mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Summary: The iteration order within a member of DepCands is deterministic and therefore we don't have to sort the accesses within a member. We also don't have to copy the indices of the pointers into a vector, since we can iterate over the members of the class. Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D11145 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242033 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1773 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1773 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The implementation for the loop memory dependence that was originally
 | 
						|
// developed for the loop vectorizer.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoopAccessAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-accesses"
 | 
						|
 | 
						|
static cl::opt<unsigned, true>
 | 
						|
VectorizationFactor("force-vector-width", cl::Hidden,
 | 
						|
                    cl::desc("Sets the SIMD width. Zero is autoselect."),
 | 
						|
                    cl::location(VectorizerParams::VectorizationFactor));
 | 
						|
unsigned VectorizerParams::VectorizationFactor;
 | 
						|
 | 
						|
static cl::opt<unsigned, true>
 | 
						|
VectorizationInterleave("force-vector-interleave", cl::Hidden,
 | 
						|
                        cl::desc("Sets the vectorization interleave count. "
 | 
						|
                                 "Zero is autoselect."),
 | 
						|
                        cl::location(
 | 
						|
                            VectorizerParams::VectorizationInterleave));
 | 
						|
unsigned VectorizerParams::VectorizationInterleave;
 | 
						|
 | 
						|
static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
 | 
						|
    "runtime-memory-check-threshold", cl::Hidden,
 | 
						|
    cl::desc("When performing memory disambiguation checks at runtime do not "
 | 
						|
             "generate more than this number of comparisons (default = 8)."),
 | 
						|
    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
 | 
						|
unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
 | 
						|
 | 
						|
/// \brief The maximum iterations used to merge memory checks
 | 
						|
static cl::opt<unsigned> MemoryCheckMergeThreshold(
 | 
						|
    "memory-check-merge-threshold", cl::Hidden,
 | 
						|
    cl::desc("Maximum number of comparisons done when trying to merge "
 | 
						|
             "runtime memory checks. (default = 100)"),
 | 
						|
    cl::init(100));
 | 
						|
 | 
						|
/// Maximum SIMD width.
 | 
						|
const unsigned VectorizerParams::MaxVectorWidth = 64;
 | 
						|
 | 
						|
/// \brief We collect interesting dependences up to this threshold.
 | 
						|
static cl::opt<unsigned> MaxInterestingDependence(
 | 
						|
    "max-interesting-dependences", cl::Hidden,
 | 
						|
    cl::desc("Maximum number of interesting dependences collected by "
 | 
						|
             "loop-access analysis (default = 100)"),
 | 
						|
    cl::init(100));
 | 
						|
 | 
						|
bool VectorizerParams::isInterleaveForced() {
 | 
						|
  return ::VectorizationInterleave.getNumOccurrences() > 0;
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
 | 
						|
                                    const Function *TheFunction,
 | 
						|
                                    const Loop *TheLoop,
 | 
						|
                                    const char *PassName) {
 | 
						|
  DebugLoc DL = TheLoop->getStartLoc();
 | 
						|
  if (const Instruction *I = Message.getInstr())
 | 
						|
    DL = I->getDebugLoc();
 | 
						|
  emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
 | 
						|
                                 *TheFunction, DL, Message.str());
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::stripIntegerCast(Value *V) {
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(V))
 | 
						|
    if (CI->getOperand(0)->getType()->isIntegerTy())
 | 
						|
      return CI->getOperand(0);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
 | 
						|
                                            const ValueToValueMap &PtrToStride,
 | 
						|
                                            Value *Ptr, Value *OrigPtr) {
 | 
						|
 | 
						|
  const SCEV *OrigSCEV = SE->getSCEV(Ptr);
 | 
						|
 | 
						|
  // If there is an entry in the map return the SCEV of the pointer with the
 | 
						|
  // symbolic stride replaced by one.
 | 
						|
  ValueToValueMap::const_iterator SI =
 | 
						|
      PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
 | 
						|
  if (SI != PtrToStride.end()) {
 | 
						|
    Value *StrideVal = SI->second;
 | 
						|
 | 
						|
    // Strip casts.
 | 
						|
    StrideVal = stripIntegerCast(StrideVal);
 | 
						|
 | 
						|
    // Replace symbolic stride by one.
 | 
						|
    Value *One = ConstantInt::get(StrideVal->getType(), 1);
 | 
						|
    ValueToValueMap RewriteMap;
 | 
						|
    RewriteMap[StrideVal] = One;
 | 
						|
 | 
						|
    const SCEV *ByOne =
 | 
						|
        SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
 | 
						|
    DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
 | 
						|
                 << "\n");
 | 
						|
    return ByOne;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, just return the SCEV of the original pointer.
 | 
						|
  return SE->getSCEV(Ptr);
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessInfo::RuntimePointerCheck::insert(
 | 
						|
    Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, unsigned ASId,
 | 
						|
    const ValueToValueMap &Strides) {
 | 
						|
  // Get the stride replaced scev.
 | 
						|
  const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
 | 
						|
  assert(AR && "Invalid addrec expression");
 | 
						|
  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
 | 
						|
  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
 | 
						|
  Pointers.push_back(Ptr);
 | 
						|
  Starts.push_back(AR->getStart());
 | 
						|
  Ends.push_back(ScEnd);
 | 
						|
  IsWritePtr.push_back(WritePtr);
 | 
						|
  DependencySetId.push_back(DepSetId);
 | 
						|
  AliasSetId.push_back(ASId);
 | 
						|
  Exprs.push_back(Sc);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopAccessInfo::RuntimePointerCheck::needsChecking(
 | 
						|
    const CheckingPtrGroup &M, const CheckingPtrGroup &N,
 | 
						|
    const SmallVectorImpl<int> *PtrPartition) const {
 | 
						|
  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
 | 
						|
    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
 | 
						|
      if (needsChecking(M.Members[I], N.Members[J], PtrPartition))
 | 
						|
        return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Compare \p I and \p J and return the minimum.
 | 
						|
/// Return nullptr in case we couldn't find an answer.
 | 
						|
static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
 | 
						|
                                   ScalarEvolution *SE) {
 | 
						|
  const SCEV *Diff = SE->getMinusSCEV(J, I);
 | 
						|
  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
 | 
						|
 | 
						|
  if (!C)
 | 
						|
    return nullptr;
 | 
						|
  if (C->getValue()->isNegative())
 | 
						|
    return J;
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopAccessInfo::RuntimePointerCheck::CheckingPtrGroup::addPointer(
 | 
						|
    unsigned Index) {
 | 
						|
  // Compare the starts and ends with the known minimum and maximum
 | 
						|
  // of this set. We need to know how we compare against the min/max
 | 
						|
  // of the set in order to be able to emit memchecks.
 | 
						|
  const SCEV *Min0 = getMinFromExprs(RtCheck.Starts[Index], Low, RtCheck.SE);
 | 
						|
  if (!Min0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const SCEV *Min1 = getMinFromExprs(RtCheck.Ends[Index], High, RtCheck.SE);
 | 
						|
  if (!Min1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Update the low bound  expression if we've found a new min value.
 | 
						|
  if (Min0 == RtCheck.Starts[Index])
 | 
						|
    Low = RtCheck.Starts[Index];
 | 
						|
 | 
						|
  // Update the high bound expression if we've found a new max value.
 | 
						|
  if (Min1 != RtCheck.Ends[Index])
 | 
						|
    High = RtCheck.Ends[Index];
 | 
						|
 | 
						|
  Members.push_back(Index);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessInfo::RuntimePointerCheck::groupChecks(
 | 
						|
    MemoryDepChecker::DepCandidates &DepCands,
 | 
						|
    bool UseDependencies) {
 | 
						|
  // We build the groups from dependency candidates equivalence classes
 | 
						|
  // because:
 | 
						|
  //    - We know that pointers in the same equivalence class share
 | 
						|
  //      the same underlying object and therefore there is a chance
 | 
						|
  //      that we can compare pointers
 | 
						|
  //    - We wouldn't be able to merge two pointers for which we need
 | 
						|
  //      to emit a memcheck. The classes in DepCands are already
 | 
						|
  //      conveniently built such that no two pointers in the same
 | 
						|
  //      class need checking against each other.
 | 
						|
 | 
						|
  // We use the following (greedy) algorithm to construct the groups
 | 
						|
  // For every pointer in the equivalence class:
 | 
						|
  //   For each existing group:
 | 
						|
  //   - if the difference between this pointer and the min/max bounds
 | 
						|
  //     of the group is a constant, then make the pointer part of the
 | 
						|
  //     group and update the min/max bounds of that group as required.
 | 
						|
 | 
						|
  CheckingGroups.clear();
 | 
						|
 | 
						|
  // If we don't have the dependency partitions, construct a new
 | 
						|
  // checking pointer group for each pointer.
