mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242008 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			412 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			412 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines vectorizer utilities.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
 | 
						|
/// \brief Identify if the intrinsic is trivially vectorizable.
 | 
						|
/// This method returns true if the intrinsic's argument types are all
 | 
						|
/// scalars for the scalar form of the intrinsic and all vectors for
 | 
						|
/// the vector form of the intrinsic.
 | 
						|
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
 | 
						|
  switch (ID) {
 | 
						|
  case Intrinsic::sqrt:
 | 
						|
  case Intrinsic::sin:
 | 
						|
  case Intrinsic::cos:
 | 
						|
  case Intrinsic::exp:
 | 
						|
  case Intrinsic::exp2:
 | 
						|
  case Intrinsic::log:
 | 
						|
  case Intrinsic::log10:
 | 
						|
  case Intrinsic::log2:
 | 
						|
  case Intrinsic::fabs:
 | 
						|
  case Intrinsic::minnum:
 | 
						|
  case Intrinsic::maxnum:
 | 
						|
  case Intrinsic::copysign:
 | 
						|
  case Intrinsic::floor:
 | 
						|
  case Intrinsic::ceil:
 | 
						|
  case Intrinsic::trunc:
 | 
						|
  case Intrinsic::rint:
 | 
						|
  case Intrinsic::nearbyint:
 | 
						|
  case Intrinsic::round:
 | 
						|
  case Intrinsic::bswap:
 | 
						|
  case Intrinsic::ctpop:
 | 
						|
  case Intrinsic::pow:
 | 
						|
  case Intrinsic::fma:
 | 
						|
  case Intrinsic::fmuladd:
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::powi:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Identifies if the intrinsic has a scalar operand. It check for
 | 
						|
/// ctlz,cttz and powi special intrinsics whose argument is scalar.
 | 
						|
bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
 | 
						|
                                        unsigned ScalarOpdIdx) {
 | 
						|
  switch (ID) {
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::powi:
 | 
						|
    return (ScalarOpdIdx == 1);
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check call has a unary float signature
 | 
						|
/// It checks following:
 | 
						|
/// a) call should have a single argument
 | 
						|
/// b) argument type should be floating point type
 | 
						|
/// c) call instruction type and argument type should be same
 | 
						|
/// d) call should only reads memory.
 | 
						|
/// If all these condition is met then return ValidIntrinsicID
 | 
						|
/// else return not_intrinsic.
 | 
						|
llvm::Intrinsic::ID
 | 
						|
llvm::checkUnaryFloatSignature(const CallInst &I,
 | 
						|
                               Intrinsic::ID ValidIntrinsicID) {
 | 
						|
  if (I.getNumArgOperands() != 1 ||
 | 
						|
      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
 | 
						|
      I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
 | 
						|
  return ValidIntrinsicID;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check call has a binary float signature
 | 
						|
/// It checks following:
 | 
						|
/// a) call should have 2 arguments.
 | 
						|
/// b) arguments type should be floating point type
 | 
						|
/// c) call instruction type and arguments type should be same
 | 
						|
/// d) call should only reads memory.
 | 
						|
/// If all these condition is met then return ValidIntrinsicID
 | 
						|
/// else return not_intrinsic.
 | 
						|
llvm::Intrinsic::ID
 | 
						|
llvm::checkBinaryFloatSignature(const CallInst &I,
 | 
						|
                                Intrinsic::ID ValidIntrinsicID) {
 | 
						|
  if (I.getNumArgOperands() != 2 ||
 | 
						|
      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
 | 
						|
      !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
 | 
						|
      I.getType() != I.getArgOperand(0)->getType() ||
 | 
						|
      I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
 | 
						|
  return ValidIntrinsicID;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns intrinsic ID for call.
 | 
						|
/// For the input call instruction it finds mapping intrinsic and returns
 | 
						|
/// its ID, in case it does not found it return not_intrinsic.
