
                           SDValue &Opc) {
 | 
						|
    return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
 | 
						|
  }
 | 
						|
 | 
						|
  bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
 | 
						|
                       SDValue &Opc) {
 | 
						|
    SelectAddrMode2Worker(N, Base, Offset, Opc);
 | 
						|
//    return SelectAddrMode2ShOp(N, Base, Offset, Opc);
 | 
						|
    // This always matches one way or another.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
 | 
						|
    const ConstantSDNode *CN = cast<ConstantSDNode>(N);
 | 
						|
    Pred = CurDAG->getTargetConstant(CN->getZExtValue(), MVT::i32);
 | 
						|
    Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
 | 
						|
                             SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
 | 
						|
                             SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
 | 
						|
                             SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
 | 
						|
  bool SelectAddrMode3(SDValue N, SDValue &Base,
 | 
						|
                       SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
 | 
						|
                             SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrMode5(SDValue N, SDValue &Base,
 | 
						|
                       SDValue &Offset);
 | 
						|
  bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
 | 
						|
  bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
 | 
						|
 | 
						|
  bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
 | 
						|
 | 
						|
  // Thumb Addressing Modes:
 | 
						|
  bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
 | 
						|
  bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
 | 
						|
                             unsigned Scale);
 | 
						|
  bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
 | 
						|
  bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
 | 
						|
  bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
 | 
						|
  bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
 | 
						|
                                SDValue &OffImm);
 | 
						|
  bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
 | 
						|
                                 SDValue &OffImm);
 | 
						|
  bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
 | 
						|
                                 SDValue &OffImm);
 | 
						|
  bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
 | 
						|
                                 SDValue &OffImm);
 | 
						|
  bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
 | 
						|
  // Thumb 2 Addressing Modes:
 | 
						|
  bool SelectT2ShifterOperandReg(SDValue N,
 | 
						|
                                 SDValue &BaseReg, SDValue &Opc);
 | 
						|
  bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
  bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
 | 
						|
                            SDValue &OffImm);
 | 
						|
  bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
 | 
						|
                                 SDValue &OffImm);
 | 
						|
  bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
 | 
						|
                             SDValue &OffReg, SDValue &ShImm);
 | 
						|
  bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
 | 
						|
  inline bool is_so_imm(unsigned Imm) const {
 | 
						|
    return ARM_AM::getSOImmVal(Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool is_so_imm_not(unsigned Imm) const {
 | 
						|
    return ARM_AM::getSOImmVal(~Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool is_t2_so_imm(unsigned Imm) const {
 | 
						|
    return ARM_AM::getT2SOImmVal(Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool is_t2_so_imm_not(unsigned Imm) const {
 | 
						|
    return ARM_AM::getT2SOImmVal(~Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Include the pieces autogenerated from the target description.
 | 
						|
#include "ARMGenDAGISel.inc"
 | 
						|
 | 
						|
private:
 | 
						|
  /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
 | 
						|
  /// ARM.
 | 
						|
  SDNode *SelectARMIndexedLoad(SDNode *N);
 | 
						|
  SDNode *SelectT2IndexedLoad(SDNode *N);
 | 
						|
 | 
						|
  /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
 | 
						|
  /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
 | 
						|
  /// loads of D registers and even subregs and odd subregs of Q registers.
 | 
						|
  /// For NumVecs <= 2, QOpcodes1 is not used.
 | 
						|
  SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                    const uint16_t *DOpcodes,
 | 
						|
                    const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
 | 
						|
 | 
						|
  /// SelectVST - Select NEON store intrinsics.  NumVecs should
 | 
						|
  /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
 | 
						|
  /// stores of D registers and even subregs and odd subregs of Q registers.
 | 
						|
  /// For NumVecs <= 2, QOpcodes1 is not used.
 | 
						|
  SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                    const uint16_t *DOpcodes,
 | 
						|
                    const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
 | 
						|
 | 
						|
  /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
 | 
						|
  /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
 | 
						|
  /// load/store of D registers and Q registers.
 | 
						|
  SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
 | 
						|
                          bool isUpdating, unsigned NumVecs,
 | 
						|
                          const uint16_t *DOpcodes, const uint16_t *QOpcodes);
 | 
						|
 | 
						|
  /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
 | 
						|
  /// should be 2, 3 or 4.  The opcode array specifies the instructions used
 | 
						|
  /// for loading D registers.  (Q registers are not supported.)
 | 
						|
  SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                       const uint16_t *Opcodes);
 | 
						|
 | 
						|
  /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
 | 
						|
  /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
 | 
						|
  /// generated to force the table registers to be consecutive.
 | 
						|
  SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
 | 
						|
 | 
						|
  /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
 | 
						|
  SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
 | 
						|
 | 
						|
  // Select special operations if node forms integer ABS pattern
 | 
						|
  SDNode *SelectABSOp(SDNode *N);
 | 
						|
 | 
						|
  SDNode *SelectInlineAsm(SDNode *N);
 | 
						|
 | 
						|
  SDNode *SelectConcatVector(SDNode *N);
 | 
						|
 | 
						|
  SDNode *SelectAtomic(SDNode *N, unsigned Op8, unsigned Op16, unsigned Op32, unsigned Op64);
 | 
						|
 | 
						|
  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | 
						|
  /// inline asm expressions.
 | 
						|
  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | 
						|
                                            char ConstraintCode,
 | 
						|
                                            std::vector<SDValue> &OutOps);
 | 
						|
 | 
						|
  // Form pairs of consecutive R, S, D, or Q registers.
 | 
						|
  SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
 | 
						|
  SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | 
						|
  SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | 
						|
  SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | 
						|
 | 
						|
  // Form sequences of 4 consecutive S, D, or Q registers.
 | 
						|
  SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | 
						|
  SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | 
						|
  SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | 
						|
 | 
						|
  // Get the alignment operand for a NEON VLD or VST instruction.
 | 
						|
  SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | 
						|
/// operand. If so Imm will receive the 32-bit value.
 | 
						|
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isInt32Immediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
 | 
						|
  return isInt32Immediate(N.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
 | 
						|
// opcode and that it has a immediate integer right operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | 
						|
  return N->getOpcode() == Opc &&
 | 
						|
         isInt32Immediate(N->getOperand(1).getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a particular node is a constant value representable as
 | 
						|
/// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
 | 
						|
///
 | 
						|
/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
 | 
						|
static bool isScaledConstantInRange(SDValue Node, int Scale,
 | 
						|
                                    int RangeMin, int RangeMax,
 | 
						|
                                    int &ScaledConstant) {
 | 
						|
  assert(Scale > 0 && "Invalid scale!");
 | 
						|
 | 
						|
  // Check that this is a constant.
 | 
						|
  const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
 | 
						|
  if (!C)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ScaledConstant = (int) C->getZExtValue();
 | 
						|
  if ((ScaledConstant % Scale) != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ScaledConstant /= Scale;
 | 
						|
  return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::PreprocessISelDAG() {
 | 
						|
  if (!Subtarget->hasV6T2Ops())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool isThumb2 = Subtarget->isThumb();
 | 
						|
  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | 
						|
       E = CurDAG->allnodes_end(); I != E; ) {
 | 
						|
    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
 | 
						|
 | 
						|
    if (N->getOpcode() != ISD::ADD)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
 | 
						|
    // leading zeros, followed by consecutive set bits, followed by 1 or 2
 | 
						|
    // trailing zeros, e.g. 1020.
 | 
						|
    // Transform the expression to
 | 
						|
    // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
 | 
						|
    // of trailing zeros of c2. The left shift would be folded as an shifter
 | 
						|
    // operand of 'add' and the 'and' and 'srl' would become a bits extraction
 | 
						|
    // node (UBFX).
 | 
						|
 | 
						|
    SDValue N0 = N->getOperand(0);
 | 
						|
    SDValue N1 = N->getOperand(1);
 | 
						|
    unsigned And_imm = 0;
 | 
						|
    if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
 | 
						|
      if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
 | 
						|
        std::swap(N0, N1);
 | 
						|
    }
 | 
						|
    if (!And_imm)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if the AND mask is an immediate of the form: 000.....1111111100
 | 
						|
    unsigned TZ = countTrailingZeros(And_imm);
 | 
						|
    if (TZ != 1 && TZ != 2)
 | 
						|
      // Be conservative here. Shifter operands aren't always free. e.g. On
 | 
						|
      // Swift, left shifter operand of 1 / 2 for free but others are not.
 | 
						|
      // e.g.
 | 
						|
      //  ubfx   r3, r1, #16, #8
 | 
						|
      //  ldr.w  r3, [r0, r3, lsl #2]
 | 
						|
      // vs.
 | 
						|
      //  mov.w  r9, #1020
 | 
						|
      //  and.w  r2, r9, r1, lsr #14
 | 
						|
      //  ldr    r2, [r0, r2]
 | 
						|
      continue;
 | 
						|
    And_imm >>= TZ;
 | 
						|
    if (And_imm & (And_imm + 1))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Look for (and (srl X, c1), c2).
 | 
						|
    SDValue Srl = N1.getOperand(0);
 | 
						|
    unsigned Srl_imm = 0;
 | 
						|
    if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
 | 
						|
        (Srl_imm <= 2))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure first operand is not a shifter operand which would prevent
 | 
						|
    // folding of the left shift.
 | 
						|
    SDValue CPTmp0;
 | 
						|
    SDValue CPTmp1;
 | 
						|
    SDValue CPTmp2;
 | 
						|
    if (isThumb2) {
 | 
						|
      if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1))
 | 
						|
        continue;
 | 
						|
    } else {
 | 
						|
      if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
 | 
						|
          SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now make the transformation.
 | 
						|
    Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
 | 
						|
                          Srl.getOperand(0),
 | 
						|
                          CurDAG->getConstant(Srl_imm+TZ, MVT::i32));
 | 
						|
    N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
 | 
						|
                         Srl, CurDAG->getConstant(And_imm, MVT::i32));
 | 
						|
    N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
 | 
						|
                         N1, CurDAG->getConstant(TZ, MVT::i32));
 | 
						|
    CurDAG->UpdateNodeOperands(N, N0, N1);
 | 
						|
  }  
 | 
						|
}
 | 
						|
 | 
						|
/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
 | 
						|
/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
 | 
						|
/// least on current ARM implementations) which should be avoidded.
 | 
						|
bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
 | 
						|
  if (OptLevel == CodeGenOpt::None)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!CheckVMLxHazard)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9() &&
 | 
						|
      !Subtarget->isSwift())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!N->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDNode *Use = *N->use_begin();
 | 
						|
  if (Use->getOpcode() == ISD::CopyToReg)
 | 
						|
    return true;
 | 
						|
  if (Use->isMachineOpcode()) {
 | 
						|
    const ARMBaseInstrInfo *TII =
 | 
						|
      static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
 | 
						|
 | 
						|
    const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
 | 
						|
    if (MCID.mayStore())
 | 
						|
      return true;
 | 
						|
    unsigned Opcode = MCID.getOpcode();
 | 
						|
    if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
 | 
						|
      return true;
 | 
						|
    // vmlx feeding into another vmlx. We actually want to unfold
 | 
						|
    // the use later in the MLxExpansion pass. e.g.
 | 
						|
    // vmla
 | 
						|
    // vmla (stall 8 cycles)
 | 
						|
    //
 | 
						|
    // vmul (5 cycles)
 | 
						|
    // vadd (5 cycles)
 | 
						|
    // vmla
 | 
						|
    // This adds up to about 18 - 19 cycles.
 | 
						|
    //
 | 
						|
    // vmla
 | 
						|
    // vmul (stall 4 cycles)
 | 
						|
    // vadd adds up to about 14 cycles.
 | 
						|
    return TII->isFpMLxInstruction(Opcode);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
 | 
						|
                                            ARM_AM::ShiftOpc ShOpcVal,
 | 
						|
                                            unsigned ShAmt) {
 | 
						|
  if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
 | 
						|
    return true;
 | 
						|
  if (Shift.hasOneUse())
 | 
						|
    return true;
 | 
						|
  // R << 2 is free.
 | 
						|
  return ShOpcVal == ARM_AM::lsl &&
 | 
						|
         (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
 | 
						|
                                              SDValue &BaseReg,
 | 
						|
                                              SDValue &Opc,
 | 
						|
                                              bool CheckProfitability) {
 | 
						|
  if (DisableShifterOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | 
						|
 | 
						|
  // Don't match base register only case. That is matched to a separate
 | 
						|
  // lower complexity pattern with explicit register operand.
 | 
						|
  if (ShOpcVal == ARM_AM::no_shift) return false;
 | 
						|
 | 
						|
  BaseReg = N.getOperand(0);
 | 
						|
  unsigned ShImmVal = 0;
 | 
						|
  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
  if (!RHS) return false;
 | 
						|
  ShImmVal = RHS->getZExtValue() & 31;
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
 | 
						|
                                  MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
 | 
						|
                                              SDValue &BaseReg,
 | 
						|
                                              SDValue &ShReg,
 | 
						|
                                              SDValue &Opc,
 | 
						|
                                              bool CheckProfitability) {
 | 
						|
  if (DisableShifterOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | 
						|
 | 
						|
  // Don't match base register only case. That is matched to a separate
 | 
						|
  // lower complexity pattern with explicit register operand.
 | 
						|
  if (ShOpcVal == ARM_AM::no_shift) return false;
 | 
						|
 | 
						|
  BaseReg = N.getOperand(0);
 | 
						|
  unsigned ShImmVal = 0;
 | 
						|
  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
  if (RHS) return false;
 | 
						|
 | 
						|
  ShReg = N.getOperand(1);
 | 
						|
  if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
 | 
						|
    return false;
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
 | 
						|
                                  MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
 | 
						|
                                          SDValue &Base,
 | 
						|
                                          SDValue &OffImm) {
 | 
						|
  // Match simple R + imm12 operands.
