mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77754 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1485 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1485 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the machine instruction level pre-register allocation
 | 
						|
// live interval splitting pass. It finds live interval barriers, i.e.
 | 
						|
// instructions which will kill all physical registers in certain register
 | 
						|
// classes, and split all live intervals which cross the barrier.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "pre-alloc-split"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveStackAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegisterCoalescer.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
 | 
						|
static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden);
 | 
						|
static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden);
 | 
						|
 | 
						|
STATISTIC(NumSplits, "Number of intervals split");
 | 
						|
STATISTIC(NumRemats, "Number of intervals split by rematerialization");
 | 
						|
STATISTIC(NumFolds, "Number of intervals split with spill folding");
 | 
						|
STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
 | 
						|
STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
 | 
						|
STATISTIC(NumDeadSpills, "Number of dead spills removed");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
 | 
						|
    MachineFunction       *CurrMF;
 | 
						|
    const TargetMachine   *TM;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo* TRI;
 | 
						|
    MachineFrameInfo      *MFI;
 | 
						|
    MachineRegisterInfo   *MRI;
 | 
						|
    LiveIntervals         *LIs;
 | 
						|
    LiveStacks            *LSs;
 | 
						|
    VirtRegMap            *VRM;
 | 
						|
 | 
						|
    // Barrier - Current barrier being processed.
 | 
						|
    MachineInstr          *Barrier;
 | 
						|
 | 
						|
    // BarrierMBB - Basic block where the barrier resides in.
 | 
						|
    MachineBasicBlock     *BarrierMBB;
 | 
						|
 | 
						|
    // Barrier - Current barrier index.
 | 
						|
    unsigned              BarrierIdx;
 | 
						|
 | 
						|
    // CurrLI - Current live interval being split.
 | 
						|
    LiveInterval          *CurrLI;
 | 
						|
 | 
						|
    // CurrSLI - Current stack slot live interval.
 | 
						|
    LiveInterval          *CurrSLI;
 | 
						|
 | 
						|
    // CurrSValNo - Current val# for the stack slot live interval.
 | 
						|
    VNInfo                *CurrSValNo;
 | 
						|
 | 
						|
    // IntervalSSMap - A map from live interval to spill slots.
 | 
						|
    DenseMap<unsigned, int> IntervalSSMap;
 | 
						|
 | 
						|
    // Def2SpillMap - A map from a def instruction index to spill index.
 | 
						|
    DenseMap<unsigned, unsigned> Def2SpillMap;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    PreAllocSplitting() : MachineFunctionPass(&ID) {}
 | 
						|
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<LiveIntervals>();
 | 
						|
      AU.addPreserved<LiveIntervals>();
 | 
						|
      AU.addRequired<LiveStacks>();
 | 
						|
      AU.addPreserved<LiveStacks>();
 | 
						|
      AU.addPreserved<RegisterCoalescer>();
 | 
						|
      if (StrongPHIElim)
 | 
						|
        AU.addPreservedID(StrongPHIEliminationID);
 | 
						|
      else
 | 
						|
        AU.addPreservedID(PHIEliminationID);
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addRequired<VirtRegMap>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      AU.addPreserved<MachineLoopInfo>();
 | 
						|
      AU.addPreserved<VirtRegMap>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
    
 | 
						|
    virtual void releaseMemory() {
 | 
						|
      IntervalSSMap.clear();
 | 
						|
      Def2SpillMap.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "Pre-Register Allocaton Live Interval Splitting";
 | 
						|
    }
 | 
						|
 | 
						|
    /// print - Implement the dump method.
 | 
						|
    virtual void print(std::ostream &O, const Module* M = 0) const {
 | 
						|
      LIs->print(O, M);
 | 
						|
    }
 | 
						|
 | 
						|
    void print(std::ostream *O, const Module* M = 0) const {
 | 
						|
      if (O) print(*O, M);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    MachineBasicBlock::iterator
 | 
						|
      findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
 | 
						|
                        unsigned&);
 | 
						|
 | 
						|
    MachineBasicBlock::iterator
 | 
						|
      findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
 | 
						|
                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);
 | 
						|
 | 
						|
    MachineBasicBlock::iterator
 | 
						|
      findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
 | 
						|
                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);
 | 
						|
 | 
						|
    int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
 | 
						|
 | 
						|
    bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
 | 
						|
                            unsigned&, int&) const;
 | 
						|
 | 
						|
    void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
 | 
						|
 | 
						|
    bool SplitRegLiveInterval(LiveInterval*);
 | 
						|
 | 
						|
    bool SplitRegLiveIntervals(const TargetRegisterClass **,
 | 
						|
                               SmallPtrSet<LiveInterval*, 8>&);
 | 
						|
    
 | 
						|
    bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
 | 
						|
                        MachineBasicBlock* BarrierMBB);
 | 
						|
    bool Rematerialize(unsigned vreg, VNInfo* ValNo,
 | 
						|
                       MachineInstr* DefMI,
 | 
						|
                       MachineBasicBlock::iterator RestorePt,
 | 
						|
                       unsigned RestoreIdx,
 | 
						|
                       SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
 | 
						|
    MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
 | 
						|
                            MachineInstr* DefMI,
 | 
						|
                            MachineInstr* Barrier,
 | 
						|
                            MachineBasicBlock* MBB,
 | 
						|
                            int& SS,
 | 
						|
                            SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
 | 
						|
    MachineInstr* FoldRestore(unsigned vreg, 
 | 
						|
                              const TargetRegisterClass* RC,
 | 
						|
                              MachineInstr* Barrier,
 | 
						|
                              MachineBasicBlock* MBB,
 | 
						|
                              int SS,
 | 
						|
                              SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
 | 
						|
    void RenumberValno(VNInfo* VN);
 | 
						|
    void ReconstructLiveInterval(LiveInterval* LI);
 | 
						|
    bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
 | 
						|
    unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
 | 
						|
                               unsigned Reg, int FrameIndex, bool& TwoAddr);
 | 
						|
    VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
 | 
						|
                                   MachineBasicBlock* MBB, LiveInterval* LI,
 | 
						|
                                   SmallPtrSet<MachineInstr*, 4>& Visited,
 | 
						|
            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
 | 
						|
            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
 | 
						|
                                      DenseMap<MachineInstr*, VNInfo*>& NewVNs,
 | 
						|
                                DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
 | 
						|
                                DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
 | 
						|
                                        bool IsTopLevel, bool IsIntraBlock);
 | 
						|
    VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
 | 
						|
                                   MachineBasicBlock* MBB, LiveInterval* LI,
 | 
						|
                                   SmallPtrSet<MachineInstr*, 4>& Visited,
 | 
						|
            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
 | 
						|
            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
 | 
						|
                                      DenseMap<MachineInstr*, VNInfo*>& NewVNs,
 | 
						|
                                DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
 | 
						|
                                DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
 | 
						|
                                        bool IsTopLevel, bool IsIntraBlock);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char PreAllocSplitting::ID = 0;
 | 
						|
 | 
						|
static RegisterPass<PreAllocSplitting>
 | 
						|
X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
 | 
						|
 | 
						|
const PassInfo *const llvm::PreAllocSplittingID = &X;
 | 
						|
 | 
						|
 | 
						|
/// findNextEmptySlot - Find a gap after the given machine instruction in the
 | 
						|
/// instruction index map. If there isn't one, return end().
 | 
						|
MachineBasicBlock::iterator
 | 
						|
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
 | 
						|
                                     unsigned &SpotIndex) {
 | 
						|
  MachineBasicBlock::iterator MII = MI;
 | 
						|
  if (++MII != MBB->end()) {
 | 
						|
    unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
 | 
						|
    if (Index) {
 | 
						|
      SpotIndex = Index;
 | 
						|
      return MII;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MBB->end();
 | 
						|
}
 | 
						|
 | 
						|
/// findSpillPoint - Find a gap as far away from the given MI that's suitable
 | 
						|
/// for spilling the current live interval. The index must be before any
 | 
						|
/// defs and uses of the live interval register in the mbb. Return begin() if
 | 
						|
/// none is found.
 | 
						|
MachineBasicBlock::iterator
 | 
						|
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
 | 
						|
                                  MachineInstr *DefMI,
 | 
						|
                                  SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
 | 
						|
                                  unsigned &SpillIndex) {
 | 
						|
  MachineBasicBlock::iterator Pt = MBB->begin();
 | 
						|
 | 
						|
  MachineBasicBlock::iterator MII = MI;
 | 
						|
  MachineBasicBlock::iterator EndPt = DefMI
 | 
						|
    ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
 | 
						|
    