 | 
						|
  if (!UseDependencies) {
 | 
						|
    for (unsigned I = 0; I < Pointers.size(); ++I)
 | 
						|
      CheckingGroups.push_back(CheckingPtrGroup(I, *this));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned TotalComparisons = 0;
 | 
						|
 | 
						|
  DenseMap<Value *, unsigned> PositionMap;
 | 
						|
  for (unsigned Pointer = 0; Pointer < Pointers.size(); ++Pointer)
 | 
						|
    PositionMap[Pointers[Pointer]] = Pointer;
 | 
						|
 | 
						|
  // We need to keep track of what pointers we've already seen so we
 | 
						|
  // don't process them twice.
 | 
						|
  SmallSet<unsigned, 2> Seen;
 | 
						|
 | 
						|
  // Go through all equivalence classes, get the the "pointer check groups"
 | 
						|
  // and add them to the overall solution. We use the order in which accesses
 | 
						|
  // appear in 'Pointers' to enforce determinism.
 | 
						|
  for (unsigned I = 0; I < Pointers.size(); ++I) {
 | 
						|
    // We've seen this pointer before, and therefore already processed
 | 
						|
    // its equivalence class.
 | 
						|
    if (Seen.count(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    MemoryDepChecker::MemAccessInfo Access(Pointers[I], IsWritePtr[I]);
 | 
						|
 | 
						|
    SmallVector<CheckingPtrGroup, 2> Groups;
 | 
						|
    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
 | 
						|
 | 
						|
    // Because DepCands is constructed by visiting accesses in the order in
 | 
						|
    // which they appear in alias sets (which is deterministic) and the
 | 
						|
    // iteration order within an equivalence class member is only dependent on
 | 
						|
    // the order in which unions and insertions are performed on the
 | 
						|
    // equivalence class, the iteration order is deterministic.
 | 
						|
    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
 | 
						|
         MI != ME; ++MI) {
 | 
						|
      unsigned Pointer = PositionMap[MI->getPointer()];
 | 
						|
      bool Merged = false;
 | 
						|
      // Mark this pointer as seen.
 | 
						|
      Seen.insert(Pointer);
 | 
						|
 | 
						|
      // Go through all the existing sets and see if we can find one
 | 
						|
      // which can include this pointer.
 | 
						|
      for (CheckingPtrGroup &Group : Groups) {
 | 
						|
        // Don't perform more than a certain amount of comparisons.
 | 
						|
        // This should limit the cost of grouping the pointers to something
 | 
						|
        // reasonable.  If we do end up hitting this threshold, the algorithm
 | 
						|
        // will create separate groups for all remaining pointers.
 | 
						|
        if (TotalComparisons > MemoryCheckMergeThreshold)
 | 
						|
          break;
 | 
						|
 | 
						|
        TotalComparisons++;
 | 
						|
 | 
						|
        if (Group.addPointer(Pointer)) {
 | 
						|
          Merged = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Merged)
 | 
						|
        // We couldn't add this pointer to any existing set or the threshold
 | 
						|
        // for the number of comparisons has been reached. Create a new group
 | 
						|
        // to hold the current pointer.
 | 
						|
        Groups.push_back(CheckingPtrGroup(Pointer, *this));
 | 
						|
    }
 | 
						|
 | 
						|
    // We've computed the grouped checks for this partition.
 | 
						|
    // Save the results and continue with the next one.
 | 
						|
    std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LoopAccessInfo::RuntimePointerCheck::needsChecking(
 | 
						|
    unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const {
 | 
						|
  // No need to check if two readonly pointers intersect.
 | 
						|
  if (!IsWritePtr[I] && !IsWritePtr[J])
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only need to check pointers between two different dependency sets.
 | 
						|
  if (DependencySetId[I] == DependencySetId[J])
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only need to check pointers in the same alias set.
 | 
						|
  if (AliasSetId[I] != AliasSetId[J])
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If PtrPartition is set omit checks between pointers of the same partition.
 | 
						|
  // Partition number -1 means that the pointer is used in multiple partitions.
 | 
						|
  // In this case we can't omit the check.
 | 
						|
  if (PtrPartition && (*PtrPartition)[I] != -1 &&
 | 
						|
      (*PtrPartition)[I] == (*PtrPartition)[J])
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessInfo::RuntimePointerCheck::print(
 | 
						|
    raw_ostream &OS, unsigned Depth,
 | 
						|
    const SmallVectorImpl<int> *PtrPartition) const {
 | 
						|
 | 
						|
  OS.indent(Depth) << "Run-time memory checks:\n";
 | 
						|
 | 
						|
  unsigned N = 0;
 | 
						|
  for (unsigned I = 0; I < CheckingGroups.size(); ++I)
 | 
						|
    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J)
 | 
						|
      if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) {
 | 
						|
        OS.indent(Depth) << "Check " << N++ << ":\n";
 | 
						|
        OS.indent(Depth + 2) << "Comparing group " << I << ":\n";
 | 
						|
 | 
						|
        for (unsigned K = 0; K < CheckingGroups[I].Members.size(); ++K) {
 | 
						|
          OS.indent(Depth + 2) << *Pointers[CheckingGroups[I].Members[K]]
 | 
						|
                               << "\n";
 | 
						|
          if (PtrPartition)
 | 
						|
            OS << " (Partition: "
 | 
						|
               << (*PtrPartition)[CheckingGroups[I].Members[K]] << ")"
 | 
						|
               << "\n";
 | 
						|
        }
 | 
						|
 | 
						|
        OS.indent(Depth + 2) << "Against group " << J << ":\n";
 | 
						|
 | 
						|
        for (unsigned K = 0; K < CheckingGroups[J].Members.size(); ++K) {
 | 
						|
          OS.indent(Depth + 2) << *Pointers[CheckingGroups[J].Members[K]]
 | 
						|
                               << "\n";
 | 
						|
          if (PtrPartition)
 | 
						|
            OS << " (Partition: "
 | 
						|
               << (*PtrPartition)[CheckingGroups[J].Members[K]] << ")"
 | 
						|
               << "\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  OS.indent(Depth) << "Grouped accesses:\n";
 | 
						|
  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
 | 
						|
    OS.indent(Depth + 2) << "Group " << I << ":\n";
 | 
						|
    OS.indent(Depth + 4) << "(Low: " << *CheckingGroups[I].Low
 | 
						|
                         << " High: " << *CheckingGroups[I].High << ")\n";
 | 
						|
    for (unsigned J = 0; J < CheckingGroups[I].Members.size(); ++J) {
 | 
						|
      OS.indent(Depth + 6) << "Member: " << *Exprs[CheckingGroups[I].Members[J]]
 | 
						|
                           << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks(
 | 
						|
    const SmallVectorImpl<int> *PtrPartition) const {
 | 
						|
 | 
						|
  unsigned NumPartitions = CheckingGroups.size();
 | 
						|
  unsigned CheckCount = 0;
 | 
						|
 | 
						|
  for (unsigned I = 0; I < NumPartitions; ++I)
 | 
						|
    for (unsigned J = I + 1; J < NumPartitions; ++J)
 | 
						|
      if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition))
 | 
						|
        CheckCount++;
 | 
						|
  return CheckCount;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking(
 | 
						|
    const SmallVectorImpl<int> *PtrPartition) const {
 | 
						|
  unsigned NumPointers = Pointers.size();
 | 
						|
 | 
						|
  for (unsigned I = 0; I < NumPointers; ++I)
 | 
						|
    for (unsigned J = I + 1; J < NumPointers; ++J)
 | 
						|
      if (needsChecking(I, J, PtrPartition))
 | 
						|
        return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Analyses memory accesses in a loop.
 | 
						|
///
 | 
						|
/// Checks whether run time pointer checks are needed and builds sets for data
 | 
						|
/// dependence checking.
 | 
						|
class AccessAnalysis {
 | 
						|
public:
 | 
						|
  /// \brief Read or write access location.
 | 
						|
  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
 | 
						|
  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 | 
						|
 | 
						|
  AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
 | 
						|
                 MemoryDepChecker::DepCandidates &DA)
 | 
						|
      : DL(Dl), AST(*AA), LI(LI), DepCands(DA),
 | 
						|
        IsRTCheckAnalysisNeeded(false) {}
 | 
						|
 | 
						|
  /// \brief Register a load  and whether it is only read from.
 | 
						|
  void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
 | 
						|
    Value *Ptr = const_cast<Value*>(Loc.Ptr);
 | 
						|
    AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
 | 
						|
    Accesses.insert(MemAccessInfo(Ptr, false));
 | 
						|
    if (IsReadOnly)
 | 
						|
      ReadOnlyPtr.insert(Ptr);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Register a store.
 | 
						|
  void addStore(MemoryLocation &Loc) {
 | 
						|
    Value *Ptr = const_cast<Value*>(Loc.Ptr);
 | 
						|
    AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
 | 
						|
    Accesses.insert(MemAccessInfo(Ptr, true));
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Check whether we can check the pointers at runtime for
 | 
						|
  /// non-intersection.
 | 
						|
  ///
 | 
						|
  /// Returns true if we need no check or if we do and we can generate them
 | 
						|
  /// (i.e. the pointers have computable bounds).