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      // Match frame index.
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                         getTargetLowering()->getPointerTy());
 | 
						|
      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    } else
 | 
						|
      Base = N;
 | 
						|
    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    int RHSC = (int)RHS->getZExtValue();
 | 
						|
    if (N.getOpcode() == ISD::SUB)
 | 
						|
      RHSC = -RHSC;
 | 
						|
 | 
						|
    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
 | 
						|
      Base   = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                           getTargetLowering()->getPointerTy());
 | 
						|
      }
 | 
						|
      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  Base = N;
 | 
						|
  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
 | 
						|
                                      SDValue &Opc) {
 | 
						|
  if (N.getOpcode() == ISD::MUL &&
 | 
						|
      ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
 | 
						|
    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      // X * [3,5,9] -> X + X * [2,4,8] etc.
 | 
						|
      int RHSC = (int)RHS->getZExtValue();
 | 
						|
      if (RHSC & 1) {
 | 
						|
        RHSC = RHSC & ~1;
 | 
						|
        ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | 
						|
        if (RHSC < 0) {
 | 
						|
          AddSub = ARM_AM::sub;
 | 
						|
          RHSC = - RHSC;
 | 
						|
        }
 | 
						|
        if (isPowerOf2_32(RHSC)) {
 | 
						|
          unsigned ShAmt = Log2_32(RHSC);
 | 
						|
          Base = Offset = N.getOperand(0);
 | 
						|
          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
 | 
						|
                                                            ARM_AM::lsl),
 | 
						|
                                          MVT::i32);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      // ISD::OR that is equivalent to an ISD::ADD.
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Leave simple R +/- imm12 operands for LDRi12
 | 
						|
  if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
 | 
						|
    int RHSC;
 | 
						|
    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
 | 
						|
                                -0x1000+1, 0x1000, RHSC)) // 12 bits.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise this is R +/- [possibly shifted] R.
 | 
						|
  ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal =
 | 
						|
    ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
 | 
						|
  unsigned ShAmt = 0;
 | 
						|
 | 
						|
  Base   = N.getOperand(0);
 | 
						|
  Offset = N.getOperand(1);
 | 
						|
 | 
						|
  if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
    // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | 
						|
    // it.
 | 
						|
    if (ConstantSDNode *Sh =
 | 
						|
           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
 | 
						|
      ShAmt = Sh->getZExtValue();
 | 
						|
      if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
 | 
						|
        Offset = N.getOperand(1).getOperand(0);
 | 
						|
      else {
 | 
						|
        ShAmt = 0;
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ShOpcVal = ARM_AM::no_shift;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try matching (R shl C) + (R).
 | 
						|
  if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
 | 
						|
      !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
 | 
						|
        N.getOperand(0).hasOneUse())) {
 | 
						|
    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
 | 
						|
    if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
      // Check to see if the RHS of the shift is a constant, if not, we can't
 | 
						|
      // fold it.
 | 
						|
      if (ConstantSDNode *Sh =
 | 
						|
          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
 | 
						|
        ShAmt = Sh->getZExtValue();
 | 
						|
        if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
 | 
						|
          Offset = N.getOperand(0).getOperand(0);
 | 
						|
          Base = N.getOperand(1);
 | 
						|
        } else {
 | 
						|
          ShAmt = 0;
 | 
						|
          ShOpcVal = ARM_AM::no_shift;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
 | 
						|
                                  MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//-----
 | 
						|
 | 
						|
AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
 | 
						|
                                                     SDValue &Base,
 | 
						|
                                                     SDValue &Offset,
 | 
						|
                                                     SDValue &Opc) {
 | 
						|
  if (N.getOpcode() == ISD::MUL &&
 | 
						|
      (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
 | 
						|
    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      // X * [3,5,9] -> X + X * [2,4,8] etc.
 | 
						|
      int RHSC = (int)RHS->getZExtValue();
 | 
						|
      if (RHSC & 1) {
 | 
						|
        RHSC = RHSC & ~1;
 | 
						|
        ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | 
						|
        if (RHSC < 0) {
 | 
						|
          AddSub = ARM_AM::sub;
 | 
						|
          RHSC = - RHSC;
 | 
						|
        }
 | 
						|
        if (isPowerOf2_32(RHSC)) {
 | 
						|
          unsigned ShAmt = Log2_32(RHSC);
 | 
						|
          Base = Offset = N.getOperand(0);
 | 
						|
          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
 | 
						|
                                                            ARM_AM::lsl),
 | 
						|
                                          MVT::i32);
 | 
						|
          return AM2_SHOP;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      // ISD::OR that is equivalent to an ADD.
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    Base = N;
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                         getTargetLowering()->getPointerTy());
 | 
						|
    } else if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
               N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    }
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
 | 
						|
                                                      ARM_AM::no_shift),
 | 
						|
                                    MVT::i32);
 | 
						|
    return AM2_BASE;
 | 
						|
  }
 | 
						|
 | 
						|
  // Match simple R +/- imm12 operands.
 | 
						|
  if (N.getOpcode() != ISD::SUB) {
 | 
						|
    int RHSC;
 | 
						|
    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
 | 
						|
                                -0x1000+1, 0x1000, RHSC)) { // 12 bits.
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                           getTargetLowering()->getPointerTy());
 | 
						|
      }
 | 
						|
      Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
 | 
						|
      ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | 
						|
      if (RHSC < 0) {
 | 
						|
        AddSub = ARM_AM::sub;
 | 
						|
        RHSC = - RHSC;
 | 
						|
      }
 | 
						|
      Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
 | 
						|
                                                        ARM_AM::no_shift),
 | 
						|
                                      MVT::i32);
 | 
						|
      return AM2_BASE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
 | 
						|
    // Compute R +/- (R << N) and reuse it.
 | 
						|
    Base = N;
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
 | 
						|
                                                      ARM_AM::no_shift),
 | 
						|
                                    MVT::i32);
 | 
						|
    return AM2_BASE;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise this is R +/- [possibly shifted] R.
 | 
						|
  ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal =
 | 
						|
    ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
 | 
						|
  unsigned ShAmt = 0;
 | 
						|
 | 
						|
  Base   = N.getOperand(0);
 | 
						|
  Offset = N.getOperand(1);
 | 
						|
 | 
						|
  if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
    // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | 
						|
    // it.
 | 
						|
    if (ConstantSDNode *Sh =
 | 
						|
           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
 | 
						|
      ShAmt = Sh->getZExtValue();
 | 
						|
      if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
 | 
						|
        Offset = N.getOperand(1).getOperand(0);
 | 
						|
      else {
 | 
						|
        ShAmt = 0;
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ShOpcVal = ARM_AM::no_shift;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try matching (R shl C) + (R).
 | 
						|
  if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
 | 
						|
      !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
 | 
						|
        N.getOperand(0).hasOneUse())) {
 | 
						|
    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
 | 
						|
    if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
      // Check to see if the RHS of the shift is a constant, if not, we can't
 | 
						|
      // fold it.
 | 
						|
      if (ConstantSDNode *Sh =
 | 
						|
          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
 | 
						|
        ShAmt = Sh->getZExtValue();
 | 
						|
        if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
 | 
						|
          Offset = N.getOperand(0).getOperand(0);
 | 
						|
          Base = N.getOperand(1);
 | 
						|
        } else {
 | 
						|
          ShAmt = 0;
 | 
						|
          ShOpcVal = ARM_AM::no_shift;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
 | 
						|
                                  MVT::i32);
 | 
						|
  return AM2_SHOP;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset, SDValue &Opc) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | 
						|
    ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Offset = N;
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | 
						|
  unsigned ShAmt = 0;
 | 
						|
  if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
    // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | 
						|
    // it.
 | 
						|
    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      ShAmt = Sh->getZExtValue();
 | 
						|
      if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
 | 
						|
        Offset = N.getOperand(0);
 | 
						|
      else {
 | 
						|
        ShAmt = 0;
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ShOpcVal = ARM_AM::no_shift;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
 | 
						|
                                  MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset, SDValue &Opc) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | 
						|
    ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
 | 
						|
    if (AddSub == ARM_AM::sub) Val *= -1;
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(Val, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset, SDValue &Opc) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | 
						|
    ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
 | 
						|
                                                      ARM_AM::no_shift),
 | 
						|
                                    MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
 | 
						|
  Base = N;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
 | 
						|
                                      SDValue &Base, SDValue &Offset,
 | 
						|
                                      SDValue &Opc) {
 | 
						|
  if (N.getOpcode() == ISD::SUB) {
 | 
						|
    // X - C  is canonicalize to X + -C, no need to handle it here.
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Offset = N.getOperand(1);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    Base = N;
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                         getTargetLowering()->getPointerTy());
 | 
						|
    }
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the RHS is +/- imm8, fold into addr mode.
 | 
						|
  int RHSC;
 | 
						|
  if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
 | 
						|
                              -256 + 1, 256, RHSC)) { // 8 bits.
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                         getTargetLowering()->getPointerTy());
 | 
						|
    }
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
 | 
						|
    ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | 
						|
    if (RHSC < 0) {
 | 
						|
      AddSub = ARM_AM::sub;
 | 
						|
      RHSC = -RHSC;
 | 
						|
    }
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Base = N.getOperand(0);
 | 
						|
  Offset = N.getOperand(1);
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset, SDValue &Opc) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | 
						|
    ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Offset = N;
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
 | 
						|
                                      SDValue &Base, SDValue &Offset) {
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    Base = N;
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                         getTargetLowering()->getPointerTy());
 | 
						|
    } else if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
               N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    }
 | 
						|
    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
 | 
						|
                                       MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the RHS is +/- imm8, fold into addr mode.
 | 
						|
  int RHSC;
 | 
						|
  if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
 | 
						|
                              -256 + 1, 256, RHSC)) {
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                         getTargetLowering()->getPointerTy());
 | 
						|
    }
 | 
						|
 | 
						|
    ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | 
						|
    if (RHSC < 0) {
 | 
						|
      AddSub = ARM_AM::sub;
 | 
						|
      RHSC = -RHSC;
 | 
						|
    }
 | 
						|
    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
 | 
						|
                                       MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Base = N;
 | 
						|
  Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
 | 
						|
                                     MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
 | 
						|
                                      SDValue &Align) {
 | 
						|
  Addr = N;
 | 
						|
 | 
						|
  unsigned Alignment = 0;
 | 
						|
  if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
 | 
						|
    // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
 | 
						|
    // The maximum alignment is equal to the memory size being referenced.
 | 
						|
    unsigned LSNAlign = LSN->getAlignment();
 | 
						|
    unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
 | 
						|
    if (LSNAlign >= MemSize && MemSize > 1)
 | 
						|
      Alignment = MemSize;
 | 
						|
  } else {
 | 
						|
    // All other uses of addrmode6 are for intrinsics.  For now just record
 | 
						|
    // the raw alignment value; it will be refined later based on the legal
 | 
						|
    // alignment operands for the intrinsic.
 | 
						|
    Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
 | 
						|
  }
 | 
						|
 | 
						|
  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset) {
 | 
						|
  LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
 | 
						|
  ISD::MemIndexedMode AM = LdSt->getAddressingMode();
 | 
						|
  if (AM != ISD::POST_INC)
 | 
						|
    return false;
 | 
						|
  Offset = N;
 | 
						|
  if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
 | 
						|
      Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
 | 
						|
                                       SDValue &Offset, SDValue &Label) {
 | 
						|
  if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
 | 
						|
    Offset = N.getOperand(0);
 | 
						|
    SDValue N1 = N.getOperand(1);
 | 
						|
    Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
 | 
						|
                                      MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Thumb Addressing Modes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
 | 
						|
                                            SDValue &Base, SDValue &Offset){
 | 
						|
  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
 | 
						|
    if (!NC || !NC->isNullValue())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Base = Offset = N;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Base = N.getOperand(0);
 | 
						|
  Offset = N.getOperand(1);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
 | 
						|
                                       SDValue &Offset, unsigned Scale) {
 | 
						|
  if (Scale == 4) {
 | 
						|
    SDValue TmpBase, TmpOffImm;
 | 
						|
    if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
 | 
						|
      return false;  // We want to select tLDRspi / tSTRspi instead.
 | 
						|
 | 
						|
    if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
 | 
						|
      return false;  // We want to select tLDRpci instead.