 | 
						|
  while (MII != EndPt && !RefsInMBB.count(MII) &&
 | 
						|
         MII->getOpcode() != TRI->getCallFrameSetupOpcode())
 | 
						|
    --MII;
 | 
						|
  if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
 | 
						|
    
 | 
						|
  while (MII != EndPt && !RefsInMBB.count(MII)) {
 | 
						|
    unsigned Index = LIs->getInstructionIndex(MII);
 | 
						|
    
 | 
						|
    // We can't insert the spill between the barrier (a call), and its
 | 
						|
    // corresponding call frame setup.
 | 
						|
    if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
 | 
						|
      while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
 | 
						|
        --MII;
 | 
						|
        if (MII == EndPt) {
 | 
						|
          return Pt;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    } else if (LIs->hasGapBeforeInstr(Index)) {
 | 
						|
      Pt = MII;
 | 
						|
      SpillIndex = LIs->findGapBeforeInstr(Index, true);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (RefsInMBB.count(MII))
 | 
						|
      return Pt;
 | 
						|
    
 | 
						|
    
 | 
						|
    --MII;
 | 
						|
  }
 | 
						|
 | 
						|
  return Pt;
 | 
						|
}
 | 
						|
 | 
						|
/// findRestorePoint - Find a gap in the instruction index map that's suitable
 | 
						|
/// for restoring the current live interval value. The index must be before any
 | 
						|
/// uses of the live interval register in the mbb. Return end() if none is
 | 
						|
/// found.
 | 
						|
MachineBasicBlock::iterator
 | 
						|
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
 | 
						|
                                    unsigned LastIdx,
 | 
						|
                                    SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
 | 
						|
                                    unsigned &RestoreIndex) {
 | 
						|
  // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
 | 
						|
  // begin index accordingly.
 | 
						|
  MachineBasicBlock::iterator Pt = MBB->end();
 | 
						|
  MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
 | 
						|
 | 
						|
  // We start at the call, so walk forward until we find the call frame teardown
 | 
						|
  // since we can't insert restores before that.  Bail if we encounter a use
 | 
						|
  // during this time.
 | 
						|
  MachineBasicBlock::iterator MII = MI;
 | 
						|
  if (MII == EndPt) return Pt;
 | 
						|
  
 | 
						|
  while (MII != EndPt && !RefsInMBB.count(MII) &&
 | 
						|
         MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
 | 
						|
    ++MII;
 | 
						|
  if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
 | 
						|
  ++MII;
 | 
						|
  
 | 
						|
  // FIXME: Limit the number of instructions to examine to reduce
 | 
						|
  // compile time?
 | 
						|
  while (MII != EndPt) {
 | 
						|
    unsigned Index = LIs->getInstructionIndex(MII);
 | 
						|
    if (Index > LastIdx)
 | 
						|
      break;
 | 
						|
    unsigned Gap = LIs->findGapBeforeInstr(Index);
 | 
						|
      
 | 
						|
    // We can't insert a restore between the barrier (a call) and its 
 | 
						|
    // corresponding call frame teardown.
 | 
						|
    if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
 | 
						|
      do {
 | 
						|
        if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
 | 
						|
        ++MII;
 | 
						|
      } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
 | 
						|
    } else if (Gap) {
 | 
						|
      Pt = MII;
 | 
						|
      RestoreIndex = Gap;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (RefsInMBB.count(MII))
 | 
						|
      return Pt;
 | 
						|
    
 | 
						|
    ++MII;
 | 
						|
  }
 | 
						|
 | 
						|
  return Pt;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateSpillStackSlot - Create a stack slot for the live interval being
 | 
						|
/// split. If the live interval was previously split, just reuse the same
 | 
						|
/// slot.
 | 
						|
int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
 | 
						|
                                            const TargetRegisterClass *RC) {
 | 
						|
  int SS;
 | 
						|
  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
 | 
						|
  if (I != IntervalSSMap.end()) {
 | 
						|
    SS = I->second;
 | 
						|
  } else {
 | 
						|
    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
 | 
						|
    IntervalSSMap[Reg] = SS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create live interval for stack slot.
 | 
						|
  CurrSLI = &LSs->getOrCreateInterval(SS, RC);
 | 
						|
  if (CurrSLI->hasAtLeastOneValue())
 | 
						|
    CurrSValNo = CurrSLI->getValNumInfo(0);
 | 
						|
  else
 | 
						|
    CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
 | 
						|
  return SS;
 | 
						|
}
 | 
						|
 | 
						|
/// IsAvailableInStack - Return true if register is available in a split stack
 | 
						|
/// slot at the specified index.
 | 
						|
bool
 | 
						|
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
 | 
						|
                                    unsigned Reg, unsigned DefIndex,
 | 
						|
                                    unsigned RestoreIndex, unsigned &SpillIndex,
 | 
						|
                                    int& SS) const {
 | 
						|
  if (!DefMBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
 | 
						|
  if (I == IntervalSSMap.end())
 | 
						|
    return false;
 | 
						|
  DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
 | 
						|
  if (II == Def2SpillMap.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If last spill of def is in the same mbb as barrier mbb (where restore will
 | 
						|
  // be), make sure it's not below the intended restore index.
 | 
						|
  // FIXME: Undo the previous spill?
 | 
						|
  assert(LIs->getMBBFromIndex(II->second) == DefMBB);
 | 
						|
  if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SS = I->second;
 | 
						|
  SpillIndex = II->second;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateSpillSlotInterval - Given the specified val# of the register live
 | 
						|
/// interval being split, and the spill and restore indicies, update the live
 | 
						|
/// interval of the spill stack slot.
 | 
						|
void
 | 
						|
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
 | 
						|
                                           unsigned RestoreIndex) {
 | 
						|
  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
 | 
						|
         "Expect restore in the barrier mbb");
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
 | 
						|
  if (MBB == BarrierMBB) {
 | 
						|
    // Intra-block spill + restore. We are done.
 | 
						|
    LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
 | 
						|
    CurrSLI->addRange(SLR);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 4> Processed;
 | 
						|
  unsigned EndIdx = LIs->getMBBEndIdx(MBB);
 | 
						|
  LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
 | 
						|
  CurrSLI->addRange(SLR);
 | 
						|
  Processed.insert(MBB);
 | 
						|
 | 
						|
  // Start from the spill mbb, figure out the extend of the spill slot's
 | 
						|
  // live interval.
 | 
						|
  SmallVector<MachineBasicBlock*, 4> WorkList;
 | 
						|
  const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
 | 
						|
  if (LR->end > EndIdx)
 | 
						|
    // If live range extend beyond end of mbb, add successors to work list.
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | 
						|
           SE = MBB->succ_end(); SI != SE; ++SI)
 | 
						|
      WorkList.push_back(*SI);
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    MachineBasicBlock *MBB = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    if (Processed.count(MBB))
 | 
						|
      continue;
 | 
						|
    unsigned Idx = LIs->getMBBStartIdx(MBB);
 | 
						|
    LR = CurrLI->getLiveRangeContaining(Idx);
 | 
						|
    if (LR && LR->valno == ValNo) {
 | 
						|
      EndIdx = LIs->getMBBEndIdx(MBB);
 | 
						|
      if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
 | 
						|
        // Spill slot live interval stops at the restore.
 | 
						|
        LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
 | 
						|
        CurrSLI->addRange(SLR);
 | 
						|
      } else if (LR->end > EndIdx) {
 | 
						|
        // Live range extends beyond end of mbb, process successors.
 | 
						|
        LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
 | 
						|
        CurrSLI->addRange(SLR);
 | 
						|
        for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | 
						|
               SE = MBB->succ_end(); SI != SE; ++SI)
 | 
						|
          WorkList.push_back(*SI);
 | 
						|
      } else {
 | 
						|
        LiveRange SLR(Idx, LR->end, CurrSValNo);
 | 
						|
        CurrSLI->addRange(SLR);
 | 
						|
      }
 | 
						|
      Processed.insert(MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
 | 
						|
/// construction algorithm to compute the ranges and valnos for an interval.
 | 
						|
VNInfo*
 | 
						|
PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
 | 
						|
                                       MachineBasicBlock* MBB, LiveInterval* LI,
 | 
						|
                                       SmallPtrSet<MachineInstr*, 4>& Visited,
 | 
						|
             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
 | 
						|
             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
 | 
						|
                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
 | 
						|
                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
 | 
						|
                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
 | 
						|
                                           bool IsTopLevel, bool IsIntraBlock) {
 | 
						|
  // Return memoized result if it's available.
 | 
						|
  if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
 | 
						|
    return NewVNs[UseI];
 | 
						|
  else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
 | 
						|
    return NewVNs[UseI];
 | 
						|
  else if (!IsIntraBlock && LiveOut.count(MBB))
 | 
						|
    return LiveOut[MBB];
 | 
						|
  