 | 
						|
llvm::Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
 | 
						|
                                                const TargetLibraryInfo *TLI) {
 | 
						|
  // If we have an intrinsic call, check if it is trivially vectorizable.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | 
						|
    Intrinsic::ID ID = II->getIntrinsicID();
 | 
						|
    if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
 | 
						|
        ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
 | 
						|
      return ID;
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TLI)
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
 | 
						|
  LibFunc::Func Func;
 | 
						|
  Function *F = CI->getCalledFunction();
 | 
						|
  // We're going to make assumptions on the semantics of the functions, check
 | 
						|
  // that the target knows that it's available in this environment and it does
 | 
						|
  // not have local linkage.
 | 
						|
  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
 | 
						|
  // Otherwise check if we have a call to a function that can be turned into a
 | 
						|
  // vector intrinsic.
 | 
						|
  switch (Func) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case LibFunc::sin:
 | 
						|
  case LibFunc::sinf:
 | 
						|
  case LibFunc::sinl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::sin);
 | 
						|
  case LibFunc::cos:
 | 
						|
  case LibFunc::cosf:
 | 
						|
  case LibFunc::cosl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::cos);
 | 
						|
  case LibFunc::exp:
 | 
						|
  case LibFunc::expf:
 | 
						|
  case LibFunc::expl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::exp);
 | 
						|
  case LibFunc::exp2:
 | 
						|
  case LibFunc::exp2f:
 | 
						|
  case LibFunc::exp2l:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
 | 
						|
  case LibFunc::log:
 | 
						|
  case LibFunc::logf:
 | 
						|
  case LibFunc::logl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::log);
 | 
						|
  case LibFunc::log10:
 | 
						|
  case LibFunc::log10f:
 | 
						|
  case LibFunc::log10l:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::log10);
 | 
						|
  case LibFunc::log2:
 | 
						|
  case LibFunc::log2f:
 | 
						|
  case LibFunc::log2l:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::log2);
 | 
						|
  case LibFunc::fabs:
 | 
						|
  case LibFunc::fabsf:
 | 
						|
  case LibFunc::fabsl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
 | 
						|
  case LibFunc::fmin:
 | 
						|
  case LibFunc::fminf:
 | 
						|
  case LibFunc::fminl:
 | 
						|
    return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
 | 
						|
  case LibFunc::fmax:
 | 
						|
  case LibFunc::fmaxf:
 | 
						|
  case LibFunc::fmaxl:
 | 
						|
    return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
 | 
						|
  case LibFunc::copysign:
 | 
						|
  case LibFunc::copysignf:
 | 
						|
  case LibFunc::copysignl:
 | 
						|
    return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
 | 
						|
  case LibFunc::floor:
 | 
						|
  case LibFunc::floorf:
 | 
						|
  case LibFunc::floorl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::floor);
 | 
						|
  case LibFunc::ceil:
 | 
						|
  case LibFunc::ceilf:
 | 
						|
  case LibFunc::ceill:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
 | 
						|
  case LibFunc::trunc:
 | 
						|
  case LibFunc::truncf:
 | 
						|
  case LibFunc::truncl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
 | 
						|
  case LibFunc::rint:
 | 
						|
  case LibFunc::rintf:
 | 
						|
  case LibFunc::rintl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::rint);
 | 
						|
  case LibFunc::nearbyint:
 | 
						|
  case LibFunc::nearbyintf:
 | 
						|
  case LibFunc::nearbyintl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
 | 
						|
  case LibFunc::round:
 | 
						|
  case LibFunc::roundf:
 | 
						|
  case LibFunc::roundl:
 | 
						|
    return checkUnaryFloatSignature(*CI, Intrinsic::round);
 | 
						|
  case LibFunc::pow:
 | 
						|
  case LibFunc::powf:
 | 
						|
  case LibFunc::powl:
 | 
						|
    return checkBinaryFloatSignature(*CI, Intrinsic::pow);
 | 
						|
  }
 | 
						|
 | 
						|
  return Intrinsic::not_intrinsic;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find the operand of the GEP that should be checked for consecutive
 | 
						|
/// stores. This ignores trailing indices that have no effect on the final
 | 
						|
/// pointer.