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Thumb does not have [sp, r] address mode.
 | 
						|
  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
 | 
						|
  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
 | 
						|
  if ((LHSR && LHSR->getReg() == ARM::SP) ||
 | 
						|
      (RHSR && RHSR->getReg() == ARM::SP))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Why do we explicitly check for a match here and then return false?
 | 
						|
  // Presumably to allow something else to match, but shouldn't this be
 | 
						|
  // documented?
 | 
						|
  int RHSC;
 | 
						|
  if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Base = N.getOperand(0);
 | 
						|
  Offset = N.getOperand(1);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
 | 
						|
                                          SDValue &Base,
 | 
						|
                                          SDValue &Offset) {
 | 
						|
  return SelectThumbAddrModeRI(N, Base, Offset, 1);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
 | 
						|
                                          SDValue &Base,
 | 
						|
                                          SDValue &Offset) {
 | 
						|
  return SelectThumbAddrModeRI(N, Base, Offset, 2);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
 | 
						|
                                          SDValue &Base,
 | 
						|
                                          SDValue &Offset) {
 | 
						|
  return SelectThumbAddrModeRI(N, Base, Offset, 4);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
 | 
						|
                                          SDValue &Base, SDValue &OffImm) {
 | 
						|
  if (Scale == 4) {
 | 
						|
    SDValue TmpBase, TmpOffImm;
 | 
						|
    if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
 | 
						|
      return false;  // We want to select tLDRspi / tSTRspi instead.
 | 
						|
 | 
						|
    if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
 | 
						|
      return false;  // We want to select tLDRpci instead.
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    } else {
 | 
						|
      Base = N;
 | 
						|
    }
 | 
						|
 | 
						|
    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
 | 
						|
  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
 | 
						|
  if ((LHSR && LHSR->getReg() == ARM::SP) ||
 | 
						|
      (RHSR && RHSR->getReg() == ARM::SP)) {
 | 
						|
    ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
 | 
						|
    ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
    unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
 | 
						|
    unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
 | 
						|
 | 
						|
    // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
 | 
						|
    if (LHSC != 0 || RHSC != 0) return false;
 | 
						|
 | 
						|
    Base = N;
 | 
						|
    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the RHS is + imm5 * scale, fold into addr mode.
 | 
						|
  int RHSC;
 | 
						|
  if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Base = N.getOperand(0);
 | 
						|
  OffImm = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
 | 
						|
                                           SDValue &OffImm) {
 | 
						|
  return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
 | 
						|
                                           SDValue &OffImm) {
 | 
						|
  return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
 | 
						|
                                           SDValue &OffImm) {
 | 
						|
  return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
 | 
						|
                                            SDValue &Base, SDValue &OffImm) {
 | 
						|
  if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                       getTargetLowering()->getPointerTy());
 | 
						|
    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
 | 
						|
  if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
 | 
						|
      (LHSR && LHSR->getReg() == ARM::SP)) {
 | 
						|
    // If the RHS is + imm8 * scale, fold into addr mode.
 | 
						|
    int RHSC;
 | 
						|
    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                           getTargetLowering()->getPointerTy());
 | 
						|
      }
 | 
						|
      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Thumb 2 Addressing Modes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
 | 
						|
                                                SDValue &Opc) {
 | 
						|
  if (DisableShifterOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | 
						|
 | 
						|
  // Don't match base register only case. That is matched to a separate
 | 
						|
  // lower complexity pattern with explicit register operand.
 | 
						|
  if (ShOpcVal == ARM_AM::no_shift) return false;
 | 
						|
 | 
						|
  BaseReg = N.getOperand(0);
 | 
						|
  unsigned ShImmVal = 0;
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    ShImmVal = RHS->getZExtValue() & 31;
 | 
						|
    Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
 | 
						|
                                            SDValue &Base, SDValue &OffImm) {
 | 
						|
  // Match simple R + imm12 operands.
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      // Match frame index.
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                         getTargetLowering()->getPointerTy());
 | 
						|
      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::TargetConstantPool)
 | 
						|
        return false;  // We want to select t2LDRpci instead.
 | 
						|
    } else
 | 
						|
      Base = N;
 | 
						|
    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    if (SelectT2AddrModeImm8(N, Base, OffImm))
 | 
						|
      // Let t2LDRi8 handle (R - imm8).
 | 
						|
      return false;
 | 
						|
 | 
						|
    int RHSC = (int)RHS->getZExtValue();
 | 
						|
    if (N.getOpcode() == ISD::SUB)
 | 
						|
      RHSC = -RHSC;
 | 
						|
 | 
						|
    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
 | 
						|
      Base   = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                           getTargetLowering()->getPointerTy());
 | 
						|
      }
 | 
						|
      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  Base = N;
 | 
						|
  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
 | 
						|
                                           SDValue &Base, SDValue &OffImm) {
 | 
						|
  // Match simple R - imm8 operands.
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    int RHSC = (int)RHS->getSExtValue();
 | 
						|
    if (N.getOpcode() == ISD::SUB)
 | 
						|
      RHSC = -RHSC;
 | 
						|
 | 
						|
    if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                           getTargetLowering()->getPointerTy());
 | 
						|
      }
 | 
						|
      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
 | 
						|
                                                 SDValue &OffImm){
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  int RHSC;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
 | 
						|
    OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
 | 
						|
      ? CurDAG->getTargetConstant(RHSC, MVT::i32)
 | 
						|
      : CurDAG->getTargetConstant(-RHSC, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
 | 
						|
                                            SDValue &Base,
 | 
						|
                                            SDValue &OffReg, SDValue &ShImm) {
 | 
						|
  // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
 | 
						|
  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    int RHSC = (int)RHS->getZExtValue();
 | 
						|
    if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
 | 
						|
      return false;
 | 
						|
    else if (RHSC < 0 && RHSC >= -255) // 8 bits
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for (R + R) or (R + (R << [1,2,3])).
 | 
						|
  unsigned ShAmt = 0;
 | 
						|
  Base   = N.getOperand(0);
 | 
						|
  OffReg = N.getOperand(1);
 | 
						|
 | 
						|
  // Swap if it is ((R << c) + R).
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
 | 
						|
  if (ShOpcVal != ARM_AM::lsl) {
 | 
						|
    ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
 | 
						|
    if (ShOpcVal == ARM_AM::lsl)
 | 
						|
      std::swap(Base, OffReg);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShOpcVal == ARM_AM::lsl) {
 | 
						|
    // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | 
						|
    // it.
 | 
						|
    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
 | 
						|
      ShAmt = Sh->getZExtValue();
 | 
						|
      if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
 | 
						|
        OffReg = OffReg.getOperand(0);
 | 
						|
      else {
 | 
						|
        ShAmt = 0;
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ShOpcVal = ARM_AM::no_shift;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
 | 
						|
                                                SDValue &OffImm) {
 | 
						|
  // This *must* succeed since it's used for the irreplacable ldrex and strex
 | 
						|
  // instructions.
 | 
						|
  Base = N;
 | 
						|
  OffImm = CurDAG->getTargetConstant(0, MVT::i32);
 | 
						|
 | 
						|
  if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
  if (!RHS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  uint32_t RHSC = (int)RHS->getZExtValue();
 | 
						|
  if (RHSC > 1020 || RHSC % 4 != 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  Base = N.getOperand(0);
 | 
						|
  if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
    int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
    Base = CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy());
 | 
						|
  }
 | 
						|
 | 
						|
  OffImm = CurDAG->getTargetConstant(RHSC / 4, MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getAL - Returns a ARMCC::AL immediate node.
 | 
						|
static inline SDValue getAL(SelectionDAG *CurDAG) {
 | 
						|
  return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
  ISD::MemIndexedMode AM = LD->getAddressingMode();
 | 
						|
  if (AM == ISD::UNINDEXED)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  EVT LoadedVT = LD->getMemoryVT();
 | 
						|
  SDValue Offset, AMOpc;
 | 
						|
  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  bool Match = false;
 | 
						|
  if (LoadedVT == MVT::i32 && isPre &&
 | 
						|
      SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
    Opcode = ARM::LDR_PRE_IMM;
 | 
						|
    Match = true;
 | 
						|
  } else if (LoadedVT == MVT::i32 && !isPre &&
 | 
						|
      SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
    Opcode = ARM::LDR_POST_IMM;
 | 
						|
    Match = true;
 | 
						|
  } else if (LoadedVT == MVT::i32 &&
 | 
						|
      SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
    Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
 | 
						|
    Match = true;
 | 
						|
 | 
						|
  } else if (LoadedVT == MVT::i16 &&
 | 
						|
             SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
    Match = true;
 | 
						|
    Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
 | 
						|
      ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
 | 
						|
      : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
 | 
						|
  } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
 | 
						|
    if (LD->getExtensionType() == ISD::SEXTLOAD) {
 | 
						|
      if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
        Match = true;
 | 
						|
        Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (isPre &&
 | 
						|
          SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
        Match = true;
 | 
						|
        Opcode = ARM::LDRB_PRE_IMM;
 | 
						|
      } else if (!isPre &&
 | 
						|
                  SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
        Match = true;
 | 
						|
        Opcode = ARM::LDRB_POST_IMM;
 | 
						|
      } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
        Match = true;
 | 
						|
        Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Match) {
 | 
						|
    if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Base = LD->getBasePtr();
 | 
						|
      SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
 | 
						|
                       CurDAG->getRegister(0, MVT::i32), Chain };
 | 
						|
      return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
 | 
						|
                                    MVT::i32, MVT::Other, Ops);
 | 
						|
    } else {
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Base = LD->getBasePtr();
 | 
						|
      SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
 | 
						|
                       CurDAG->getRegister(0, MVT::i32), Chain };
 | 
						|
      return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
 | 
						|
                                    MVT::i32, MVT::Other, Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
  ISD::MemIndexedMode AM = LD->getAddressingMode();
 | 
						|
  if (AM == ISD::UNINDEXED)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  EVT LoadedVT = LD->getMemoryVT();
 | 
						|
  bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
  SDValue Offset;
 | 
						|
  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  bool Match = false;
 | 
						|
  if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
 | 
						|
    switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
    case MVT::i32:
 | 
						|
      Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      if (isSExtLd)
 | 
						|
        Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
 | 
						|
      else
 | 
						|
        Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
 | 
						|
      break;
 | 
						|
    case MVT::i8:
 | 
						|
    case MVT::i1:
 | 
						|
      if (isSExtLd)
 | 
						|
        Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
 | 
						|
      else
 | 
						|
        Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
    Match = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Match) {
 | 
						|
    SDValue Chain = LD->getChain();
 | 
						|
    SDValue Base = LD->getBasePtr();
 | 
						|
    SDValue Ops[]= { Base, Offset, getAL(CurDAG),
 | 
						|
                     CurDAG->getRegister(0, MVT::i32), Chain };
 | 
						|
    return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
 | 
						|
                                  MVT::Other, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form a GPRPair pseudo register from a pair of GPR regs.
 | 
						|
SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass =
 | 
						|
    CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form a D register from a pair of S registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass =
 | 
						|
    CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form a quad register from a pair of D registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form 4 consecutive D registers from a pair of Q registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form 4 consecutive S registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
 | 
						|
                                   SDValue V2, SDValue V3) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass =
 | 
						|
    CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
 | 
						|
  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
 | 
						|
  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | 
						|
                                    V2, SubReg2, V3, SubReg3 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form 4 consecutive D registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
 | 
						|
                                   SDValue V2, SDValue V3) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
 | 
						|
  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
 | 
						|
  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | 
						|
                                    V2, SubReg2, V3, SubReg3 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form 4 consecutive Q registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
 | 
						|
                                   SDValue V2, SDValue V3) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
 | 
						|
  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
 | 
						|
  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | 
						|
                                    V2, SubReg2, V3, SubReg3 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
 | 
						|
/// of a NEON VLD or VST instruction.  The supported values depend on the
 | 
						|
/// number of registers being loaded.
 | 
						|
SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
 | 
						|
                                       bool is64BitVector) {
 | 
						|
  unsigned NumRegs = NumVecs;
 | 
						|
  if (!is64BitVector && NumVecs < 3)
 | 
						|
    NumRegs *= 2;
 | 
						|
 | 
						|
  unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | 
						|
  if (Alignment >= 32 && NumRegs == 4)
 | 
						|
    Alignment = 32;
 | 
						|
  else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
 | 
						|
    Alignment = 16;
 | 
						|
  else if (Alignment >= 8)
 | 
						|
    Alignment = 8;
 | 
						|
  else
 | 
						|
    Alignment = 0;
 | 
						|
 | 
						|
  return CurDAG->getTargetConstant(Alignment, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
// Get the register stride update opcode of a VLD/VST instruction that
 | 
						|
// is otherwise equivalent to the given fixed stride updating instruction.
 | 
						|
static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
 | 
						|
  switch (Opc) {
 | 
						|
  default: break;
 | 
						|
  case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
 | 
						|
  case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
 | 
						|
  case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
 | 
						|
  case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
 | 
						|
  case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
 | 
						|
  case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
 | 
						|
  case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
 | 
						|
  case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
 | 
						|
 | 
						|
  case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
 | 
						|
  case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
 | 
						|
  case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
 | 
						|
  case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
 | 
						|
  case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
 | 
						|
  case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
 | 
						|
  case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
 | 
						|
  case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
 | 
						|
  case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
 | 
						|
  case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
 | 
						|
 | 
						|
  case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
 | 
						|
  case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
 | 
						|
  case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
 | 
						|
  case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
 | 
						|
  case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
 | 
						|
  case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
 | 
						|
 | 
						|
  case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
 | 
						|
  case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
 | 
						|
  case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
 | 
						|
  case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
 | 
						|
  case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
 | 
						|
  case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
 | 
						|
 | 
						|
  case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
 | 
						|
  case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
 | 
						|
  case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
 | 
						|
  }
 | 
						|
  return Opc; // If not one we handle, return it unchanged.
