mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
1526278443
`parseBitcodeFile()` uses the generic `getLazyBitcodeFile()` function as a helper. Since `parseBitcodeFile()` isn't actually lazy -- it calls `MaterializeAllPermanently()` -- bypass the unnecessary call to `materializeForwardReferencedFunctions()` by extracting out a common helper function. This removes the last of the use-list churn caused by blockaddresses. This highlights that we can't reproduce use-list order of globals and constants when parsing lazily -- but that's necessarily out of scope. When we're parsing lazily, we never have all the functions in memory, so the use-lists of globals (and constants that reference globals) are always incomplete. This is part of PR5680. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214581 91177308-0d34-0410-b5e6-96231b3b80d8
3588 lines
127 KiB
C++
3588 lines
127 KiB
C++
//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "BitcodeReader.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Bitcode/LLVMBitCodes.h"
|
|
#include "llvm/IR/AutoUpgrade.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/OperandTraits.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/DataStream.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
enum {
|
|
SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
|
|
};
|
|
|
|
std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
|
|
if (WillMaterializeAllForwardRefs)
|
|
return std::error_code();
|
|
|
|
// Prevent recursion.
|
|
WillMaterializeAllForwardRefs = true;
|
|
|
|
while (!BasicBlockFwdRefs.empty()) {
|
|
Function *F = BasicBlockFwdRefs.begin()->first;
|
|
assert(F && "Expected valid function");
|
|
// Check for a function that isn't materializable to prevent an infinite
|
|
// loop. When parsing a blockaddress stored in a global variable, there
|
|
// isn't a trivial way to check if a function will have a body without a
|
|
// linear search through FunctionsWithBodies, so just check it here.
|
|
if (!F->isMaterializable())
|
|
return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress);
|
|
|
|
// Try to materialize F.
|
|
if (std::error_code EC = Materialize(F))
|
|
return EC;
|
|
}
|
|
|
|
// Reset state.
|
|
WillMaterializeAllForwardRefs = false;
|
|
return std::error_code();
|
|
}
|
|
|
|
void BitcodeReader::FreeState() {
|
|
Buffer = nullptr;
|
|
std::vector<Type*>().swap(TypeList);
|
|
ValueList.clear();
|
|
MDValueList.clear();
|
|
std::vector<Comdat *>().swap(ComdatList);
|
|
|
|
std::vector<AttributeSet>().swap(MAttributes);
|
|
std::vector<BasicBlock*>().swap(FunctionBBs);
|
|
std::vector<Function*>().swap(FunctionsWithBodies);
|
|
DeferredFunctionInfo.clear();
|
|
MDKindMap.clear();
|
|
|
|
assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions to implement forward reference resolution, etc.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ConvertToString - Convert a string from a record into an std::string, return
|
|
/// true on failure.
|
|
template<typename StrTy>
|
|
static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
|
|
StrTy &Result) {
|
|
if (Idx > Record.size())
|
|
return true;
|
|
|
|
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
|
|
Result += (char)Record[i];
|
|
return false;
|
|
}
|
|
|
|
static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown/new linkages to external
|
|
case 0: return GlobalValue::ExternalLinkage;
|
|
case 1: return GlobalValue::WeakAnyLinkage;
|
|
case 2: return GlobalValue::AppendingLinkage;
|
|
case 3: return GlobalValue::InternalLinkage;
|
|
case 4: return GlobalValue::LinkOnceAnyLinkage;
|
|
case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
|
|
case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
|
|
case 7: return GlobalValue::ExternalWeakLinkage;
|
|
case 8: return GlobalValue::CommonLinkage;
|
|
case 9: return GlobalValue::PrivateLinkage;
|
|
case 10: return GlobalValue::WeakODRLinkage;
|
|
case 11: return GlobalValue::LinkOnceODRLinkage;
|
|
case 12: return GlobalValue::AvailableExternallyLinkage;
|
|
case 13:
|
|
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
|
|
case 14:
|
|
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
|
|
}
|
|
}
|
|
|
|
static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown visibilities to default.
|
|
case 0: return GlobalValue::DefaultVisibility;
|
|
case 1: return GlobalValue::HiddenVisibility;
|
|
case 2: return GlobalValue::ProtectedVisibility;
|
|
}
|
|
}
|
|
|
|
static GlobalValue::DLLStorageClassTypes
|
|
GetDecodedDLLStorageClass(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown values to default.
|
|
case 0: return GlobalValue::DefaultStorageClass;
|
|
case 1: return GlobalValue::DLLImportStorageClass;
|
|
case 2: return GlobalValue::DLLExportStorageClass;
|
|
}
|
|
}
|
|
|
|
static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
|
|
switch (Val) {
|
|
case 0: return GlobalVariable::NotThreadLocal;
|
|
default: // Map unknown non-zero value to general dynamic.
|
|
case 1: return GlobalVariable::GeneralDynamicTLSModel;
|
|
case 2: return GlobalVariable::LocalDynamicTLSModel;
|
|
case 3: return GlobalVariable::InitialExecTLSModel;
|
|
case 4: return GlobalVariable::LocalExecTLSModel;
|
|
}
|
|
}
|
|
|
|
static int GetDecodedCastOpcode(unsigned Val) {
|
|
switch (Val) {
|
|
default: return -1;
|
|
case bitc::CAST_TRUNC : return Instruction::Trunc;
|
|
case bitc::CAST_ZEXT : return Instruction::ZExt;
|
|
case bitc::CAST_SEXT : return Instruction::SExt;
|
|
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
|
|
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
|
|
case bitc::CAST_UITOFP : return Instruction::UIToFP;
|
|
case bitc::CAST_SITOFP : return Instruction::SIToFP;
|
|
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
|
|
case bitc::CAST_FPEXT : return Instruction::FPExt;
|
|
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
|
|
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
|
|
case bitc::CAST_BITCAST : return Instruction::BitCast;
|
|
case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
|
|
}
|
|
}
|
|
static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
|
|
switch (Val) {
|
|
default: return -1;
|
|
case bitc::BINOP_ADD:
|
|
return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
|
|
case bitc::BINOP_SUB:
|
|
return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
|
|
case bitc::BINOP_MUL:
|
|
return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
|
|
case bitc::BINOP_UDIV: return Instruction::UDiv;
|
|
case bitc::BINOP_SDIV:
|
|
return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
|
|
case bitc::BINOP_UREM: return Instruction::URem;
|
|
case bitc::BINOP_SREM:
|
|
return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
|
|
case bitc::BINOP_SHL: return Instruction::Shl;
|
|
case bitc::BINOP_LSHR: return Instruction::LShr;
|
|
case bitc::BINOP_ASHR: return Instruction::AShr;
|
|
case bitc::BINOP_AND: return Instruction::And;
|
|
case bitc::BINOP_OR: return Instruction::Or;
|
|
case bitc::BINOP_XOR: return Instruction::Xor;
|
|
}
|
|
}
|
|
|
|
static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
|
|
switch (Val) {
|
|
default: return AtomicRMWInst::BAD_BINOP;
|
|
case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
|
|
case bitc::RMW_ADD: return AtomicRMWInst::Add;
|
|
case bitc::RMW_SUB: return AtomicRMWInst::Sub;
|
|
case bitc::RMW_AND: return AtomicRMWInst::And;
|
|
case bitc::RMW_NAND: return AtomicRMWInst::Nand;
|
|
case bitc::RMW_OR: return AtomicRMWInst::Or;
|
|
case bitc::RMW_XOR: return AtomicRMWInst::Xor;
|
|
case bitc::RMW_MAX: return AtomicRMWInst::Max;
|
|
case bitc::RMW_MIN: return AtomicRMWInst::Min;
|
|
case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
|
|
case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
|
|
}
|
|
}
|
|
|
|
static AtomicOrdering GetDecodedOrdering(unsigned Val) {
|
|
switch (Val) {
|
|
case bitc::ORDERING_NOTATOMIC: return NotAtomic;
|
|
case bitc::ORDERING_UNORDERED: return Unordered;
|
|
case bitc::ORDERING_MONOTONIC: return Monotonic;
|
|
case bitc::ORDERING_ACQUIRE: return Acquire;
|
|
case bitc::ORDERING_RELEASE: return Release;
|
|
case bitc::ORDERING_ACQREL: return AcquireRelease;
|
|
default: // Map unknown orderings to sequentially-consistent.
|
|
case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
|
|
}
|
|
}
|
|
|
|
static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
|
|
switch (Val) {
|
|
case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
|
|
default: // Map unknown scopes to cross-thread.
|
|
case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
|
|
}
|
|
}
|
|
|
|
static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown selection kinds to any.
|
|
case bitc::COMDAT_SELECTION_KIND_ANY:
|
|
return Comdat::Any;
|
|
case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
|
|
return Comdat::ExactMatch;
|
|
case bitc::COMDAT_SELECTION_KIND_LARGEST:
|
|
return Comdat::Largest;
|
|
case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
|
|
return Comdat::NoDuplicates;
|
|
case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
|
|
return Comdat::SameSize;
|
|
}
|
|
}
|
|
|
|
static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
|
|
switch (Val) {
|
|
case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
|
|
case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace {
|
|
/// @brief A class for maintaining the slot number definition
|
|
/// as a placeholder for the actual definition for forward constants defs.
|
|
class ConstantPlaceHolder : public ConstantExpr {
|
|
void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
|
|
public:
|
|
// allocate space for exactly one operand
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 1);
|
|
}
|
|
explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
|
|
: ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
|
|
Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
|
|
}
|
|
|
|
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
|
|
static bool classof(const Value *V) {
|
|
return isa<ConstantExpr>(V) &&
|
|
cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
|
|
}
|
|
|
|
|
|
/// Provide fast operand accessors
|
|
//DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
}
|
|
|
|
// FIXME: can we inherit this from ConstantExpr?
|
|
template <>
|
|
struct OperandTraits<ConstantPlaceHolder> :
|
|
public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
|
|
};
|
|
}
|
|
|
|
|
|
void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
|
|
if (Idx == size()) {
|
|
push_back(V);
|
|
return;
|
|
}
|
|
|
|
if (Idx >= size())
|
|
resize(Idx+1);
|
|
|
|
WeakVH &OldV = ValuePtrs[Idx];
|
|
if (!OldV) {
|
|
OldV = V;
|
|
return;
|
|
}
|
|
|
|
// Handle constants and non-constants (e.g. instrs) differently for
|
|
// efficiency.
|
|
if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
|
|
ResolveConstants.push_back(std::make_pair(PHC, Idx));
|
|
OldV = V;
|
|
} else {
|
|
// If there was a forward reference to this value, replace it.
|
|
Value *PrevVal = OldV;
|
|
OldV->replaceAllUsesWith(V);
|
|
delete PrevVal;
|
|
}
|
|
}
|
|
|
|
|
|
Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
|
|
Type *Ty) {
|
|
if (Idx >= size())
|
|
resize(Idx + 1);
|
|
|
|
if (Value *V = ValuePtrs[Idx]) {
|
|
assert(Ty == V->getType() && "Type mismatch in constant table!");
|
|
return cast<Constant>(V);
|
|
}
|
|
|
|
// Create and return a placeholder, which will later be RAUW'd.
|
|
Constant *C = new ConstantPlaceHolder(Ty, Context);
|
|
ValuePtrs[Idx] = C;
|
|
return C;
|
|
}
|
|
|
|
Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
|
|
if (Idx >= size())
|
|
resize(Idx + 1);
|
|
|
|
if (Value *V = ValuePtrs[Idx]) {
|
|
assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
|
|
return V;
|
|
}
|
|
|
|
// No type specified, must be invalid reference.
|
|
if (!Ty) return nullptr;
|
|
|
|
// Create and return a placeholder, which will later be RAUW'd.
|
|
Value *V = new Argument(Ty);
|
|
ValuePtrs[Idx] = V;
|
|
return V;
|
|
}
|
|
|
|
/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
|
|
/// resolves any forward references. The idea behind this is that we sometimes
|
|
/// get constants (such as large arrays) which reference *many* forward ref
|
|
/// constants. Replacing each of these causes a lot of thrashing when
|
|
/// building/reuniquing the constant. Instead of doing this, we look at all the
|
|
/// uses and rewrite all the place holders at once for any constant that uses
|
|
/// a placeholder.
|
|
void BitcodeReaderValueList::ResolveConstantForwardRefs() {
|
|
// Sort the values by-pointer so that they are efficient to look up with a
|
|
// binary search.