 | 
						|
  // Check if our block contains any uses or defs.
 | 
						|
  bool ContainsDefs = Defs.count(MBB);
 | 
						|
  bool ContainsUses = Uses.count(MBB);
 | 
						|
  
 | 
						|
  VNInfo* RetVNI = 0;
 | 
						|
  
 | 
						|
  // Enumerate the cases of use/def contaning blocks.
 | 
						|
  if (!ContainsDefs && !ContainsUses) {
 | 
						|
    return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
 | 
						|
                                          NewVNs, LiveOut, Phis,
 | 
						|
                                          IsTopLevel, IsIntraBlock);
 | 
						|
  } else if (ContainsDefs && !ContainsUses) {
 | 
						|
    SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
 | 
						|
 | 
						|
    // Search for the def in this block.  If we don't find it before the
 | 
						|
    // instruction we care about, go to the fallback case.  Note that that
 | 
						|
    // should never happen: this cannot be intrablock, so use should
 | 
						|
    // always be an end() iterator.
 | 
						|
    assert(UseI == MBB->end() && "No use marked in intrablock");
 | 
						|
    
 | 
						|
    MachineBasicBlock::iterator Walker = UseI;
 | 
						|
    --Walker;
 | 
						|
    while (Walker != MBB->begin()) {
 | 
						|
      if (BlockDefs.count(Walker))
 | 
						|
        break;
 | 
						|
      --Walker;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Once we've found it, extend its VNInfo to our instruction.
 | 
						|
    unsigned DefIndex = LIs->getInstructionIndex(Walker);
 | 
						|
    DefIndex = LiveIntervals::getDefIndex(DefIndex);
 | 
						|
    unsigned EndIndex = LIs->getMBBEndIdx(MBB);
 | 
						|
    
 | 
						|
    RetVNI = NewVNs[Walker];
 | 
						|
    LI->addRange(LiveRange(DefIndex, EndIndex+1, RetVNI));
 | 
						|
  } else if (!ContainsDefs && ContainsUses) {
 | 
						|
    SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
 | 
						|
    
 | 
						|
    // Search for the use in this block that precedes the instruction we care 
 | 
						|
    // about, going to the fallback case if we don't find it.    
 | 
						|
    if (UseI == MBB->begin())
 | 
						|
      return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
 | 
						|
                                            Uses, NewVNs, LiveOut, Phis,
 | 
						|
                                            IsTopLevel, IsIntraBlock);
 | 
						|
    
 | 
						|
    MachineBasicBlock::iterator Walker = UseI;
 | 
						|
    --Walker;
 | 
						|
    bool found = false;
 | 
						|
    while (Walker != MBB->begin()) {
 | 
						|
      if (BlockUses.count(Walker)) {
 | 
						|
        found = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      --Walker;
 | 
						|
    }
 | 
						|
        
 | 
						|
    // Must check begin() too.
 | 
						|
    if (!found) {
 | 
						|
      if (BlockUses.count(Walker))
 | 
						|
        found = true;
 | 
						|
      else
 | 
						|
        return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
 | 
						|
                                              Uses, NewVNs, LiveOut, Phis,
 | 
						|
                                              IsTopLevel, IsIntraBlock);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned UseIndex = LIs->getInstructionIndex(Walker);
 | 
						|
    UseIndex = LiveIntervals::getUseIndex(UseIndex);
 | 
						|
    unsigned EndIndex = 0;
 | 
						|
    if (IsIntraBlock) {
 | 
						|
      EndIndex = LIs->getInstructionIndex(UseI);
 | 
						|
      EndIndex = LiveIntervals::getUseIndex(EndIndex);
 | 
						|
    } else
 | 
						|
      EndIndex = LIs->getMBBEndIdx(MBB);
 | 
						|
 | 
						|
    // Now, recursively phi construct the VNInfo for the use we found,
 | 
						|
    // and then extend it to include the instruction we care about
 | 
						|
    RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
 | 
						|
                                    NewVNs, LiveOut, Phis, false, true);
 | 
						|
    
 | 
						|
    LI->addRange(LiveRange(UseIndex, EndIndex+1, RetVNI));
 | 
						|
    
 | 
						|
    // FIXME: Need to set kills properly for inter-block stuff.
 | 
						|
    if (LI->isKill(RetVNI, UseIndex)) LI->removeKill(RetVNI, UseIndex);
 | 
						|
    if (IsIntraBlock)
 | 
						|
      LI->addKill(RetVNI, EndIndex, false);
 | 
						|
  } else if (ContainsDefs && ContainsUses) {
 | 
						|
    SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
 | 
						|
    SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
 | 
						|
    
 | 
						|
    // This case is basically a merging of the two preceding case, with the
 | 
						|
    // special note that checking for defs must take precedence over checking
 | 
						|
    // for uses, because of two-address instructions.
 | 
						|
    
 | 
						|
    if (UseI == MBB->begin())
 | 
						|
      return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
 | 
						|
                                            NewVNs, LiveOut, Phis,
 | 
						|
                                            IsTopLevel, IsIntraBlock);
 | 
						|
    
 | 
						|
    MachineBasicBlock::iterator Walker = UseI;
 | 
						|
    --Walker;
 | 
						|
    bool foundDef = false;
 | 
						|
    bool foundUse = false;
 | 
						|
    while (Walker != MBB->begin()) {
 | 
						|
      if (BlockDefs.count(Walker)) {
 | 
						|
        foundDef = true;
 | 
						|
        break;
 | 
						|
      } else if (BlockUses.count(Walker)) {
 | 
						|
        foundUse = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      --Walker;
 | 
						|
    }
 | 
						|
        
