mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Also update the cost model. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193270 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			695 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			695 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file implements a TargetTransformInfo analysis pass specific to the
 | |
| /// X86 target machine. It uses the target's detailed information to provide
 | |
| /// more precise answers to certain TTI queries, while letting the target
 | |
| /// independent and default TTI implementations handle the rest.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86tti"
 | |
| #include "X86.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/CostTable.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| // Declare the pass initialization routine locally as target-specific passes
 | |
| // don't havve a target-wide initialization entry point, and so we rely on the
 | |
| // pass constructor initialization.
 | |
| namespace llvm {
 | |
| void initializeX86TTIPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class X86TTI : public ImmutablePass, public TargetTransformInfo {
 | |
|   const X86Subtarget *ST;
 | |
|   const X86TargetLowering *TLI;
 | |
| 
 | |
|   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
 | |
|   /// are set if the result needs to be inserted and/or extracted from vectors.
 | |
|   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
 | |
| 
 | |
| public:
 | |
|   X86TTI() : ImmutablePass(ID), ST(0), TLI(0) {
 | |
|     llvm_unreachable("This pass cannot be directly constructed");
 | |
|   }
 | |
| 
 | |
|   X86TTI(const X86TargetMachine *TM)
 | |
|       : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
 | |
|         TLI(TM->getTargetLowering()) {
 | |
|     initializeX86TTIPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   virtual void initializePass() {
 | |
|     pushTTIStack(this);
 | |
|   }
 | |
| 
 | |
|   virtual void finalizePass() {
 | |
|     popTTIStack();
 | |
|   }
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     TargetTransformInfo::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   /// Pass identification.
 | |
|   static char ID;
 | |
| 
 | |
|   /// Provide necessary pointer adjustments for the two base classes.
 | |
|   virtual void *getAdjustedAnalysisPointer(const void *ID) {
 | |
|     if (ID == &TargetTransformInfo::ID)
 | |
|       return (TargetTransformInfo*)this;
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
|   /// \name Scalar TTI Implementations
 | |
|   /// @{
 | |
|   virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Vector TTI Implementations
 | |
|   /// @{
 | |
| 
 | |
|   virtual unsigned getNumberOfRegisters(bool Vector) const;
 | |
|   virtual unsigned getRegisterBitWidth(bool Vector) const;
 | |
|   virtual unsigned getMaximumUnrollFactor() const;
 | |
|   virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
 | |
|                                           OperandValueKind,
 | |
|                                           OperandValueKind) const;
 | |
|   virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
 | |
|                                   int Index, Type *SubTp) const;
 | |
|   virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
 | |
|                                     Type *Src) const;
 | |
|   virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                       Type *CondTy) const;
 | |
|   virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                                       unsigned Index) const;
 | |
|   virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
 | |
|                                    unsigned Alignment,
 | |
|                                    unsigned AddressSpace) const;
 | |
| 
 | |
|   virtual unsigned getAddressComputationCost(Type *PtrTy, bool IsComplex) const;
 | |
|   
 | |
|   virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
 | |
|                                     bool IsPairwiseForm) const;
 | |
| 
 | |
|   /// @}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
 | |
|                    "X86 Target Transform Info", true, true, false)
 | |
| char X86TTI::ID = 0;
 | |
| 
 | |
| ImmutablePass *
 | |
| llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
 | |
|   return new X86TTI(TM);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // X86 cost model.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
 | |
|   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | |
|   // TODO: Currently the __builtin_popcount() implementation using SSE3
 | |
|   //   instructions is inefficient. Once the problem is fixed, we should
 | |
|   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
 | |
|   return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
 | |
|   if (Vector && !ST->hasSSE1())
 | |
|     return 0;
 | |
| 
 | |
|   if (ST->is64Bit())
 | |
|     return 16;
 | |
|   return 8;
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
 | |
|   if (Vector) {
 | |
|     if (ST->hasAVX()) return 256;
 | |
|     if (ST->hasSSE1()) return 128;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (ST->is64Bit())
 | |
|     return 64;
 | |
|   return 32;
 | |
| 
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getMaximumUnrollFactor() const {
 | |
|   if (ST->isAtom())
 | |
|     return 1;
 | |
| 
 | |
|   // Sandybridge and Haswell have multiple execution ports and pipelined
 | |
|   // vector units.
 | |
|   if (ST->hasAVX())
 | |
|     return 4;
 | |
| 
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
 | |
|                                         OperandValueKind Op1Info,
 | |
|                                         OperandValueKind Op2Info) const {
 | |
|   // Legalize the type.