 | 
						|
  bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
 | 
						|
                       ScalarEvolution *SE, Loop *TheLoop,
 | 
						|
                       const ValueToValueMap &Strides,
 | 
						|
                       bool ShouldCheckStride = false);
 | 
						|
 | 
						|
  /// \brief Goes over all memory accesses, checks whether a RT check is needed
 | 
						|
  /// and builds sets of dependent accesses.
 | 
						|
  void buildDependenceSets() {
 | 
						|
    processMemAccesses();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Initial processing of memory accesses determined that we need to
 | 
						|
  /// perform dependency checking.
 | 
						|
  ///
 | 
						|
  /// Note that this can later be cleared if we retry memcheck analysis without
 | 
						|
  /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
 | 
						|
  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
 | 
						|
 | 
						|
  /// We decided that no dependence analysis would be used.  Reset the state.
 | 
						|
  void resetDepChecks(MemoryDepChecker &DepChecker) {
 | 
						|
    CheckDeps.clear();
 | 
						|
    DepChecker.clearInterestingDependences();
 | 
						|
  }
 | 
						|
 | 
						|
  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
 | 
						|
 | 
						|
private:
 | 
						|
  typedef SetVector<MemAccessInfo> PtrAccessSet;
 | 
						|
 | 
						|
  /// \brief Go over all memory access and check whether runtime pointer checks
 | 
						|
  /// are needed and build sets of dependency check candidates.
 | 
						|
  void processMemAccesses();
 | 
						|
 | 
						|
  /// Set of all accesses.
 | 
						|
  PtrAccessSet Accesses;
 | 
						|
 | 
						|
  const DataLayout &DL;
 | 
						|
 | 
						|
  /// Set of accesses that need a further dependence check.
 | 
						|
  MemAccessInfoSet CheckDeps;
 | 
						|
 | 
						|
  /// Set of pointers that are read only.
 | 
						|
  SmallPtrSet<Value*, 16> ReadOnlyPtr;
 | 
						|
 | 
						|
  /// An alias set tracker to partition the access set by underlying object and
 | 
						|
  //intrinsic property (such as TBAA metadata).
 | 
						|
  AliasSetTracker AST;
 | 
						|
 | 
						|
  LoopInfo *LI;
 | 
						|
 | 
						|
  /// Sets of potentially dependent accesses - members of one set share an
 | 
						|
  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
 | 
						|
  /// dependence check.
 | 
						|
  MemoryDepChecker::DepCandidates &DepCands;
 | 
						|
 | 
						|
  /// \brief Initial processing of memory accesses determined that we may need
 | 
						|
  /// to add memchecks.  Perform the analysis to determine the necessary checks.
 | 
						|
  ///
 | 
						|
  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
 | 
						|
  /// memcheck analysis without dependency checking
 | 
						|
  /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
 | 
						|
  /// while this remains set if we have potentially dependent accesses.
 | 
						|
  bool IsRTCheckAnalysisNeeded;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// \brief Check whether a pointer can participate in a runtime bounds check.
 | 
						|
static bool hasComputableBounds(ScalarEvolution *SE,
 | 
						|
                                const ValueToValueMap &Strides, Value *Ptr) {
 | 
						|
  const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
 | 
						|
  if (!AR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return AR->isAffine();
 | 
						|
}
 | 
						|
 | 
						|
bool AccessAnalysis::canCheckPtrAtRT(
 | 
						|
    LoopAccessInfo::RuntimePointerCheck &RtCheck, ScalarEvolution *SE,
 | 
						|
    Loop *TheLoop, const ValueToValueMap &StridesMap, bool ShouldCheckStride) {
 | 
						|
  // Find pointers with computable bounds. We are going to use this information
 | 
						|
  // to place a runtime bound check.
 | 
						|
  bool CanDoRT = true;
 | 
						|
 | 
						|
  bool NeedRTCheck = false;
 | 
						|
  if (!IsRTCheckAnalysisNeeded) return true;
 | 
						|
 | 
						|
  bool IsDepCheckNeeded = isDependencyCheckNeeded();
 | 
						|
 | 
						|
  // We assign a consecutive id to access from different alias sets.
 | 
						|
  // Accesses between different groups doesn't need to be checked.
 | 
						|
  unsigned ASId = 1;
 | 
						|
  for (auto &AS : AST) {
 | 
						|
    int NumReadPtrChecks = 0;
 | 
						|
    int NumWritePtrChecks = 0;
 | 
						|
 | 
						|
    // We assign consecutive id to access from different dependence sets.
 | 
						|
    // Accesses within the same set don't need a runtime check.
 | 
						|
    unsigned RunningDepId = 1;
 | 
						|
    DenseMap<Value *, unsigned> DepSetId;
 | 
						|
 | 
						|
    for (auto A : AS) {
 | 
						|
      Value *Ptr = A.getValue();
 | 
						|
      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
 | 
						|
      MemAccessInfo Access(Ptr, IsWrite);
 | 
						|
 | 
						|
      if (IsWrite)
 | 
						|
        ++NumWritePtrChecks;
 | 
						|
      else
 | 
						|
        ++NumReadPtrChecks;
 | 
						|
 | 
						|
      if (hasComputableBounds(SE, StridesMap, Ptr) &&
 | 
						|
          // When we run after a failing dependency check we have to make sure
 | 
						|
          // we don't have wrapping pointers.
 | 
						|
          (!ShouldCheckStride ||
 | 
						|
           isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) {
 | 
						|
        // The id of the dependence set.
 | 
						|
        unsigned DepId;
 | 
						|
 | 
						|
        if (IsDepCheckNeeded) {
 | 
						|
          Value *Leader = DepCands.getLeaderValue(Access).getPointer();
 | 
						|
          unsigned &LeaderId = DepSetId[Leader];
 | 
						|
          if (!LeaderId)
 | 
						|
            LeaderId = RunningDepId++;
 | 
						|
          DepId = LeaderId;
 | 
						|
        } else
 | 
						|
          // Each access has its own dependence set.
 | 
						|
          DepId = RunningDepId++;
 | 
						|
 | 
						|
        RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
 | 
						|
 | 
						|
        DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
 | 
						|
      } else {
 | 
						|
        DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
 | 
						|
        CanDoRT = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have at least two writes or one write and a read then we need to
 | 
						|
    // check them.  But there is no need to checks if there is only one
 | 
						|
    // dependence set for this alias set.
 | 
						|
    //
 | 
						|
    // Note that this function computes CanDoRT and NeedRTCheck independently.
 | 
						|
    // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
 | 
						|
    // for which we couldn't find the bounds but we don't actually need to emit
 | 
						|
    // any checks so it does not matter.
 | 
						|
    if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
 | 
						|
      NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
 | 
						|
                                                 NumWritePtrChecks >= 1));
 | 
						|
 | 
						|
    ++ASId;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the pointers that we would use for the bounds comparison have different
 | 
						|
  // address spaces, assume the values aren't directly comparable, so we can't
 | 
						|
  // use them for the runtime check. We also have to assume they could
 | 
						|
  // overlap. In the future there should be metadata for whether address spaces
 | 
						|
  // are disjoint.
 | 
						|
  unsigned NumPointers = RtCheck.Pointers.size();
 | 
						|
  for (unsigned i = 0; i < NumPointers; ++i) {
 | 
						|
    for (unsigned j = i + 1; j < NumPointers; ++j) {
 | 
						|
      // Only need to check pointers between two different dependency sets.
 | 
						|
      if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
 | 
						|
       continue;
 | 
						|
      // Only need to check pointers in the same alias set.
 | 
						|
      if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
 | 
						|
        continue;
 | 
						|
 | 
						|
      Value *PtrI = RtCheck.Pointers[i];
 | 
						|
      Value *PtrJ = RtCheck.Pointers[j];
 | 
						|
 | 
						|
      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
 | 
						|
      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
 | 
						|
      if (ASi != ASj) {
 | 
						|
        DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
 | 
						|
                       " different address spaces\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (NeedRTCheck && CanDoRT)
 | 
						|
    RtCheck.groupChecks(DepCands, IsDepCheckNeeded);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks(nullptr)
 | 
						|
               << " pointer comparisons.\n");
 | 
						|
 | 
						|
  RtCheck.Need = NeedRTCheck;
 | 
						|
 | 
						|
  bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
 | 
						|
  if (!CanDoRTIfNeeded)
 | 
						|
    RtCheck.reset();
 | 
						|
  return CanDoRTIfNeeded;
 | 
						|
}
 | 
						|
 | 
						|
void AccessAnalysis::processMemAccesses() {
 | 
						|
  // We process the set twice: first we process read-write pointers, last we
 | 
						|
  // process read-only pointers. This allows us to skip dependence tests for
 | 
						|
  // read-only pointers.