 | 
						|
    // Must check begin() too.
 | 
						|
    if (!foundDef && !foundUse) {
 | 
						|
      if (BlockDefs.count(Walker))
 | 
						|
        foundDef = true;
 | 
						|
      else if (BlockUses.count(Walker))
 | 
						|
        foundUse = true;
 | 
						|
      else
 | 
						|
        return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
 | 
						|
                                              Uses, NewVNs, LiveOut, Phis,
 | 
						|
                                              IsTopLevel, IsIntraBlock);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned StartIndex = LIs->getInstructionIndex(Walker);
 | 
						|
    StartIndex = foundDef ? LiveIntervals::getDefIndex(StartIndex) :
 | 
						|
                            LiveIntervals::getUseIndex(StartIndex);
 | 
						|
    unsigned EndIndex = 0;
 | 
						|
    if (IsIntraBlock) {
 | 
						|
      EndIndex = LIs->getInstructionIndex(UseI);
 | 
						|
      EndIndex = LiveIntervals::getUseIndex(EndIndex);
 | 
						|
    } else
 | 
						|
      EndIndex = LIs->getMBBEndIdx(MBB);
 | 
						|
 | 
						|
    if (foundDef)
 | 
						|
      RetVNI = NewVNs[Walker];
 | 
						|
    else
 | 
						|
      RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
 | 
						|
                                      NewVNs, LiveOut, Phis, false, true);
 | 
						|
 | 
						|
    LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
 | 
						|
    
 | 
						|
    if (foundUse && LI->isKill(RetVNI, StartIndex))
 | 
						|
      LI->removeKill(RetVNI, StartIndex);
 | 
						|
    if (IsIntraBlock) {
 | 
						|
      LI->addKill(RetVNI, EndIndex, false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Memoize results so we don't have to recompute them.
 | 
						|
  if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
 | 
						|
  else {
 | 
						|
    if (!NewVNs.count(UseI))
 | 
						|
      NewVNs[UseI] = RetVNI;
 | 
						|
    Visited.insert(UseI);
 | 
						|
  }
 | 
						|
 | 
						|
  return RetVNI;
 | 
						|
}
 | 
						|
 | 
						|
/// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
 | 
						|
///
 | 
						|
VNInfo*
 | 
						|
PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
 | 
						|
                                       MachineBasicBlock* MBB, LiveInterval* LI,
 | 
						|
                                       SmallPtrSet<MachineInstr*, 4>& Visited,
 | 
						|
             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
 | 
						|
             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
 | 
						|
                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
 | 
						|
                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
 | 
						|
                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
 | 
						|
                                           bool IsTopLevel, bool IsIntraBlock) {
 | 
						|
  // NOTE: Because this is the fallback case from other cases, we do NOT
 | 
						|
  // assume that we are not intrablock here.
 | 
						|
  if (Phis.count(MBB)) return Phis[MBB]; 
 | 
						|
 | 
						|
  unsigned StartIndex = LIs->getMBBStartIdx(MBB);
 | 
						|
  VNInfo *RetVNI = Phis[MBB] =
 | 
						|
    LI->getNextValue(0, /*FIXME*/ 0, false, LIs->getVNInfoAllocator());
 | 
						|
 | 
						|
  if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
 | 
						|
    
 | 
						|
  // If there are no uses or defs between our starting point and the
 | 
						|
  // beginning of the block, then recursive perform phi construction
 | 
						|
  // on our predecessors.
 | 
						|
  DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
 | 
						|
  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | 
						|
         PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
    VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, 
 | 
						|
                                              Visited, Defs, Uses, NewVNs,
 | 
						|
                                              LiveOut, Phis, false, false);
 | 
						|
    if (Incoming != 0)
 | 
						|
      IncomingVNs[*PI] = Incoming;
 | 
						|
  }
 | 
						|
    
 | 
						|
  if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
 | 
						|
    VNInfo* OldVN = RetVNI;
 | 
						|
    VNInfo* NewVN = IncomingVNs.begin()->second;
 | 
						|
    VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
 | 
						|
    if (MergedVN == OldVN) std::swap(OldVN, NewVN);
 | 
						|
    
 | 
						|
    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
 | 
						|
         LOE = LiveOut.end(); LOI != LOE; ++LOI)
 | 
						|
      if (LOI->second == OldVN)
 | 
						|
        LOI->second = MergedVN;
 | 
						|
    for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
 | 
						|
         NVE = NewVNs.end(); NVI != NVE; ++NVI)
 | 
						|
      if (NVI->second == OldVN)
 | 
						|
        NVI->second = MergedVN;
 | 
						|
    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
 | 
						|
         PE = Phis.end(); PI != PE; ++PI)
 | 
						|
      if (PI->second == OldVN)
 | 
						|
        PI->second = MergedVN;
 | 
						|
    RetVNI = MergedVN;
 | 
						|
  } else {
 | 
						|
    // Otherwise, merge the incoming VNInfos with a phi join.  Create a new
 | 
						|
    // VNInfo to represent the joined value.
 | 
						|
    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
 | 
						|
           IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
 | 
						|
      I->second->setHasPHIKill(true);
 | 
						|
      unsigned KillIndex = LIs->getMBBEndIdx(I->first);
 | 
						|
      if (!LiveInterval::isKill(I->second, KillIndex))
 | 
						|
        LI->addKill(I->second, KillIndex, false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
      
 | 
						|
  unsigned EndIndex = 0;
 | 
						|
  if (IsIntraBlock) {
 | 
						|
    EndIndex = LIs->getInstructionIndex(UseI);
 | 
						|
    EndIndex = LiveIntervals::getUseIndex(EndIndex);
 | 
						|
  } else
 | 
						|
    EndIndex = LIs->getMBBEndIdx(MBB);
 | 
						|
  LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
 | 
						|
  if (IsIntraBlock)
 | 
						|
    LI->addKill(RetVNI, EndIndex, false);
 | 
						|
 | 
						|
  // Memoize results so we don't have to recompute them.
 | 
						|
  if (!IsIntraBlock)
 | 
						|
    LiveOut[MBB] = RetVNI;
 | 
						|
  else {
 | 
						|
    if (!NewVNs.count(UseI))
 | 
						|
      NewVNs[UseI] = RetVNI;
 | 
						|
    Visited.insert(UseI);
 | 
						|
  }
 | 
						|
 | 
						|
  return RetVNI;
 | 
						|
}
 | 
						|
 | 
						|
/// ReconstructLiveInterval - Recompute a live interval from scratch.
 | 
						|
void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
 | 
						|
  BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator();
 | 
						|
  
 | 
						|
  // Clear the old ranges and valnos;
 | 
						|
  LI->clear();
 | 
						|
  
 | 
						|
  // Cache the uses and defs of the register
 | 
						|
  typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
 | 
						|
  RegMap Defs, Uses;
 | 
						|
  
 | 
						|
  // Keep track of the new VNs we're creating.
 | 
						|
  DenseMap<MachineInstr*, VNInfo*> NewVNs;
 | 
						|
  SmallPtrSet<VNInfo*, 2> PhiVNs;
 | 
						|
  
 | 
						|
  // Cache defs, and create a new VNInfo for each def.
 | 
						|
  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
 | 
						|
       DE = MRI->def_end(); DI != DE; ++DI) {
 | 
						|
    Defs[(*DI).getParent()].insert(&*DI);
 | 
						|
    
 | 
						|
    unsigned DefIdx = LIs->getInstructionIndex(&*DI);
 | 
						|
    DefIdx = LiveIntervals::getDefIndex(DefIdx);
 | 
						|
    
 | 
						|
    assert(DI->getOpcode() != TargetInstrInfo::PHI &&
 | 
						|
           "Following NewVN isPHIDef flag incorrect. Fix me!");
 | 
						|
    VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc);
 | 
						|
    
