mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This is considered a workaround. The problem is some targets are not modeling side effects correctly. PPC is apparently one of those. This patch allows ppc llvm-gcc to bootstrap on Darwin. Once we find out which instruction definitions are wrong, we can remove the PPCInstrInfo workaround. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76703 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			241 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the TargetInstrInfoImpl class, it just provides default
 | 
						|
// implementations of various methods.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// commuteInstruction - The default implementation of this method just exchanges
 | 
						|
// the two operands returned by findCommutedOpIndices.
 | 
						|
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
 | 
						|
                                                      bool NewMI) const {
 | 
						|
  const TargetInstrDesc &TID = MI->getDesc();
 | 
						|
  bool HasDef = TID.getNumDefs();
 | 
						|
  if (HasDef && !MI->getOperand(0).isReg())
 | 
						|
    // No idea how to commute this instruction. Target should implement its own.
 | 
						|
    return 0;
 | 
						|
  unsigned Idx1, Idx2;
 | 
						|
  if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
 | 
						|
    std::string msg;
 | 
						|
    raw_string_ostream Msg(msg);
 | 
						|
    Msg << "Don't know how to commute: " << *MI;
 | 
						|
    llvm_report_error(Msg.str());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
 | 
						|
         "This only knows how to commute register operands so far");
 | 
						|
  unsigned Reg1 = MI->getOperand(Idx1).getReg();
 | 
						|
  unsigned Reg2 = MI->getOperand(Idx2).getReg();
 | 
						|
  bool Reg1IsKill = MI->getOperand(Idx1).isKill();
 | 
						|
  bool Reg2IsKill = MI->getOperand(Idx2).isKill();
 | 
						|
  bool ChangeReg0 = false;
 | 
						|
  if (HasDef && MI->getOperand(0).getReg() == Reg1) {
 | 
						|
    // Must be two address instruction!
 | 
						|
    assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
 | 
						|
           "Expecting a two-address instruction!");
 | 
						|
    Reg2IsKill = false;
 | 
						|
    ChangeReg0 = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewMI) {
 | 
						|
    // Create a new instruction.
 | 
						|
    unsigned Reg0 = HasDef
 | 
						|
      ? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0;
 | 
						|
    bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
 | 
						|
    MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
    if (HasDef)
 | 
						|
      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
 | 
						|
        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
 | 
						|
        .addReg(Reg2, getKillRegState(Reg2IsKill))
 | 
						|
        .addReg(Reg1, getKillRegState(Reg2IsKill));
 | 
						|
    else
 | 
						|
      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
 | 
						|
        .addReg(Reg2, getKillRegState(Reg2IsKill))
 | 
						|
        .addReg(Reg1, getKillRegState(Reg2IsKill));
 | 
						|
  }
 | 
						|
 | 
						|
  if (ChangeReg0)
 | 
						|
    MI->getOperand(0).setReg(Reg2);
 | 
						|
  MI->getOperand(Idx2).setReg(Reg1);
 | 
						|
  MI->getOperand(Idx1).setReg(Reg2);
 | 
						|
  MI->getOperand(Idx2).setIsKill(Reg1IsKill);
 | 
						|
  MI->getOperand(Idx1).setIsKill(Reg2IsKill);
 | 
						|
  return MI;
 | 
						|
}
 | 
						|
 | 
						|
/// findCommutedOpIndices - If specified MI is commutable, return the two
 | 
						|
/// operand indices that would swap value. Return true if the instruction
 | 
						|
/// is not in a form which this routine understands.
 | 
						|
bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
 | 
						|
                                                unsigned &SrcOpIdx1,
 | 
						|
                                                unsigned &SrcOpIdx2) const {
 | 
						|
  const TargetInstrDesc &TID = MI->getDesc();
 | 
						|
  if (!TID.isCommutable())
 | 
						|
    return false;
 | 
						|
  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
 | 
						|
  // is not true, then the target must implement this.
 | 
						|
  SrcOpIdx1 = TID.getNumDefs();
 | 
						|
  SrcOpIdx2 = SrcOpIdx1 + 1;
 | 
						|
  if (!MI->getOperand(SrcOpIdx1).isReg() ||
 | 
						|
      !MI->getOperand(SrcOpIdx2).isReg())
 | 
						|
    // No idea.