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
 | |
|     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
 | |
|     // customize them to detect the cases where shift amount is a scalar one.
 | |
|     { ISD::SHL,     MVT::v4i32,    1 },
 | |
|     { ISD::SRL,     MVT::v4i32,    1 },
 | |
|     { ISD::SRA,     MVT::v4i32,    1 },
 | |
|     { ISD::SHL,     MVT::v8i32,    1 },
 | |
|     { ISD::SRL,     MVT::v8i32,    1 },
 | |
|     { ISD::SRA,     MVT::v8i32,    1 },
 | |
|     { ISD::SHL,     MVT::v2i64,    1 },
 | |
|     { ISD::SRL,     MVT::v2i64,    1 },
 | |
|     { ISD::SHL,     MVT::v4i64,    1 },
 | |
|     { ISD::SRL,     MVT::v4i64,    1 },
 | |
| 
 | |
|     { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
 | |
|     { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
 | |
|     { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
 | |
|     { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
 | |
|     { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
 | |
| 
 | |
|     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
 | |
|     { ISD::SDIV,  MVT::v32i8,  32*20 },
 | |
|     { ISD::SDIV,  MVT::v16i16, 16*20 },
 | |
|     { ISD::SDIV,  MVT::v8i32,  8*20 },
 | |
|     { ISD::SDIV,  MVT::v4i64,  4*20 },
 | |
|     { ISD::UDIV,  MVT::v32i8,  32*20 },
 | |
|     { ISD::UDIV,  MVT::v16i16, 16*20 },
 | |
|     { ISD::UDIV,  MVT::v8i32,  8*20 },
 | |
|     { ISD::UDIV,  MVT::v4i64,  4*20 },
 | |
|   };
 | |
| 
 | |
|   // Look for AVX2 lowering tricks.
 | |
|   if (ST->hasAVX2()) {
 | |
|     int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
 | |
|     if (Idx != -1)
 | |
|       return LT.first * AVX2CostTable[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry<MVT::SimpleValueType>
 | |
|   SSE2UniformConstCostTable[] = {
 | |
|     // We don't correctly identify costs of casts because they are marked as
 | |
|     // custom.
 | |
|     // Constant splats are cheaper for the following instructions.
 | |
|     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
 | |
|     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
 | |
|     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
 | |
|     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
 | |
|     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
 | |
|     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
 | |
|     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
 | |
|     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
 | |
|     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
 | |
|   };
 | |
| 
 | |
|   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|       ST->hasSSE2()) {
 | |
|     int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
 | |
|     if (Idx != -1)
 | |
|       return LT.first * SSE2UniformConstCostTable[Idx].Cost;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
 | |
|     // We don't correctly identify costs of casts because they are marked as
 | |
|     // custom.
 | |
|     // For some cases, where the shift amount is a scalar we would be able
 | |
|     // to generate better code. Unfortunately, when this is the case the value
 | |
|     // (the splat) will get hoisted out of the loop, thereby making it invisible
 | |
|     // to ISel. The cost model must return worst case assumptions because it is
 | |
|     // used for vectorization and we don't want to make vectorized code worse
 | |
|     // than scalar code.
 | |
|     { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
 | |
|     { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
 | |
|     { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
 | |
|     { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
 | |
|     { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
 | |
|     { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
 | |
|     { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
 | |
|     { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
 | |
|     { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
 | |
|     { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
 | |
| 
 | |
|     // It is not a good idea to vectorize division. We have to scalarize it and
 | |
|     // in the process we will often end up having to spilling regular
 | |
|     // registers. The overhead of division is going to dominate most kernels
 | |
|     // anyways so try hard to prevent vectorization of division - it is
 | |
|     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
 | |
|     // to hide "20 cycles" for each lane.