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
 | 
						|
  DEBUG(dbgs() << "  AST: "; AST.dump());
 | 
						|
  DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
 | 
						|
  DEBUG({
 | 
						|
    for (auto A : Accesses)
 | 
						|
      dbgs() << "\t" << *A.getPointer() << " (" <<
 | 
						|
                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
 | 
						|
                                         "read-only" : "read")) << ")\n";
 | 
						|
  });
 | 
						|
 | 
						|
  // The AliasSetTracker has nicely partitioned our pointers by metadata
 | 
						|
  // compatibility and potential for underlying-object overlap. As a result, we
 | 
						|
  // only need to check for potential pointer dependencies within each alias
 | 
						|
  // set.
 | 
						|
  for (auto &AS : AST) {
 | 
						|
    // Note that both the alias-set tracker and the alias sets themselves used
 | 
						|
    // linked lists internally and so the iteration order here is deterministic
 | 
						|
    // (matching the original instruction order within each set).
 | 
						|
 | 
						|
    bool SetHasWrite = false;
 | 
						|
 | 
						|
    // Map of pointers to last access encountered.
 | 
						|
    typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
 | 
						|
    UnderlyingObjToAccessMap ObjToLastAccess;
 | 
						|
 | 
						|
    // Set of access to check after all writes have been processed.
 | 
						|
    PtrAccessSet DeferredAccesses;
 | 
						|
 | 
						|
    // Iterate over each alias set twice, once to process read/write pointers,
 | 
						|
    // and then to process read-only pointers.
 | 
						|
    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
 | 
						|
      bool UseDeferred = SetIteration > 0;
 | 
						|
      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
 | 
						|
 | 
						|
      for (auto AV : AS) {
 | 
						|
        Value *Ptr = AV.getValue();
 | 
						|
 | 
						|
        // For a single memory access in AliasSetTracker, Accesses may contain
 | 
						|
        // both read and write, and they both need to be handled for CheckDeps.
 | 
						|
        for (auto AC : S) {
 | 
						|
          if (AC.getPointer() != Ptr)
 | 
						|
            continue;
 | 
						|
 | 
						|
          bool IsWrite = AC.getInt();
 | 
						|
 | 
						|
          // If we're using the deferred access set, then it contains only
 | 
						|
          // reads.
 | 
						|
          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
 | 
						|
          if (UseDeferred && !IsReadOnlyPtr)
 | 
						|
            continue;
 | 
						|
          // Otherwise, the pointer must be in the PtrAccessSet, either as a
 | 
						|
          // read or a write.
 | 
						|
          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
 | 
						|
                  S.count(MemAccessInfo(Ptr, false))) &&
 | 
						|
                 "Alias-set pointer not in the access set?");
 | 
						|
 | 
						|
          MemAccessInfo Access(Ptr, IsWrite);
 | 
						|
          DepCands.insert(Access);
 | 
						|
 | 
						|
          // Memorize read-only pointers for later processing and skip them in
 | 
						|
          // the first round (they need to be checked after we have seen all
 | 
						|
          // write pointers). Note: we also mark pointer that are not
 | 
						|
          // consecutive as "read-only" pointers (so that we check
 | 
						|
          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
 | 
						|
          if (!UseDeferred && IsReadOnlyPtr) {
 | 
						|
            DeferredAccesses.insert(Access);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
 | 
						|
          // If this is a write - check other reads and writes for conflicts. If
 | 
						|
          // this is a read only check other writes for conflicts (but only if
 | 
						|
          // there is no other write to the ptr - this is an optimization to
 | 
						|
          // catch "a[i] = a[i] + " without having to do a dependence check).
 | 
						|
          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
 | 
						|
            CheckDeps.insert(Access);
 | 
						|
            IsRTCheckAnalysisNeeded = true;
 | 
						|
          }
 | 
						|
 | 
						|
          if (IsWrite)
 | 
						|
            SetHasWrite = true;
 | 
						|
 | 
						|
          // Create sets of pointers connected by a shared alias set and
 | 
						|
          // underlying object.
 | 
						|
          typedef SmallVector<Value *, 16> ValueVector;
 | 
						|
          ValueVector TempObjects;
 | 
						|
 | 
						|
          GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
 | 
						|
          DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
 | 
						|
          for (Value *UnderlyingObj : TempObjects) {
 | 
						|
            UnderlyingObjToAccessMap::iterator Prev =
 | 
						|
                ObjToLastAccess.find(UnderlyingObj);
 | 
						|
            if (Prev != ObjToLastAccess.end())
 | 
						|
              DepCands.unionSets(Access, Prev->second);
 | 
						|
 | 
						|
            ObjToLastAccess[UnderlyingObj] = Access;
 | 
						|
            DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isInBoundsGep(Value *Ptr) {
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
 | 
						|
    return GEP->isInBounds();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
 | 
						|
/// i.e. monotonically increasing/decreasing.
 | 
						|
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
 | 
						|
                           ScalarEvolution *SE, const Loop *L) {
 | 
						|
  // FIXME: This should probably only return true for NUW.
 | 
						|
  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Scalar evolution does not propagate the non-wrapping flags to values that
 | 
						|
  // are derived from a non-wrapping induction variable because non-wrapping
 | 
						|
  // could be flow-sensitive.
 | 
						|
  //
 | 
						|
  // Look through the potentially overflowing instruction to try to prove
 | 
						|
  // non-wrapping for the *specific* value of Ptr.
 | 
						|
 | 
						|
  // The arithmetic implied by an inbounds GEP can't overflow.
 | 
						|
  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | 
						|
  if (!GEP || !GEP->isInBounds())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure there is only one non-const index and analyze that.
 | 
						|
  Value *NonConstIndex = nullptr;
 | 
						|
  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
 | 
						|
    if (!isa<ConstantInt>(*Index)) {
 | 
						|
      if (NonConstIndex)
 | 
						|
        return false;
 | 
						|
      NonConstIndex = *Index;
 | 
						|
    }
 | 
						|
  if (!NonConstIndex)
 | 
						|
    // The recurrence is on the pointer, ignore for now.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
 | 
						|
  // AddRec using a NSW operation.
 | 
						|
  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
 | 
						|
    if (OBO->hasNoSignedWrap() &&
 | 
						|
        // Assume constant for other the operand so that the AddRec can be
 | 
						|
        // easily found.
 | 
						|
        isa<ConstantInt>(OBO->getOperand(1))) {
 | 
						|
      auto *OpScev = SE->getSCEV(OBO->getOperand(0));
 | 
						|
 | 
						|
      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
 | 
						|
        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether the access through \p Ptr has a constant stride.
 | 
						|
int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
 | 
						|
                       const ValueToValueMap &StridesMap) {
 | 
						|
  const Type *Ty = Ptr->getType();
 | 
						|
  assert(Ty->isPointerTy() && "Unexpected non-ptr");
 | 
						|
 | 
						|
  // Make sure that the pointer does not point to aggregate types.
 | 
						|
  const PointerType *PtrTy = cast<PointerType>(Ty);
 | 
						|
  if (PtrTy->getElementType()->isAggregateType()) {
 | 
						|
    DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
 | 
						|
          << *Ptr << "\n");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
 | 
						|
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
 | 
						|
  if (!AR) {
 | 
						|
    DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
 | 
						|
          << *Ptr << " SCEV: " << *PtrScev << "\n");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // The accesss function must stride over the innermost loop.
 | 
						|
  if (Lp != AR->getLoop()) {
 | 
						|
    DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
 | 
						|
          *Ptr << " SCEV: " << *PtrScev << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // The address calculation must not wrap. Otherwise, a dependence could be
 | 
						|
  // inverted.
 | 
						|
  // An inbounds getelementptr that is a AddRec with a unit stride
 | 
						|
  // cannot wrap per definition. The unit stride requirement is checked later.
 | 
						|
  // An getelementptr without an inbounds attribute and unit stride would have
 | 
						|
  // to access the pointer value "0" which is undefined behavior in address
 | 
						|
  // space 0, therefore we can also vectorize this case.
 | 
						|
  bool IsInBoundsGEP = isInBoundsGep(Ptr);
 | 
						|
  bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
 | 
						|
  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
 | 
						|
  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
 | 
						|
    DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
 | 
						|
          << *Ptr << " SCEV: " << *PtrScev << "\n");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the step is constant.
 | 
						|
  const SCEV *Step = AR->getStepRecurrence(*SE);
 | 
						|
 | 
						|
  // Calculate the pointer stride and check if it is constant.
 | 
						|
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | 
						|
  if (!C) {
 | 
						|
    DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
 | 
						|
          " SCEV: " << *PtrScev << "\n");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
 | 
						|
  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
 | 
						|
  const APInt &APStepVal = C->getValue()->getValue();
 | 
						|
 | 
						|
  // Huge step value - give up.
 | 
						|
  if (APStepVal.getBitWidth() > 64)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  int64_t StepVal = APStepVal.getSExtValue();
 | 
						|
 | 
						|
  // Strided access.
 | 
						|
  int64_t Stride = StepVal / Size;
 | 
						|
  int64_t Rem = StepVal % Size;
 | 
						|
  if (Rem)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
 | 
						|
  // know we can't "wrap around the address space". In case of address space
 | 
						|
  // zero we know that this won't happen without triggering undefined behavior.