 | 
						|
    // If the def is a move, set the copy field.
 | 
						|
    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
 | 
						|
    if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
 | 
						|
      if (DstReg == LI->reg)
 | 
						|
        NewVN->copy = &*DI;
 | 
						|
    
 | 
						|
    NewVNs[&*DI] = NewVN;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Cache uses as a separate pass from actually processing them.
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
 | 
						|
       UE = MRI->use_end(); UI != UE; ++UI)
 | 
						|
    Uses[(*UI).getParent()].insert(&*UI);
 | 
						|
    
 | 
						|
  // Now, actually process every use and use a phi construction algorithm
 | 
						|
  // to walk from it to its reaching definitions, building VNInfos along
 | 
						|
  // the way.
 | 
						|
  DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
 | 
						|
  DenseMap<MachineBasicBlock*, VNInfo*> Phis;
 | 
						|
  SmallPtrSet<MachineInstr*, 4> Visited;
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
 | 
						|
       UE = MRI->use_end(); UI != UE; ++UI) {
 | 
						|
    PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
 | 
						|
                           Uses, NewVNs, LiveOut, Phis, true, true); 
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add ranges for dead defs
 | 
						|
  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
 | 
						|
       DE = MRI->def_end(); DI != DE; ++DI) {
 | 
						|
    unsigned DefIdx = LIs->getInstructionIndex(&*DI);
 | 
						|
    DefIdx = LiveIntervals::getDefIndex(DefIdx);
 | 
						|
    
 | 
						|
    if (LI->liveAt(DefIdx)) continue;
 | 
						|
    
 | 
						|
    VNInfo* DeadVN = NewVNs[&*DI];
 | 
						|
    LI->addRange(LiveRange(DefIdx, DefIdx+1, DeadVN));
 | 
						|
    LI->addKill(DeadVN, DefIdx, false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RenumberValno - Split the given valno out into a new vreg, allowing it to
 | 
						|
/// be allocated to a different register.  This function creates a new vreg,
 | 
						|
/// copies the valno and its live ranges over to the new vreg's interval,
 | 
						|
/// removes them from the old interval, and rewrites all uses and defs of
 | 
						|
/// the original reg to the new vreg within those ranges.
 | 
						|
void PreAllocSplitting::RenumberValno(VNInfo* VN) {
 | 
						|
  SmallVector<VNInfo*, 4> Stack;
 | 
						|
  SmallVector<VNInfo*, 4> VNsToCopy;
 | 
						|
  Stack.push_back(VN);
 | 
						|
 | 
						|
  // Walk through and copy the valno we care about, and any other valnos
 | 
						|
  // that are two-address redefinitions of the one we care about.  These
 | 
						|
  // will need to be rewritten as well.  We also check for safety of the 
 | 
						|
  // renumbering here, by making sure that none of the valno involved has
 | 
						|
  // phi kills.
 | 
						|
  while (!Stack.empty()) {
 | 
						|
    VNInfo* OldVN = Stack.back();
 | 
						|
    Stack.pop_back();
 | 
						|
    
 | 
						|
    // Bail out if we ever encounter a valno that has a PHI kill.  We can't
 | 
						|
    // renumber these.
 | 
						|
    if (OldVN->hasPHIKill()) return;
 | 
						|
    
 | 
						|
    VNsToCopy.push_back(OldVN);
 | 
						|
    
 | 
						|
    // Locate two-address redefinitions
 | 
						|
    for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(),
 | 
						|
         KE = OldVN->kills.end(); KI != KE; ++KI) {
 | 
						|
      assert(!KI->isPHIKill && "VN previously reported having no PHI kills.");
 | 
						|
      MachineInstr* MI = LIs->getInstructionFromIndex(KI->killIdx);
 | 
						|
      unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
 | 
						|
      if (DefIdx == ~0U) continue;
 | 
						|
      if (MI->isRegTiedToUseOperand(DefIdx)) {
 | 
						|
        VNInfo* NextVN =
 | 
						|
          CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(KI->killIdx));
 | 
						|
        if (NextVN == OldVN) continue;
 | 
						|
        Stack.push_back(NextVN);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Create the new vreg
 | 
						|
  unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
 | 
						|
  
 | 
						|
  // Create the new live interval
 | 
						|
  LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
 | 
						|
  
 | 
						|
  for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = 
 | 
						|
       VNsToCopy.end(); OI != OE; ++OI) {
 | 
						|
    VNInfo* OldVN = *OI;
 | 
						|
    
 | 
						|
    // Copy the valno over
 | 
						|
    VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
 | 
						|
    NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
 | 
						|
 | 
						|
    // Remove the valno from the old interval
 | 
						|
    CurrLI->removeValNo(OldVN);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Rewrite defs and uses.  This is done in two stages to avoid invalidating
 | 
						|
  // the reg_iterator.
 | 
						|
  SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
 | 
						|
  
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
 | 
						|
         E = MRI->reg_end(); I != E; ++I) {
 | 
						|
    MachineOperand& MO = I.getOperand();
 | 
						|
    unsigned InstrIdx = LIs->getInstructionIndex(&*I);
 | 
						|
    
 | 
						|
    if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) ||
 | 
						|
        (MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx))))
 | 
						|
      OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
 | 
						|
       OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
 | 
						|
    MachineInstr* Inst = I->first;
 | 
						|
    unsigned OpIdx = I->second;
 | 
						|
    MachineOperand& MO = Inst->getOperand(OpIdx);
 | 
						|
    MO.setReg(NewVReg);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Grow the VirtRegMap, since we've created a new vreg.
 | 
						|
  VRM->grow();
 | 
						|
  
 | 
						|
  // The renumbered vreg shares a stack slot with the old register.
 | 
						|
  if (IntervalSSMap.count(CurrLI->reg))
 | 
						|
    IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
 | 
						|
  
 | 
						|
  NumRenumbers++;
 | 
						|
}
 | 
						|
 | 
						|
bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
 | 
						|
                                      MachineInstr* DefMI,
 | 
						|
                                      MachineBasicBlock::iterator RestorePt,
 | 
						|
                                      unsigned RestoreIdx,
 | 
						|
                                    SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
 | 
						|
  MachineBasicBlock& MBB = *RestorePt->getParent();
 | 
						|
  
 | 
						|
  MachineBasicBlock::iterator KillPt = BarrierMBB->end();
 | 
						|
  unsigned KillIdx = 0;
 | 
						|
  if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
 | 
						|
    KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
 | 
						|
  else
 | 
						|
    KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx);
 | 
						|
  
 | 
						|
  if (KillPt == DefMI->getParent()->end())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI);
 | 
						|
  LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
 | 
						|
  
 | 
						|
  ReconstructLiveInterval(CurrLI);
 | 
						|
  unsigned RematIdx = LIs->getInstructionIndex(prior(RestorePt));
 | 
						|
  RematIdx = LiveIntervals::getDefIndex(RematIdx);
 | 
						|
  RenumberValno(CurrLI->findDefinedVNInfo(RematIdx));
 | 
						|
  
 | 
						|
  ++NumSplits;
 | 
						|
  ++NumRemats;
 | 
						|
  return true;  
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, 
 | 
						|
                                           const TargetRegisterClass* RC,
 | 
						|
                                           MachineInstr* DefMI,
 | 
						|
                                           MachineInstr* Barrier,
 | 
						|
                                           MachineBasicBlock* MBB,
 | 
						|
                                           int& SS,
 | 
						|
                                    SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
 | 
						|
  MachineBasicBlock::iterator Pt = MBB->begin();
 | 
						|
 | 
						|
  // Go top down if RefsInMBB is empty.
 | 
						|
  if (RefsInMBB.empty())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  MachineBasicBlock::iterator FoldPt = Barrier;
 | 
						|
  while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
 | 
						|
         !RefsInMBB.count(FoldPt))
 | 
						|
    --FoldPt;
 | 
						|
  