|
|
std::sort(ResolveConstants.begin(), ResolveConstants.end());
|
|
|
|
SmallVector<Constant*, 64> NewOps;
|
|
|
|
while (!ResolveConstants.empty()) {
|
|
Value *RealVal = operator[](ResolveConstants.back().second);
|
|
Constant *Placeholder = ResolveConstants.back().first;
|
|
ResolveConstants.pop_back();
|
|
|
|
// Loop over all users of the placeholder, updating them to reference the
|
|
// new value. If they reference more than one placeholder, update them all
|
|
// at once.
|
|
while (!Placeholder->use_empty()) {
|
|
auto UI = Placeholder->user_begin();
|
|
User *U = *UI;
|
|
|
|
// If the using object isn't uniqued, just update the operands. This
|
|
// handles instructions and initializers for global variables.
|
|
if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
|
|
UI.getUse().set(RealVal);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a constant that uses the placeholder. Replace that
|
|
// constant with a new constant that has *all* placeholder uses updated.
|
|
Constant *UserC = cast<Constant>(U);
|
|
for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
|
|
I != E; ++I) {
|
|
Value *NewOp;
|
|
if (!isa<ConstantPlaceHolder>(*I)) {
|
|
// Not a placeholder reference.
|
|
NewOp = *I;
|
|
} else if (*I == Placeholder) {
|
|
// Common case is that it just references this one placeholder.
|
|
NewOp = RealVal;
|
|
} else {
|
|
// Otherwise, look up the placeholder in ResolveConstants.
|
|
ResolveConstantsTy::iterator It =
|
|
std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
|
|
std::pair<Constant*, unsigned>(cast<Constant>(*I),
|
|
0));
|
|
assert(It != ResolveConstants.end() && It->first == *I);
|
|
NewOp = operator[](It->second);
|
|
}
|
|
|
|
NewOps.push_back(cast<Constant>(NewOp));
|
|
}
|
|
|
|
// Make the new constant.
|
|
Constant *NewC;
|
|
if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
|
|
NewC = ConstantArray::get(UserCA->getType(), NewOps);
|
|
} else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
|
|
NewC = ConstantStruct::get(UserCS->getType(), NewOps);
|
|
} else if (isa<ConstantVector>(UserC)) {
|
|
NewC = ConstantVector::get(NewOps);
|
|
} else {
|
|
assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
|
|
NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
|
|
}
|
|
|
|
UserC->replaceAllUsesWith(NewC);
|
|
UserC->destroyConstant();
|
|
NewOps.clear();
|
|
}
|
|
|
|
// Update all ValueHandles, they should be the only users at this point.
|
|
Placeholder->replaceAllUsesWith(RealVal);
|
|
delete Placeholder;
|
|
}
|
|
}
|
|
|
|
void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
|
|
if (Idx == size()) {
|
|
push_back(V);
|
|
return;
|
|
}
|
|
|
|
if (Idx >= size())
|
|
resize(Idx+1);
|
|
|
|
WeakVH &OldV = MDValuePtrs[Idx];
|
|
if (!OldV) {
|
|
OldV = V;
|
|
return;
|
|
}
|
|
|
|
// If there was a forward reference to this value, replace it.
|
|
MDNode *PrevVal = cast<MDNode>(OldV);
|
|
OldV->replaceAllUsesWith(V);
|
|
MDNode::deleteTemporary(PrevVal);
|
|
// Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
|
|
// value for Idx.
|
|
MDValuePtrs[Idx] = V;
|
|
}
|
|
|
|
Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
|
|
if (Idx >= size())
|
|
resize(Idx + 1);
|
|
|
|
if (Value *V = MDValuePtrs[Idx]) {
|
|
assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
|
|
return V;
|
|
}
|
|
|
|
// Create and return a placeholder, which will later be RAUW'd.
|
|
Value *V = MDNode::getTemporary(Context, None);
|
|
MDValuePtrs[Idx] = V;
|
|
return V;
|
|
}
|
|
|
|
Type *BitcodeReader::getTypeByID(unsigned ID) {
|
|
// The type table size is always specified correctly.
|
|
if (ID >= TypeList.size())
|
|
return nullptr;
|
|
|
|
if (Type *Ty = TypeList[ID])
|
|
return Ty;
|
|
|
|
// If we have a forward reference, the only possible case is when it is to a
|
|
// named struct. Just create a placeholder for now.
|
|
return TypeList[ID] = StructType::create(Context);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Functions for parsing blocks from the bitcode file
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// \brief This fills an AttrBuilder object with the LLVM attributes that have
|
|
/// been decoded from the given integer. This function must stay in sync with
|
|
/// 'encodeLLVMAttributesForBitcode'.
|
|
static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
|
|
uint64_t EncodedAttrs) {
|
|
// FIXME: Remove in 4.0.
|
|
|
|
// The alignment is stored as a 16-bit raw value from bits 31--16. We shift
|
|
// the bits above 31 down by 11 bits.
|
|
unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
|
|
assert((!Alignment || isPowerOf2_32(Alignment)) &&
|
|
"Alignment must be a power of two.");
|
|
|
|
if (Alignment)
|
|
B.addAlignmentAttr(Alignment);
|
|
B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
|
|
(EncodedAttrs & 0xffff));
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseAttributeBlock() {
|
|
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
if (!MAttributes.empty())
|
|
return Error(BitcodeError::InvalidMultipleBlocks);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
SmallVector<AttributeSet, 8> Attrs;
|
|
|
|
// Read all the records.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
|
|
// FIXME: Remove in 4.0.
|
|
if (Record.size() & 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
|
|
AttrBuilder B;
|
|
decodeLLVMAttributesForBitcode(B, Record[i+1]);
|
|
Attrs.push_back(AttributeSet::get(Context, Record[i], B));
|
|
}
|
|
|
|
MAttributes.push_back(AttributeSet::get(Context, Attrs));
|
|
Attrs.clear();
|
|
break;
|
|
}
|
|
case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
|
|
for (unsigned i = 0, e = Record.size(); i != e; ++i)
|
|
Attrs.push_back(MAttributeGroups[Record[i]]);
|
|
|
|
MAttributes.push_back(AttributeSet::get(Context, Attrs));
|
|
Attrs.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns Attribute::None on unrecognized codes.
|
|
static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
|
|
switch (Code) {
|
|
default:
|
|
return Attribute::None;
|
|
case bitc::ATTR_KIND_ALIGNMENT:
|
|
return Attribute::Alignment;
|
|
case bitc::ATTR_KIND_ALWAYS_INLINE:
|
|
return Attribute::AlwaysInline;
|
|
case bitc::ATTR_KIND_BUILTIN:
|
|
return Attribute::Builtin;
|
|
case bitc::ATTR_KIND_BY_VAL:
|
|
return Attribute::ByVal;
|
|
case bitc::ATTR_KIND_IN_ALLOCA:
|
|
return Attribute::InAlloca;
|
|
case bitc::ATTR_KIND_COLD:
|
|
return Attribute::Cold;
|
|
case bitc::ATTR_KIND_INLINE_HINT:
|
|
return Attribute::InlineHint;
|
|
case bitc::ATTR_KIND_IN_REG:
|
|
return Attribute::InReg;
|
|
case bitc::ATTR_KIND_JUMP_TABLE:
|
|
return Attribute::JumpTable;
|
|
case bitc::ATTR_KIND_MIN_SIZE:
|
|
return Attribute::MinSize;
|
|
case bitc::ATTR_KIND_NAKED:
|
|
return Attribute::Naked;
|
|
case bitc::ATTR_KIND_NEST:
|
|
return Attribute::Nest;
|
|
case bitc::ATTR_KIND_NO_ALIAS:
|
|
return Attribute::NoAlias;
|
|
case bitc::ATTR_KIND_NO_BUILTIN:
|
|
return Attribute::NoBuiltin;
|
|
case bitc::ATTR_KIND_NO_CAPTURE:
|
|
return Attribute::NoCapture;
|
|
case bitc::ATTR_KIND_NO_DUPLICATE:
|
|
return Attribute::NoDuplicate;
|
|
case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
|
|
return Attribute::NoImplicitFloat;
|
|
case bitc::ATTR_KIND_NO_INLINE:
|
|
return Attribute::NoInline;
|
|
case bitc::ATTR_KIND_NON_LAZY_BIND:
|
|
return Attribute::NonLazyBind;
|
|
case bitc::ATTR_KIND_NON_NULL:
|
|
return Attribute::NonNull;
|
|
case bitc::ATTR_KIND_DEREFERENCEABLE:
|
|
return Attribute::Dereferenceable;
|
|
case bitc::ATTR_KIND_NO_RED_ZONE:
|
|
return Attribute::NoRedZone;
|
|
case bitc::ATTR_KIND_NO_RETURN:
|
|
return Attribute::NoReturn;
|
|
case bitc::ATTR_KIND_NO_UNWIND:
|
|
return Attribute::NoUnwind;
|
|
case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
|
|
return Attribute::OptimizeForSize;
|
|
case bitc::ATTR_KIND_OPTIMIZE_NONE:
|
|
return Attribute::OptimizeNone;
|
|
case bitc::ATTR_KIND_READ_NONE:
|
|
return Attribute::ReadNone;
|
|
case bitc::ATTR_KIND_READ_ONLY:
|
|
return Attribute::ReadOnly;
|
|
case bitc::ATTR_KIND_RETURNED:
|
|
return Attribute::Returned;
|
|
case bitc::ATTR_KIND_RETURNS_TWICE:
|
|
return Attribute::ReturnsTwice;
|
|
case bitc::ATTR_KIND_S_EXT:
|
|
return Attribute::SExt;
|
|
case bitc::ATTR_KIND_STACK_ALIGNMENT:
|
|
return Attribute::StackAlignment;
|
|
case bitc::ATTR_KIND_STACK_PROTECT:
|
|
return Attribute::StackProtect;
|
|
case bitc::ATTR_KIND_STACK_PROTECT_REQ:
|
|
return Attribute::StackProtectReq;
|
|
case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
|
|
return Attribute::StackProtectStrong;
|
|
case bitc::ATTR_KIND_STRUCT_RET:
|
|
return Attribute::StructRet;
|
|
case bitc::ATTR_KIND_SANITIZE_ADDRESS:
|
|
return Attribute::SanitizeAddress;
|
|
case bitc::ATTR_KIND_SANITIZE_THREAD:
|
|
return Attribute::SanitizeThread;
|
|
case bitc::ATTR_KIND_SANITIZE_MEMORY:
|
|
return Attribute::SanitizeMemory;
|
|
case bitc::ATTR_KIND_UW_TABLE:
|
|
return Attribute::UWTable;
|
|
case bitc::ATTR_KIND_Z_EXT:
|
|
return Attribute::ZExt;
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseAttrKind(uint64_t Code,
|
|
Attribute::AttrKind *Kind) {
|
|
*Kind = GetAttrFromCode(Code);
|
|
if (*Kind == Attribute::None)
|
|
return Error(BitcodeError::InvalidValue);
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseAttributeGroupBlock() {
|
|
if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
if (!MAttributeGroups.empty())
|
|
return Error(BitcodeError::InvalidMultipleBlocks);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
uint64_t GrpID = Record[0];
|
|
uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
|
|
|
|
AttrBuilder B;
|
|
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
|
|
if (Record[i] == 0) { // Enum attribute
|
|
Attribute::AttrKind Kind;
|
|
if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
|
|
return EC;
|
|
|
|
B.addAttribute(Kind);
|
|
} else if (Record[i] == 1) { // Integer attribute
|
|
Attribute::AttrKind Kind;
|
|
if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
|
|
return EC;
|
|
if (Kind == Attribute::Alignment)
|
|
B.addAlignmentAttr(Record[++i]);
|
|
else if (Kind == Attribute::StackAlignment)
|
|
B.addStackAlignmentAttr(Record[++i]);
|
|
else if (Kind == Attribute::Dereferenceable)
|
|
B.addDereferenceableAttr(Record[++i]);
|
|
} else { // String attribute
|
|
assert((Record[i] == 3 || Record[i] == 4) &&
|
|
"Invalid attribute group entry");
|
|
bool HasValue = (Record[i++] == 4);
|
|
SmallString<64> KindStr;
|
|
SmallString<64> ValStr;
|
|
|
|
while (Record[i] != 0 && i != e)
|
|
KindStr += Record[i++];
|
|
assert(Record[i] == 0 && "Kind string not null terminated");
|
|
|
|
if (HasValue) {
|
|
// Has a value associated with it.
|
|
++i; // Skip the '0' that terminates the "kind" string.