 | 
						|
  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
 | 
						|
      Stride != 1 && Stride != -1)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Stride;
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
 | 
						|
  switch (Type) {
 | 
						|
  case NoDep:
 | 
						|
  case Forward:
 | 
						|
  case BackwardVectorizable:
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Unknown:
 | 
						|
  case ForwardButPreventsForwarding:
 | 
						|
  case Backward:
 | 
						|
  case BackwardVectorizableButPreventsForwarding:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unexpected DepType!");
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) {
 | 
						|
  switch (Type) {
 | 
						|
  case NoDep:
 | 
						|
  case Forward:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case BackwardVectorizable:
 | 
						|
  case Unknown:
 | 
						|
  case ForwardButPreventsForwarding:
 | 
						|
  case Backward:
 | 
						|
  case BackwardVectorizableButPreventsForwarding:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unexpected DepType!");
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
 | 
						|
  switch (Type) {
 | 
						|
  case NoDep:
 | 
						|
  case Forward:
 | 
						|
  case ForwardButPreventsForwarding:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Unknown:
 | 
						|
  case BackwardVectorizable:
 | 
						|
  case Backward:
 | 
						|
  case BackwardVectorizableButPreventsForwarding:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unexpected DepType!");
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
 | 
						|
                                                    unsigned TypeByteSize) {
 | 
						|
  // If loads occur at a distance that is not a multiple of a feasible vector
 | 
						|
  // factor store-load forwarding does not take place.
 | 
						|
  // Positive dependences might cause troubles because vectorizing them might
 | 
						|
  // prevent store-load forwarding making vectorized code run a lot slower.
 | 
						|
  //   a[i] = a[i-3] ^ a[i-8];
 | 
						|
  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
 | 
						|
  //   hence on your typical architecture store-load forwarding does not take
 | 
						|
  //   place. Vectorizing in such cases does not make sense.
 | 
						|
  // Store-load forwarding distance.
 | 
						|
  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
 | 
						|
  // Maximum vector factor.
 | 
						|
  unsigned MaxVFWithoutSLForwardIssues =
 | 
						|
    VectorizerParams::MaxVectorWidth * TypeByteSize;
 | 
						|
  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
 | 
						|
    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
 | 
						|
 | 
						|
  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
 | 
						|
       vf *= 2) {
 | 
						|
    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
 | 
						|
      MaxVFWithoutSLForwardIssues = (vf >>=1);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
 | 
						|
    DEBUG(dbgs() << "LAA: Distance " << Distance <<
 | 
						|
          " that could cause a store-load forwarding conflict\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
 | 
						|
      MaxVFWithoutSLForwardIssues !=
 | 
						|
      VectorizerParams::MaxVectorWidth * TypeByteSize)
 | 
						|
    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the dependence for two accesses with the same stride \p Stride.
 | 
						|
/// \p Distance is the positive distance and \p TypeByteSize is type size in
 | 
						|
/// bytes.
 | 
						|
///
 | 
						|
/// \returns true if they are independent.
 | 
						|
static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
 | 
						|
                                          unsigned TypeByteSize) {
 | 
						|
  assert(Stride > 1 && "The stride must be greater than 1");
 | 
						|
  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
 | 
						|
  assert(Distance > 0 && "The distance must be non-zero");
 | 
						|
 | 
						|
  // Skip if the distance is not multiple of type byte size.
 | 
						|
  if (Distance % TypeByteSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned ScaledDist = Distance / TypeByteSize;
 | 
						|
 | 
						|
  // No dependence if the scaled distance is not multiple of the stride.
 | 
						|
  // E.g.
 | 
						|
  //      for (i = 0; i < 1024 ; i += 4)
 | 
						|
  //        A[i+2] = A[i] + 1;
 | 
						|
  //
 | 
						|
  // Two accesses in memory (scaled distance is 2, stride is 4):
 | 
						|
  //     | A[0] |      |      |      | A[4] |      |      |      |
 | 
						|
  //     |      |      | A[2] |      |      |      | A[6] |      |
 | 
						|
  //
 | 
						|
  // E.g.
 | 
						|
  //      for (i = 0; i < 1024 ; i += 3)
 | 
						|
  //        A[i+4] = A[i] + 1;
 | 
						|
  //
 | 
						|
  // Two accesses in memory (scaled distance is 4, stride is 3):
 | 
						|
  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
 | 
						|
  //     |      |      |      |      | A[4] |      |      | A[7] |      |
 | 
						|
  return ScaledDist % Stride;
 | 
						|
}
 | 
						|
 | 
						|
MemoryDepChecker::Dependence::DepType
 | 
						|
MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
 | 
						|
                              const MemAccessInfo &B, unsigned BIdx,
 | 
						|
                              const ValueToValueMap &Strides) {
 | 
						|
  assert (AIdx < BIdx && "Must pass arguments in program order");
 | 
						|
 | 
						|
  Value *APtr = A.getPointer();
 | 
						|
  Value *BPtr = B.getPointer();
 | 
						|
  bool AIsWrite = A.getInt();
 | 
						|
  bool BIsWrite = B.getInt();
 | 
						|
 | 
						|
  // Two reads are independent.
 | 
						|
  if (!AIsWrite && !BIsWrite)
 | 
						|
    return Dependence::NoDep;
 | 
						|
 | 
						|
  // We cannot check pointers in different address spaces.
 | 
						|
  if (APtr->getType()->getPointerAddressSpace() !=
 | 
						|
      BPtr->getType()->getPointerAddressSpace())
 | 
						|
    return Dependence::Unknown;
 | 
						|
 | 
						|
  const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
 | 
						|
  const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
 | 
						|
 | 
						|
  int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides);
 | 
						|
  int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides);
 | 
						|
 | 
						|
  const SCEV *Src = AScev;
 | 
						|
  const SCEV *Sink = BScev;
 | 
						|
 | 
						|
  // If the induction step is negative we have to invert source and sink of the
 | 
						|
  // dependence.
 | 
						|
  if (StrideAPtr < 0) {
 | 
						|
    //Src = BScev;
 | 
						|
    //Sink = AScev;
 | 
						|
    std::swap(APtr, BPtr);
 | 
						|
    std::swap(Src, Sink);
 | 
						|
    std::swap(AIsWrite, BIsWrite);
 | 
						|
    std::swap(AIdx, BIdx);
 | 
						|
    std::swap(StrideAPtr, StrideBPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
 | 
						|
        << "(Induction step: " << StrideAPtr <<  ")\n");
 | 
						|
  DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
 | 
						|
        << *InstMap[BIdx] << ": " << *Dist << "\n");
 | 
						|
 | 
						|
  // Need accesses with constant stride. We don't want to vectorize
 | 
						|
  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
 | 
						|
  // the address space.
 | 
						|
  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
 | 
						|
    DEBUG(dbgs() << "Pointer access with non-constant stride\n");
 | 
						|
    return Dependence::Unknown;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
 | 
						|
  if (!C) {
 | 
						|
    DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
 | 
						|
    ShouldRetryWithRuntimeCheck = true;
 | 
						|
    return Dependence::Unknown;
 | 
						|
  }
 | 
						|
 | 
						|
  Type *ATy = APtr->getType()->getPointerElementType();
 | 
						|
  Type *BTy = BPtr->getType()->getPointerElementType();
 | 
						|
  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
 | 
						|
  unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
 | 
						|
 | 
						|
  // Negative distances are not plausible dependencies.
 | 
						|
  const APInt &Val = C->getValue()->getValue();
 | 
						|
  if (Val.isNegative()) {
 | 
						|
    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
 | 
						|
    if (IsTrueDataDependence &&
 | 
						|
        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
 | 
						|
         ATy != BTy))
 | 
						|
      return Dependence::ForwardButPreventsForwarding;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
 | 
						|
    return Dependence::Forward;
 | 
						|
  }
 | 
						|
 | 
						|
  // Write to the same location with the same size.
 | 
						|
  // Could be improved to assert type sizes are the same (i32 == float, etc).
 | 
						|
  if (Val == 0) {
 | 
						|
    if (ATy == BTy)
 | 
						|
      return Dependence::NoDep;
 | 
						|
    DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
 | 
						|
    return Dependence::Unknown;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Val.isStrictlyPositive() && "Expect a positive value");
 | 
						|
 | 
						|
  if (ATy != BTy) {
 | 
						|
    DEBUG(dbgs() <<
 | 
						|
          "LAA: ReadWrite-Write positive dependency with different types\n");
 | 
						|
    return Dependence::Unknown;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Distance = (unsigned) Val.getZExtValue();
 | 
						|
 | 
						|
  unsigned Stride = std::abs(StrideAPtr);
 | 
						|
  if (Stride > 1 &&
 | 
						|
      areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
 | 
						|
    DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
 | 
						|
    return Dependence::NoDep;
 | 
						|
  }
 | 
						|
 | 
						|
  // Bail out early if passed-in parameters make vectorization not feasible.
 | 
						|
  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
 | 
						|
                           VectorizerParams::VectorizationFactor : 1);
 | 
						|
  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
 | 
						|
                           VectorizerParams::VectorizationInterleave : 1);
 | 
						|
  // The minimum number of iterations for a vectorized/unrolled version.