 | 
						|
  int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false);
 | 
						|
  if (OpIdx == -1)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  SmallVector<unsigned, 1> Ops;
 | 
						|
  Ops.push_back(OpIdx);
 | 
						|
  
 | 
						|
  if (!TII->canFoldMemoryOperand(FoldPt, Ops))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
 | 
						|
  if (I != IntervalSSMap.end()) {
 | 
						|
    SS = I->second;
 | 
						|
  } else {
 | 
						|
    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());    
 | 
						|
  }
 | 
						|
  
 | 
						|
  MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
 | 
						|
                                             FoldPt, Ops, SS);
 | 
						|
  
 | 
						|
  if (FMI) {
 | 
						|
    LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
 | 
						|
    FMI = MBB->insert(MBB->erase(FoldPt), FMI);
 | 
						|
    ++NumFolds;
 | 
						|
    
 | 
						|
    IntervalSSMap[vreg] = SS;
 | 
						|
    CurrSLI = &LSs->getOrCreateInterval(SS, RC);
 | 
						|
    if (CurrSLI->hasAtLeastOneValue())
 | 
						|
      CurrSValNo = CurrSLI->getValNumInfo(0);
 | 
						|
    else
 | 
						|
      CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
 | 
						|
  }
 | 
						|
  
 | 
						|
  return FMI;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg, 
 | 
						|
                                             const TargetRegisterClass* RC,
 | 
						|
                                             MachineInstr* Barrier,
 | 
						|
                                             MachineBasicBlock* MBB,
 | 
						|
                                             int SS,
 | 
						|
                                     SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
 | 
						|
  if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
 | 
						|
    return 0;
 | 
						|
                                       
 | 
						|
  // Go top down if RefsInMBB is empty.
 | 
						|
  if (RefsInMBB.empty())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Can't fold a restore between a call stack setup and teardown.
 | 
						|
  MachineBasicBlock::iterator FoldPt = Barrier;
 | 
						|
  
 | 
						|
  // Advance from barrier to call frame teardown.
 | 
						|
  while (FoldPt != MBB->getFirstTerminator() &&
 | 
						|
         FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
 | 
						|
    if (RefsInMBB.count(FoldPt))
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    ++FoldPt;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (FoldPt == MBB->getFirstTerminator())
 | 
						|
    return 0;
 | 
						|
  else
 | 
						|
    ++FoldPt;
 | 
						|
  
 | 
						|
  // Now find the restore point.
 | 
						|
  while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
 | 
						|
    if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
 | 
						|
      while (FoldPt != MBB->getFirstTerminator() &&
 | 
						|
             FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
 | 
						|
        if (RefsInMBB.count(FoldPt))
 | 
						|
          return 0;
 | 
						|
        
 | 
						|
        ++FoldPt;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (FoldPt == MBB->getFirstTerminator())
 | 
						|
        return 0;
 | 
						|
    } 
 | 
						|
    
 | 
						|
    ++FoldPt;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (FoldPt == MBB->getFirstTerminator())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
 | 
						|
  if (OpIdx == -1)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  SmallVector<unsigned, 1> Ops;
 | 
						|
  Ops.push_back(OpIdx);
 | 
						|
  
 | 
						|
  if (!TII->canFoldMemoryOperand(FoldPt, Ops))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
 | 
						|
                                             FoldPt, Ops, SS);
 | 
						|
  
 | 
						|
  if (FMI) {
 | 
						|
    LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
 | 
						|
    FMI = MBB->insert(MBB->erase(FoldPt), FMI);
 | 
						|
    ++NumRestoreFolds;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return FMI;
 | 
						|
}
 | 
						|
 | 
						|
/// SplitRegLiveInterval - Split (spill and restore) the given live interval
 | 
						|
/// so it would not cross the barrier that's being processed. Shrink wrap
 | 
						|
/// (minimize) the live interval to the last uses.
 | 
						|
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
 | 
						|
  CurrLI = LI;
 | 
						|
 | 
						|
  // Find live range where current interval cross the barrier.
 | 
						|
  LiveInterval::iterator LR =
 | 
						|
    CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
 | 
						|
  VNInfo *ValNo = LR->valno;
 | 
						|
 | 
						|
  assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
 | 
						|
 | 
						|
  MachineInstr *DefMI = ValNo->isDefAccurate()
 | 
						|
    ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
 | 
						|
 | 
						|
  // If this would create a new join point, do not split.
 | 
						|
  if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find all references in the barrier mbb.
 | 
						|
  SmallPtrSet<MachineInstr*, 4> RefsInMBB;
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
 | 
						|
         E = MRI->reg_end(); I != E; ++I) {
 | 
						|
    MachineInstr *RefMI = &*I;
 | 
						|
    if (RefMI->getParent() == BarrierMBB)
 | 
						|
      RefsInMBB.insert(RefMI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Find a point to restore the value after the barrier.
 | 
						|
  unsigned RestoreIndex = 0;
 | 
						|
  MachineBasicBlock::iterator RestorePt =
 | 
						|
    findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
 | 
						|
  if (RestorePt == BarrierMBB->end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
 | 
						|
    if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt,
 | 
						|
                      RestoreIndex, RefsInMBB))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Add a spill either before the barrier or after the definition.
 | 
						|
  MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
 | 
						|
  const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
 | 
						|
  unsigned SpillIndex = 0;
 | 
						|
  MachineInstr *SpillMI = NULL;
 | 
						|
  int SS = -1;
 | 
						|
  if (!ValNo->isDefAccurate()) {
 | 
						|
    // If we don't know where the def is we must split just before the barrier.
 | 
						|
    if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
 | 
						|
                            BarrierMBB, SS, RefsInMBB))) {
 | 
						|
      SpillIndex = LIs->getInstructionIndex(SpillMI);
 | 
						|
    } else {
 | 
						|
      MachineBasicBlock::iterator SpillPt = 
 | 
						|
        findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
 | 
						|
      if (SpillPt == BarrierMBB->begin())
 | 
						|
        return false; // No gap to insert spill.
 | 
						|
      // Add spill.
 | 
						|
    
 | 
						|
      SS = CreateSpillStackSlot(CurrLI->reg, RC);
 | 
						|
      TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
 | 
						|
      SpillMI = prior(SpillPt);
 | 
						|
      LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
 | 
						|
    }
 | 
						|
  } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
 | 
						|
                                 RestoreIndex, SpillIndex, SS)) {
 | 
						|
    // If it's already split, just restore the value. There is no need to spill
 | 
						|
    // the def again.
 | 
						|
    if (!DefMI)
 | 
						|
      return false; // Def is dead. Do nothing.
 | 
						|
    