 | 
						|
unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
 | 
						|
  const DataLayout &DL = Gep->getModule()->getDataLayout();
 | 
						|
  unsigned LastOperand = Gep->getNumOperands() - 1;
 | 
						|
  unsigned GEPAllocSize = DL.getTypeAllocSize(
 | 
						|
      cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
 | 
						|
 | 
						|
  // Walk backwards and try to peel off zeros.
 | 
						|
  while (LastOperand > 1 &&
 | 
						|
         match(Gep->getOperand(LastOperand), llvm::PatternMatch::m_Zero())) {
 | 
						|
    // Find the type we're currently indexing into.
 | 
						|
    gep_type_iterator GEPTI = gep_type_begin(Gep);
 | 
						|
    std::advance(GEPTI, LastOperand - 1);
 | 
						|
 | 
						|
    // If it's a type with the same allocation size as the result of the GEP we
 | 
						|
    // can peel off the zero index.
 | 
						|
    if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
 | 
						|
      break;
 | 
						|
    --LastOperand;
 | 
						|
  }
 | 
						|
 | 
						|
  return LastOperand;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If the argument is a GEP, then returns the operand identified by
 | 
						|
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
 | 
						|
/// operand, it returns that instead.
 | 
						|
llvm::Value *llvm::stripGetElementPtr(llvm::Value *Ptr, ScalarEvolution *SE,
 | 
						|
                                      Loop *Lp) {
 | 
						|
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | 
						|
  if (!GEP)
 | 
						|
    return Ptr;
 | 
						|
 | 
						|
  unsigned InductionOperand = getGEPInductionOperand(GEP);
 | 
						|
 | 
						|
  // Check that all of the gep indices are uniform except for our induction
 | 
						|
  // operand.
 | 
						|
  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
    if (i != InductionOperand &&
 | 
						|
        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
 | 
						|
      return Ptr;
 | 
						|
  return GEP->getOperand(InductionOperand);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If a value has only one user that is a CastInst, return it.
 | 
						|
llvm::Value *llvm::getUniqueCastUse(llvm::Value *Ptr, Loop *Lp, Type *Ty) {
 | 
						|
  llvm::Value *UniqueCast = nullptr;
 | 
						|
  for (User *U : Ptr->users()) {
 | 
						|
    CastInst *CI = dyn_cast<CastInst>(U);
 | 
						|
    if (CI && CI->getType() == Ty) {
 | 
						|
      if (!UniqueCast)
 | 
						|
        UniqueCast = CI;
 | 
						|
      else
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return UniqueCast;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get the stride of a pointer access in a loop. Looks for symbolic
 | 
						|
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
 | 
						|
llvm::Value *llvm::getStrideFromPointer(llvm::Value *Ptr, ScalarEvolution *SE,
 | 
						|
                                        Loop *Lp) {
 | 
						|
  const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
 | 
						|
  if (!PtrTy || PtrTy->isAggregateType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Try to remove a gep instruction to make the pointer (actually index at this
 | 
						|
  // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
 | 
						|
  // pointer, otherwise, we are analyzing the index.
 | 
						|
  llvm::Value *OrigPtr = Ptr;
 | 
						|
 | 
						|
  // The size of the pointer access.
 | 
						|
  int64_t PtrAccessSize = 1;
 | 
						|
 | 
						|
  Ptr = stripGetElementPtr(Ptr, SE, Lp);
 | 
						|
  const SCEV *V = SE->getSCEV(Ptr);
 | 
						|
 | 
						|
  if (Ptr != OrigPtr)
 | 
						|
    // Strip off casts.