 | |
|     { ISD::SDIV,  MVT::v16i8,  16*20 },
 | |
|     { ISD::SDIV,  MVT::v8i16,  8*20 },
 | |
|     { ISD::SDIV,  MVT::v4i32,  4*20 },
 | |
|     { ISD::SDIV,  MVT::v2i64,  2*20 },
 | |
|     { ISD::UDIV,  MVT::v16i8,  16*20 },
 | |
|     { ISD::UDIV,  MVT::v8i16,  8*20 },
 | |
|     { ISD::UDIV,  MVT::v4i32,  4*20 },
 | |
|     { ISD::UDIV,  MVT::v2i64,  2*20 },
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE2()) {
 | |
|     int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
 | |
|     if (Idx != -1)
 | |
|       return LT.first * SSE2CostTable[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
 | |
|     // We don't have to scalarize unsupported ops. We can issue two half-sized
 | |
|     // operations and we only need to extract the upper YMM half.
 | |
|     // Two ops + 1 extract + 1 insert = 4.
 | |
|     { ISD::MUL,     MVT::v8i32,    4 },
 | |
|     { ISD::SUB,     MVT::v8i32,    4 },
 | |
|     { ISD::ADD,     MVT::v8i32,    4 },
 | |
|     { ISD::SUB,     MVT::v4i64,    4 },
 | |
|     { ISD::ADD,     MVT::v4i64,    4 },
 | |
|     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
 | |
|     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
 | |
|     // Because we believe v4i64 to be a legal type, we must also include the
 | |
|     // split factor of two in the cost table. Therefore, the cost here is 18
 | |
|     // instead of 9.
 | |
|     { ISD::MUL,     MVT::v4i64,    18 },
 | |
|   };
 | |
| 
 | |
|   // Look for AVX1 lowering tricks.
 | |
|   if (ST->hasAVX() && !ST->hasAVX2()) {
 | |
|     int Idx = CostTableLookup(AVX1CostTable, ISD, LT.second);
 | |
|     if (Idx != -1)
 | |
|       return LT.first * AVX1CostTable[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   // Custom lowering of vectors.
 | |
|   static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
 | |
|     // A v2i64/v4i64 and multiply is custom lowered as a series of long
 | |
|     // multiplies(3), shifts(4) and adds(2).
 | |
|     { ISD::MUL,     MVT::v2i64,    9 },
 | |
|     { ISD::MUL,     MVT::v4i64,    9 },
 | |
|   };
 | |
|   int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
 | |
|   if (Idx != -1)
 | |
|     return LT.first * CustomLowered[Idx].Cost;
 | |
| 
 | |
|   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
 | |
|   // 2x pmuludq, 2x shuffle.
 | |
|   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
 | |
|       !ST->hasSSE41())
 | |
|     return 6;
 | |
| 
 | |
|   // Fallback to the default implementation.
 | |
|   return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
 | |
|                                                      Op2Info);
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
 | |
|                                 Type *SubTp) const {
 | |
|   // We only estimate the cost of reverse shuffles.
 | |
|   if (Kind != SK_Reverse)
 | |
|     return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| 
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
 | |
|   unsigned Cost = 1;
 | |
|   if (LT.second.getSizeInBits() > 128)
 | |
|     Cost = 3; // Extract + insert + copy.
 | |
| 
 | |
|   // Multiple by the number of parts.
 | |
|   return Cost * LT.first;
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
 | |
|   std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
 | |
| 
 | |
|   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|   SSE2ConvTbl[] = {
 | |
|     // These are somewhat magic numbers justified by looking at the output of
 | |
|     // Intel's IACA, running some kernels and making sure when we take
 | |
|     // legalization into account the throughput will be overestimated.
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | |
|     // There are faster sequences for float conversions.