 | 
						|
  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
 | 
						|
 | 
						|
  // It's not vectorizable if the distance is smaller than the minimum distance
 | 
						|
  // needed for a vectroized/unrolled version. Vectorizing one iteration in
 | 
						|
  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
 | 
						|
  // TypeByteSize (No need to plus the last gap distance).
 | 
						|
  //
 | 
						|
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
 | 
						|
  //      foo(int *A) {
 | 
						|
  //        int *B = (int *)((char *)A + 14);
 | 
						|
  //        for (i = 0 ; i < 1024 ; i += 2)
 | 
						|
  //          B[i] = A[i] + 1;
 | 
						|
  //      }
 | 
						|
  //
 | 
						|
  // Two accesses in memory (stride is 2):
 | 
						|
  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
 | 
						|
  //                              | B[0] |      | B[2] |      | B[4] |
 | 
						|
  //
 | 
						|
  // Distance needs for vectorizing iterations except the last iteration:
 | 
						|
  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
 | 
						|
  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
 | 
						|
  //
 | 
						|
  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
 | 
						|
  // 12, which is less than distance.
 | 
						|
  //
 | 
						|
  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
 | 
						|
  // the minimum distance needed is 28, which is greater than distance. It is
 | 
						|
  // not safe to do vectorization.
 | 
						|
  unsigned MinDistanceNeeded =
 | 
						|
      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
 | 
						|
  if (MinDistanceNeeded > Distance) {
 | 
						|
    DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
 | 
						|
                 << '\n');
 | 
						|
    return Dependence::Backward;
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsafe if the minimum distance needed is greater than max safe distance.
 | 
						|
  if (MinDistanceNeeded > MaxSafeDepDistBytes) {
 | 
						|
    DEBUG(dbgs() << "LAA: Failure because it needs at least "
 | 
						|
                 << MinDistanceNeeded << " size in bytes");
 | 
						|
    return Dependence::Backward;
 | 
						|
  }
 | 
						|
 | 
						|
  // Positive distance bigger than max vectorization factor.
 | 
						|
  // FIXME: Should use max factor instead of max distance in bytes, which could
 | 
						|
  // not handle different types.
 | 
						|
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
 | 
						|
  //      void foo (int *A, char *B) {
 | 
						|
  //        for (unsigned i = 0; i < 1024; i++) {
 | 
						|
  //          A[i+2] = A[i] + 1;
 | 
						|
  //          B[i+2] = B[i] + 1;
 | 
						|
  //        }
 | 
						|
  //      }
 | 
						|
  //
 | 
						|
  // This case is currently unsafe according to the max safe distance. If we
 | 
						|
  // analyze the two accesses on array B, the max safe dependence distance
 | 
						|
  // is 2. Then we analyze the accesses on array A, the minimum distance needed
 | 
						|
  // is 8, which is less than 2 and forbidden vectorization, But actually
 | 
						|
  // both A and B could be vectorized by 2 iterations.
 | 
						|
  MaxSafeDepDistBytes =
 | 
						|
      Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
 | 
						|
 | 
						|
  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
 | 
						|
  if (IsTrueDataDependence &&
 | 
						|
      couldPreventStoreLoadForward(Distance, TypeByteSize))
 | 
						|
    return Dependence::BackwardVectorizableButPreventsForwarding;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
 | 
						|
               << " with max VF = "
 | 
						|
               << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
 | 
						|
 | 
						|
  return Dependence::BackwardVectorizable;
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
 | 
						|
                                   MemAccessInfoSet &CheckDeps,
 | 
						|
                                   const ValueToValueMap &Strides) {
 | 
						|
 | 
						|
  MaxSafeDepDistBytes = -1U;
 | 
						|
  while (!CheckDeps.empty()) {
 | 
						|
    MemAccessInfo CurAccess = *CheckDeps.begin();
 | 
						|
 | 
						|
    // Get the relevant memory access set.
 | 
						|
    EquivalenceClasses<MemAccessInfo>::iterator I =
 | 
						|
      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
 | 
						|
 | 
						|
    // Check accesses within this set.
 | 
						|
    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
 | 
						|
    AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
 | 
						|
 | 
						|
    // Check every access pair.
 | 
						|
    while (AI != AE) {
 | 
						|
      CheckDeps.erase(*AI);
 | 
						|
      EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
 | 
						|
      while (OI != AE) {
 | 
						|
        // Check every accessing instruction pair in program order.
 | 
						|
        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
 | 
						|
             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
 | 
						|
          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
 | 
						|
               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
 | 
						|
            auto A = std::make_pair(&*AI, *I1);
 | 
						|
            auto B = std::make_pair(&*OI, *I2);
 | 
						|
 | 
						|
            assert(*I1 != *I2);
 | 
						|
            if (*I1 > *I2)
 | 
						|
              std::swap(A, B);
 | 
						|
 | 
						|
            Dependence::DepType Type =
 | 
						|
                isDependent(*A.first, A.second, *B.first, B.second, Strides);
 | 
						|
            SafeForVectorization &= Dependence::isSafeForVectorization(Type);
 | 
						|
 | 
						|
            // Gather dependences unless we accumulated MaxInterestingDependence
 | 
						|
            // dependences.  In that case return as soon as we find the first
 | 
						|
            // unsafe dependence.  This puts a limit on this quadratic
 | 
						|
            // algorithm.
 | 
						|
            if (RecordInterestingDependences) {
 | 
						|
              if (Dependence::isInterestingDependence(Type))
 | 
						|
                InterestingDependences.push_back(
 | 
						|
                    Dependence(A.second, B.second, Type));
 | 
						|
 | 
						|
              if (InterestingDependences.size() >= MaxInterestingDependence) {
 | 
						|
                RecordInterestingDependences = false;
 | 
						|
                InterestingDependences.clear();
 | 
						|
                DEBUG(dbgs() << "Too many dependences, stopped recording\n");
 | 
						|
              }
 | 
						|
            }
 | 
						|
            if (!RecordInterestingDependences && !SafeForVectorization)
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
        ++OI;
 | 
						|
      }
 | 
						|
      AI++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Total Interesting Dependences: "
 | 
						|
               << InterestingDependences.size() << "\n");
 | 
						|
  return SafeForVectorization;
 | 
						|
}
 | 
						|
 | 
						|
SmallVector<Instruction *, 4>
 | 
						|
MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
 | 
						|
  MemAccessInfo Access(Ptr, isWrite);
 | 
						|
  auto &IndexVector = Accesses.find(Access)->second;
 | 
						|
 | 
						|
  SmallVector<Instruction *, 4> Insts;
 | 
						|
  std::transform(IndexVector.begin(), IndexVector.end(),
 | 
						|
                 std::back_inserter(Insts),
 | 
						|
                 [&](unsigned Idx) { return this->InstMap[Idx]; });
 | 
						|
  return Insts;
 | 
						|
}
 | 
						|
 | 
						|
const char *MemoryDepChecker::Dependence::DepName[] = {
 | 
						|
    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
 | 
						|
    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
 | 
						|
 | 
						|
void MemoryDepChecker::Dependence::print(
 | 
						|
    raw_ostream &OS, unsigned Depth,
 | 
						|
    const SmallVectorImpl<Instruction *> &Instrs) const {
 | 
						|
  OS.indent(Depth) << DepName[Type] << ":\n";
 | 
						|
  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
 | 
						|
  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
 | 
						|
}
 | 
						|
 | 
						|
bool LoopAccessInfo::canAnalyzeLoop() {
 | 
						|
  // We need to have a loop header.
 | 
						|
  DEBUG(dbgs() << "LAA: Found a loop: " <<
 | 
						|
        TheLoop->getHeader()->getName() << '\n');
 | 
						|
 | 
						|
    // We can only analyze innermost loops.
 | 
						|
  if (!TheLoop->empty()) {
 | 
						|
    DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
 | 
						|
    emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We must have a single backedge.
 | 
						|
  if (TheLoop->getNumBackEdges() != 1) {
 | 
						|
    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
 | 
						|
    emitAnalysis(
 | 
						|
        LoopAccessReport() <<
 | 
						|
        "loop control flow is not understood by analyzer");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We must have a single exiting block.
 | 
						|
  if (!TheLoop->getExitingBlock()) {
 | 
						|
    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
 | 
						|
    emitAnalysis(
 | 
						|
        LoopAccessReport() <<
 | 
						|
        "loop control flow is not understood by analyzer");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We only handle bottom-tested loops, i.e. loop in which the condition is
 | 
						|
  // checked at the end of each iteration. With that we can assume that all
 | 
						|
  // instructions in the loop are executed the same number of times.
 | 
						|
  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
 | 
						|
    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
 | 
						|
    emitAnalysis(
 | 
						|
        LoopAccessReport() <<
 | 
						|
        "loop control flow is not understood by analyzer");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // ScalarEvolution needs to be able to find the exit count.