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                                   const uint16_t *DOpcodes,
 | 
						|
                                   const uint16_t *QOpcodes0,
 | 
						|
                                   const uint16_t *QOpcodes1) {
 | 
						|
  assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue MemAddr, Align;
 | 
						|
  unsigned AddrOpIdx = isUpdating ? 1 : 2;
 | 
						|
  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  bool is64BitVector = VT.is64BitVector();
 | 
						|
  Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
 | 
						|
 | 
						|
  unsigned OpcodeIndex;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("unhandled vld type");
 | 
						|
    // Double-register operations:
 | 
						|
  case MVT::v8i8:  OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v2f32:
 | 
						|
  case MVT::v2i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v1i64: OpcodeIndex = 3; break;
 | 
						|
    // Quad-register operations:
 | 
						|
  case MVT::v16i8: OpcodeIndex = 0; break;
 | 
						|
  case MVT::v8i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v2i64: OpcodeIndex = 3;
 | 
						|
    assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  EVT ResTy;
 | 
						|
  if (NumVecs == 1)
 | 
						|
    ResTy = VT;
 | 
						|
  else {
 | 
						|
    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | 
						|
    if (!is64BitVector)
 | 
						|
      ResTyElts *= 2;
 | 
						|
    ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
 | 
						|
  }
 | 
						|
  std::vector<EVT> ResTys;
 | 
						|
  ResTys.push_back(ResTy);
 | 
						|
  if (isUpdating)
 | 
						|
    ResTys.push_back(MVT::i32);
 | 
						|
  ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDValue Pred = getAL(CurDAG);
 | 
						|
  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
  SDNode *VLd;
 | 
						|
  SmallVector<SDValue, 7> Ops;
 | 
						|
 | 
						|
  // Double registers and VLD1/VLD2 quad registers are directly supported.
 | 
						|
  if (is64BitVector || NumVecs <= 2) {
 | 
						|
    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | 
						|
                    QOpcodes0[OpcodeIndex]);
 | 
						|
    Ops.push_back(MemAddr);
 | 
						|
    Ops.push_back(Align);
 | 
						|
    if (isUpdating) {
 | 
						|
      SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
      // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
 | 
						|
      // case entirely when the rest are updated to that form, too.
 | 
						|
      if ((NumVecs == 1 || NumVecs == 2) && !isa<ConstantSDNode>(Inc.getNode()))
 | 
						|
        Opc = getVLDSTRegisterUpdateOpcode(Opc);
 | 
						|
      // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
 | 
						|
      // check for that explicitly too. Horribly hacky, but temporary.
 | 
						|
      if ((NumVecs != 1 && NumVecs != 2 && Opc != ARM::VLD1q64wb_fixed) ||
 | 
						|
          !isa<ConstantSDNode>(Inc.getNode()))
 | 
						|
        Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
 | 
						|
    }
 | 
						|
    Ops.push_back(Pred);
 | 
						|
    Ops.push_back(Reg0);
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Otherwise, quad registers are loaded with two separate instructions,
 | 
						|
    // where one loads the even registers and the other loads the odd registers.
 | 
						|
    EVT AddrTy = MemAddr.getValueType();
 | 
						|
 | 
						|
    // Load the even subregs.  This is always an updating load, so that it
 | 
						|
    // provides the address to the second load for the odd subregs.
 | 
						|
    SDValue ImplDef =
 | 
						|
      SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
 | 
						|
    const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
 | 
						|
    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
 | 
						|
                                          ResTy, AddrTy, MVT::Other, OpsA);
 | 
						|
    Chain = SDValue(VLdA, 2);
 | 
						|
 | 
						|
    // Load the odd subregs.
 | 
						|
    Ops.push_back(SDValue(VLdA, 1));
 | 
						|
    Ops.push_back(Align);
 | 
						|
    if (isUpdating) {
 | 
						|
      SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
      assert(isa<ConstantSDNode>(Inc.getNode()) &&
 | 
						|
             "only constant post-increment update allowed for VLD3/4");
 | 
						|
      (void)Inc;
 | 
						|
      Ops.push_back(Reg0);
 | 
						|
    }
 | 
						|
    Ops.push_back(SDValue(VLdA, 0));
 | 
						|
    Ops.push_back(Pred);
 | 
						|
    Ops.push_back(Reg0);
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transfer memoperands.
 | 
						|
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | 
						|
  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
  cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
 | 
						|
  if (NumVecs == 1)
 | 
						|
    return VLd;
 | 
						|
 | 
						|
  // Extract out the subregisters.
 | 
						|
  SDValue SuperReg = SDValue(VLd, 0);
 | 
						|
  assert(ARM::dsub_7 == ARM::dsub_0+7 &&
 | 
						|
         ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
 | 
						|
  unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
 | 
						|
  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
 | 
						|
    ReplaceUses(SDValue(N, Vec),
 | 
						|
                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
 | 
						|
  ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
 | 
						|
  if (isUpdating)
 | 
						|
    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                                   const uint16_t *DOpcodes,
 | 
						|
                                   const uint16_t *QOpcodes0,
 | 
						|
                                   const uint16_t *QOpcodes1) {
 | 
						|
  assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue MemAddr, Align;
 | 
						|
  unsigned AddrOpIdx = isUpdating ? 1 : 2;
 | 
						|
  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
 | 
						|
  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | 
						|
  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  EVT VT = N->getOperand(Vec0Idx).getValueType();
 | 
						|
  bool is64BitVector = VT.is64BitVector();
 | 
						|
  Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
 | 
						|
 | 
						|
  unsigned OpcodeIndex;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("unhandled vst type");
 | 
						|
    // Double-register operations:
 | 
						|
  case MVT::v8i8:  OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v2f32:
 | 
						|
  case MVT::v2i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v1i64: OpcodeIndex = 3; break;
 | 
						|
    // Quad-register operations:
 | 
						|
  case MVT::v16i8: OpcodeIndex = 0; break;
 | 
						|
  case MVT::v8i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v2i64: OpcodeIndex = 3;
 | 
						|
    assert(NumVecs == 1 && "v2i64 type only supported for VST1");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<EVT> ResTys;
 | 
						|
  if (isUpdating)
 | 
						|
    ResTys.push_back(MVT::i32);
 | 
						|
  ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDValue Pred = getAL(CurDAG);
 | 
						|
  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
  SmallVector<SDValue, 7> Ops;
 | 
						|
 | 
						|
  // Double registers and VST1/VST2 quad registers are directly supported.
 | 
						|
  if (is64BitVector || NumVecs <= 2) {
 | 
						|
    SDValue SrcReg;
 | 
						|
    if (NumVecs == 1) {
 | 
						|
      SrcReg = N->getOperand(Vec0Idx);
 | 
						|
    } else if (is64BitVector) {
 | 
						|
      // Form a REG_SEQUENCE to force register allocation.
 | 
						|
      SDValue V0 = N->getOperand(Vec0Idx + 0);
 | 
						|
      SDValue V1 = N->getOperand(Vec0Idx + 1);
 | 
						|
      if (NumVecs == 2)
 | 
						|
        SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
 | 
						|
      else {
 | 
						|
        SDValue V2 = N->getOperand(Vec0Idx + 2);
 | 
						|
        // If it's a vst3, form a quad D-register and leave the last part as
 | 
						|
        // an undef.
 | 
						|
        SDValue V3 = (NumVecs == 3)
 | 
						|
          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
 | 
						|
          : N->getOperand(Vec0Idx + 3);
 | 
						|
        SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Form a QQ register.
 | 
						|
      SDValue Q0 = N->getOperand(Vec0Idx);
 | 
						|
      SDValue Q1 = N->getOperand(Vec0Idx + 1);
 | 
						|
      SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | 
						|
                    QOpcodes0[OpcodeIndex]);
 | 
						|
    Ops.push_back(MemAddr);
 | 
						|
    Ops.push_back(Align);
 | 
						|
    if (isUpdating) {
 | 
						|
      SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
      // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
 | 
						|
      // case entirely when the rest are updated to that form, too.
 | 
						|
      if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
 | 
						|
        Opc = getVLDSTRegisterUpdateOpcode(Opc);
 | 
						|
      // We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
 | 
						|
      // check for that explicitly too. Horribly hacky, but temporary.
 | 
						|
      if ((NumVecs > 2 && Opc != ARM::VST1q64wb_fixed) ||
 | 
						|
          !isa<ConstantSDNode>(Inc.getNode()))
 | 
						|
        Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
 | 
						|
    }
 | 
						|
    Ops.push_back(SrcReg);
 | 
						|
    Ops.push_back(Pred);
 | 
						|
    Ops.push_back(Reg0);
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | 
						|
 | 
						|
    // Transfer memoperands.
 | 
						|
    cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
 | 
						|
    return VSt;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, quad registers are stored with two separate instructions,
 | 
						|
  // where one stores the even registers and the other stores the odd registers.
 | 
						|
 | 
						|
  // Form the QQQQ REG_SEQUENCE.
 | 
						|
  SDValue V0 = N->getOperand(Vec0Idx + 0);
 | 
						|
  SDValue V1 = N->getOperand(Vec0Idx + 1);
 | 
						|
  SDValue V2 = N->getOperand(Vec0Idx + 2);
 | 
						|
  SDValue V3 = (NumVecs == 3)
 | 
						|
    ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
 | 
						|
    : N->getOperand(Vec0Idx + 3);
 | 
						|
  SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
 | 
						|
 | 
						|
  // Store the even D registers.  This is always an updating store, so that it
 | 
						|
  // provides the address to the second store for the odd subregs.
 | 
						|
  const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
 | 
						|
  SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
 | 
						|
                                        MemAddr.getValueType(),
 | 
						|
                                        MVT::Other, OpsA);
 | 
						|
  cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
  Chain = SDValue(VStA, 1);
 | 
						|
 | 
						|
  // Store the odd D registers.
 | 
						|
  Ops.push_back(SDValue(VStA, 0));
 | 
						|
  Ops.push_back(Align);
 | 
						|
  if (isUpdating) {
 | 
						|
    SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
    assert(isa<ConstantSDNode>(Inc.getNode()) &&
 | 
						|
           "only constant post-increment update allowed for VST3/4");
 | 
						|
    (void)Inc;
 | 
						|
    Ops.push_back(Reg0);
 | 
						|
  }
 | 
						|
  Ops.push_back(RegSeq);
 | 
						|
  Ops.push_back(Pred);
 | 
						|
  Ops.push_back(Reg0);
 | 
						|
  Ops.push_back(Chain);
 | 
						|
  SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
 | 
						|
                                        Ops);
 | 
						|
  cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
  return VStB;
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
 | 
						|
                                         bool isUpdating, unsigned NumVecs,
 | 
						|
                                         const uint16_t *DOpcodes,
 | 
						|
                                         const uint16_t *QOpcodes) {
 | 
						|
  assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue MemAddr, Align;
 | 
						|
  unsigned AddrOpIdx = isUpdating ? 1 : 2;
 | 
						|
  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
 | 
						|
  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | 
						|
  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  unsigned Lane =
 | 
						|
    cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
 | 
						|
  EVT VT = N->getOperand(Vec0Idx).getValueType();
 | 
						|
  bool is64BitVector = VT.is64BitVector();
 | 
						|
 | 
						|
  unsigned Alignment = 0;
 | 
						|
  if (NumVecs != 3) {
 | 
						|
    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | 
						|
    unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
 | 
						|
    if (Alignment > NumBytes)
 | 
						|
      Alignment = NumBytes;
 | 
						|
    if (Alignment < 8 && Alignment < NumBytes)
 | 
						|
      Alignment = 0;
 | 
						|
    // Alignment must be a power of two; make sure of that.