 | 
						|
    while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
 | 
						|
      V = C->getOperand();
 | 
						|
 | 
						|
  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
 | 
						|
  if (!S)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  V = S->getStepRecurrence(*SE);
 | 
						|
  if (!V)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Strip off the size of access multiplication if we are still analyzing the
 | 
						|
  // pointer.
 | 
						|
  if (OrigPtr == Ptr) {
 | 
						|
    const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
 | 
						|
    DL.getTypeAllocSize(PtrTy->getElementType());
 | 
						|
    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
 | 
						|
      if (M->getOperand(0)->getSCEVType() != scConstant)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      const APInt &APStepVal =
 | 
						|
          cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
 | 
						|
 | 
						|
      // Huge step value - give up.
 | 
						|
      if (APStepVal.getBitWidth() > 64)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      int64_t StepVal = APStepVal.getSExtValue();
 | 
						|
      if (PtrAccessSize != StepVal)
 | 
						|
        return nullptr;
 | 
						|
      V = M->getOperand(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Strip off casts.
 | 
						|
  Type *StripedOffRecurrenceCast = nullptr;
 | 
						|
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
 | 
						|
    StripedOffRecurrenceCast = C->getType();
 | 
						|
    V = C->getOperand();
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for the loop invariant symbolic value.
 | 
						|
  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
 | 
						|
  if (!U)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  llvm::Value *Stride = U->getValue();
 | 
						|
  if (!Lp->isLoopInvariant(Stride))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we have stripped off the recurrence cast we have to make sure that we
 | 
						|
  // return the value that is used in this loop so that we can replace it later.
 | 
						|
  if (StripedOffRecurrenceCast)
 | 
						|
    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
 | 
						|
 | 
						|
  return Stride;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given a vector and an element number, see if the scalar value is
 | 
						|
/// already around as a register, for example if it were inserted then extracted
 | 
						|
/// from the vector.
 | 
						|
llvm::Value *llvm::findScalarElement(llvm::Value *V, unsigned EltNo) {
 | 
						|
  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
 | 
						|
  VectorType *VTy = cast<VectorType>(V->getType());
 | 
						|
  unsigned Width = VTy->getNumElements();
 | 
						|
  if (EltNo >= Width)  // Out of range access.
 | 
						|
    return UndefValue::get(VTy->getElementType());
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return C->getAggregateElement(EltNo);
 | 
						|
 | 
						|
  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert to a variable element, we don't know what it is.
 | 
						|
    if (!isa<ConstantInt>(III->getOperand(2)))
 | 
						|
      return nullptr;
 | 
						|
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | 
						|
 | 
						|
    // If this is an insert to the element we are looking for, return the
 | 
						|
    // inserted value.
 | 
						|
    if (EltNo == IIElt)
 | 
						|
      return III->getOperand(1);
 | 
						|
 | 
						|
    // Otherwise, the insertelement doesn't modify the value, recurse on its
 | 
						|
    // vector input.
 | 
						|
    return findScalarElement(III->getOperand(0), EltNo);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | 
						|
    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
    int InEl = SVI->getMaskValue(EltNo);
 | 
						|
    if (InEl < 0)
 | 
						|
      return UndefValue::get(VTy->getElementType());
 | 
						|
    if (InEl < (int)LHSWidth)
 | 
						|
      return findScalarElement(SVI->getOperand(0), InEl);
 | 
						|
    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract a value from a vector add operation with a constant zero.
 | 
						|
  Value *Val = nullptr; Constant *Con = nullptr;
 | 
						|
  if (match(V,
 | 
						|
            llvm::PatternMatch::m_Add(llvm::PatternMatch::m_Value(Val),
 | 
						|
                                      llvm::PatternMatch::m_Constant(Con)))) {
 | 
						|
    if (Con->getAggregateElement(EltNo)->isNullValue())
 | 
						|
      return findScalarElement(Val, EltNo);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we don't know.
 | 
						|
  return nullptr;
 | 
						|
}
 |