|
|
while (Record[i] != 0 && i != e)
|
|
ValStr += Record[i++];
|
|
assert(Record[i] == 0 && "Value string not null terminated");
|
|
}
|
|
|
|
B.addAttribute(KindStr.str(), ValStr.str());
|
|
}
|
|
}
|
|
|
|
MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseTypeTable() {
|
|
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
return ParseTypeTableBody();
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseTypeTableBody() {
|
|
if (!TypeList.empty())
|
|
return Error(BitcodeError::InvalidMultipleBlocks);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
unsigned NumRecords = 0;
|
|
|
|
SmallString<64> TypeName;
|
|
|
|
// Read all the records for this type table.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
if (NumRecords != TypeList.size())
|
|
return Error(BitcodeError::MalformedBlock);
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Type *ResultTy = nullptr;
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default:
|
|
return Error(BitcodeError::InvalidValue);
|
|
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
|
|
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
|
|
// type list. This allows us to reserve space.
|
|
if (Record.size() < 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
TypeList.resize(Record[0]);
|
|
continue;
|
|
case bitc::TYPE_CODE_VOID: // VOID
|
|
ResultTy = Type::getVoidTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_HALF: // HALF
|
|
ResultTy = Type::getHalfTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_FLOAT: // FLOAT
|
|
ResultTy = Type::getFloatTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
|
|
ResultTy = Type::getDoubleTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
|
|
ResultTy = Type::getX86_FP80Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_FP128: // FP128
|
|
ResultTy = Type::getFP128Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
|
|
ResultTy = Type::getPPC_FP128Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_LABEL: // LABEL
|
|
ResultTy = Type::getLabelTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_METADATA: // METADATA
|
|
ResultTy = Type::getMetadataTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
|
|
ResultTy = Type::getX86_MMXTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
|
|
if (Record.size() < 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
ResultTy = IntegerType::get(Context, Record[0]);
|
|
break;
|
|
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
|
|
// [pointee type, address space]
|
|
if (Record.size() < 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
unsigned AddressSpace = 0;
|
|
if (Record.size() == 2)
|
|
AddressSpace = Record[1];
|
|
ResultTy = getTypeByID(Record[0]);
|
|
if (!ResultTy)
|
|
return Error(BitcodeError::InvalidType);
|
|
ResultTy = PointerType::get(ResultTy, AddressSpace);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_FUNCTION_OLD: {
|
|
// FIXME: attrid is dead, remove it in LLVM 4.0
|
|
// FUNCTION: [vararg, attrid, retty, paramty x N]
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SmallVector<Type*, 8> ArgTys;
|
|
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
ArgTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
|
|
ResultTy = getTypeByID(Record[2]);
|
|
if (!ResultTy || ArgTys.size() < Record.size()-3)
|
|
return Error(BitcodeError::InvalidType);
|
|
|
|
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_FUNCTION: {
|
|
// FUNCTION: [vararg, retty, paramty x N]
|
|
if (Record.size() < 2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SmallVector<Type*, 8> ArgTys;
|
|
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
ArgTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
|
|
ResultTy = getTypeByID(Record[1]);
|
|
if (!ResultTy || ArgTys.size() < Record.size()-2)
|
|
return Error(BitcodeError::InvalidType);
|
|
|
|
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
|
|
if (Record.size() < 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SmallVector<Type*, 8> EltTys;
|
|
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
EltTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
if (EltTys.size() != Record.size()-1)
|
|
return Error(BitcodeError::InvalidType);
|
|
ResultTy = StructType::get(Context, EltTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
|
|
if (ConvertToString(Record, 0, TypeName))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
continue;
|
|
|
|
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
|
|
if (Record.size() < 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return Error(BitcodeError::InvalidTYPETable);
|
|
|
|
// Check to see if this was forward referenced, if so fill in the temp.
|
|
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
|
|
if (Res) {
|
|
Res->setName(TypeName);
|
|
TypeList[NumRecords] = nullptr;
|
|
} else // Otherwise, create a new struct.
|
|
Res = StructType::create(Context, TypeName);
|
|
TypeName.clear();
|
|
|
|
SmallVector<Type*, 8> EltTys;
|
|
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
EltTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
if (EltTys.size() != Record.size()-1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Res->setBody(EltTys, Record[0]);
|
|
ResultTy = Res;
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
|
|
if (Record.size() != 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return Error(BitcodeError::InvalidTYPETable);
|
|
|
|
// Check to see if this was forward referenced, if so fill in the temp.
|
|
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
|
|
if (Res) {
|
|
Res->setName(TypeName);
|
|
TypeList[NumRecords] = nullptr;
|
|
} else // Otherwise, create a new struct with no body.
|
|
Res = StructType::create(Context, TypeName);
|
|
TypeName.clear();
|
|
ResultTy = Res;
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
|
|
if (Record.size() < 2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if ((ResultTy = getTypeByID(Record[1])))
|
|
ResultTy = ArrayType::get(ResultTy, Record[0]);
|
|
else
|
|
return Error(BitcodeError::InvalidType);
|
|
break;
|
|
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
|
|
if (Record.size() < 2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if ((ResultTy = getTypeByID(Record[1])))
|
|
ResultTy = VectorType::get(ResultTy, Record[0]);
|
|
else
|
|
return Error(BitcodeError::InvalidType);
|
|
break;
|
|
}
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return Error(BitcodeError::InvalidTYPETable);
|
|
assert(ResultTy && "Didn't read a type?");
|
|
assert(!TypeList[NumRecords] && "Already read type?");
|
|
TypeList[NumRecords++] = ResultTy;
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseValueSymbolTable() {
|
|
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records for this value table.
|
|
SmallString<128> ValueName;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: unknown type.
|
|
break;
|
|
case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
|
|
if (ConvertToString(Record, 1, ValueName))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
unsigned ValueID = Record[0];
|
|
if (ValueID >= ValueList.size() || !ValueList[ValueID])
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Value *V = ValueList[ValueID];
|
|
|
|
V->setName(StringRef(ValueName.data(), ValueName.size()));
|
|
ValueName.clear();
|
|
break;
|
|
}
|
|
case bitc::VST_CODE_BBENTRY: {
|
|
if (ConvertToString(Record, 1, ValueName))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
BasicBlock *BB = getBasicBlock(Record[0]);
|
|
if (!BB)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
BB->setName(StringRef(ValueName.data(), ValueName.size()));
|
|
ValueName.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseMetadata() {
|
|
unsigned NextMDValueNo = MDValueList.size();
|
|
|
|
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
bool IsFunctionLocal = false;
|
|
// Read a record.
|
|
Record.clear();
|
|
unsigned Code = Stream.readRecord(Entry.ID, Record);
|
|
switch (Code) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::METADATA_NAME: {
|
|
// Read name of the named metadata.
|
|
SmallString<8> Name(Record.begin(), Record.end());
|
|
Record.clear();
|
|
Code = Stream.ReadCode();
|
|
|
|
// METADATA_NAME is always followed by METADATA_NAMED_NODE.
|
|
unsigned NextBitCode = Stream.readRecord(Code, Record);
|
|
assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
|
|
|
|
// Read named metadata elements.
|
|
unsigned Size = Record.size();
|
|
NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
|
|
for (unsigned i = 0; i != Size; ++i) {
|
|
MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
|
|
if (!MD)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
NMD->addOperand(MD);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::METADATA_FN_NODE:
|
|
IsFunctionLocal = true;
|
|
// fall-through
|
|
case bitc::METADATA_NODE: {
|
|
if (Record.size() % 2 == 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
unsigned Size = Record.size();
|
|
SmallVector<Value*, 8> Elts;
|
|
for (unsigned i = 0; i != Size; i += 2) {
|
|
Type *Ty = getTypeByID(Record[i]);
|
|
if (!Ty)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if (Ty->isMetadataTy())
|
|
Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
|
|
else if (!Ty->isVoidTy())
|
|
Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
|
|
else
|
|
Elts.push_back(nullptr);
|
|
}
|
|
Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
|
|
IsFunctionLocal = false;
|
|
MDValueList.AssignValue(V, NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_STRING: {
|
|
std::string String(Record.begin(), Record.end());
|
|
llvm::UpgradeMDStringConstant(String);
|
|
Value *V = MDString::get(Context, String);
|
|
MDValueList.AssignValue(V, NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_KIND: {
|
|
if (Record.size() < 2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
unsigned Kind = Record[0];
|
|
SmallString<8> Name(Record.begin()+1, Record.end());
|
|
|
|
unsigned NewKind = TheModule->getMDKindID(Name.str());
|
|
if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
|
|
return Error(BitcodeError::ConflictingMETADATA_KINDRecords);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
|
|
/// the LSB for dense VBR encoding.
|
|
uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
|
|
if ((V & 1) == 0)
|
|
return V >> 1;
|
|
if (V != 1)
|
|
return -(V >> 1);
|
|
// There is no such thing as -0 with integers. "-0" really means MININT.
|
|
return 1ULL << 63;
|
|
}
|
|
|
|
/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
|
|
/// values and aliases that we can.
|
|
std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
|
|
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
|
|
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
|
|
std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
|
|
|
|
GlobalInitWorklist.swap(GlobalInits);
|
|
AliasInitWorklist.swap(AliasInits);
|
|
FunctionPrefixWorklist.swap(FunctionPrefixes);
|
|
|
|
while (!GlobalInitWorklist.empty()) {
|
|
unsigned ValID = GlobalInitWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
// Not ready to resolve this yet, it requires something later in the file.
|
|
GlobalInits.push_back(GlobalInitWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
GlobalInitWorklist.back().first->setInitializer(C);
|
|
else
|
|
return Error(BitcodeError::ExpectedConstant);
|
|
}
|
|
GlobalInitWorklist.pop_back();
|
|
}
|
|
|
|
while (!AliasInitWorklist.empty()) {
|
|
unsigned ValID = AliasInitWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
AliasInits.push_back(AliasInitWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
AliasInitWorklist.back().first->setAliasee(C);
|
|
else
|
|
return Error(BitcodeError::ExpectedConstant);
|
|
}
|
|
AliasInitWorklist.pop_back();
|
|
}
|
|
|
|
while (!FunctionPrefixWorklist.empty()) {
|
|
unsigned ValID = FunctionPrefixWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
FunctionPrefixWorklist.back().first->setPrefixData(C);
|
|
else
|
|
return Error(BitcodeError::ExpectedConstant);
|
|
}
|
|
FunctionPrefixWorklist.pop_back();
|
|
}
|
|
|
|
return std::error_code();
|
|
}
|
|
|
|
static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
|
|
SmallVector<uint64_t, 8> Words(Vals.size());
|
|
std::transform(Vals.begin(), Vals.end(), Words.begin(),
|
|
BitcodeReader::decodeSignRotatedValue);
|
|
|
|
return APInt(TypeBits, Words);
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseConstants() {
|
|
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records for this value table.
|
|
Type *CurTy = Type::getInt32Ty(Context);
|
|
unsigned NextCstNo = ValueList.size();
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
if (NextCstNo != ValueList.size())
|
|
return Error(BitcodeError::InvalidConstantReference);
|
|
|
|
// Once all the constants have been read, go through and resolve forward
|
|
// references.
|
|
ValueList.ResolveConstantForwardRefs();
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Value *V = nullptr;
|
|
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: unknown constant
|
|
case bitc::CST_CODE_UNDEF: // UNDEF
|
|
V = UndefValue::get(CurTy);
|
|
break;
|
|
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
|
|
if (Record.empty())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
|
|
return Error(BitcodeError::InvalidRecord);
|
|
CurTy = TypeList[Record[0]];
|
|
continue; // Skip the ValueList manipulation.
|
|
case bitc::CST_CODE_NULL: // NULL
|
|
V = Constant::getNullValue(CurTy);
|
|
break;
|
|
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
|
|
if (!CurTy->isIntegerTy() || Record.empty())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
|
|
break;
|
|
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
|
|
if (!CurTy->isIntegerTy() || Record.empty())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
APInt VInt = ReadWideAPInt(Record,
|
|
cast<IntegerType>(CurTy)->getBitWidth());
|
|
V = ConstantInt::get(Context, VInt);
|
|
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
|
|
if (Record.empty())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if (CurTy->isHalfTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
|
|
APInt(16, (uint16_t)Record[0])));
|
|
else if (CurTy->isFloatTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
|
|
APInt(32, (uint32_t)Record[0])));
|
|
else if (CurTy->isDoubleTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
|
|
APInt(64, Record[0])));
|
|
else if (CurTy->isX86_FP80Ty()) {
|
|
// Bits are not stored the same way as a normal i80 APInt, compensate.