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
 | 
						|
                            const SmallVectorImpl<MachineOperand> &Pred) const {
 | 
						|
  bool MadeChange = false;
 | 
						|
  const TargetInstrDesc &TID = MI->getDesc();
 | 
						|
  if (!TID.isPredicable())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    if (TID.OpInfo[i].isPredicate()) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg()) {
 | 
						|
        MO.setReg(Pred[j].getReg());
 | 
						|
        MadeChange = true;
 | 
						|
      } else if (MO.isImm()) {
 | 
						|
        MO.setImm(Pred[j].getImm());
 | 
						|
        MadeChange = true;
 | 
						|
      } else if (MO.isMBB()) {
 | 
						|
        MO.setMBB(Pred[j].getMBB());
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
      ++j;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
 | 
						|
                                        MachineBasicBlock::iterator I,
 | 
						|
                                        unsigned DestReg,
 | 
						|
                                        unsigned SubIdx,
 | 
						|
                                        const MachineInstr *Orig) const {
 | 
						|
  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
 | 
						|
  MachineOperand &MO = MI->getOperand(0);
 | 
						|
  MO.setReg(DestReg);
 | 
						|
  MO.setSubReg(SubIdx);
 | 
						|
  MBB.insert(I, MI);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetInstrInfoImpl::isDeadInstruction(const MachineInstr *MI) const {
 | 
						|
  const TargetInstrDesc &TID = MI->getDesc();
 | 
						|
  if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
 | 
						|
      TID.isCall() || TID.isBarrier() || TID.isReturn() ||
 | 
						|
      TID.hasUnmodeledSideEffects())
 | 
						|
    return false;
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.getReg())
 | 
						|
      continue;
 | 
						|
    if (MO.isDef() && !MO.isDead())
 | 
						|
      return false;
 | 
						|
    if (MO.isUse() && MO.isKill())
 | 
						|
      // FIXME: We can't remove kill markers or else the scavenger will assert.
 | 
						|
      // An alternative is to add a ADD pseudo instruction to replace kill
 | 
						|
      // markers.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const {
 | 
						|
  unsigned FnSize = 0;
 | 
						|
  for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
 | 
						|
       MBBI != E; ++MBBI) {
 | 
						|
    const MachineBasicBlock &MBB = *MBBI;
 | 
						|
    for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
 | 
						|
         I != E; ++I)
 | 
						|
      FnSize += GetInstSizeInBytes(I);
 | 
						|
  }
 | 
						|
  return FnSize;
 | 
						|
}
 | 
						|
 | 
						|
/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
 | 
						|
/// slot into the specified machine instruction for the specified operand(s).
 | 
						|
/// If this is possible, a new instruction is returned with the specified
 | 
						|
/// operand folded, otherwise NULL is returned. The client is responsible for
 | 
						|
/// removing the old instruction and adding the new one in the instruction
 | 
						|
/// stream.
 | 
						|
MachineInstr*
 | 
						|
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
 | 
						|
                                   MachineInstr* MI,
 | 
						|
                                   const SmallVectorImpl<unsigned> &Ops,
 | 
						|
                                   int FrameIndex) const {
 | 
						|
  unsigned Flags = 0;
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    if (MI->getOperand(Ops[i]).isDef())
 | 
						|
      Flags |= MachineMemOperand::MOStore;
 | 
						|
    else
 | 
						|
      Flags |= MachineMemOperand::MOLoad;
 | 
						|
 | 
						|
  // Ask the target to do the actual folding.
 | 
						|
  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
 | 
						|
  if (!NewMI) return 0;
 | 
						|
 | 
						|
  assert((!(Flags & MachineMemOperand::MOStore) ||
 | 
						|
          NewMI->getDesc().mayStore()) &&
 | 
						|
         "Folded a def to a non-store!");
 | 
						|
  assert((!(Flags & MachineMemOperand::MOLoad) ||
 | 
						|
          NewMI->getDesc().mayLoad()) &&
 | 
						|
         "Folded a use to a non-load!");
 | 
						|
  const MachineFrameInfo &MFI = *MF.getFrameInfo();
 | 
						|
  assert(MFI.getObjectOffset(FrameIndex) != -1);
 | 
						|
  MachineMemOperand MMO(PseudoSourceValue::getFixedStack(FrameIndex),
 | 
						|
                        Flags,
 | 
						|
                        MFI.getObjectOffset(FrameIndex),
 | 
						|
                        MFI.getObjectSize(FrameIndex),
 | 
						|
                        MFI.getObjectAlignment(FrameIndex));
 | 
						|
  NewMI->addMemOperand(MF, MMO);
 | 
						|
 | 
						|
  return NewMI;
 | 
						|
}
 | 
						|
 | 
						|
/// foldMemoryOperand - Same as the previous version except it allows folding
 | 
						|
/// of any load and store from / to any address, not just from a specific
 | 
						|
/// stack slot.
 | 
						|
MachineInstr*
 | 
						|
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
 | 
						|
                                   MachineInstr* MI,
 | 
						|
                                   const SmallVectorImpl<unsigned> &Ops,
 | 
						|
                                   MachineInstr* LoadMI) const {
 | 
						|
  assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Ask the target to do the actual folding.
 | 
						|
  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
 | 
						|
  if (!NewMI) return 0;
 | 
						|
 | 
						|
  // Copy the memoperands from the load to the folded instruction.
 | 
						|
  for (std::list<MachineMemOperand>::iterator I = LoadMI->memoperands_begin(),
 | 
						|
       E = LoadMI->memoperands_end(); I != E; ++I)
 | 
						|
    NewMI->addMemOperand(MF, *I);
 | 
						|
 | 
						|
  return NewMI;
 | 
						|
}
 |