 | 
						|
  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
 | 
						|
  if (ExitCount == SE->getCouldNotCompute()) {
 | 
						|
    emitAnalysis(LoopAccessReport() <<
 | 
						|
                 "could not determine number of loop iterations");
 | 
						|
    DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
 | 
						|
 | 
						|
  typedef SmallVector<Value*, 16> ValueVector;
 | 
						|
  typedef SmallPtrSet<Value*, 16> ValueSet;
 | 
						|
 | 
						|
  // Holds the Load and Store *instructions*.
 | 
						|
  ValueVector Loads;
 | 
						|
  ValueVector Stores;
 | 
						|
 | 
						|
  // Holds all the different accesses in the loop.
 | 
						|
  unsigned NumReads = 0;
 | 
						|
  unsigned NumReadWrites = 0;
 | 
						|
 | 
						|
  PtrRtCheck.Pointers.clear();
 | 
						|
  PtrRtCheck.Need = false;
 | 
						|
 | 
						|
  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
 | 
						|
 | 
						|
  // For each block.
 | 
						|
  for (Loop::block_iterator bb = TheLoop->block_begin(),
 | 
						|
       be = TheLoop->block_end(); bb != be; ++bb) {
 | 
						|
 | 
						|
    // Scan the BB and collect legal loads and stores.
 | 
						|
    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
 | 
						|
         ++it) {
 | 
						|
 | 
						|
      // If this is a load, save it. If this instruction can read from memory
 | 
						|
      // but is not a load, then we quit. Notice that we don't handle function
 | 
						|
      // calls that read or write.
 | 
						|
      if (it->mayReadFromMemory()) {
 | 
						|
        // Many math library functions read the rounding mode. We will only
 | 
						|
        // vectorize a loop if it contains known function calls that don't set
 | 
						|
        // the flag. Therefore, it is safe to ignore this read from memory.
 | 
						|
        CallInst *Call = dyn_cast<CallInst>(it);
 | 
						|
        if (Call && getIntrinsicIDForCall(Call, TLI))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If the function has an explicit vectorized counterpart, we can safely
 | 
						|
        // assume that it can be vectorized.
 | 
						|
        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
 | 
						|
            TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        LoadInst *Ld = dyn_cast<LoadInst>(it);
 | 
						|
        if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
 | 
						|
          emitAnalysis(LoopAccessReport(Ld)
 | 
						|
                       << "read with atomic ordering or volatile read");
 | 
						|
          DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
 | 
						|
          CanVecMem = false;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        NumLoads++;
 | 
						|
        Loads.push_back(Ld);
 | 
						|
        DepChecker.addAccess(Ld);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Save 'store' instructions. Abort if other instructions write to memory.
 | 
						|
      if (it->mayWriteToMemory()) {
 | 
						|
        StoreInst *St = dyn_cast<StoreInst>(it);
 | 
						|
        if (!St) {
 | 
						|
          emitAnalysis(LoopAccessReport(it) <<
 | 
						|
                       "instruction cannot be vectorized");
 | 
						|
          CanVecMem = false;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        if (!St->isSimple() && !IsAnnotatedParallel) {
 | 
						|
          emitAnalysis(LoopAccessReport(St)
 | 
						|
                       << "write with atomic ordering or volatile write");
 | 
						|
          DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
 | 
						|
          CanVecMem = false;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        NumStores++;
 | 
						|
        Stores.push_back(St);
 | 
						|
        DepChecker.addAccess(St);
 | 
						|
      }
 | 
						|
    } // Next instr.
 | 
						|
  } // Next block.
 | 
						|
 | 
						|
  // Now we have two lists that hold the loads and the stores.
 | 
						|
  // Next, we find the pointers that they use.
 | 
						|
 | 
						|
  // Check if we see any stores. If there are no stores, then we don't
 | 
						|
  // care if the pointers are *restrict*.
 | 
						|
  if (!Stores.size()) {
 | 
						|
    DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
 | 
						|
    CanVecMem = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryDepChecker::DepCandidates DependentAccesses;
 | 
						|
  AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
 | 
						|
                          AA, LI, DependentAccesses);
 | 
						|
 | 
						|
  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
 | 
						|
  // multiple times on the same object. If the ptr is accessed twice, once
 | 
						|
  // for read and once for write, it will only appear once (on the write
 | 
						|
  // list). This is okay, since we are going to check for conflicts between
 | 
						|
  // writes and between reads and writes, but not between reads and reads.
 | 
						|
  ValueSet Seen;
 | 
						|
 | 
						|
  ValueVector::iterator I, IE;
 | 
						|
  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
 | 
						|
    StoreInst *ST = cast<StoreInst>(*I);
 | 
						|
    Value* Ptr = ST->getPointerOperand();
 | 
						|
    // Check for store to loop invariant address.
 | 
						|
    StoreToLoopInvariantAddress |= isUniform(Ptr);
 | 
						|
    // If we did *not* see this pointer before, insert it to  the read-write
 | 
						|
    // list. At this phase it is only a 'write' list.
 | 
						|
    if (Seen.insert(Ptr).second) {
 | 
						|
      ++NumReadWrites;
 | 
						|
 | 
						|
      MemoryLocation Loc = MemoryLocation::get(ST);
 | 
						|
      // The TBAA metadata could have a control dependency on the predication
 | 
						|
      // condition, so we cannot rely on it when determining whether or not we
 | 
						|
      // need runtime pointer checks.
 | 
						|
      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
 | 
						|
        Loc.AATags.TBAA = nullptr;
 | 
						|
 | 
						|
      Accesses.addStore(Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsAnnotatedParallel) {
 | 
						|
    DEBUG(dbgs()
 | 
						|
          << "LAA: A loop annotated parallel, ignore memory dependency "
 | 
						|
          << "checks.\n");
 | 
						|
    CanVecMem = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
 | 
						|
    LoadInst *LD = cast<LoadInst>(*I);
 | 
						|
    Value* Ptr = LD->getPointerOperand();
 | 
						|
    // If we did *not* see this pointer before, insert it to the
 | 
						|
    // read list. If we *did* see it before, then it is already in
 | 
						|
    // the read-write list. This allows us to vectorize expressions
 | 
						|
    // such as A[i] += x;  Because the address of A[i] is a read-write
 | 
						|
    // pointer. This only works if the index of A[i] is consecutive.
 | 
						|
    // If the address of i is unknown (for example A[B[i]]) then we may
 | 
						|
    // read a few words, modify, and write a few words, and some of the
 | 
						|
    // words may be written to the same address.
 | 
						|
    bool IsReadOnlyPtr = false;
 | 
						|
    if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) {
 | 
						|
      ++NumReads;
 | 
						|
      IsReadOnlyPtr = true;
 | 
						|
    }
 | 
						|
 | 
						|
    MemoryLocation Loc = MemoryLocation::get(LD);
 | 
						|
    // The TBAA metadata could have a control dependency on the predication
 | 
						|
    // condition, so we cannot rely on it when determining whether or not we
 | 
						|
    // need runtime pointer checks.
 | 
						|
    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
 | 
						|
      Loc.AATags.TBAA = nullptr;
 | 
						|
 | 
						|
    Accesses.addLoad(Loc, IsReadOnlyPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we write (or read-write) to a single destination and there are no
 | 
						|
  // other reads in this loop then is it safe to vectorize.
 | 
						|
  if (NumReadWrites == 1 && NumReads == 0) {
 | 
						|
    DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
 | 
						|
    CanVecMem = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Build dependence sets and check whether we need a runtime pointer bounds
 | 
						|
  // check.
 | 
						|
  Accesses.buildDependenceSets();
 | 
						|
 | 
						|
  // Find pointers with computable bounds. We are going to use this information
 | 
						|
  // to place a runtime bound check.
 | 
						|
  bool CanDoRTIfNeeded =
 | 
						|
      Accesses.canCheckPtrAtRT(PtrRtCheck, SE, TheLoop, Strides);
 | 
						|
  if (!CanDoRTIfNeeded) {
 | 
						|
    emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
 | 
						|
    DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
 | 
						|
                 << "the array bounds.\n");
 | 
						|
    CanVecMem = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
 | 
						|
 | 
						|
  CanVecMem = true;
 | 
						|
  if (Accesses.isDependencyCheckNeeded()) {
 | 
						|
    DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
 | 
						|
    CanVecMem = DepChecker.areDepsSafe(
 | 
						|
        DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
 | 
						|
    MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
 | 
						|
 | 
						|
    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
 | 
						|
      DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
 | 
						|
 | 
						|
      // Clear the dependency checks. We assume they are not needed.
 | 
						|
      Accesses.resetDepChecks(DepChecker);
 | 
						|
 | 
						|
      PtrRtCheck.reset();
 | 
						|
      PtrRtCheck.Need = true;
 | 
						|
 | 
						|
      CanDoRTIfNeeded =
 | 
						|
          Accesses.canCheckPtrAtRT(PtrRtCheck, SE, TheLoop, Strides, true);
 | 
						|
 | 
						|
      // Check that we found the bounds for the pointer.