|
|
uint64_t Rearrange[2];
|
|
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
|
|
Rearrange[1] = Record[0] >> 48;
|
|
V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
|
|
APInt(80, Rearrange)));
|
|
} else if (CurTy->isFP128Ty())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
|
|
APInt(128, Record)));
|
|
else if (CurTy->isPPC_FP128Ty())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
|
|
APInt(128, Record)));
|
|
else
|
|
V = UndefValue::get(CurTy);
|
|
break;
|
|
}
|
|
|
|
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
|
|
if (Record.empty())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
unsigned Size = Record.size();
|
|
SmallVector<Constant*, 16> Elts;
|
|
|
|
if (StructType *STy = dyn_cast<StructType>(CurTy)) {
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
|
|
STy->getElementType(i)));
|
|
V = ConstantStruct::get(STy, Elts);
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
|
|
Type *EltTy = ATy->getElementType();
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
|
|
V = ConstantArray::get(ATy, Elts);
|
|
} else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
|
|
Type *EltTy = VTy->getElementType();
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
|
|
V = ConstantVector::get(Elts);
|
|
} else {
|
|
V = UndefValue::get(CurTy);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_STRING: // STRING: [values]
|
|
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
|
|
if (Record.empty())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallString<16> Elts(Record.begin(), Record.end());
|
|
V = ConstantDataArray::getString(Context, Elts,
|
|
BitCode == bitc::CST_CODE_CSTRING);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_DATA: {// DATA: [n x value]
|
|
if (Record.empty())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
|
|
unsigned Size = Record.size();
|
|
|
|
if (EltTy->isIntegerTy(8)) {
|
|
SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(16)) {
|
|
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(32)) {
|
|
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(64)) {
|
|
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isFloatTy()) {
|
|
SmallVector<float, 16> Elts(Size);
|
|
std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isDoubleTy()) {
|
|
SmallVector<double, 16> Elts(Size);
|
|
std::transform(Record.begin(), Record.end(), Elts.begin(),
|
|
BitsToDouble);
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else {
|
|
return Error(BitcodeError::InvalidTypeForValue);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
|
|
if (Opc < 0) {
|
|
V = UndefValue::get(CurTy); // Unknown binop.
|
|
} else {
|
|
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
|
|
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
|
|
unsigned Flags = 0;
|
|
if (Record.size() >= 4) {
|
|
if (Opc == Instruction::Add ||
|
|
Opc == Instruction::Sub ||
|
|
Opc == Instruction::Mul ||
|
|
Opc == Instruction::Shl) {
|
|
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
|
|
Flags |= OverflowingBinaryOperator::NoSignedWrap;
|
|
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
|
|
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
|
|
} else if (Opc == Instruction::SDiv ||
|
|
Opc == Instruction::UDiv ||
|
|
Opc == Instruction::LShr ||
|
|
Opc == Instruction::AShr) {
|
|
if (Record[3] & (1 << bitc::PEO_EXACT))
|
|
Flags |= SDivOperator::IsExact;
|
|
}
|
|
}
|
|
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
int Opc = GetDecodedCastOpcode(Record[0]);
|
|
if (Opc < 0) {
|
|
V = UndefValue::get(CurTy); // Unknown cast.
|
|
} else {
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
if (!OpTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
V = UpgradeBitCastExpr(Opc, Op, CurTy);
|
|
if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_INBOUNDS_GEP:
|
|
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
|
|
if (Record.size() & 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SmallVector<Constant*, 16> Elts;
|
|
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
|
|
Type *ElTy = getTypeByID(Record[i]);
|
|
if (!ElTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
|
|
}
|
|
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
|
|
V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
|
|
BitCode ==
|
|
bitc::CST_CODE_CE_INBOUNDS_GEP);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
Type *SelectorTy = Type::getInt1Ty(Context);
|
|
|
|
// If CurTy is a vector of length n, then Record[0] must be a <n x i1>
|
|
// vector. Otherwise, it must be a single bit.
|
|
if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
|
|
SelectorTy = VectorType::get(Type::getInt1Ty(Context),
|
|
VTy->getNumElements());
|
|
|
|
V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
|
|
SelectorTy),
|
|
ValueList.getConstantFwdRef(Record[1],CurTy),
|
|
ValueList.getConstantFwdRef(Record[2],CurTy));
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_EXTRACTELT
|
|
: { // CE_EXTRACTELT: [opty, opval, opty, opval]
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
VectorType *OpTy =
|
|
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
|
|
if (!OpTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = nullptr;
|
|
if (Record.size() == 4) {
|
|
Type *IdxTy = getTypeByID(Record[2]);
|
|
if (!IdxTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
|
|
} else // TODO: Remove with llvm 4.0
|
|
Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
|
|
if (!Op1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
V = ConstantExpr::getExtractElement(Op0, Op1);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_INSERTELT
|
|
: { // CE_INSERTELT: [opval, opval, opty, opval]
|
|
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
|
|
if (Record.size() < 3 || !OpTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
|
|
OpTy->getElementType());
|
|
Constant *Op2 = nullptr;
|
|
if (Record.size() == 4) {
|
|
Type *IdxTy = getTypeByID(Record[2]);
|
|
if (!IdxTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
|
|
} else // TODO: Remove with llvm 4.0
|
|
Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
|
|
if (!Op2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
|
|
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
|
|
if (Record.size() < 3 || !OpTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
|
|
OpTy->getNumElements());
|
|
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
|
|
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
|
|
VectorType *RTy = dyn_cast<VectorType>(CurTy);
|
|
VectorType *OpTy =
|
|
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
|
|
if (Record.size() < 4 || !RTy || !OpTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
|
|
RTy->getNumElements());
|
|
Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
|
|
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
|
|
if (Record.size() < 4)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
if (!OpTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
|
|
if (OpTy->isFPOrFPVectorTy())
|
|
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
|
|
else
|
|
V = ConstantExpr::getICmp(Record[3], Op0, Op1);
|
|
break;
|
|
}
|
|
// This maintains backward compatibility, pre-asm dialect keywords.
|
|
// FIXME: Remove with the 4.0 release.
|
|
case bitc::CST_CODE_INLINEASM_OLD: {
|
|
if (Record.size() < 2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
std::string AsmStr, ConstrStr;
|
|
bool HasSideEffects = Record[0] & 1;
|
|
bool IsAlignStack = Record[0] >> 1;
|
|
unsigned AsmStrSize = Record[1];
|
|
if (2+AsmStrSize >= Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
unsigned ConstStrSize = Record[2+AsmStrSize];
|
|
if (3+AsmStrSize+ConstStrSize > Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
for (unsigned i = 0; i != AsmStrSize; ++i)
|
|
AsmStr += (char)Record[2+i];
|
|
for (unsigned i = 0; i != ConstStrSize; ++i)
|
|
ConstrStr += (char)Record[3+AsmStrSize+i];
|
|
PointerType *PTy = cast<PointerType>(CurTy);
|
|
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
|
|
AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
|
|
break;
|
|
}
|
|
// This version adds support for the asm dialect keywords (e.g.,
|
|
// inteldialect).
|
|
case bitc::CST_CODE_INLINEASM: {
|
|
if (Record.size() < 2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
std::string AsmStr, ConstrStr;
|
|
bool HasSideEffects = Record[0] & 1;
|
|
bool IsAlignStack = (Record[0] >> 1) & 1;
|
|
unsigned AsmDialect = Record[0] >> 2;
|
|
unsigned AsmStrSize = Record[1];
|
|
if (2+AsmStrSize >= Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
unsigned ConstStrSize = Record[2+AsmStrSize];
|
|
if (3+AsmStrSize+ConstStrSize > Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
for (unsigned i = 0; i != AsmStrSize; ++i)
|
|
AsmStr += (char)Record[2+i];
|
|
for (unsigned i = 0; i != ConstStrSize; ++i)
|
|
ConstrStr += (char)Record[3+AsmStrSize+i];
|
|
PointerType *PTy = cast<PointerType>(CurTy);
|
|
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
|
|
AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
|
|
InlineAsm::AsmDialect(AsmDialect));
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_BLOCKADDRESS:{
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *FnTy = getTypeByID(Record[0]);
|
|
if (!FnTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Function *Fn =
|
|
dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
|
|
if (!Fn)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
// Don't let Fn get dematerialized.
|
|
BlockAddressesTaken.insert(Fn);
|
|
|
|
// If the function is already parsed we can insert the block address right
|
|
// away.
|
|
BasicBlock *BB;
|
|
unsigned BBID = Record[2];
|
|
if (!BBID)
|
|
// Invalid reference to entry block.
|
|
return Error(BitcodeError::InvalidID);
|
|
if (!Fn->empty()) {
|
|
Function::iterator BBI = Fn->begin(), BBE = Fn->end();
|
|
for (size_t I = 0, E = BBID; I != E; ++I) {
|
|
if (BBI == BBE)
|
|
return Error(BitcodeError::InvalidID);
|
|
++BBI;
|
|
}
|
|
BB = BBI;
|
|
} else {
|
|
// Otherwise insert a placeholder and remember it so it can be inserted
|
|
// when the function is parsed.
|
|
BB = BasicBlock::Create(Context);
|
|
BasicBlockFwdRefs[Fn].emplace_back(BBID, BB);
|
|
}
|
|
V = BlockAddress::get(Fn, BB);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ValueList.AssignValue(V, NextCstNo);
|
|
++NextCstNo;
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseUseLists() {
|
|
if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
// Read all the records.
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a use list record.
|
|
Record.clear();
|
|
bool IsBB = false;
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: unknown type.
|
|
break;
|
|
case bitc::USELIST_CODE_BB:
|
|
IsBB = true;
|
|
// fallthrough
|
|
case bitc::USELIST_CODE_DEFAULT: {
|
|
unsigned RecordLength = Record.size();
|
|
if (RecordLength < 3)
|
|
// Records should have at least an ID and two indexes.
|
|
return Error(BitcodeError::InvalidRecord);
|
|
unsigned ID = Record.back();
|
|
Record.pop_back();
|
|
|
|
Value *V;
|
|
if (IsBB) {
|
|
assert(ID < FunctionBBs.size() && "Basic block not found");
|
|
V = FunctionBBs[ID];
|
|
} else
|
|
V = ValueList[ID];
|
|
unsigned NumUses = 0;
|
|
SmallDenseMap<const Use *, unsigned, 16> Order;
|
|
for (const Use &U : V->uses()) {
|
|
if (NumUses > Record.size())
|
|
break;
|
|
Order[&U] = Record[NumUses++];
|
|
}
|
|
if (Order.size() != Record.size() || NumUses > Record.size())
|
|
// Mismatches can happen if the functions are being materialized lazily
|
|
// (out-of-order), or a value has been upgraded.
|
|
break;
|
|
|
|
V->sortUseList([&](const Use &L, const Use &R) {
|
|
return Order.lookup(&L) < Order.lookup(&R);
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RememberAndSkipFunctionBody - When we see the block for a function body,
|
|
/// remember where it is and then skip it. This lets us lazily deserialize the
|
|
/// functions.
|
|
std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
|
|
// Get the function we are talking about.
|
|
if (FunctionsWithBodies.empty())
|
|
return Error(BitcodeError::InsufficientFunctionProtos);
|
|
|
|
Function *Fn = FunctionsWithBodies.back();
|
|
FunctionsWithBodies.pop_back();
|
|
|
|
// Save the current stream state.
|
|
uint64_t CurBit = Stream.GetCurrentBitNo();
|
|
DeferredFunctionInfo[Fn] = CurBit;
|
|
|
|
// Skip over the function block for now.
|
|
if (Stream.SkipBlock())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::GlobalCleanup() {
|
|
// Patch the initializers for globals and aliases up.
|
|
ResolveGlobalAndAliasInits();
|
|
if (!GlobalInits.empty() || !AliasInits.empty())
|
|
return Error(BitcodeError::MalformedGlobalInitializerSet);
|
|
|
|
// Look for intrinsic functions which need to be upgraded at some point
|
|
for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
|
|
FI != FE; ++FI) {
|
|
Function *NewFn;
|
|
if (UpgradeIntrinsicFunction(FI, NewFn))
|
|
UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
|
|
}
|
|
|
|
// Look for global variables which need to be renamed.
|
|
for (Module::global_iterator
|
|
GI = TheModule->global_begin(), GE = TheModule->global_end();
|
|
GI != GE;) {
|
|
GlobalVariable *GV = GI++;
|
|
UpgradeGlobalVariable(GV);
|
|
}
|
|
|
|
// Force deallocation of memory for these vectors to favor the client that
|
|
// want lazy deserialization.
|
|
std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
|
|
std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseModule(bool Resume) {
|
|
if (Resume)
|
|
Stream.JumpToBit(NextUnreadBit);
|
|
else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
std::vector<std::string> SectionTable;
|
|
std::vector<std::string> GCTable;
|
|
|
|
// Read all the records for this module.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return GlobalCleanup();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default: // Skip unknown content.