 | 
						|
    Alignment = (Alignment & -Alignment);
 | 
						|
    if (Alignment == 1)
 | 
						|
      Alignment = 0;
 | 
						|
  }
 | 
						|
  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
 | 
						|
 | 
						|
  unsigned OpcodeIndex;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("unhandled vld/vst lane type");
 | 
						|
    // Double-register operations:
 | 
						|
  case MVT::v8i8:  OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v2f32:
 | 
						|
  case MVT::v2i32: OpcodeIndex = 2; break;
 | 
						|
    // Quad-register operations:
 | 
						|
  case MVT::v8i16: OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32: OpcodeIndex = 1; break;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<EVT> ResTys;
 | 
						|
  if (IsLoad) {
 | 
						|
    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | 
						|
    if (!is64BitVector)
 | 
						|
      ResTyElts *= 2;
 | 
						|
    ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
 | 
						|
                                      MVT::i64, ResTyElts));
 | 
						|
  }
 | 
						|
  if (isUpdating)
 | 
						|
    ResTys.push_back(MVT::i32);
 | 
						|
  ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDValue Pred = getAL(CurDAG);
 | 
						|
  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  Ops.push_back(MemAddr);
 | 
						|
  Ops.push_back(Align);
 | 
						|
  if (isUpdating) {
 | 
						|
    SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
    Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue SuperReg;
 | 
						|
  SDValue V0 = N->getOperand(Vec0Idx + 0);
 | 
						|
  SDValue V1 = N->getOperand(Vec0Idx + 1);
 | 
						|
  if (NumVecs == 2) {
 | 
						|
    if (is64BitVector)
 | 
						|
      SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
 | 
						|
    else
 | 
						|
      SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
 | 
						|
  } else {
 | 
						|
    SDValue V2 = N->getOperand(Vec0Idx + 2);
 | 
						|
    SDValue V3 = (NumVecs == 3)
 | 
						|
      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
 | 
						|
      : N->getOperand(Vec0Idx + 3);
 | 
						|
    if (is64BitVector)
 | 
						|
      SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
 | 
						|
    else
 | 
						|
      SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
 | 
						|
  }
 | 
						|
  Ops.push_back(SuperReg);
 | 
						|
  Ops.push_back(getI32Imm(Lane));
 | 
						|
  Ops.push_back(Pred);
 | 
						|
  Ops.push_back(Reg0);
 | 
						|
  Ops.push_back(Chain);
 | 
						|
 | 
						|
  unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | 
						|
                                  QOpcodes[OpcodeIndex]);
 | 
						|
  SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | 
						|
  cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
  if (!IsLoad)
 | 
						|
    return VLdLn;
 | 
						|
 | 
						|
  // Extract the subregisters.
 | 
						|
  SuperReg = SDValue(VLdLn, 0);
 | 
						|
  assert(ARM::dsub_7 == ARM::dsub_0+7 &&
 | 
						|
         ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
 | 
						|
  unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
 | 
						|
  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
 | 
						|
    ReplaceUses(SDValue(N, Vec),
 | 
						|
                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
 | 
						|
  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
 | 
						|
  if (isUpdating)
 | 
						|
    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
 | 
						|
                                      unsigned NumVecs,
 | 
						|
                                      const uint16_t *Opcodes) {
 | 
						|
  assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue MemAddr, Align;
 | 
						|
  if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | 
						|
  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  unsigned Alignment = 0;
 | 
						|
  if (NumVecs != 3) {
 | 
						|
    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | 
						|
    unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
 | 
						|
    if (Alignment > NumBytes)
 | 
						|
      Alignment = NumBytes;
 | 
						|
    if (Alignment < 8 && Alignment < NumBytes)
 | 
						|
      Alignment = 0;
 | 
						|
    // Alignment must be a power of two; make sure of that.
 | 
						|
    Alignment = (Alignment & -Alignment);
 | 
						|
    if (Alignment == 1)
 | 
						|
      Alignment = 0;
 | 
						|
  }
 | 
						|
  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
 | 
						|
 | 
						|
  unsigned OpcodeIndex;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("unhandled vld-dup type");
 | 
						|
  case MVT::v8i8:  OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v2f32:
 | 
						|
  case MVT::v2i32: OpcodeIndex = 2; break;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Pred = getAL(CurDAG);
 | 
						|
  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
  SDValue SuperReg;
 | 
						|
  unsigned Opc = Opcodes[OpcodeIndex];
 | 
						|
  SmallVector<SDValue, 6> Ops;
 | 
						|
  Ops.push_back(MemAddr);
 | 
						|
  Ops.push_back(Align);
 | 
						|
  if (isUpdating) {
 | 
						|
    // fixed-stride update instructions don't have an explicit writeback
 | 
						|
    // operand. It's implicit in the opcode itself.
 | 
						|
    SDValue Inc = N->getOperand(2);
 | 
						|
    if (!isa<ConstantSDNode>(Inc.getNode()))
 | 
						|
      Ops.push_back(Inc);
 | 
						|
    // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
 | 
						|
    else if (NumVecs > 2)
 | 
						|
      Ops.push_back(Reg0);
 | 
						|
  }
 | 
						|
  Ops.push_back(Pred);
 | 
						|
  Ops.push_back(Reg0);
 | 
						|
  Ops.push_back(Chain);
 | 
						|
 | 
						|
  unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | 
						|
  std::vector<EVT> ResTys;
 | 
						|
  ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
 | 
						|
  if (isUpdating)
 | 
						|
    ResTys.push_back(MVT::i32);
 | 
						|
  ResTys.push_back(MVT::Other);
 | 
						|
  SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | 
						|
  cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
  SuperReg = SDValue(VLdDup, 0);
 | 
						|
 | 
						|
  // Extract the subregisters.
 | 
						|
  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
 | 
						|
  unsigned SubIdx = ARM::dsub_0;
 | 
						|
  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
 | 
						|
    ReplaceUses(SDValue(N, Vec),
 | 
						|
                CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
 | 
						|
  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
 | 
						|
  if (isUpdating)
 | 
						|
    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
 | 
						|
                                    unsigned Opc) {
 | 
						|
  assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  unsigned FirstTblReg = IsExt ? 2 : 1;
 | 
						|
 | 
						|
  // Form a REG_SEQUENCE to force register allocation.
 | 
						|
  SDValue RegSeq;
 | 
						|
  SDValue V0 = N->getOperand(FirstTblReg + 0);
 | 
						|
  SDValue V1 = N->getOperand(FirstTblReg + 1);
 | 
						|
  if (NumVecs == 2)
 | 
						|
    RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
 | 
						|
  else {
 | 
						|
    SDValue V2 = N->getOperand(FirstTblReg + 2);
 | 
						|
    // If it's a vtbl3, form a quad D-register and leave the last part as
 | 
						|
    // an undef.
 | 
						|
    SDValue V3 = (NumVecs == 3)
 | 
						|
      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
 | 
						|
      : N->getOperand(FirstTblReg + 3);
 | 
						|
    RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<SDValue, 6> Ops;
 | 
						|
  if (IsExt)
 | 
						|
    Ops.push_back(N->getOperand(1));
 | 
						|
  Ops.push_back(RegSeq);
 | 
						|
  Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
 | 
						|
  Ops.push_back(getAL(CurDAG)); // predicate
 | 
						|
  Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
 | 
						|
  return CurDAG->getMachineNode(Opc, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
 | 
						|
                                                     bool isSigned) {
 | 
						|
  if (!Subtarget->hasV6T2Ops())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  unsigned Opc = isSigned
 | 
						|
    ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
 | 
						|
    : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
 | 
						|
 | 
						|
  // For unsigned extracts, check for a shift right and mask
 | 
						|
  unsigned And_imm = 0;
 | 
						|
  if (N->getOpcode() == ISD::AND) {
 | 
						|
    if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
 | 
						|
 | 
						|
      // The immediate is a mask of the low bits iff imm & (imm+1) == 0
 | 
						|
      if (And_imm & (And_imm + 1))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
      unsigned Srl_imm = 0;
 | 
						|
      if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
 | 
						|
                                Srl_imm)) {
 | 
						|
        assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
 | 
						|
 | 
						|
        // Note: The width operand is encoded as width-1.
 | 
						|
        unsigned Width = CountTrailingOnes_32(And_imm) - 1;
 | 
						|
        unsigned LSB = Srl_imm;
 | 
						|
 | 
						|
        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
 | 
						|
        if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
 | 
						|
          // It's cheaper to use a right shift to extract the top bits.
 | 
						|
          if (Subtarget->isThumb()) {
 | 
						|
            Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
 | 
						|
            SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                              CurDAG->getTargetConstant(LSB, MVT::i32),
 | 
						|
                              getAL(CurDAG), Reg0, Reg0 };
 | 
						|
            return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
 | 
						|
          }
 | 
						|
 | 
						|
          // ARM models shift instructions as MOVsi with shifter operand.
 | 
						|
          ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
 | 
						|
          SDValue ShOpc =
 | 
						|
            CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB),
 | 
						|
                                      MVT::i32);
 | 
						|
          SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
 | 
						|
                            getAL(CurDAG), Reg0, Reg0 };
 | 
						|
          return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops, 5);
 | 
						|
        }
 | 
						|
 | 
						|
        SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                          CurDAG->getTargetConstant(LSB, MVT::i32),
 | 
						|
                          CurDAG->getTargetConstant(Width, MVT::i32),
 | 
						|
          getAL(CurDAG), Reg0 };
 | 
						|
        return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we're looking for a shift of a shift
 | 
						|
  unsigned Shl_imm = 0;
 | 
						|
  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
 | 
						|
    assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
 | 
						|
    unsigned Srl_imm = 0;
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
 | 
						|
      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
 | 
						|
      // Note: The width operand is encoded as width-1.
 | 
						|
      unsigned Width = 32 - Srl_imm - 1;
 | 
						|
      int LSB = Srl_imm - Shl_imm;
 | 
						|
      if (LSB < 0)
 | 
						|
        return NULL;
 | 
						|
      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                        CurDAG->getTargetConstant(LSB, MVT::i32),
 | 
						|
                        CurDAG->getTargetConstant(Width, MVT::i32),
 | 
						|
                        getAL(CurDAG), Reg0 };
 | 
						|
      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/// Target-specific DAG combining for ISD::XOR.
 | 
						|
/// Target-independent combining lowers SELECT_CC nodes of the form
 | 
						|
/// select_cc setg[ge] X,  0,  X, -X
 | 
						|
/// select_cc setgt    X, -1,  X, -X
 | 
						|
/// select_cc setl[te] X,  0, -X,  X
 | 
						|
/// select_cc setlt    X,  1, -X,  X
 | 
						|
/// which represent Integer ABS into:
 | 
						|
/// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
 | 
						|
/// ARM instruction selection detects the latter and matches it to
 | 
						|
/// ARM::ABS or ARM::t2ABS machine node.
 | 
						|
SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
 | 
						|
  SDValue XORSrc0 = N->getOperand(0);
 | 
						|
  SDValue XORSrc1 = N->getOperand(1);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (Subtarget->isThumb1Only())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SDValue ADDSrc0 = XORSrc0.getOperand(0);
 | 
						|
  SDValue ADDSrc1 = XORSrc0.getOperand(1);
 | 
						|
  SDValue SRASrc0 = XORSrc1.getOperand(0);
 | 
						|
  SDValue SRASrc1 = XORSrc1.getOperand(1);
 | 
						|
  ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
 | 
						|
  EVT XType = SRASrc0.getValueType();
 | 
						|
  unsigned Size = XType.getSizeInBits() - 1;
 | 
						|
 | 
						|
  if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
 | 
						|
      XType.isInteger() && SRAConstant != NULL &&
 | 
						|
      Size == SRAConstant->getZExtValue()) {
 | 
						|
    unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
 | 
						|
    return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
 | 
						|
  }
 | 
						|
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
 | 
						|
  // The only time a CONCAT_VECTORS operation can have legal types is when
 | 
						|
  // two 64-bit vectors are concatenated to a 128-bit vector.