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE2() && !ST->hasAVX()) {
 | |
|     int Idx =
 | |
|         ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
 | |
|     if (Idx != -1)
 | |
|       return LTSrc.first * SSE2ConvTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   EVT SrcTy = TLI->getValueType(Src);
 | |
|   EVT DstTy = TLI->getValueType(Dst);
 | |
| 
 | |
|   // The function getSimpleVT only handles simple value types.
 | |
|   if (!SrcTy.isSimple() || !DstTy.isSimple())
 | |
|     return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|   AVXConversionTbl[] = {
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 2 },
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1,  8 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,  6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX()) {
 | |
|     int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
 | |
|                                      SrcTy.getSimpleVT());
 | |
|     if (Idx != -1)
 | |
|       return AVXConversionTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                     Type *CondTy) const {
 | |
|   // Legalize the type.
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
 | |
| 
 | |
|   MVT MTy = LT.second;
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v2f64,   1 },
 | |
|     { ISD::SETCC,   MVT::v4f32,   1 },
 | |
|     { ISD::SETCC,   MVT::v2i64,   1 },
 | |
|     { ISD::SETCC,   MVT::v4i32,   1 },
 | |
|     { ISD::SETCC,   MVT::v8i16,   1 },
 | |
|     { ISD::SETCC,   MVT::v16i8,   1 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v4f64,   1 },
 | |
|     { ISD::SETCC,   MVT::v8f32,   1 },
 | |
|     // AVX1 does not support 8-wide integer compare.
 | |
|     { ISD::SETCC,   MVT::v4i64,   4 },
 | |
|     { ISD::SETCC,   MVT::v8i32,   4 },
 | |
|     { ISD::SETCC,   MVT::v16i16,  4 },
 | |
|     { ISD::SETCC,   MVT::v32i8,   4 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v4i64,   1 },
 | |
|     { ISD::SETCC,   MVT::v8i32,   1 },
 | |
|     { ISD::SETCC,   MVT::v16i16,  1 },
 | |
|     { ISD::SETCC,   MVT::v32i8,   1 },
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX2()) {
 | |
|     int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
 | |
|     if (Idx != -1)
 | |
|       return LT.first * AVX2CostTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   if (ST->hasAVX()) {
 | |
|     int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
 | |
|     if (Idx != -1)
 | |
|       return LT.first * AVX1CostTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   if (ST->hasSSE42()) {
 | |
|     int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
 | |
|     if (Idx != -1)
 | |
|       return LT.first * SSE42CostTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                                     unsigned Index) const {
 | |
|   assert(Val->isVectorTy() && "This must be a vector type");
 | |
| 
 | |
|   if (Index != -1U) {
 | |
|     // Legalize the type.
 | |
|     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
 | |
| 
 | |
|     // This type is legalized to a scalar type.
 | |
|     if (!LT.second.isVector())
 | |
|       return 0;
 | |
| 
 | |
|     // The type may be split. Normalize the index to the new type.
 | |
|     unsigned Width = LT.second.getVectorNumElements();
 | |
|     Index = Index % Width;
 | |
| 
 | |
|     // Floating point scalars are already located in index #0.
 | |
|     if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
 | |
|                                             bool Extract) const {
 | |
|   assert (Ty->isVectorTy() && "Can only scalarize vectors");
 | |
|   unsigned Cost = 0;
 | |
| 
 | |
|   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
 | |
|     if (Insert)
 | |
|       Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | |
|     if (Extract)
 | |
|       Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | |
|                                  unsigned AddressSpace) const {
 | |
|   // Handle non power of two vectors such as <3 x float>
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
 | |
|     unsigned NumElem = VTy->getVectorNumElements();
 | |
| 
 | |
|     // Handle a few common cases:
 | |
|     // <3 x float>
 | |
|     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
 | |
|       // Cost = 64 bit store + extract + 32 bit store.
 | |
|       return 3;
 | |
| 
 | |
|     // <3 x double>
 | |
|     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
 | |
|       // Cost = 128 bit store + unpack + 64 bit store.