|
|
if (Stream.SkipBlock())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
break;
|
|
case bitc::BLOCKINFO_BLOCK_ID:
|
|
if (Stream.ReadBlockInfoBlock())
|
|
return Error(BitcodeError::MalformedBlock);
|
|
break;
|
|
case bitc::PARAMATTR_BLOCK_ID:
|
|
if (std::error_code EC = ParseAttributeBlock())
|
|
return EC;
|
|
break;
|
|
case bitc::PARAMATTR_GROUP_BLOCK_ID:
|
|
if (std::error_code EC = ParseAttributeGroupBlock())
|
|
return EC;
|
|
break;
|
|
case bitc::TYPE_BLOCK_ID_NEW:
|
|
if (std::error_code EC = ParseTypeTable())
|
|
return EC;
|
|
break;
|
|
case bitc::VALUE_SYMTAB_BLOCK_ID:
|
|
if (std::error_code EC = ParseValueSymbolTable())
|
|
return EC;
|
|
SeenValueSymbolTable = true;
|
|
break;
|
|
case bitc::CONSTANTS_BLOCK_ID:
|
|
if (std::error_code EC = ParseConstants())
|
|
return EC;
|
|
if (std::error_code EC = ResolveGlobalAndAliasInits())
|
|
return EC;
|
|
break;
|
|
case bitc::METADATA_BLOCK_ID:
|
|
if (std::error_code EC = ParseMetadata())
|
|
return EC;
|
|
break;
|
|
case bitc::FUNCTION_BLOCK_ID:
|
|
// If this is the first function body we've seen, reverse the
|
|
// FunctionsWithBodies list.
|
|
if (!SeenFirstFunctionBody) {
|
|
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
|
|
if (std::error_code EC = GlobalCleanup())
|
|
return EC;
|
|
SeenFirstFunctionBody = true;
|
|
}
|
|
|
|
if (std::error_code EC = RememberAndSkipFunctionBody())
|
|
return EC;
|
|
// For streaming bitcode, suspend parsing when we reach the function
|
|
// bodies. Subsequent materialization calls will resume it when
|
|
// necessary. For streaming, the function bodies must be at the end of
|
|
// the bitcode. If the bitcode file is old, the symbol table will be
|
|
// at the end instead and will not have been seen yet. In this case,
|
|
// just finish the parse now.
|
|
if (LazyStreamer && SeenValueSymbolTable) {
|
|
NextUnreadBit = Stream.GetCurrentBitNo();
|
|
return std::error_code();
|
|
}
|
|
break;
|
|
case bitc::USELIST_BLOCK_ID:
|
|
if (std::error_code EC = ParseUseLists())
|
|
return EC;
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
|
|
// Read a record.
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: break; // Default behavior, ignore unknown content.
|
|
case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
|
|
if (Record.size() < 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
// Only version #0 and #1 are supported so far.
|
|
unsigned module_version = Record[0];
|
|
switch (module_version) {
|
|
default:
|
|
return Error(BitcodeError::InvalidValue);
|
|
case 0:
|
|
UseRelativeIDs = false;
|
|
break;
|
|
case 1:
|
|
UseRelativeIDs = true;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
|
|
std::string S;
|
|
if (ConvertToString(Record, 0, S))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
TheModule->setTargetTriple(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
|
|
std::string S;
|
|
if (ConvertToString(Record, 0, S))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
TheModule->setDataLayout(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
|
|
std::string S;
|
|
if (ConvertToString(Record, 0, S))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
TheModule->setModuleInlineAsm(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
|
|
// FIXME: Remove in 4.0.
|
|
std::string S;
|
|
if (ConvertToString(Record, 0, S))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
// Ignore value.
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
|
|
std::string S;
|
|
if (ConvertToString(Record, 0, S))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SectionTable.push_back(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
|
|
std::string S;
|
|
if (ConvertToString(Record, 0, S))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
GCTable.push_back(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
|
|
if (Record.size() < 2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
|
|
unsigned ComdatNameSize = Record[1];
|
|
std::string ComdatName;
|
|
ComdatName.reserve(ComdatNameSize);
|
|
for (unsigned i = 0; i != ComdatNameSize; ++i)
|
|
ComdatName += (char)Record[2 + i];
|
|
Comdat *C = TheModule->getOrInsertComdat(ComdatName);
|
|
C->setSelectionKind(SK);
|
|
ComdatList.push_back(C);
|
|
break;
|
|
}
|
|
// GLOBALVAR: [pointer type, isconst, initid,
|
|
// linkage, alignment, section, visibility, threadlocal,
|
|
// unnamed_addr, dllstorageclass]
|
|
case bitc::MODULE_CODE_GLOBALVAR: {
|
|
if (Record.size() < 6)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if (!Ty->isPointerTy())
|
|
return Error(BitcodeError::InvalidTypeForValue);
|
|
unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
|
|
Ty = cast<PointerType>(Ty)->getElementType();
|
|
|
|
bool isConstant = Record[1];
|
|
GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
|
|
unsigned Alignment = (1 << Record[4]) >> 1;
|
|
std::string Section;
|
|
if (Record[5]) {
|
|
if (Record[5]-1 >= SectionTable.size())
|
|
return Error(BitcodeError::InvalidID);
|
|
Section = SectionTable[Record[5]-1];
|
|
}
|
|
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
|
|
// Local linkage must have default visibility.
|
|
if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
Visibility = GetDecodedVisibility(Record[6]);
|
|
|
|
GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
|
|
if (Record.size() > 7)
|
|
TLM = GetDecodedThreadLocalMode(Record[7]);
|
|
|
|
bool UnnamedAddr = false;
|
|
if (Record.size() > 8)
|
|
UnnamedAddr = Record[8];
|
|
|
|
bool ExternallyInitialized = false;
|
|
if (Record.size() > 9)
|
|
ExternallyInitialized = Record[9];
|
|
|
|
GlobalVariable *NewGV =
|
|
new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
|
|
TLM, AddressSpace, ExternallyInitialized);
|
|
NewGV->setAlignment(Alignment);
|
|
if (!Section.empty())
|
|
NewGV->setSection(Section);
|
|
NewGV->setVisibility(Visibility);
|
|
NewGV->setUnnamedAddr(UnnamedAddr);
|
|
|
|
if (Record.size() > 10)
|
|
NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10]));
|
|
else
|
|
UpgradeDLLImportExportLinkage(NewGV, Record[3]);
|
|
|
|
ValueList.push_back(NewGV);
|
|
|
|
// Remember which value to use for the global initializer.
|
|
if (unsigned InitID = Record[2])
|
|
GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
|
|
|
|
if (Record.size() > 11)
|
|
if (unsigned ComdatID = Record[11]) {
|
|
assert(ComdatID <= ComdatList.size());
|
|
NewGV->setComdat(ComdatList[ComdatID - 1]);
|
|
}
|
|
break;
|
|
}
|
|
// FUNCTION: [type, callingconv, isproto, linkage, paramattr,
|
|
// alignment, section, visibility, gc, unnamed_addr,
|
|
// dllstorageclass]
|
|
case bitc::MODULE_CODE_FUNCTION: {
|
|
if (Record.size() < 8)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if (!Ty->isPointerTy())
|
|
return Error(BitcodeError::InvalidTypeForValue);
|
|
FunctionType *FTy =
|
|
dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
|
|
if (!FTy)
|
|
return Error(BitcodeError::InvalidTypeForValue);
|
|
|
|
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
|
|
"", TheModule);
|
|
|
|
Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
|
|
bool isProto = Record[2];
|
|
Func->setLinkage(GetDecodedLinkage(Record[3]));
|
|
Func->setAttributes(getAttributes(Record[4]));
|
|
|
|
Func->setAlignment((1 << Record[5]) >> 1);
|
|
if (Record[6]) {
|
|
if (Record[6]-1 >= SectionTable.size())
|
|
return Error(BitcodeError::InvalidID);
|
|
Func->setSection(SectionTable[Record[6]-1]);
|
|
}
|
|
// Local linkage must have default visibility.
|
|
if (!Func->hasLocalLinkage())
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
Func->setVisibility(GetDecodedVisibility(Record[7]));
|
|
if (Record.size() > 8 && Record[8]) {
|
|
if (Record[8]-1 > GCTable.size())
|
|
return Error(BitcodeError::InvalidID);
|
|
Func->setGC(GCTable[Record[8]-1].c_str());
|
|
}
|
|
bool UnnamedAddr = false;
|
|
if (Record.size() > 9)
|
|
UnnamedAddr = Record[9];
|
|
Func->setUnnamedAddr(UnnamedAddr);
|
|
if (Record.size() > 10 && Record[10] != 0)
|
|
FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1));
|
|
|
|
if (Record.size() > 11)
|
|
Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11]));
|
|
else
|
|
UpgradeDLLImportExportLinkage(Func, Record[3]);
|
|
|
|
if (Record.size() > 12)
|
|
if (unsigned ComdatID = Record[12]) {
|
|
assert(ComdatID <= ComdatList.size());
|
|
Func->setComdat(ComdatList[ComdatID - 1]);
|
|
}
|
|
|
|
ValueList.push_back(Func);
|
|
|
|
// If this is a function with a body, remember the prototype we are
|
|
// creating now, so that we can match up the body with them later.
|
|
if (!isProto) {
|
|
FunctionsWithBodies.push_back(Func);
|
|
if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
|
|
}
|
|
break;
|
|
}
|
|
// ALIAS: [alias type, aliasee val#, linkage]
|
|
// ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass]
|
|
case bitc::MODULE_CODE_ALIAS: {
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
auto *PTy = dyn_cast<PointerType>(Ty);
|
|
if (!PTy)
|
|
return Error(BitcodeError::InvalidTypeForValue);
|
|
|
|
auto *NewGA =
|
|
GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
|
|
GetDecodedLinkage(Record[2]), "", TheModule);
|
|
// Old bitcode files didn't have visibility field.
|
|
// Local linkage must have default visibility.
|
|
if (Record.size() > 3 && !NewGA->hasLocalLinkage())
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
NewGA->setVisibility(GetDecodedVisibility(Record[3]));
|
|
if (Record.size() > 4)
|
|
NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4]));
|
|
else
|
|
UpgradeDLLImportExportLinkage(NewGA, Record[2]);
|
|
if (Record.size() > 5)
|
|
NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
|
|
if (Record.size() > 6)
|
|
NewGA->setUnnamedAddr(Record[6]);
|
|
ValueList.push_back(NewGA);
|
|
AliasInits.push_back(std::make_pair(NewGA, Record[1]));
|
|
break;
|
|
}
|
|
/// MODULE_CODE_PURGEVALS: [numvals]
|
|
case bitc::MODULE_CODE_PURGEVALS:
|
|
// Trim down the value list to the specified size.
|
|
if (Record.size() < 1 || Record[0] > ValueList.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
ValueList.shrinkTo(Record[0]);
|
|
break;
|
|
}
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
|
|
TheModule = nullptr;
|
|
|
|
if (std::error_code EC = InitStream())
|
|
return EC;
|
|
|
|
// Sniff for the signature.
|
|
if (Stream.Read(8) != 'B' ||
|
|
Stream.Read(8) != 'C' ||
|
|
Stream.Read(4) != 0x0 ||
|
|
Stream.Read(4) != 0xC ||
|
|
Stream.Read(4) != 0xE ||
|
|
Stream.Read(4) != 0xD)
|
|
return Error(BitcodeError::InvalidBitcodeSignature);
|
|
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (1) {
|
|
if (Stream.AtEndOfStream())
|
|
return std::error_code();
|
|
|
|
BitstreamEntry Entry =
|
|
Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
case bitc::BLOCKINFO_BLOCK_ID:
|
|
if (Stream.ReadBlockInfoBlock())
|
|
return Error(BitcodeError::MalformedBlock);
|
|
break;
|
|
case bitc::MODULE_BLOCK_ID:
|
|
// Reject multiple MODULE_BLOCK's in a single bitstream.
|
|
if (TheModule)
|
|
return Error(BitcodeError::InvalidMultipleBlocks);
|
|
TheModule = M;
|
|
if (std::error_code EC = ParseModule(false))
|
|
return EC;
|
|
if (LazyStreamer)
|
|
return std::error_code();
|
|
break;
|
|
default:
|
|
if (Stream.SkipBlock())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
break;
|
|
}
|
|
continue;
|
|
case BitstreamEntry::Record:
|
|
// There should be no records in the top-level of blocks.
|
|
|
|
// The ranlib in Xcode 4 will align archive members by appending newlines
|
|
// to the end of them. If this file size is a multiple of 4 but not 8, we
|
|
// have to read and ignore these final 4 bytes :-(
|
|
if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
|
|
Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
|
|
Stream.AtEndOfStream())
|
|
return std::error_code();
|
|
|
|
return Error(BitcodeError::InvalidRecord);
|
|
}
|
|
}
|
|
}
|
|
|
|
ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
|
|
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
std::string Triple;
|
|
// Read all the records for this module.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return Triple;
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: break; // Default behavior, ignore unknown content.