 | 
						|
    if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
 | 
						|
                            BarrierMBB, SS, RefsInMBB))) {
 | 
						|
      SpillIndex = LIs->getInstructionIndex(SpillMI);
 | 
						|
    } else {
 | 
						|
      // Check if it's possible to insert a spill after the def MI.
 | 
						|
      MachineBasicBlock::iterator SpillPt;
 | 
						|
      if (DefMBB == BarrierMBB) {
 | 
						|
        // Add spill after the def and the last use before the barrier.
 | 
						|
        SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
 | 
						|
                                 RefsInMBB, SpillIndex);
 | 
						|
        if (SpillPt == DefMBB->begin())
 | 
						|
          return false; // No gap to insert spill.
 | 
						|
      } else {
 | 
						|
        SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
 | 
						|
        if (SpillPt == DefMBB->end())
 | 
						|
          return false; // No gap to insert spill.
 | 
						|
      }
 | 
						|
      // Add spill. The store instruction kills the register if def is before
 | 
						|
      // the barrier in the barrier block.
 | 
						|
      SS = CreateSpillStackSlot(CurrLI->reg, RC);
 | 
						|
      TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
 | 
						|
                               DefMBB == BarrierMBB, SS, RC);
 | 
						|
      SpillMI = prior(SpillPt);
 | 
						|
      LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Remember def instruction index to spill index mapping.
 | 
						|
  if (DefMI && SpillMI)
 | 
						|
    Def2SpillMap[ValNo->def] = SpillIndex;
 | 
						|
 | 
						|
  // Add restore.
 | 
						|
  bool FoldedRestore = false;
 | 
						|
  if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
 | 
						|
                                      BarrierMBB, SS, RefsInMBB)) {
 | 
						|
    RestorePt = LMI;
 | 
						|
    RestoreIndex = LIs->getInstructionIndex(RestorePt);
 | 
						|
    FoldedRestore = true;
 | 
						|
  } else {
 | 
						|
    TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
 | 
						|
    MachineInstr *LoadMI = prior(RestorePt);
 | 
						|
    LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update spill stack slot live interval.
 | 
						|
  UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
 | 
						|
                          LIs->getDefIndex(RestoreIndex));
 | 
						|
 | 
						|
  ReconstructLiveInterval(CurrLI);
 | 
						|
  
 | 
						|
  if (!FoldedRestore) {
 | 
						|
    unsigned RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
 | 
						|
    RestoreIdx = LiveIntervals::getDefIndex(RestoreIdx);
 | 
						|
    RenumberValno(CurrLI->findDefinedVNInfo(RestoreIdx));
 | 
						|
  }
 | 
						|
  
 | 
						|
  ++NumSplits;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// SplitRegLiveIntervals - Split all register live intervals that cross the
 | 
						|
/// barrier that's being processed.
 | 
						|
bool
 | 
						|
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
 | 
						|
                                         SmallPtrSet<LiveInterval*, 8>& Split) {
 | 
						|
  // First find all the virtual registers whose live intervals are intercepted
 | 
						|
  // by the current barrier.
 | 
						|
  SmallVector<LiveInterval*, 8> Intervals;
 | 
						|
  for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
 | 
						|
    // FIXME: If it's not safe to move any instruction that defines the barrier
 | 
						|
    // register class, then it means there are some special dependencies which
 | 
						|
    // codegen is not modelling. Ignore these barriers for now.
 | 
						|
    if (!TII->isSafeToMoveRegClassDefs(*RC))
 | 
						|
      continue;
 | 
						|
    std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
 | 
						|
    for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
 | 
						|
      unsigned Reg = VRs[i];
 | 
						|
      if (!LIs->hasInterval(Reg))
 | 
						|
        continue;
 | 
						|
      LiveInterval *LI = &LIs->getInterval(Reg);
 | 
						|
      if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
 | 
						|
        // Virtual register live interval is intercepted by the barrier. We
 | 
						|
        // should split and shrink wrap its interval if possible.
 | 
						|
        Intervals.push_back(LI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process the affected live intervals.
 | 
						|
  bool Change = false;
 | 
						|
  while (!Intervals.empty()) {
 | 
						|
    if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
 | 
						|
      break;
 | 
						|
    else if (NumSplits == 4)
 | 
						|
      Change |= Change;
 | 
						|
    LiveInterval *LI = Intervals.back();
 | 
						|
    Intervals.pop_back();
 | 
						|
    bool result = SplitRegLiveInterval(LI);
 | 
						|
    if (result) Split.insert(LI);
 | 
						|
    Change |= result;
 | 
						|
  }
 | 
						|
 | 
						|
  return Change;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PreAllocSplitting::getNumberOfNonSpills(
 | 
						|
                                  SmallPtrSet<MachineInstr*, 4>& MIs,
 | 
						|
                                  unsigned Reg, int FrameIndex,
 | 
						|
                                  bool& FeedsTwoAddr) {
 | 
						|
  unsigned NonSpills = 0;
 | 
						|
  for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    int StoreFrameIndex;
 | 
						|
    unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
 | 
						|
    if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
 | 
						|
      NonSpills++;
 | 
						|
    
 | 
						|
    int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
 | 
						|
    if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
 | 
						|
      FeedsTwoAddr = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return NonSpills;
 | 
						|
}
 | 
						|
 | 
						|
/// removeDeadSpills - After doing splitting, filter through all intervals we've
 | 
						|
/// split, and see if any of the spills are unnecessary.  If so, remove them.
 | 
						|
bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
 | 
						|
  bool changed = false;
 | 
						|
  
 | 
						|
  // Walk over all of the live intervals that were touched by the splitter,
 | 
						|
  // and see if we can do any DCE and/or folding.
 | 
						|
  for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
 | 
						|
       LE = split.end(); LI != LE; ++LI) {
 | 
						|
    DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
 | 
						|
    
 | 
						|
    // First, collect all the uses of the vreg, and sort them by their
 | 
						|
    // reaching definition (VNInfo).
 | 
						|
    for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
 | 
						|
         UE = MRI->use_end(); UI != UE; ++UI) {
 | 
						|
      unsigned index = LIs->getInstructionIndex(&*UI);
 | 
						|
      index = LiveIntervals::getUseIndex(index);
 | 
						|
      
 | 
						|
      const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
 | 
						|
      VNUseCount[LR->valno].insert(&*UI);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now, take the definitions (VNInfo's) one at a time and try to DCE 
 | 
						|
    // and/or fold them away.
 | 
						|
    for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
 | 
						|
         VE = (*LI)->vni_end(); VI != VE; ++VI) {
 | 
						|
      
 | 
						|
      if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit) 
 | 
						|
        return changed;
 | 
						|
      
 | 
						|
      VNInfo* CurrVN = *VI;
 | 
						|
      
 | 
						|
      // We don't currently try to handle definitions with PHI kills, because
 | 
						|
      // it would involve processing more than one VNInfo at once.
 | 
						|
      if (CurrVN->hasPHIKill()) continue;
 | 
						|
      
 | 
						|
      // We also don't try to handle the results of PHI joins, since there's
 | 
						|
      // no defining instruction to analyze.
 | 
						|
      if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue;
 | 
						|
    
 | 
						|
      // We're only interested in eliminating cruft introduced by the splitter,
 | 
						|
      // is of the form load-use or load-use-store.  First, check that the
 | 
						|
      // definition is a load, and remember what stack slot we loaded it from.
 | 
						|
      MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
 | 
						|
      int FrameIndex;
 | 
						|
      if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
 | 
						|
      
 | 
						|
      // If the definition has no uses at all, just DCE it.
 | 
						|
      if (VNUseCount[CurrVN].size() == 0) {
 | 
						|
        LIs->RemoveMachineInstrFromMaps(DefMI);
 | 
						|
        (*LI)->removeValNo(CurrVN);
 | 
						|
        DefMI->eraseFromParent();
 | 
						|
        VNUseCount.erase(CurrVN);
 | 
						|
        NumDeadSpills++;
 | 
						|
        changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Second, get the number of non-store uses of the definition, as well as
 | 
						|
      // a flag indicating whether it feeds into a later two-address definition.
 | 
						|
      bool FeedsTwoAddr = false;
 | 
						|
      unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
 | 
						|
                                                    (*LI)->reg, FrameIndex,
 | 
						|
                                                    FeedsTwoAddr);
 | 
						|
      