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!VT.is128BitVector() || N->getNumOperands() != 2)
 | 
						|
    llvm_unreachable("unexpected CONCAT_VECTORS");
 | 
						|
  return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
 | 
						|
                                      unsigned Op16,unsigned Op32,
 | 
						|
                                      unsigned Op64) {
 | 
						|
  // Mostly direct translation to the given operations, except that we preserve
 | 
						|
  // the AtomicOrdering for use later on.
 | 
						|
  AtomicSDNode *AN = cast<AtomicSDNode>(Node);
 | 
						|
  EVT VT = AN->getMemoryVT();
 | 
						|
 | 
						|
  unsigned Op;
 | 
						|
  SDVTList VTs = CurDAG->getVTList(AN->getValueType(0), MVT::Other);
 | 
						|
  if (VT == MVT::i8)
 | 
						|
    Op = Op8;
 | 
						|
  else if (VT == MVT::i16)
 | 
						|
    Op = Op16;
 | 
						|
  else if (VT == MVT::i32)
 | 
						|
    Op = Op32;
 | 
						|
  else if (VT == MVT::i64) {
 | 
						|
    Op = Op64;
 | 
						|
    VTs = CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other);
 | 
						|
  } else
 | 
						|
    llvm_unreachable("Unexpected atomic operation");
 | 
						|
 | 
						|
  SmallVector<SDValue, 6> Ops;
 | 
						|
  for (unsigned i = 1; i < AN->getNumOperands(); ++i)
 | 
						|
      Ops.push_back(AN->getOperand(i));
 | 
						|
 | 
						|
  Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
 | 
						|
  Ops.push_back(AN->getOperand(0)); // Chain moves to the end
 | 
						|
 | 
						|
  return CurDAG->SelectNodeTo(Node, Op, VTs, &Ops[0], Ops.size());
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  if (N->isMachineOpcode()) {
 | 
						|
    N->setNodeId(-1);
 | 
						|
    return NULL;   // Already selected.
 | 
						|
  }
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::INLINEASM: {
 | 
						|
    SDNode *ResNode = SelectInlineAsm(N);
 | 
						|
    if (ResNode)
 | 
						|
      return ResNode;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::XOR: {
 | 
						|
    // Select special operations if XOR node forms integer ABS pattern
 | 
						|
    SDNode *ResNode = SelectABSOp(N);
 | 
						|
    if (ResNode)
 | 
						|
      return ResNode;
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::Constant: {
 | 
						|
    unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
    bool UseCP = true;
 | 
						|
    if (Subtarget->hasThumb2())
 | 
						|
      // Thumb2-aware targets have the MOVT instruction, so all immediates can
 | 
						|
      // be done with MOV + MOVT, at worst.
 | 
						|
      UseCP = 0;
 | 
						|
    else {
 | 
						|
      if (Subtarget->isThumb()) {
 | 
						|
        UseCP = (Val > 255 &&                          // MOV
 | 
						|
                 ~Val > 255 &&                         // MOV + MVN
 | 
						|
                 !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
 | 
						|
      } else
 | 
						|
        UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
 | 
						|
                 ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
 | 
						|
                 !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
 | 
						|
    }
 | 
						|
 | 
						|
    if (UseCP) {
 | 
						|
      SDValue CPIdx =
 | 
						|
        CurDAG->getTargetConstantPool(ConstantInt::get(
 | 
						|
                                  Type::getInt32Ty(*CurDAG->getContext()), Val),
 | 
						|
                                      getTargetLowering()->getPointerTy());
 | 
						|
 | 
						|
      SDNode *ResNode;
 | 
						|
      if (Subtarget->isThumb1Only()) {
 | 
						|
        SDValue Pred = getAL(CurDAG);
 | 
						|
        SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
        SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
 | 
						|
        ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
 | 
						|
                                         Ops);
 | 
						|
      } else {
 | 
						|
        SDValue Ops[] = {
 | 
						|
          CPIdx,
 | 
						|
          CurDAG->getTargetConstant(0, MVT::i32),
 | 
						|
          getAL(CurDAG),
 | 
						|
          CurDAG->getRegister(0, MVT::i32),
 | 
						|
          CurDAG->getEntryNode()
 | 
						|
        };
 | 
						|
        ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
 | 
						|
                                       Ops);
 | 
						|
      }
 | 
						|
      ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::FrameIndex: {
 | 
						|
    // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
 | 
						|
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    SDValue TFI = CurDAG->getTargetFrameIndex(FI,
 | 
						|
                                           getTargetLowering()->getPointerTy());
 | 
						|
    if (Subtarget->isThumb1Only()) {
 | 
						|
      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
 | 
						|
                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
 | 
						|
    } else {
 | 
						|
      unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
 | 
						|
                      ARM::t2ADDri : ARM::ADDri);
 | 
						|
      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
 | 
						|
                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ISD::SRL:
 | 
						|
    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
 | 
						|
      return I;
 | 
						|
    break;
 | 
						|
  case ISD::SRA:
 | 
						|
    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
 | 
						|
      return I;
 | 
						|
    break;
 | 
						|
  case ISD::MUL:
 | 
						|
    if (Subtarget->isThumb1Only())
 | 
						|
      break;
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | 
						|
      unsigned RHSV = C->getZExtValue();
 | 
						|
      if (!RHSV) break;
 | 
						|
      if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
 | 
						|
        unsigned ShImm = Log2_32(RHSV-1);
 | 
						|
        if (ShImm >= 32)
 | 
						|
          break;
 | 
						|
        SDValue V = N->getOperand(0);
 | 
						|
        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
 | 
						|
        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
 | 
						|
        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
        if (Subtarget->isThumb()) {
 | 
						|
          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
 | 
						|
          return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
 | 
						|
        } else {
 | 
						|
          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
 | 
						|
          return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
 | 
						|
        unsigned ShImm = Log2_32(RHSV+1);
 | 
						|
        if (ShImm >= 32)
 | 
						|
          break;
 | 
						|
        SDValue V = N->getOperand(0);
 | 
						|
        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
 | 
						|
        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
 | 
						|
        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
        if (Subtarget->isThumb()) {
 | 
						|
          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
 | 
						|
          return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
 | 
						|
        } else {
 | 
						|
          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
 | 
						|
          return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::AND: {
 | 
						|
    // Check for unsigned bitfield extract
 | 
						|
    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
 | 
						|
    // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
 | 
						|
    // are entirely contributed by c2 and lower 16-bits are entirely contributed
 | 
						|
    // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
 | 
						|
    // Select it to: "movt x, ((c1 & 0xffff) >> 16)
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    if (VT != MVT::i32)
 | 
						|
      break;
 | 
						|
    unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
 | 
						|
      ? ARM::t2MOVTi16
 | 
						|
      : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
 | 
						|
    if (!Opc)
 | 
						|
      break;
 | 
						|
    SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
 | 
						|
    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | 
						|
    if (!N1C)
 | 
						|
      break;
 | 
						|
    if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
 | 
						|
      SDValue N2 = N0.getOperand(1);
 | 
						|
      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
 | 
						|
      if (!N2C)
 | 
						|
        break;
 | 
						|
      unsigned N1CVal = N1C->getZExtValue();
 | 
						|
      unsigned N2CVal = N2C->getZExtValue();
 | 
						|
      if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
 | 
						|
          (N1CVal & 0xffffU) == 0xffffU &&
 | 
						|
          (N2CVal & 0xffffU) == 0x0U) {
 | 
						|
        SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
 | 
						|
                                                  MVT::i32);
 | 
						|
        SDValue Ops[] = { N0.getOperand(0), Imm16,
 | 
						|
                          getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
 | 
						|
        return CurDAG->getMachineNode(Opc, dl, VT, Ops);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARMISD::VMOVRRD:
 | 
						|
    return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
 | 
						|
                                  N->getOperand(0), getAL(CurDAG),
 | 
						|
                                  CurDAG->getRegister(0, MVT::i32));
 | 
						|
  case ISD::UMUL_LOHI: {
 | 
						|
    if (Subtarget->isThumb1Only())
 | 
						|
      break;
 | 
						|
    if (Subtarget->isThumb()) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | 
						|
                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops);
 | 
						|
    } else {
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | 
						|
                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
 | 
						|
                                    ARM::UMULL : ARM::UMULLv5,
 | 
						|
                                    dl, MVT::i32, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ISD::SMUL_LOHI: {
 | 
						|
    if (Subtarget->isThumb1Only())
 | 
						|
      break;
 | 
						|
    if (Subtarget->isThumb()) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | 
						|
                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops);
 | 
						|
    } else {
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | 
						|
                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
 | 
						|
                                    ARM::SMULL : ARM::SMULLv5,
 | 
						|
                                    dl, MVT::i32, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ARMISD::UMLAL:{
 | 
						|
    if (Subtarget->isThumb()) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | 
						|
                        N->getOperand(3), getAL(CurDAG),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32)};
 | 
						|
      return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops);
 | 
						|
    }else{
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | 
						|
                        N->getOperand(3), getAL(CurDAG),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
 | 
						|
                                      ARM::UMLAL : ARM::UMLALv5,
 | 
						|
                                      dl, MVT::i32, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ARMISD::SMLAL:{
 | 
						|
    if (Subtarget->isThumb()) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | 
						|
                        N->getOperand(3), getAL(CurDAG),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32)};
 | 
						|
      return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops);
 | 
						|
    }else{
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | 
						|
                        N->getOperand(3), getAL(CurDAG),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
 | 
						|
                                      ARM::SMLAL : ARM::SMLALv5,
 | 
						|
                                      dl, MVT::i32, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ISD::LOAD: {
 | 
						|
    SDNode *ResNode = 0;
 | 
						|
    if (Subtarget->isThumb() && Subtarget->hasThumb2())
 | 
						|
      ResNode = SelectT2IndexedLoad(N);
 | 
						|
    else
 | 
						|
      ResNode = SelectARMIndexedLoad(N);
 | 
						|
    if (ResNode)
 | 
						|
      return ResNode;
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARMISD::BRCOND: {
 | 
						|
    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Pattern complexity = 6  cost = 1  size = 0
 | 
						|
 | 
						|
    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Pattern complexity = 6  cost = 1  size = 0
 | 
						|
 | 
						|
    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Pattern complexity = 6  cost = 1  size = 0
 | 
						|
 | 
						|
    unsigned Opc = Subtarget->isThumb() ?