|
|
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
|
|
std::string S;
|
|
if (ConvertToString(Record, 0, S))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Triple = S;
|
|
break;
|
|
}
|
|
}
|
|
Record.clear();
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
ErrorOr<std::string> BitcodeReader::parseTriple() {
|
|
if (std::error_code EC = InitStream())
|
|
return EC;
|
|
|
|
// Sniff for the signature.
|
|
if (Stream.Read(8) != 'B' ||
|
|
Stream.Read(8) != 'C' ||
|
|
Stream.Read(4) != 0x0 ||
|
|
Stream.Read(4) != 0xC ||
|
|
Stream.Read(4) != 0xE ||
|
|
Stream.Read(4) != 0xD)
|
|
return Error(BitcodeError::InvalidBitcodeSignature);
|
|
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (Entry.ID == bitc::MODULE_BLOCK_ID)
|
|
return parseModuleTriple();
|
|
|
|
// Ignore other sub-blocks.
|
|
if (Stream.SkipBlock())
|
|
return Error(BitcodeError::MalformedBlock);
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ParseMetadataAttachment - Parse metadata attachments.
|
|
std::error_code BitcodeReader::ParseMetadataAttachment() {
|
|
if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a metadata attachment record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::METADATA_ATTACHMENT: {
|
|
unsigned RecordLength = Record.size();
|
|
if (Record.empty() || (RecordLength - 1) % 2 == 1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Instruction *Inst = InstructionList[Record[0]];
|
|
for (unsigned i = 1; i != RecordLength; i = i+2) {
|
|
unsigned Kind = Record[i];
|
|
DenseMap<unsigned, unsigned>::iterator I =
|
|
MDKindMap.find(Kind);
|
|
if (I == MDKindMap.end())
|
|
return Error(BitcodeError::InvalidID);
|
|
Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
|
|
Inst->setMetadata(I->second, cast<MDNode>(Node));
|
|
if (I->second == LLVMContext::MD_tbaa)
|
|
InstsWithTBAATag.push_back(Inst);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ParseFunctionBody - Lazily parse the specified function body block.
|
|
std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
|
|
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
InstructionList.clear();
|
|
unsigned ModuleValueListSize = ValueList.size();
|
|
unsigned ModuleMDValueListSize = MDValueList.size();
|
|
|
|
// Add all the function arguments to the value table.
|
|
for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
|
|
ValueList.push_back(I);
|
|
|
|
unsigned NextValueNo = ValueList.size();
|
|
BasicBlock *CurBB = nullptr;
|
|
unsigned CurBBNo = 0;
|
|
|
|
DebugLoc LastLoc;
|
|
|
|
// Read all the records.
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return Error(BitcodeError::MalformedBlock);
|
|
case BitstreamEntry::EndBlock:
|
|
goto OutOfRecordLoop;
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default: // Skip unknown content.
|
|
if (Stream.SkipBlock())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
break;
|
|
case bitc::CONSTANTS_BLOCK_ID:
|
|
if (std::error_code EC = ParseConstants())
|
|
return EC;
|
|
NextValueNo = ValueList.size();
|
|
break;
|
|
case bitc::VALUE_SYMTAB_BLOCK_ID:
|
|
if (std::error_code EC = ParseValueSymbolTable())
|
|
return EC;
|
|
break;
|
|
case bitc::METADATA_ATTACHMENT_ID:
|
|
if (std::error_code EC = ParseMetadataAttachment())
|
|
return EC;
|
|
break;
|
|
case bitc::METADATA_BLOCK_ID:
|
|
if (std::error_code EC = ParseMetadata())
|
|
return EC;
|
|
break;
|
|
case bitc::USELIST_BLOCK_ID:
|
|
if (std::error_code EC = ParseUseLists())
|
|
return EC;
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Instruction *I = nullptr;
|
|
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: reject
|
|
return Error(BitcodeError::InvalidValue);
|
|
case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
|
|
if (Record.size() < 1 || Record[0] == 0)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
// Create all the basic blocks for the function.
|
|
FunctionBBs.resize(Record[0]);
|
|
|
|
// See if anything took the address of blocks in this function.
|
|
auto BBFRI = BasicBlockFwdRefs.find(F);
|
|
if (BBFRI == BasicBlockFwdRefs.end()) {
|
|
for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
|
|
FunctionBBs[i] = BasicBlock::Create(Context, "", F);
|
|
} else {
|
|
auto &BBRefs = BBFRI->second;
|
|
std::sort(BBRefs.begin(), BBRefs.end(),
|
|
[](const std::pair<unsigned, BasicBlock *> &LHS,
|
|
const std::pair<unsigned, BasicBlock *> &RHS) {
|
|
return LHS.first < RHS.first;
|
|
});
|
|
unsigned R = 0, RE = BBRefs.size();
|
|
for (unsigned I = 0, E = FunctionBBs.size(); I != E; ++I)
|
|
if (R != RE && BBRefs[R].first == I) {
|
|
assert(I != 0 && "Invalid reference to entry block");
|
|
BasicBlock *BB = BBRefs[R++].second;
|
|
BB->insertInto(F);
|
|
FunctionBBs[I] = BB;
|
|
} else {
|
|
FunctionBBs[I] = BasicBlock::Create(Context, "", F);
|
|
}
|
|
// Check for invalid basic block references.
|
|
if (R != RE)
|
|
return Error(BitcodeError::InvalidID);
|
|
|
|
// Erase from the table.
|
|
BasicBlockFwdRefs.erase(BBFRI);
|
|
}
|
|
|
|
CurBB = FunctionBBs[0];
|
|
continue;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
|
|
// This record indicates that the last instruction is at the same
|
|
// location as the previous instruction with a location.
|
|
I = nullptr;
|
|
|
|
// Get the last instruction emitted.
|
|
if (CurBB && !CurBB->empty())
|
|
I = &CurBB->back();
|
|
else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
|
|
!FunctionBBs[CurBBNo-1]->empty())
|
|
I = &FunctionBBs[CurBBNo-1]->back();
|
|
|
|
if (!I)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
I->setDebugLoc(LastLoc);
|
|
I = nullptr;
|
|
continue;
|
|
|
|
case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
|
|
I = nullptr; // Get the last instruction emitted.
|
|
if (CurBB && !CurBB->empty())
|
|
I = &CurBB->back();
|
|
else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
|
|
!FunctionBBs[CurBBNo-1]->empty())
|
|
I = &FunctionBBs[CurBBNo-1]->back();
|
|
if (!I || Record.size() < 4)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
unsigned Line = Record[0], Col = Record[1];
|
|
unsigned ScopeID = Record[2], IAID = Record[3];
|
|
|
|
MDNode *Scope = nullptr, *IA = nullptr;
|
|
if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
|
|
if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
|
|
LastLoc = DebugLoc::get(Line, Col, Scope, IA);
|
|
I->setDebugLoc(LastLoc);
|
|
I = nullptr;
|
|
continue;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
|
|
unsigned OpNum = 0;
|
|
Value *LHS, *RHS;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
|
|
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
|
|
OpNum+1 > Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
|
|
if (Opc == -1)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
|
|
InstructionList.push_back(I);
|
|
if (OpNum < Record.size()) {
|
|
if (Opc == Instruction::Add ||
|
|
Opc == Instruction::Sub ||
|
|
Opc == Instruction::Mul ||
|
|
Opc == Instruction::Shl) {
|
|
if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
|
|
cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
|
|
if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
|
|
cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
|
|
} else if (Opc == Instruction::SDiv ||
|
|
Opc == Instruction::UDiv ||
|
|
Opc == Instruction::LShr ||
|
|
Opc == Instruction::AShr) {
|
|
if (Record[OpNum] & (1 << bitc::PEO_EXACT))
|
|
cast<BinaryOperator>(I)->setIsExact(true);
|
|
} else if (isa<FPMathOperator>(I)) {
|
|
FastMathFlags FMF;
|
|
if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
|
|
FMF.setUnsafeAlgebra();
|
|
if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
|
|
FMF.setNoNaNs();
|
|
if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
|
|
FMF.setNoInfs();
|
|
if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
|
|
FMF.setNoSignedZeros();
|
|
if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
|
|
FMF.setAllowReciprocal();
|
|
if (FMF.any())
|
|
I->setFastMathFlags(FMF);
|
|
}
|
|
|
|
}
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
OpNum+2 != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
Type *ResTy = getTypeByID(Record[OpNum]);
|
|
int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
|
|
if (Opc == -1 || !ResTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Instruction *Temp = nullptr;
|
|
if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
|
|
if (Temp) {
|
|
InstructionList.push_back(Temp);
|
|
CurBB->getInstList().push_back(Temp);
|
|
}
|
|
} else {
|
|
I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
|
|
}
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
|
|
case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
|
|
unsigned OpNum = 0;
|
|
Value *BasePtr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<Value*, 16> GEPIdx;
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
GEPIdx.push_back(Op);
|
|
}
|
|
|
|
I = GetElementPtrInst::Create(BasePtr, GEPIdx);
|
|
InstructionList.push_back(I);
|
|
if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
|
|
cast<GetElementPtrInst>(I)->setIsInBounds(true);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
|
|
// EXTRACTVAL: [opty, opval, n x indices]
|
|
unsigned OpNum = 0;
|
|
Value *Agg;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<unsigned, 4> EXTRACTVALIdx;
|
|
for (unsigned RecSize = Record.size();
|
|
OpNum != RecSize; ++OpNum) {
|
|
uint64_t Index = Record[OpNum];
|
|
if ((unsigned)Index != Index)
|
|
return Error(BitcodeError::InvalidValue);
|
|
EXTRACTVALIdx.push_back((unsigned)Index);
|
|
}
|
|
|
|
I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INSERTVAL: {
|
|
// INSERTVAL: [opty, opval, opty, opval, n x indices]
|
|
unsigned OpNum = 0;
|
|
Value *Agg;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Value *Val;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Val))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<unsigned, 4> INSERTVALIdx;
|
|
for (unsigned RecSize = Record.size();
|
|
OpNum != RecSize; ++OpNum) {
|
|
uint64_t Index = Record[OpNum];
|
|
if ((unsigned)Index != Index)
|
|
return Error(BitcodeError::InvalidValue);
|
|
INSERTVALIdx.push_back((unsigned)Index);
|
|
}
|
|
|
|
I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
|
|
// obsolete form of select
|
|
// handles select i1 ... in old bitcode
|
|
unsigned OpNum = 0;
|
|
Value *TrueVal, *FalseVal, *Cond;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
|
|
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
|
|
popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
I = SelectInst::Create(Cond, TrueVal, FalseVal);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
|
|
// new form of select
|
|
// handles select i1 or select [N x i1]
|
|
unsigned OpNum = 0;
|
|
Value *TrueVal, *FalseVal, *Cond;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
|
|
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Cond))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
// select condition can be either i1 or [N x i1]
|
|
if (VectorType* vector_type =
|
|
dyn_cast<VectorType>(Cond->getType())) {
|
|
// expect <n x i1>
|
|
if (vector_type->getElementType() != Type::getInt1Ty(Context))
|
|
return Error(BitcodeError::InvalidTypeForValue);
|
|
} else {
|
|
// expect i1
|
|
if (Cond->getType() != Type::getInt1Ty(Context))
|
|
return Error(BitcodeError::InvalidTypeForValue);
|
|
}
|
|
|
|
I = SelectInst::Create(Cond, TrueVal, FalseVal);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec, *Idx;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Idx))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
I = ExtractElementInst::Create(Vec, Idx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec, *Elt, *Idx;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
|
|
popValue(Record, OpNum, NextValueNo,
|
|
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Idx))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
I = InsertElementInst::Create(Vec, Elt, Idx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec1, *Vec2, *Mask;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
|
|
popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
|
|
// Old form of ICmp/FCmp returning bool
|
|
// Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
|
|
// both legal on vectors but had different behaviour.