 | 
						|
      if (!CanDoRTIfNeeded) {
 | 
						|
        emitAnalysis(LoopAccessReport()
 | 
						|
                     << "cannot check memory dependencies at runtime");
 | 
						|
        DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
 | 
						|
        CanVecMem = false;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      CanVecMem = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CanVecMem)
 | 
						|
    DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
 | 
						|
                 << (PtrRtCheck.Need ? "" : " don't")
 | 
						|
                 << " need runtime memory checks.\n");
 | 
						|
  else {
 | 
						|
    emitAnalysis(LoopAccessReport() <<
 | 
						|
                 "unsafe dependent memory operations in loop");
 | 
						|
    DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
 | 
						|
                                           DominatorTree *DT)  {
 | 
						|
  assert(TheLoop->contains(BB) && "Unknown block used");
 | 
						|
 | 
						|
  // Blocks that do not dominate the latch need predication.
 | 
						|
  BasicBlock* Latch = TheLoop->getLoopLatch();
 | 
						|
  return !DT->dominates(BB, Latch);
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
 | 
						|
  assert(!Report && "Multiple reports generated");
 | 
						|
  Report = Message;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopAccessInfo::isUniform(Value *V) const {
 | 
						|
  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: this function is currently a duplicate of the one in
 | 
						|
// LoopVectorize.cpp.
 | 
						|
static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
 | 
						|
                                 Instruction *Loc) {
 | 
						|
  if (FirstInst)
 | 
						|
    return FirstInst;
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return I->getParent() == Loc->getParent() ? I : nullptr;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck(
 | 
						|
    Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const {
 | 
						|
  if (!PtrRtCheck.Need)
 | 
						|
    return std::make_pair(nullptr, nullptr);
 | 
						|
 | 
						|
  SmallVector<TrackingVH<Value>, 2> Starts;
 | 
						|
  SmallVector<TrackingVH<Value>, 2> Ends;
 | 
						|
 | 
						|
  LLVMContext &Ctx = Loc->getContext();
 | 
						|
  SCEVExpander Exp(*SE, DL, "induction");
 | 
						|
  Instruction *FirstInst = nullptr;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) {
 | 
						|
    const RuntimePointerCheck::CheckingPtrGroup &CG =
 | 
						|
        PtrRtCheck.CheckingGroups[i];
 | 
						|
    Value *Ptr = PtrRtCheck.Pointers[CG.Members[0]];
 | 
						|
    const SCEV *Sc = SE->getSCEV(Ptr);
 | 
						|
 | 
						|
    if (SE->isLoopInvariant(Sc, TheLoop)) {
 | 
						|
      DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
 | 
						|
                   << "\n");
 | 
						|
      Starts.push_back(Ptr);
 | 
						|
      Ends.push_back(Ptr);
 | 
						|
    } else {
 | 
						|
      unsigned AS = Ptr->getType()->getPointerAddressSpace();
 | 
						|
 | 
						|
      // Use this type for pointer arithmetic.
 | 
						|
      Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
 | 
						|
      Value *Start = nullptr, *End = nullptr;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
 | 
						|
      Start = Exp.expandCodeFor(CG.Low, PtrArithTy, Loc);
 | 
						|
      End = Exp.expandCodeFor(CG.High, PtrArithTy, Loc);
 | 
						|
      DEBUG(dbgs() << "Start: " << *CG.Low << " End: " << *CG.High << "\n");
 | 
						|
      Starts.push_back(Start);
 | 
						|
      Ends.push_back(End);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  IRBuilder<> ChkBuilder(Loc);
 | 
						|
  // Our instructions might fold to a constant.
 | 
						|
  Value *MemoryRuntimeCheck = nullptr;
 | 
						|
  for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) {
 | 
						|
    for (unsigned j = i + 1; j < PtrRtCheck.CheckingGroups.size(); ++j) {
 | 
						|
      const RuntimePointerCheck::CheckingPtrGroup &CGI =
 | 
						|
          PtrRtCheck.CheckingGroups[i];
 | 
						|
      const RuntimePointerCheck::CheckingPtrGroup &CGJ =
 | 
						|
          PtrRtCheck.CheckingGroups[j];
 | 
						|
 | 
						|
      if (!PtrRtCheck.needsChecking(CGI, CGJ, PtrPartition))
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
 | 
						|
      unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
 | 
						|
 | 
						|
      assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
 | 
						|
             (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
 | 
						|
             "Trying to bounds check pointers with different address spaces");
 | 
						|
 | 
						|
      Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
 | 
						|
      Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
 | 
						|
 | 
						|
      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
 | 
						|
      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
 | 
						|
      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
 | 
						|
      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
 | 
						|
 | 
						|
      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
 | 
						|
      FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
 | 
						|
      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
 | 
						|
      FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
 | 
						|
      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
 | 
						|
      FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
 | 
						|
      if (MemoryRuntimeCheck) {
 | 
						|
        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
 | 
						|
                                         "conflict.rdx");
 | 
						|
        FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
 | 
						|
      }
 | 
						|
      MemoryRuntimeCheck = IsConflict;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemoryRuntimeCheck)
 | 
						|
    return std::make_pair(nullptr, nullptr);
 | 
						|
 | 
						|
  // We have to do this trickery because the IRBuilder might fold the check to a
 | 
						|
  // constant expression in which case there is no Instruction anchored in a
 | 
						|
  // the block.
 | 
						|
  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
 | 
						|
                                                 ConstantInt::getTrue(Ctx));
 | 
						|
  ChkBuilder.Insert(Check, "memcheck.conflict");
 | 
						|
  FirstInst = getFirstInst(FirstInst, Check, Loc);
 | 
						|
  return std::make_pair(FirstInst, Check);
 | 
						|
}
 | 
						|
 | 
						|
LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
 | 
						|
                               const DataLayout &DL,
 | 
						|
                               const TargetLibraryInfo *TLI, AliasAnalysis *AA,
 | 
						|
                               DominatorTree *DT, LoopInfo *LI,
 | 
						|
                               const ValueToValueMap &Strides)
 | 
						|
    : PtrRtCheck(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), TLI(TLI),
 | 
						|
      AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
 | 
						|
      MaxSafeDepDistBytes(-1U), CanVecMem(false),
 | 
						|
      StoreToLoopInvariantAddress(false) {
 | 
						|
  if (canAnalyzeLoop())
 | 
						|
    analyzeLoop(Strides);
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
 | 
						|
  if (CanVecMem) {
 | 
						|
    if (PtrRtCheck.Need)
 | 
						|
      OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
 | 
						|
    else
 | 
						|
      OS.indent(Depth) << "Memory dependences are safe\n";
 | 
						|
  }
 | 
						|
 | 
						|
  if (Report)
 | 
						|
    OS.indent(Depth) << "Report: " << Report->str() << "\n";
 | 
						|
 | 
						|
  if (auto *InterestingDependences = DepChecker.getInterestingDependences()) {
 | 
						|
    OS.indent(Depth) << "Interesting Dependences:\n";
 | 
						|
    for (auto &Dep : *InterestingDependences) {
 | 
						|
      Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
 | 
						|
      OS << "\n";
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    OS.indent(Depth) << "Too many interesting dependences, not recorded\n";
 | 
						|
 | 
						|
  // List the pair of accesses need run-time checks to prove independence.
 | 
						|
  PtrRtCheck.print(OS, Depth);
 | 
						|
  OS << "\n";
 | 
						|
 | 
						|
  OS.indent(Depth) << "Store to invariant address was "
 | 
						|
                   << (StoreToLoopInvariantAddress ? "" : "not ")
 | 
						|
                   << "found in loop.\n";
 | 
						|
}
 | 
						|
 | 
						|
const LoopAccessInfo &
 | 
						|
LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
 | 
						|
  auto &LAI = LoopAccessInfoMap[L];
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
 | 
						|
         "Symbolic strides changed for loop");
 | 
						|
#endif
 | 
						|
 | 
						|
  if (!LAI) {
 | 
						|
    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | 
						|
    LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI,
 | 
						|
                                            Strides);
 | 
						|
#ifndef NDEBUG
 | 
						|
    LAI->NumSymbolicStrides = Strides.size();
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  return *LAI.get();
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
 | 
						|
  LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
 | 
						|
 | 
						|
  ValueToValueMap NoSymbolicStrides;
 | 
						|
 | 
						|
  for (Loop *TopLevelLoop : *LI)
 | 
						|
    for (Loop *L : depth_first(TopLevelLoop)) {
 | 
						|
      OS.indent(2) << L->getHeader()->getName() << ":\n";
 | 
						|
      auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
 | 
						|
      LAI.print(OS, 4);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool LoopAccessAnalysis::runOnFunction(Function &F) {
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | 
						|
  TLI = TLIP ? &TLIP->getTLI() : nullptr;
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
    AU.addRequired<ScalarEvolution>();
 | 
						|
    AU.addRequired<AliasAnalysis>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
 | 
						|
    AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
char LoopAccessAnalysis::ID = 0;
 | 
						|
static const char laa_name[] = "Loop Access Analysis";
 | 
						|
#define LAA_NAME "loop-accesses"
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  Pass *createLAAPass() {
 | 
						|
    return new LoopAccessAnalysis();
 | 
						|
  }
 | 
						|
}
 |