 | 
						|
      ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
 | 
						|
    SDValue Chain = N->getOperand(0);
 | 
						|
    SDValue N1 = N->getOperand(1);
 | 
						|
    SDValue N2 = N->getOperand(2);
 | 
						|
    SDValue N3 = N->getOperand(3);
 | 
						|
    SDValue InFlag = N->getOperand(4);
 | 
						|
    assert(N1.getOpcode() == ISD::BasicBlock);
 | 
						|
    assert(N2.getOpcode() == ISD::Constant);
 | 
						|
    assert(N3.getOpcode() == ISD::Register);
 | 
						|
 | 
						|
    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
 | 
						|
                               cast<ConstantSDNode>(N2)->getZExtValue()),
 | 
						|
                               MVT::i32);
 | 
						|
    SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
 | 
						|
    SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
 | 
						|
                                             MVT::Glue, Ops);
 | 
						|
    Chain = SDValue(ResNode, 0);
 | 
						|
    if (N->getNumValues() == 2) {
 | 
						|
      InFlag = SDValue(ResNode, 1);
 | 
						|
      ReplaceUses(SDValue(N, 1), InFlag);
 | 
						|
    }
 | 
						|
    ReplaceUses(SDValue(N, 0),
 | 
						|
                SDValue(Chain.getNode(), Chain.getResNo()));
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
  case ARMISD::VZIP: {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
    default: return NULL;
 | 
						|
    case MVT::v8i8:  Opc = ARM::VZIPd8; break;
 | 
						|
    case MVT::v4i16: Opc = ARM::VZIPd16; break;
 | 
						|
    case MVT::v2f32:
 | 
						|
    // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
 | 
						|
    case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | 
						|
    case MVT::v16i8: Opc = ARM::VZIPq8; break;
 | 
						|
    case MVT::v8i16: Opc = ARM::VZIPq16; break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32: Opc = ARM::VZIPq32; break;
 | 
						|
    }
 | 
						|
    SDValue Pred = getAL(CurDAG);
 | 
						|
    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | 
						|
    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
 | 
						|
  }
 | 
						|
  case ARMISD::VUZP: {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
    default: return NULL;
 | 
						|
    case MVT::v8i8:  Opc = ARM::VUZPd8; break;
 | 
						|
    case MVT::v4i16: Opc = ARM::VUZPd16; break;
 | 
						|
    case MVT::v2f32:
 | 
						|
    // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
 | 
						|
    case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | 
						|
    case MVT::v16i8: Opc = ARM::VUZPq8; break;
 | 
						|
    case MVT::v8i16: Opc = ARM::VUZPq16; break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32: Opc = ARM::VUZPq32; break;
 | 
						|
    }
 | 
						|
    SDValue Pred = getAL(CurDAG);
 | 
						|
    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | 
						|
    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
 | 
						|
  }
 | 
						|
  case ARMISD::VTRN: {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
    default: return NULL;
 | 
						|
    case MVT::v8i8:  Opc = ARM::VTRNd8; break;
 | 
						|
    case MVT::v4i16: Opc = ARM::VTRNd16; break;
 | 
						|
    case MVT::v2f32:
 | 
						|
    case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | 
						|
    case MVT::v16i8: Opc = ARM::VTRNq8; break;
 | 
						|
    case MVT::v8i16: Opc = ARM::VTRNq16; break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32: Opc = ARM::VTRNq32; break;
 | 
						|
    }
 | 
						|
    SDValue Pred = getAL(CurDAG);
 | 
						|
    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | 
						|
    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
 | 
						|
  }
 | 
						|
  case ARMISD::BUILD_VECTOR: {
 | 
						|
    EVT VecVT = N->getValueType(0);
 | 
						|
    EVT EltVT = VecVT.getVectorElementType();
 | 
						|
    unsigned NumElts = VecVT.getVectorNumElements();
 | 
						|
    if (EltVT == MVT::f64) {
 | 
						|
      assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
 | 
						|
      return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
 | 
						|
    }
 | 
						|
    assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
 | 
						|
    if (NumElts == 2)
 | 
						|
      return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
 | 
						|
    assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
 | 
						|
    return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
 | 
						|
                     N->getOperand(2), N->getOperand(3));
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD2DUP: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
 | 
						|
                                        ARM::VLD2DUPd32 };
 | 
						|
    return SelectVLDDup(N, false, 2, Opcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD3DUP: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
 | 
						|
                                        ARM::VLD3DUPd16Pseudo,
 | 
						|
                                        ARM::VLD3DUPd32Pseudo };
 | 
						|
    return SelectVLDDup(N, false, 3, Opcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD4DUP: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
 | 
						|
                                        ARM::VLD4DUPd16Pseudo,
 | 
						|
                                        ARM::VLD4DUPd32Pseudo };
 | 
						|
    return SelectVLDDup(N, false, 4, Opcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD2DUP_UPD: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
 | 
						|
                                        ARM::VLD2DUPd16wb_fixed,
 | 
						|
                                        ARM::VLD2DUPd32wb_fixed };
 | 
						|
    return SelectVLDDup(N, true, 2, Opcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD3DUP_UPD: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
 | 
						|
                                        ARM::VLD3DUPd16Pseudo_UPD,
 | 
						|
                                        ARM::VLD3DUPd32Pseudo_UPD };
 | 
						|
    return SelectVLDDup(N, true, 3, Opcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD4DUP_UPD: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
 | 
						|
                                        ARM::VLD4DUPd16Pseudo_UPD,
 | 
						|
                                        ARM::VLD4DUPd32Pseudo_UPD };
 | 
						|
    return SelectVLDDup(N, true, 4, Opcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD1_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
 | 
						|
                                         ARM::VLD1d16wb_fixed,
 | 
						|
                                         ARM::VLD1d32wb_fixed,
 | 
						|
                                         ARM::VLD1d64wb_fixed };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
 | 
						|
                                         ARM::VLD1q16wb_fixed,
 | 
						|
                                         ARM::VLD1q32wb_fixed,
 | 
						|
                                         ARM::VLD1q64wb_fixed };
 | 
						|
    return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD2_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
 | 
						|
                                         ARM::VLD2d16wb_fixed,
 | 
						|
                                         ARM::VLD2d32wb_fixed,
 | 
						|
                                         ARM::VLD1q64wb_fixed};
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
 | 
						|
                                         ARM::VLD2q16PseudoWB_fixed,
 | 
						|
                                         ARM::VLD2q32PseudoWB_fixed };
 | 
						|
    return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD3_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
 | 
						|
                                         ARM::VLD3d16Pseudo_UPD,
 | 
						|
                                         ARM::VLD3d32Pseudo_UPD,
 | 
						|
                                         ARM::VLD1q64wb_fixed};
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
 | 
						|
                                          ARM::VLD3q16Pseudo_UPD,
 | 
						|
                                          ARM::VLD3q32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
 | 
						|
                                          ARM::VLD3q16oddPseudo_UPD,
 | 
						|
                                          ARM::VLD3q32oddPseudo_UPD };
 | 
						|
    return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD4_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
 | 
						|
                                         ARM::VLD4d16Pseudo_UPD,
 | 
						|
                                         ARM::VLD4d32Pseudo_UPD,
 | 
						|
                                         ARM::VLD1q64wb_fixed};
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
 | 
						|
                                          ARM::VLD4q16Pseudo_UPD,
 | 
						|
                                          ARM::VLD4q32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
 | 
						|
                                          ARM::VLD4q16oddPseudo_UPD,
 | 
						|
                                          ARM::VLD4q32oddPseudo_UPD };
 | 
						|
    return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD2LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VLD2LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VLD2LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VLD2LNq32Pseudo_UPD };
 | 
						|
    return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD3LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VLD3LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VLD3LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VLD3LNq32Pseudo_UPD };
 | 
						|
    return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD4LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VLD4LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VLD4LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VLD4LNq32Pseudo_UPD };
 | 
						|
    return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST1_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
 | 
						|
                                         ARM::VST1d16wb_fixed,
 | 
						|
                                         ARM::VST1d32wb_fixed,
 | 
						|
                                         ARM::VST1d64wb_fixed };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
 | 
						|
                                         ARM::VST1q16wb_fixed,
 | 
						|
                                         ARM::VST1q32wb_fixed,
 | 
						|
                                         ARM::VST1q64wb_fixed };
 | 
						|
    return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST2_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
 | 
						|
                                         ARM::VST2d16wb_fixed,
 | 
						|
                                         ARM::VST2d32wb_fixed,
 | 
						|
                                         ARM::VST1q64wb_fixed};
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
 | 
						|
                                         ARM::VST2q16PseudoWB_fixed,
 | 
						|
                                         ARM::VST2q32PseudoWB_fixed };
 | 
						|
    return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST3_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
 | 
						|
                                         ARM::VST3d16Pseudo_UPD,
 | 
						|
                                         ARM::VST3d32Pseudo_UPD,
 | 
						|
                                         ARM::VST1d64TPseudoWB_fixed};
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
 | 
						|
                                          ARM::VST3q16Pseudo_UPD,
 | 
						|
                                          ARM::VST3q32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
 | 
						|
                                          ARM::VST3q16oddPseudo_UPD,
 | 
						|
                                          ARM::VST3q32oddPseudo_UPD };
 | 
						|
    return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST4_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
 | 
						|
                                         ARM::VST4d16Pseudo_UPD,
 | 
						|
                                         ARM::VST4d32Pseudo_UPD,
 | 
						|
                                         ARM::VST1d64QPseudoWB_fixed};
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
 | 
						|
                                          ARM::VST4q16Pseudo_UPD,
 | 
						|
                                          ARM::VST4q32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
 | 
						|
                                          ARM::VST4q16oddPseudo_UPD,
 | 
						|
                                          ARM::VST4q32oddPseudo_UPD };
 | 
						|
    return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST2LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VST2LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VST2LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VST2LNq32Pseudo_UPD };
 | 
						|
    return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST3LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VST3LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VST3LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VST3LNq32Pseudo_UPD };
 | 
						|
    return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST4LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VST4LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VST4LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VST4LNq32Pseudo_UPD };
 | 
						|
    return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
    switch (IntNo) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Intrinsic::arm_ldrexd: {
 | 
						|
      SDValue MemAddr = N->getOperand(2);
 | 
						|
      SDLoc dl(N);
 | 
						|
      SDValue Chain = N->getOperand(0);
 | 
						|
 | 
						|
      bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
 | 
						|
      unsigned NewOpc = isThumb ? ARM::t2LDREXD :ARM::LDREXD;
 | 
						|
 | 
						|
      // arm_ldrexd returns a i64 value in {i32, i32}
 | 
						|
      std::vector<EVT> ResTys;
 | 
						|
      if (isThumb) {
 | 
						|
        ResTys.push_back(MVT::i32);
 | 
						|
        ResTys.push_back(MVT::i32);
 | 
						|
      } else
 | 
						|
        ResTys.push_back(MVT::Untyped);
 | 
						|
      ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
      // Place arguments in the right order.
 | 
						|
      SmallVector<SDValue, 7> Ops;
 | 
						|
      Ops.push_back(MemAddr);
 | 
						|
      Ops.push_back(getAL(CurDAG));
 | 
						|
      Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
      Ops.push_back(Chain);
 | 
						|
      SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
 | 
						|
      // Transfer memoperands.
 | 
						|
      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | 
						|
      MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
      cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
 | 
						|
      // Remap uses.
 | 
						|
      SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
 | 
						|
      if (!SDValue(N, 0).use_empty()) {
 | 
						|
        SDValue Result;
 | 
						|
        if (isThumb)
 | 
						|
          Result = SDValue(Ld, 0);
 | 
						|
        else {
 | 
						|
          SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
 | 
						|
          SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
 | 
						|
              dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
 | 
						|
          Result = SDValue(ResNode,0);
 | 
						|
        }
 | 
						|
        ReplaceUses(SDValue(N, 0), Result);
 | 
						|
      }
 | 
						|
      if (!SDValue(N, 1).use_empty()) {
 | 
						|
        SDValue Result;
 | 
						|
        if (isThumb)
 | 
						|
          Result = SDValue(Ld, 1);
 | 
						|
        else {
 | 
						|
          SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
 | 
						|
          SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
 | 
						|
              dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
 | 
						|
          Result = SDValue(ResNode,0);
 | 
						|
        }
 | 
						|
        ReplaceUses(SDValue(N, 1), Result);
 | 
						|
      }
 | 
						|
      ReplaceUses(SDValue(N, 2), OutChain);
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_strexd: {
 | 
						|
      SDLoc dl(N);
 | 
						|
      SDValue Chain = N->getOperand(0);
 | 
						|
      SDValue Val0 = N->getOperand(2);
 | 
						|
      SDValue Val1 = N->getOperand(3);
 | 
						|
      SDValue MemAddr = N->getOperand(4);
 | 
						|
 | 
						|
      // Store exclusive double return a i32 value which is the return status
 | 
						|
      // of the issued store.
 | 
						|
      EVT ResTys[] = { MVT::i32, MVT::Other };
 | 
						|
 | 
						|
      bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
 | 
						|
      // Place arguments in the right order.
 | 
						|
      SmallVector<SDValue, 7> Ops;
 | 
						|
      if (isThumb) {
 | 
						|
        Ops.push_back(Val0);
 | 
						|
        Ops.push_back(Val1);
 | 
						|
      } else
 | 
						|
        // arm_strexd uses GPRPair.
 | 
						|
        Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
 | 
						|
      Ops.push_back(MemAddr);
 | 
						|
      Ops.push_back(getAL(CurDAG));
 | 
						|
      Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
      Ops.push_back(Chain);
 | 
						|
 | 
						|
      unsigned NewOpc = isThumb ? ARM::t2STREXD : ARM::STREXD;
 | 
						|
 | 
						|
      SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
 | 
						|
      // Transfer memoperands.