 | |
|       return 3;
 | |
| 
 | |
|     // Assume that all other non power-of-two numbers are scalarized.
 | |
|     if (!isPowerOf2_32(NumElem)) {
 | |
|       unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
 | |
|                                                            VTy->getScalarType(),
 | |
|                                                            Alignment,
 | |
|                                                            AddressSpace);
 | |
|       unsigned SplitCost = getScalarizationOverhead(Src,
 | |
|                                                     Opcode == Instruction::Load,
 | |
|                                                     Opcode==Instruction::Store);
 | |
|       return NumElem * Cost + SplitCost;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Legalize the type.
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
 | |
|   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
 | |
|          "Invalid Opcode");
 | |
| 
 | |
|   // Each load/store unit costs 1.
 | |
|   unsigned Cost = LT.first * 1;
 | |
| 
 | |
|   // On Sandybridge 256bit load/stores are double pumped
 | |
|   // (but not on Haswell).
 | |
|   if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
 | |
|     Cost*=2;
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
 | |
|   // Address computations in vectorized code with non-consecutive addresses will
 | |
|   // likely result in more instructions compared to scalar code where the
 | |
|   // computation can more often be merged into the index mode. The resulting
 | |
|   // extra micro-ops can significantly decrease throughput.
 | |
|   unsigned NumVectorInstToHideOverhead = 10;
 | |
| 
 | |
|   if (Ty->isVectorTy() && IsComplex)
 | |
|     return NumVectorInstToHideOverhead;
 | |
| 
 | |
|   return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
 | |
| }
 | |
| 
 | |
| unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
 | |
|                                   bool IsPairwise) const {
 | |
|   
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
 | |
|   
 | |
|   MVT MTy = LT.second;
 | |
|   
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
|  
 | |
|   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 
 | |
|   // and make it as the cost. 
 | |
|  
 | |
|   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v2f64,   2 },
 | |
|     { ISD::FADD,  MVT::v4f32,   4 },
 | |
|     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
 | |
|     { ISD::ADD,   MVT::v8i16,   5 },
 | |
|   };
 | |
|  
 | |
|   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v4f32,   4 },
 | |
|     { ISD::FADD,  MVT::v4f64,   5 },
 | |
|     { ISD::FADD,  MVT::v8f32,   7 },
 | |
|     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
 | |
|     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
 | |
|     { ISD::ADD,   MVT::v8i16,   5 },
 | |
|     { ISD::ADD,   MVT::v8i32,   5 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v2f64,   2 },
 | |
|     { ISD::FADD,  MVT::v4f32,   4 },
 | |
|     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
 | |
|     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
 | |
|   };
 | |
|   
 | |
|   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v4f32,   3 },
 | |
|     { ISD::FADD,  MVT::v4f64,   3 },
 | |
|     { ISD::FADD,  MVT::v8f32,   4 },
 | |
|     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
 | |
|     { ISD::ADD,   MVT::v4i64,   3 },
 | |
|     { ISD::ADD,   MVT::v8i16,   4 },
 | |
|     { ISD::ADD,   MVT::v8i32,   5 },
 | |
|   };
 | |
|   
 | |
|   if (IsPairwise) {
 | |
|     if (ST->hasAVX()) {
 | |
|       int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
 | |
|       if (Idx != -1)
 | |
|         return LT.first * AVX1CostTblPairWise[Idx].Cost;
 | |
|     }
 | |
|   
 | |
|     if (ST->hasSSE42()) {
 | |
|       int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
 | |
|       if (Idx != -1)
 | |
|         return LT.first * SSE42CostTblPairWise[Idx].Cost;
 | |
|     }
 | |
|   } else {
 | |
|     if (ST->hasAVX()) {
 | |
|       int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
 | |
|       if (Idx != -1)
 | |
|         return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
 | |
|     }
 | |
|     
 | |
|     if (ST->hasSSE42()) {
 | |
|       int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
 | |
|       if (Idx != -1)
 | |
|         return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
 | |
| }
 | |
| 
 |