 | 
						|
      // If there's one non-store use and it doesn't feed a two-addr, then
 | 
						|
      // this is a load-use-store case that we can try to fold.
 | 
						|
      if (NonSpillCount == 1 && !FeedsTwoAddr) {
 | 
						|
        // Start by finding the non-store use MachineInstr.
 | 
						|
        SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
 | 
						|
        int StoreFrameIndex;
 | 
						|
        unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
 | 
						|
        while (UI != VNUseCount[CurrVN].end() &&
 | 
						|
               (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
 | 
						|
          ++UI;
 | 
						|
          if (UI != VNUseCount[CurrVN].end())
 | 
						|
            StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
 | 
						|
        }
 | 
						|
        if (UI == VNUseCount[CurrVN].end()) continue;
 | 
						|
        
 | 
						|
        MachineInstr* use = *UI;
 | 
						|
        
 | 
						|
        // Attempt to fold it away!
 | 
						|
        int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
 | 
						|
        if (OpIdx == -1) continue;
 | 
						|
        SmallVector<unsigned, 1> Ops;
 | 
						|
        Ops.push_back(OpIdx);
 | 
						|
        if (!TII->canFoldMemoryOperand(use, Ops)) continue;
 | 
						|
 | 
						|
        MachineInstr* NewMI =
 | 
						|
                          TII->foldMemoryOperand(*use->getParent()->getParent(),  
 | 
						|
                                                 use, Ops, FrameIndex);
 | 
						|
 | 
						|
        if (!NewMI) continue;
 | 
						|
 | 
						|
        // Update relevant analyses.
 | 
						|
        LIs->RemoveMachineInstrFromMaps(DefMI);
 | 
						|
        LIs->ReplaceMachineInstrInMaps(use, NewMI);
 | 
						|
        (*LI)->removeValNo(CurrVN);
 | 
						|
 | 
						|
        DefMI->eraseFromParent();
 | 
						|
        MachineBasicBlock* MBB = use->getParent();
 | 
						|
        NewMI = MBB->insert(MBB->erase(use), NewMI);
 | 
						|
        VNUseCount[CurrVN].erase(use);
 | 
						|
        
 | 
						|
        // Remove deleted instructions.  Note that we need to remove them from 
 | 
						|
        // the VNInfo->use map as well, just to be safe.
 | 
						|
        for (SmallPtrSet<MachineInstr*, 4>::iterator II = 
 | 
						|
             VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
 | 
						|
             II != IE; ++II) {
 | 
						|
          for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
 | 
						|
               VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE; 
 | 
						|
               ++VNI)
 | 
						|
            if (VNI->first != CurrVN)
 | 
						|
              VNI->second.erase(*II);
 | 
						|
          LIs->RemoveMachineInstrFromMaps(*II);
 | 
						|
          (*II)->eraseFromParent();
 | 
						|
        }
 | 
						|
        
 | 
						|
        VNUseCount.erase(CurrVN);
 | 
						|
 | 
						|
        for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
 | 
						|
             VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
 | 
						|
          if (VI->second.erase(use))
 | 
						|
            VI->second.insert(NewMI);
 | 
						|
 | 
						|
        NumDeadSpills++;
 | 
						|
        changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If there's more than one non-store instruction, we can't profitably
 | 
						|
      // fold it, so bail.
 | 
						|
      if (NonSpillCount) continue;
 | 
						|
        
 | 
						|
      // Otherwise, this is a load-store case, so DCE them.
 | 
						|
      for (SmallPtrSet<MachineInstr*, 4>::iterator UI = 
 | 
						|
           VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
 | 
						|
           UI != UI; ++UI) {
 | 
						|
        LIs->RemoveMachineInstrFromMaps(*UI);
 | 
						|
        (*UI)->eraseFromParent();
 | 
						|
      }
 | 
						|
        
 | 
						|
      VNUseCount.erase(CurrVN);
 | 
						|
        
 | 
						|
      LIs->RemoveMachineInstrFromMaps(DefMI);
 | 
						|
      (*LI)->removeValNo(CurrVN);
 | 
						|
      DefMI->eraseFromParent();
 | 
						|
      NumDeadSpills++;
 | 
						|
      changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return changed;
 | 
						|
}
 | 
						|
 | 
						|
bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
 | 
						|
                                       MachineBasicBlock* DefMBB,
 | 
						|
                                       MachineBasicBlock* BarrierMBB) {
 | 
						|
  if (DefMBB == BarrierMBB)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (LR->valno->hasPHIKill())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
 | 
						|
  if (LR->end < MBBEnd)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
 | 
						|
  if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 4> Visited;
 | 
						|
  typedef std::pair<MachineBasicBlock*,
 | 
						|
                    MachineBasicBlock::succ_iterator> ItPair;
 | 
						|
  SmallVector<ItPair, 4> Stack;
 | 
						|
  Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
 | 
						|
  
 | 
						|
  while (!Stack.empty()) {
 | 
						|
    ItPair P = Stack.back();
 | 
						|
    Stack.pop_back();
 | 
						|
    
 | 
						|
    MachineBasicBlock* PredMBB = P.first;
 | 
						|
    MachineBasicBlock::succ_iterator S = P.second;
 | 
						|
    
 | 
						|
    if (S == PredMBB->succ_end())
 | 
						|
      continue;
 | 
						|
    else if (Visited.count(*S)) {
 | 
						|
      Stack.push_back(std::make_pair(PredMBB, ++S));
 | 
						|
      continue;
 | 
						|
    } else
 | 
						|
      Stack.push_back(std::make_pair(PredMBB, S+1));
 | 
						|
    
 | 
						|
    MachineBasicBlock* MBB = *S;
 | 
						|
    Visited.insert(MBB);
 | 
						|
    
 | 
						|
    if (MBB == BarrierMBB)
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
 | 
						|
    MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
 | 
						|
    MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
 | 
						|
    while (MDTN) {
 | 
						|
      if (MDTN == DefMDTN)
 | 
						|
        return true;
 | 
						|
      else if (MDTN == BarrierMDTN)
 | 
						|
        break;
 | 
						|
      MDTN = MDTN->getIDom();
 | 
						|
    }
 | 
						|
    
 | 
						|
    MBBEnd = LIs->getMBBEndIdx(MBB);
 | 
						|
    if (LR->end > MBBEnd)
 | 
						|
      Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
} 
 | 
						|
  
 | 
						|
 | 
						|
bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  CurrMF = &MF;
 | 
						|
  TM     = &MF.getTarget();
 | 
						|
  TRI    = TM->getRegisterInfo();
 | 
						|
  TII    = TM->getInstrInfo();
 | 
						|
  MFI    = MF.getFrameInfo();
 | 
						|
  MRI    = &MF.getRegInfo();
 | 
						|
  LIs    = &getAnalysis<LiveIntervals>();
 | 
						|
  LSs    = &getAnalysis<LiveStacks>();
 | 
						|
  VRM    = &getAnalysis<VirtRegMap>();
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Make sure blocks are numbered in order.
 | 
						|
  MF.RenumberBlocks();
 | 
						|
 | 
						|
  MachineBasicBlock *Entry = MF.begin();
 | 
						|
  SmallPtrSet<MachineBasicBlock*,16> Visited;
 | 
						|
 | 
						|
  SmallPtrSet<LiveInterval*, 8> Split;
 | 
						|
 | 
						|
  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
 | 
						|
         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
 | 
						|
       DFI != E; ++DFI) {
 | 
						|
    BarrierMBB = *DFI;
 | 
						|
    for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
 | 
						|
           E = BarrierMBB->end(); I != E; ++I) {
 | 
						|
      Barrier = &*I;
 | 
						|
      const TargetRegisterClass **BarrierRCs =
 | 
						|
        Barrier->getDesc().getRegClassBarriers();
 | 
						|
      if (!BarrierRCs)
 | 
						|
        continue;
 | 
						|
      BarrierIdx = LIs->getInstructionIndex(Barrier);
 | 
						|
      MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MadeChange |= removeDeadSpills(Split);
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 |