 | 
						|
      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | 
						|
      MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
      cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
 | 
						|
      return St;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld1: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
 | 
						|
                                           ARM::VLD1d32, ARM::VLD1d64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
 | 
						|
                                           ARM::VLD1q32, ARM::VLD1q64};
 | 
						|
      return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld2: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
 | 
						|
                                           ARM::VLD2d32, ARM::VLD1q64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
 | 
						|
                                           ARM::VLD2q32Pseudo };
 | 
						|
      return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld3: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
 | 
						|
                                           ARM::VLD3d16Pseudo,
 | 
						|
                                           ARM::VLD3d32Pseudo,
 | 
						|
                                           ARM::VLD1d64TPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
 | 
						|
                                            ARM::VLD3q16Pseudo_UPD,
 | 
						|
                                            ARM::VLD3q32Pseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
 | 
						|
                                            ARM::VLD3q16oddPseudo,
 | 
						|
                                            ARM::VLD3q32oddPseudo };
 | 
						|
      return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld4: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
 | 
						|
                                           ARM::VLD4d16Pseudo,
 | 
						|
                                           ARM::VLD4d32Pseudo,
 | 
						|
                                           ARM::VLD1d64QPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
 | 
						|
                                            ARM::VLD4q16Pseudo_UPD,
 | 
						|
                                            ARM::VLD4q32Pseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
 | 
						|
                                            ARM::VLD4q16oddPseudo,
 | 
						|
                                            ARM::VLD4q32oddPseudo };
 | 
						|
      return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld2lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
 | 
						|
                                           ARM::VLD2LNd16Pseudo,
 | 
						|
                                           ARM::VLD2LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
 | 
						|
                                           ARM::VLD2LNq32Pseudo };
 | 
						|
      return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld3lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
 | 
						|
                                           ARM::VLD3LNd16Pseudo,
 | 
						|
                                           ARM::VLD3LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
 | 
						|
                                           ARM::VLD3LNq32Pseudo };
 | 
						|
      return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld4lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
 | 
						|
                                           ARM::VLD4LNd16Pseudo,
 | 
						|
                                           ARM::VLD4LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
 | 
						|
                                           ARM::VLD4LNq32Pseudo };
 | 
						|
      return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst1: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
 | 
						|
                                           ARM::VST1d32, ARM::VST1d64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
 | 
						|
                                           ARM::VST1q32, ARM::VST1q64 };
 | 
						|
      return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst2: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
 | 
						|
                                           ARM::VST2d32, ARM::VST1q64 };
 | 
						|
      static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
 | 
						|
                                     ARM::VST2q32Pseudo };
 | 
						|
      return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst3: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
 | 
						|
                                           ARM::VST3d16Pseudo,
 | 
						|
                                           ARM::VST3d32Pseudo,
 | 
						|
                                           ARM::VST1d64TPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
 | 
						|
                                            ARM::VST3q16Pseudo_UPD,
 | 
						|
                                            ARM::VST3q32Pseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
 | 
						|
                                            ARM::VST3q16oddPseudo,
 | 
						|
                                            ARM::VST3q32oddPseudo };
 | 
						|
      return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst4: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
 | 
						|
                                           ARM::VST4d16Pseudo,
 | 
						|
                                           ARM::VST4d32Pseudo,
 | 
						|
                                           ARM::VST1d64QPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
 | 
						|
                                            ARM::VST4q16Pseudo_UPD,
 | 
						|
                                            ARM::VST4q32Pseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
 | 
						|
                                            ARM::VST4q16oddPseudo,
 | 
						|
                                            ARM::VST4q32oddPseudo };
 | 
						|
      return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst2lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
 | 
						|
                                           ARM::VST2LNd16Pseudo,
 | 
						|
                                           ARM::VST2LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
 | 
						|
                                           ARM::VST2LNq32Pseudo };
 | 
						|
      return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst3lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
 | 
						|
                                           ARM::VST3LNd16Pseudo,
 | 
						|
                                           ARM::VST3LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
 | 
						|
                                           ARM::VST3LNq32Pseudo };
 | 
						|
      return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst4lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
 | 
						|
                                           ARM::VST4LNd16Pseudo,
 | 
						|
                                           ARM::VST4LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
 | 
						|
                                           ARM::VST4LNq32Pseudo };
 | 
						|
      return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
    switch (IntNo) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vtbl2:
 | 
						|
      return SelectVTBL(N, false, 2, ARM::VTBL2);
 | 
						|
    case Intrinsic::arm_neon_vtbl3:
 | 
						|
      return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
 | 
						|
    case Intrinsic::arm_neon_vtbl4:
 | 
						|
      return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vtbx2:
 | 
						|
      return SelectVTBL(N, true, 2, ARM::VTBX2);
 | 
						|
    case Intrinsic::arm_neon_vtbx3:
 | 
						|
      return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
 | 
						|
    case Intrinsic::arm_neon_vtbx4:
 | 
						|
      return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VTBL1: {
 | 
						|
    SDLoc dl(N);
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    SmallVector<SDValue, 6> Ops;
 | 
						|
 | 
						|
    Ops.push_back(N->getOperand(0));
 | 
						|
    Ops.push_back(N->getOperand(1));
 | 
						|
    Ops.push_back(getAL(CurDAG));                    // Predicate
 | 
						|
    Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
 | 
						|
    return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops);
 | 
						|
  }
 | 
						|
  case ARMISD::VTBL2: {
 | 
						|
    SDLoc dl(N);
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
    // Form a REG_SEQUENCE to force register allocation.
 | 
						|
    SDValue V0 = N->getOperand(0);
 | 
						|
    SDValue V1 = N->getOperand(1);
 | 
						|
    SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
 | 
						|
 | 
						|
    SmallVector<SDValue, 6> Ops;
 | 
						|
    Ops.push_back(RegSeq);
 | 
						|
    Ops.push_back(N->getOperand(2));
 | 
						|
    Ops.push_back(getAL(CurDAG));                    // Predicate
 | 
						|
    Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
 | 
						|
    return CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::CONCAT_VECTORS:
 | 
						|
    return SelectConcatVector(N);
 | 
						|
 | 
						|
  case ISD::ATOMIC_LOAD:
 | 
						|
    if (cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64)
 | 
						|
      return SelectAtomic(N, 0, 0, 0, ARM::ATOMIC_LOAD_I64);
 | 
						|
    else
 | 
						|
      break;
 | 
						|
 | 
						|
  case ISD::ATOMIC_STORE:
 | 
						|
    if (cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64)
 | 
						|
      return SelectAtomic(N, 0, 0, 0, ARM::ATOMIC_STORE_I64);
 | 
						|
    else
 | 
						|
      break;
 | 
						|
 | 
						|
  case ISD::ATOMIC_LOAD_ADD:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_ADD_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_ADD_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_ADD_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_ADD_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_SUB:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_SUB_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_SUB_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_SUB_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_SUB_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_AND:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_AND_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_AND_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_AND_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_AND_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_OR:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_OR_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_OR_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_OR_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_OR_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_XOR:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_XOR_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_XOR_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_XOR_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_XOR_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_NAND:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_NAND_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_NAND_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_NAND_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_NAND_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_MIN:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_MIN_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_MIN_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_MIN_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_MIN_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_MAX:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_MAX_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_MAX_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_MAX_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_MAX_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_UMIN:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_UMIN_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_UMIN_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_UMIN_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_UMIN_I64);
 | 
						|
  case ISD::ATOMIC_LOAD_UMAX:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_LOAD_UMAX_I8,
 | 
						|
                        ARM::ATOMIC_LOAD_UMAX_I16,
 | 
						|
                        ARM::ATOMIC_LOAD_UMAX_I32,
 | 
						|
                        ARM::ATOMIC_LOAD_UMAX_I64);
 | 
						|
  case ISD::ATOMIC_SWAP:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_SWAP_I8,
 | 
						|
                        ARM::ATOMIC_SWAP_I16,
 | 
						|
                        ARM::ATOMIC_SWAP_I32,
 | 
						|
                        ARM::ATOMIC_SWAP_I64);
 | 
						|
  case ISD::ATOMIC_CMP_SWAP:
 | 
						|
    return SelectAtomic(N,
 | 
						|
                        ARM::ATOMIC_CMP_SWAP_I8,
 | 
						|
                        ARM::ATOMIC_CMP_SWAP_I16,
 | 
						|
                        ARM::ATOMIC_CMP_SWAP_I32,
 | 
						|
                        ARM::ATOMIC_CMP_SWAP_I64);
 | 
						|
  }
 | 
						|
 | 
						|
  return SelectCode(N);
 | 
						|
}
 | 
						|
 | 
						|
SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
 | 
						|
  std::vector<SDValue> AsmNodeOperands;
 | 
						|
  unsigned Flag, Kind;
 | 
						|
  bool Changed = false;
 | 
						|
  unsigned NumOps = N->getNumOperands();
 | 
						|
 | 
						|
  // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
 | 
						|
  // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
 | 
						|
  // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
 | 
						|
  // respectively. Since there is no constraint to explicitly specify a
 | 
						|
  // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
 | 
						|
  // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
 | 
						|
  // them into a GPRPair.
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1) : SDValue(0,0);
 | 
						|
 | 
						|
  SmallVector<bool, 8> OpChanged;
 | 
						|
  // Glue node will be appended late.
 | 
						|
  for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
 | 
						|
    SDValue op = N->getOperand(i);
 | 
						|
    AsmNodeOperands.push_back(op);
 | 
						|
 | 
						|
    if (i < InlineAsm::Op_FirstOperand)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
 | 
						|
      Flag = C->getZExtValue();
 | 
						|
      Kind = InlineAsm::getKind(Flag);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Immediate operands to inline asm in the SelectionDAG are modeled with
 | 
						|
    // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
 | 
						|
    // the second is a constant with the value of the immediate. If we get here
 | 
						|
    // and we have a Kind_Imm, skip the next operand, and continue.
 | 
						|
    if (Kind == InlineAsm::Kind_Imm) {
 | 
						|
      SDValue op = N->getOperand(++i);
 | 
						|
      AsmNodeOperands.push_back(op);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
 | 
						|
    if (NumRegs)
 | 
						|
      OpChanged.push_back(false);
 | 
						|
 | 
						|
    unsigned DefIdx = 0;
 | 
						|
    bool IsTiedToChangedOp = false;
 | 
						|
    // If it's a use that is tied with a previous def, it has no
 | 
						|
    // reg class constraint.
 | 
						|
    if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
 | 
						|
      IsTiedToChangedOp = OpChanged[DefIdx];
 | 
						|
 | 
						|
    if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
 | 
						|
        && Kind != InlineAsm::Kind_RegDefEarlyClobber)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned RC;
 | 
						|
    bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
 | 
						|
    if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
 | 
						|
        || NumRegs != 2)
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
 | 
						|
    SDValue V0 = N->getOperand(i+1);
 | 
						|
    SDValue V1 = N->getOperand(i+2);
 | 
						|
    unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
 | 
						|
    unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
 | 
						|
    SDValue PairedReg;
 | 
						|
    MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
    if (Kind == InlineAsm::Kind_RegDef ||
 | 
						|
        Kind == InlineAsm::Kind_RegDefEarlyClobber) {
 | 
						|
      // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
 | 
						|
      // the original GPRs.
 | 
						|
 | 
						|
      unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
 | 
						|
      PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
 | 
						|
      SDValue Chain = SDValue(N,0);
 | 
						|
 | 
						|
      SDNode *GU = N->getGluedUser();
 | 
						|
      SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
 | 
						|
                                               Chain.getValue(1));
 | 
						|
 | 
						|
      // Extract values from a GPRPair reg and copy to the original GPR reg.
 | 
						|
      SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
 | 
						|
                                                    RegCopy);
 | 
						|
      SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
 | 
						|
                                                    RegCopy);
 | 
						|
      SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
 | 
						|
                                        RegCopy.getValue(1));
 | 
						|
      SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
 | 
						|
 | 
						|
      // Update the original glue user.
 | 
						|
      std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
 | 
						|
      Ops.push_back(T1.getValue(1));
 | 
						|
      CurDAG->UpdateNodeOperands(GU, &Ops[0], Ops.size());
 | 
						|
      GU = T1.getNode();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a
 | 
						|
      // GPRPair and then pass the GPRPair to the inline asm.
 | 
						|
      SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
 | 
						|
 | 
						|
      // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
 | 
						|
      SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
 | 
						|
                                          Chain.getValue(1));
 | 
						|
      SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
 | 
						|
                                          T0.getValue(1));
 | 
						|
      SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
 | 
						|
 | 
						|
      // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
 | 
						|
      // i32 VRs of inline asm with it.
 | 
						|
      unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
 | 
						|
      PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
 | 
						|
      Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
 | 
						|
 | 
						|
      AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
 | 
						|
      Glue = Chain.getValue(1);
 | 
						|
    }
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    if(PairedReg.getNode()) {
 | 
						|
      OpChanged[OpChanged.size() -1 ] = true;
 | 
						|
      Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
 | 
						|
      if (IsTiedToChangedOp)
 | 
						|
        Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
 | 
						|
      else
 | 
						|
        Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
 | 
						|
      // Replace the current flag.
 | 
						|
      AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
 | 
						|
          Flag, MVT::i32);
 | 
						|
      // Add the new register node and skip the original two GPRs.
 | 
						|
      AsmNodeOperands.push_back(PairedReg);
 | 
						|
      // Skip the next two GPRs.
 | 
						|
      i += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Glue.getNode())
 | 
						|
    AsmNodeOperands.push_back(Glue);
 | 
						|
  if (!Changed)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
 | 
						|
      CurDAG->getVTList(MVT::Other, MVT::Glue), &AsmNodeOperands[0],
 | 
						|
                        AsmNodeOperands.size());
 | 
						|
  New->setNodeId(-1);
 | 
						|
  return New.getNode();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::
 | 
						|
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
 | 
						|
                             std::vector<SDValue> &OutOps) {
 | 
						|
  assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
 | 
						|
  // Require the address to be in a register.  That is safe for all ARM
 | 
						|
  // variants and it is hard to do anything much smarter without knowing
 | 
						|
  // how the operand is used.
 | 
						|
  OutOps.push_back(Op);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// createARMISelDag - This pass converts a legalized DAG into a
 | 
						|
/// ARM-specific DAG, ready for instruction scheduling.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
 | 
						|
                                     CodeGenOpt::Level OptLevel) {
 | 
						|
  return new ARMDAGToDAGISel(TM, OptLevel);
 | 
						|
}
 |