|
|
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
|
|
// FCmp/ICmp returning bool or vector of bool
|
|
|
|
unsigned OpNum = 0;
|
|
Value *LHS, *RHS;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
|
|
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
|
|
OpNum+1 != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
if (LHS->getType()->isFPOrFPVectorTy())
|
|
I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
|
|
else
|
|
I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
|
|
{
|
|
unsigned Size = Record.size();
|
|
if (Size == 0) {
|
|
I = ReturnInst::Create(Context);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
unsigned OpNum = 0;
|
|
Value *Op = nullptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if (OpNum != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
I = ReturnInst::Create(Context, Op);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
|
|
if (Record.size() != 1 && Record.size() != 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
BasicBlock *TrueDest = getBasicBlock(Record[0]);
|
|
if (!TrueDest)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
if (Record.size() == 1) {
|
|
I = BranchInst::Create(TrueDest);
|
|
InstructionList.push_back(I);
|
|
}
|
|
else {
|
|
BasicBlock *FalseDest = getBasicBlock(Record[1]);
|
|
Value *Cond = getValue(Record, 2, NextValueNo,
|
|
Type::getInt1Ty(Context));
|
|
if (!FalseDest || !Cond)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
I = BranchInst::Create(TrueDest, FalseDest, Cond);
|
|
InstructionList.push_back(I);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
|
|
// Check magic
|
|
if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
|
|
// "New" SwitchInst format with case ranges. The changes to write this
|
|
// format were reverted but we still recognize bitcode that uses it.
|
|
// Hopefully someday we will have support for case ranges and can use
|
|
// this format again.
|
|
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
|
|
|
|
Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
|
|
BasicBlock *Default = getBasicBlock(Record[3]);
|
|
if (!OpTy || !Cond || !Default)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
unsigned NumCases = Record[4];
|
|
|
|
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
|
|
InstructionList.push_back(SI);
|
|
|
|
unsigned CurIdx = 5;
|
|
for (unsigned i = 0; i != NumCases; ++i) {
|
|
SmallVector<ConstantInt*, 1> CaseVals;
|
|
unsigned NumItems = Record[CurIdx++];
|
|
for (unsigned ci = 0; ci != NumItems; ++ci) {
|
|
bool isSingleNumber = Record[CurIdx++];
|
|
|
|
APInt Low;
|
|
unsigned ActiveWords = 1;
|
|
if (ValueBitWidth > 64)
|
|
ActiveWords = Record[CurIdx++];
|
|
Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
|
|
ValueBitWidth);
|
|
CurIdx += ActiveWords;
|
|
|
|
if (!isSingleNumber) {
|
|
ActiveWords = 1;
|
|
if (ValueBitWidth > 64)
|
|
ActiveWords = Record[CurIdx++];
|
|
APInt High =
|
|
ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
|
|
ValueBitWidth);
|
|
CurIdx += ActiveWords;
|
|
|
|
// FIXME: It is not clear whether values in the range should be
|
|
// compared as signed or unsigned values. The partially
|
|
// implemented changes that used this format in the past used
|
|
// unsigned comparisons.
|
|
for ( ; Low.ule(High); ++Low)
|
|
CaseVals.push_back(ConstantInt::get(Context, Low));
|
|
} else
|
|
CaseVals.push_back(ConstantInt::get(Context, Low));
|
|
}
|
|
BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
|
|
for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
|
|
cve = CaseVals.end(); cvi != cve; ++cvi)
|
|
SI->addCase(*cvi, DestBB);
|
|
}
|
|
I = SI;
|
|
break;
|
|
}
|
|
|
|
// Old SwitchInst format without case ranges.
|
|
|
|
if (Record.size() < 3 || (Record.size() & 1) == 0)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
|
|
BasicBlock *Default = getBasicBlock(Record[2]);
|
|
if (!OpTy || !Cond || !Default)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
unsigned NumCases = (Record.size()-3)/2;
|
|
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
|
|
InstructionList.push_back(SI);
|
|
for (unsigned i = 0, e = NumCases; i != e; ++i) {
|
|
ConstantInt *CaseVal =
|
|
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
|
|
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
|
|
if (!CaseVal || !DestBB) {
|
|
delete SI;
|
|
return Error(BitcodeError::InvalidRecord);
|
|
}
|
|
SI->addCase(CaseVal, DestBB);
|
|
}
|
|
I = SI;
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
|
|
if (Record.size() < 2)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Address = getValue(Record, 1, NextValueNo, OpTy);
|
|
if (!OpTy || !Address)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
unsigned NumDests = Record.size()-2;
|
|
IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
|
|
InstructionList.push_back(IBI);
|
|
for (unsigned i = 0, e = NumDests; i != e; ++i) {
|
|
if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
|
|
IBI->addDestination(DestBB);
|
|
} else {
|
|
delete IBI;
|
|
return Error(BitcodeError::InvalidRecord);
|
|
}
|
|
}
|
|
I = IBI;
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INVOKE: {
|
|
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
|
|
if (Record.size() < 4)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
AttributeSet PAL = getAttributes(Record[0]);
|
|
unsigned CCInfo = Record[1];
|
|
BasicBlock *NormalBB = getBasicBlock(Record[2]);
|
|
BasicBlock *UnwindBB = getBasicBlock(Record[3]);
|
|
|
|
unsigned OpNum = 4;
|
|
Value *Callee;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
|
|
FunctionType *FTy = !CalleeTy ? nullptr :
|
|
dyn_cast<FunctionType>(CalleeTy->getElementType());
|
|
|
|
// Check that the right number of fixed parameters are here.
|
|
if (!FTy || !NormalBB || !UnwindBB ||
|
|
Record.size() < OpNum+FTy->getNumParams())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<Value*, 16> Ops;
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
|
|
Ops.push_back(getValue(Record, OpNum, NextValueNo,
|
|
FTy->getParamType(i)));
|
|
if (!Ops.back())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
}
|
|
|
|
if (!FTy->isVarArg()) {
|
|
if (Record.size() != OpNum)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
} else {
|
|
// Read type/value pairs for varargs params.
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Ops.push_back(Op);
|
|
}
|
|
}
|
|
|
|
I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
|
|
InstructionList.push_back(I);
|
|
cast<InvokeInst>(I)->setCallingConv(
|
|
static_cast<CallingConv::ID>(CCInfo));
|
|
cast<InvokeInst>(I)->setAttributes(PAL);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
|
|
unsigned Idx = 0;
|
|
Value *Val = nullptr;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
I = ResumeInst::Create(Val);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
|
|
I = new UnreachableInst(Context);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
|
|
if (Record.size() < 1 || ((Record.size()-1)&1))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
|
|
InstructionList.push_back(PN);
|
|
|
|
for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
|
|
Value *V;
|
|
// With the new function encoding, it is possible that operands have
|
|
// negative IDs (for forward references). Use a signed VBR
|
|
// representation to keep the encoding small.
|
|
if (UseRelativeIDs)
|
|
V = getValueSigned(Record, 1+i, NextValueNo, Ty);
|
|
else
|
|
V = getValue(Record, 1+i, NextValueNo, Ty);
|
|
BasicBlock *BB = getBasicBlock(Record[2+i]);
|
|
if (!V || !BB)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
PN->addIncoming(V, BB);
|
|
}
|
|
I = PN;
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_LANDINGPAD: {
|
|
// LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
|
|
unsigned Idx = 0;
|
|
if (Record.size() < 4)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *Ty = getTypeByID(Record[Idx++]);
|
|
if (!Ty)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Value *PersFn = nullptr;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
bool IsCleanup = !!Record[Idx++];
|
|
unsigned NumClauses = Record[Idx++];
|
|
LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
|
|
LP->setCleanup(IsCleanup);
|
|
for (unsigned J = 0; J != NumClauses; ++J) {
|
|
LandingPadInst::ClauseType CT =
|
|
LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
|
|
Value *Val;
|
|
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
|
|
delete LP;
|
|
return Error(BitcodeError::InvalidRecord);
|
|
}
|
|
|
|
assert((CT != LandingPadInst::Catch ||
|
|
!isa<ArrayType>(Val->getType())) &&
|
|
"Catch clause has a invalid type!");
|
|
assert((CT != LandingPadInst::Filter ||
|
|
isa<ArrayType>(Val->getType())) &&
|
|
"Filter clause has invalid type!");
|
|
LP->addClause(cast<Constant>(Val));
|
|
}
|
|
|
|
I = LP;
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
|
|
if (Record.size() != 4)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
PointerType *Ty =
|
|
dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
Value *Size = getFnValueByID(Record[2], OpTy);
|
|
unsigned AlignRecord = Record[3];
|
|
bool InAlloca = AlignRecord & (1 << 5);
|
|
unsigned Align = AlignRecord & ((1 << 5) - 1);
|
|
if (!Ty || !Size)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
|
|
AI->setUsedWithInAlloca(InAlloca);
|
|
I = AI;
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
OpNum+2 != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_LOADATOMIC: {
|
|
// LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
OpNum+4 != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
|
|
if (Ordering == NotAtomic || Ordering == Release ||
|
|
Ordering == AcquireRelease)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
if (Ordering != NotAtomic && Record[OpNum] == 0)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
|
|
|
|
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
|
|
Ordering, SynchScope);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
|
|
unsigned OpNum = 0;
|
|
Value *Val, *Ptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
|
|
OpNum+2 != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_STOREATOMIC: {
|
|
// STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
|
|
unsigned OpNum = 0;
|
|
Value *Val, *Ptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
|
|
OpNum+4 != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
|
|
if (Ordering == NotAtomic || Ordering == Acquire ||
|
|
Ordering == AcquireRelease)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
|
|
if (Ordering != NotAtomic && Record[OpNum] == 0)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
|
|
Ordering, SynchScope);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CMPXCHG: {
|
|
// CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
|
|
// failureordering?, isweak?]
|
|
unsigned OpNum = 0;
|
|
Value *Ptr, *Cmp, *New;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
|
|
popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(), New) ||
|
|
(Record.size() < OpNum + 3 || Record.size() > OpNum + 5))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]);
|
|
if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
|
|
|
|
AtomicOrdering FailureOrdering;
|
|
if (Record.size() < 7)
|
|
FailureOrdering =
|
|
AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
|
|
else
|
|
FailureOrdering = GetDecodedOrdering(Record[OpNum+3]);
|
|
|
|
I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
|
|
SynchScope);
|
|
cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
|
|
|
|
if (Record.size() < 8) {
|
|
// Before weak cmpxchgs existed, the instruction simply returned the
|
|
// value loaded from memory, so bitcode files from that era will be
|
|
// expecting the first component of a modern cmpxchg.
|
|
CurBB->getInstList().push_back(I);
|
|
I = ExtractValueInst::Create(I, 0);
|
|
} else {
|
|
cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
|
|
}
|
|
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_ATOMICRMW: {
|
|
// ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
|
|
unsigned OpNum = 0;
|
|
Value *Ptr, *Val;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
|
|
OpNum+4 != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
|
|
if (Operation < AtomicRMWInst::FIRST_BINOP ||
|
|
Operation > AtomicRMWInst::LAST_BINOP)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
|
|
if (Ordering == NotAtomic || Ordering == Unordered)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
|
|
I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
|
|
cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
|
|
if (2 != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
|
|
if (Ordering == NotAtomic || Ordering == Unordered ||
|
|
Ordering == Monotonic)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
|
|
I = new FenceInst(Context, Ordering, SynchScope);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CALL: {
|
|
// CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
AttributeSet PAL = getAttributes(Record[0]);
|
|
unsigned CCInfo = Record[1];
|
|
|
|
unsigned OpNum = 2;
|
|
Value *Callee;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
|
|
FunctionType *FTy = nullptr;
|
|
if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
|
|
if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
|
|
SmallVector<Value*, 16> Args;
|
|
// Read the fixed params.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
|
|
if (FTy->getParamType(i)->isLabelTy())
|
|
Args.push_back(getBasicBlock(Record[OpNum]));
|
|
else
|
|
Args.push_back(getValue(Record, OpNum, NextValueNo,
|
|
FTy->getParamType(i)));
|
|
if (!Args.back())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
}
|
|
|
|
// Read type/value pairs for varargs params.
|
|
if (!FTy->isVarArg()) {
|
|
if (OpNum != Record.size())
|
|
return Error(BitcodeError::InvalidRecord);
|
|
} else {
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Args.push_back(Op);
|
|
}
|
|
}
|
|
|
|
I = CallInst::Create(Callee, Args);
|
|
InstructionList.push_back(I);
|
|
cast<CallInst>(I)->setCallingConv(
|
|
static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1));
|
|
CallInst::TailCallKind TCK = CallInst::TCK_None;
|
|
if (CCInfo & 1)
|
|
TCK = CallInst::TCK_Tail;
|
|
if (CCInfo & (1 << 14))
|
|
TCK = CallInst::TCK_MustTail;
|
|
cast<CallInst>(I)->setTailCallKind(TCK);
|
|
cast<CallInst>(I)->setAttributes(PAL);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
|
|
if (Record.size() < 3)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Op = getValue(Record, 1, NextValueNo, OpTy);
|
|
Type *ResTy = getTypeByID(Record[2]);
|
|
if (!OpTy || !Op || !ResTy)
|
|
return Error(BitcodeError::InvalidRecord);
|
|
I = new VAArgInst(Op, ResTy);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Add instruction to end of current BB. If there is no current BB, reject
|
|
// this file.
|
|
if (!CurBB) {
|
|
delete I;
|
|
return Error(BitcodeError::InvalidInstructionWithNoBB);
|
|
}
|
|
CurBB->getInstList().push_back(I);
|
|
|
|
// If this was a terminator instruction, move to the next block.
|
|
if (isa<TerminatorInst>(I)) {
|
|
++CurBBNo;
|
|
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
|
|
}
|
|
|
|
// Non-void values get registered in the value table for future use.
|
|
if (I && !I->getType()->isVoidTy())
|
|
ValueList.AssignValue(I, NextValueNo++);
|
|
}
|
|
|
|
OutOfRecordLoop:
|
|
|
|
// Check the function list for unresolved values.
|
|
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
|
|
if (!A->getParent()) {
|
|
// We found at least one unresolved value. Nuke them all to avoid leaks.
|
|
for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
|
|
if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
|
|
A->replaceAllUsesWith(UndefValue::get(A->getType()));
|
|
delete A;
|
|
}
|
|
}
|
|
return Error(BitcodeError::NeverResolvedValueFoundInFunction);
|
|
}
|
|
}
|
|
|
|
// FIXME: Check for unresolved forward-declared metadata references
|
|
// and clean up leaks.
|
|
|
|
// Trim the value list down to the size it was before we parsed this function.
|
|
ValueList.shrinkTo(ModuleValueListSize);
|
|
MDValueList.shrinkTo(ModuleMDValueListSize);
|
|
std::vector<BasicBlock*>().swap(FunctionBBs);
|
|
return std::error_code();
|
|
}
|
|
|
|
/// Find the function body in the bitcode stream
|
|
std::error_code BitcodeReader::FindFunctionInStream(
|
|
Function *F,
|
|
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
|
|
while (DeferredFunctionInfoIterator->second == 0) {
|
|
if (Stream.AtEndOfStream())
|
|
return Error(BitcodeError::CouldNotFindFunctionInStream);
|
|
// ParseModule will parse the next body in the stream and set its
|
|
// position in the DeferredFunctionInfo map.
|
|
if (std::error_code EC = ParseModule(true))
|
|
return EC;
|
|
}
|
|
return std::error_code();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GVMaterializer implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BitcodeReader::releaseBuffer() { Buffer.release(); }
|
|
|
|
bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
|
|
if (const Function *F = dyn_cast<Function>(GV)) {
|
|
return F->isDeclaration() &&
|
|
DeferredFunctionInfo.count(const_cast<Function*>(F));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::error_code BitcodeReader::Materialize(GlobalValue *GV) {
|
|
Function *F = dyn_cast<Function>(GV);
|
|
// If it's not a function or is already material, ignore the request.
|
|
if (!F || !F->isMaterializable())
|
|
return std::error_code();
|
|
|
|
DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
|
|
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
|
|
// If its position is recorded as 0, its body is somewhere in the stream
|
|
// but we haven't seen it yet.
|
|
if (DFII->second == 0 && LazyStreamer)
|
|
if (std::error_code EC = FindFunctionInStream(F, DFII))
|
|
return EC;
|
|
|
|
// Move the bit stream to the saved position of the deferred function body.
|
|
Stream.JumpToBit(DFII->second);
|
|
|
|
if (std::error_code EC = ParseFunctionBody(F))
|
|
return EC;
|
|
|
|
// Upgrade any old intrinsic calls in the function.
|
|
for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
|
|
E = UpgradedIntrinsics.end(); I != E; ++I) {
|
|
if (I->first != I->second) {
|
|
for (auto UI = I->first->user_begin(), UE = I->first->user_end();
|
|
UI != UE;) {
|
|
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
|
|
UpgradeIntrinsicCall(CI, I->second);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bring in any functions that this function forward-referenced via
|
|
// blockaddresses.
|
|
return materializeForwardReferencedFunctions();
|
|
}
|
|
|
|
bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
|
|
const Function *F = dyn_cast<Function>(GV);
|
|
if (!F || F->isDeclaration())
|
|
return false;
|
|
|
|
// Dematerializing F would leave dangling references that wouldn't be
|
|
// reconnected on re-materialization.
|
|
if (BlockAddressesTaken.count(F))
|
|
return false;
|
|
|
|
return DeferredFunctionInfo.count(const_cast<Function*>(F));
|
|
}
|
|
|
|
void BitcodeReader::Dematerialize(GlobalValue *GV) {
|
|
Function *F = dyn_cast<Function>(GV);
|
|
// If this function isn't dematerializable, this is a noop.
|
|
if (!F || !isDematerializable(F))
|
|
return;
|
|
|
|
assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
|
|
|
|
// Just forget the function body, we can remat it later.
|
|
F->deleteBody();
|
|
}
|
|
|
|
std::error_code BitcodeReader::MaterializeModule(Module *M) {
|
|
assert(M == TheModule &&
|
|
"Can only Materialize the Module this BitcodeReader is attached to.");
|
|
|
|
// Promise to materialize all forward references.
|
|
WillMaterializeAllForwardRefs = true;
|
|
|
|
// Iterate over the module, deserializing any functions that are still on
|
|
// disk.
|
|
for (Module::iterator F = TheModule->begin(), E = TheModule->end();
|
|
F != E; ++F) {
|
|
if (F->isMaterializable()) {
|
|
if (std::error_code EC = Materialize(F))
|
|
return EC;
|
|
}
|
|
}
|
|
// At this point, if there are any function bodies, the current bit is
|
|
// pointing to the END_BLOCK record after them. Now make sure the rest
|
|
// of the bits in the module have been read.
|
|
if (NextUnreadBit)
|
|
ParseModule(true);
|
|
|
|
// Check that all block address forward references got resolved (as we
|
|
// promised above).
|
|
if (!BasicBlockFwdRefs.empty())
|
|
return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress);
|
|
|
|
// Upgrade any intrinsic calls that slipped through (should not happen!) and
|
|
// delete the old functions to clean up. We can't do this unless the entire
|
|
// module is materialized because there could always be another function body
|
|
// with calls to the old function.
|
|
for (std::vector<std::pair<Function*, Function*> >::iterator I =
|
|
UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
|
|
if (I->first != I->second) {
|
|
for (auto UI = I->first->user_begin(), UE = I->first->user_end();
|
|
UI != UE;) {
|
|
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
|
|
UpgradeIntrinsicCall(CI, I->second);
|
|
}
|
|
if (!I->first->use_empty())
|
|
I->first->replaceAllUsesWith(I->second);
|
|
I->first->eraseFromParent();
|
|
}
|
|
}
|
|
std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
|
|
|
|
for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
|
|
UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
|
|
|
|
UpgradeDebugInfo(*M);
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::InitStream() {
|
|
if (LazyStreamer)
|
|
return InitLazyStream();
|
|
return InitStreamFromBuffer();
|
|
}
|
|
|
|
std::error_code BitcodeReader::InitStreamFromBuffer() {
|
|
const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
|
|
const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
|
|
|
|
if (Buffer->getBufferSize() & 3)
|
|
return Error(BitcodeError::InvalidBitcodeSignature);
|
|
|
|
// If we have a wrapper header, parse it and ignore the non-bc file contents.
|
|
// The magic number is 0x0B17C0DE stored in little endian.
|
|
if (isBitcodeWrapper(BufPtr, BufEnd))
|
|
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
|
|
return Error(BitcodeError::InvalidBitcodeWrapperHeader);
|
|
|
|
StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
|
|
Stream.init(*StreamFile);
|
|
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::InitLazyStream() {
|
|
// Check and strip off the bitcode wrapper; BitstreamReader expects never to
|
|
// see it.
|
|
StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
|
|
StreamFile.reset(new BitstreamReader(Bytes));
|
|
Stream.init(*StreamFile);
|
|
|
|
unsigned char buf[16];
|
|
if (Bytes->readBytes(0, 16, buf) == -1)
|
|
return Error(BitcodeError::InvalidBitcodeSignature);
|
|
|
|
if (!isBitcode(buf, buf + 16))
|
|
return Error(BitcodeError::InvalidBitcodeSignature);
|
|
|
|
if (isBitcodeWrapper(buf, buf + 4)) {
|
|
const unsigned char *bitcodeStart = buf;
|
|
const unsigned char *bitcodeEnd = buf + 16;
|
|
SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
|
|
Bytes->dropLeadingBytes(bitcodeStart - buf);
|
|
Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
|
|
}
|
|
return std::error_code();
|
|
}
|
|
|
|
namespace {
|
|
class BitcodeErrorCategoryType : public std::error_category {
|
|
const char *name() const LLVM_NOEXCEPT override {
|
|
return "llvm.bitcode";
|
|
}
|
|
std::string message(int IE) const override {
|
|
BitcodeError E = static_cast<BitcodeError>(IE);
|
|
switch (E) {
|
|
case BitcodeError::ConflictingMETADATA_KINDRecords:
|
|
return "Conflicting METADATA_KIND records";
|
|
case BitcodeError::CouldNotFindFunctionInStream:
|
|
return "Could not find function in stream";
|
|
case BitcodeError::ExpectedConstant:
|
|
return "Expected a constant";
|
|
case BitcodeError::InsufficientFunctionProtos:
|
|
return "Insufficient function protos";
|
|
case BitcodeError::InvalidBitcodeSignature:
|
|
return "Invalid bitcode signature";
|
|
case BitcodeError::InvalidBitcodeWrapperHeader:
|
|
return "Invalid bitcode wrapper header";
|
|
case BitcodeError::InvalidConstantReference:
|
|
return "Invalid ronstant reference";
|
|
case BitcodeError::InvalidID:
|
|
return "Invalid ID";
|
|
case BitcodeError::InvalidInstructionWithNoBB:
|
|
return "Invalid instruction with no BB";
|
|
case BitcodeError::InvalidRecord:
|
|
return "Invalid record";
|
|
case BitcodeError::InvalidTypeForValue:
|
|
return "Invalid type for value";
|
|
case BitcodeError::InvalidTYPETable:
|
|
return "Invalid TYPE table";
|
|
case BitcodeError::InvalidType:
|
|
return "Invalid type";
|
|
case BitcodeError::MalformedBlock:
|
|
return "Malformed block";
|
|
case BitcodeError::MalformedGlobalInitializerSet:
|
|
return "Malformed global initializer set";
|
|
case BitcodeError::InvalidMultipleBlocks:
|
|
return "Invalid multiple blocks";
|
|
case BitcodeError::NeverResolvedValueFoundInFunction:
|
|
return "Never resolved value found in function";
|
|
case BitcodeError::NeverResolvedFunctionFromBlockAddress:
|
|
return "Never resolved function from blockaddress";
|
|
case BitcodeError::InvalidValue:
|
|
return "Invalid value";
|
|
}
|
|
llvm_unreachable("Unknown error type!");
|
|
}
|
|
};
|
|
}
|
|
|
|
const std::error_category &llvm::BitcodeErrorCategory() {
|
|
static BitcodeErrorCategoryType O;
|
|
return O;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External interface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Get a lazy one-at-time loading module from bitcode.
|
|
///
|
|
/// This isn't always used in a lazy context. In particular, it's also used by
|
|
/// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull
|
|
/// in forward-referenced functions from block address references.
|
|
///
|
|
/// \param[in] WillMaterializeAll Set to \c true if the caller promises to
|
|
/// materialize everything -- in particular, if this isn't truly lazy.
|
|
static ErrorOr<Module *> getLazyBitcodeModuleImpl(MemoryBuffer *Buffer,
|
|
LLVMContext &Context,
|
|
bool WillMaterializeAll) {
|
|
Module *M = new Module(Buffer->getBufferIdentifier(), Context);
|
|
BitcodeReader *R = new BitcodeReader(Buffer, Context);
|
|
M->setMaterializer(R);
|
|
|
|
auto cleanupOnError = [&](std::error_code EC) {
|
|
R->releaseBuffer(); // Never take ownership on error.
|
|
delete M; // Also deletes R.
|
|
return EC;
|
|
};
|
|
|
|
if (std::error_code EC = R->ParseBitcodeInto(M))
|
|
return cleanupOnError(EC);
|
|
|
|
if (!WillMaterializeAll)
|
|
// Resolve forward references from blockaddresses.
|
|
if (std::error_code EC = R->materializeForwardReferencedFunctions())
|
|
return cleanupOnError(EC);
|
|
|
|
return M;
|
|
}
|
|
|
|
ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
|
|
LLVMContext &Context) {
|
|
return getLazyBitcodeModuleImpl(Buffer, Context, false);
|
|
}
|
|
|
|
Module *llvm::getStreamedBitcodeModule(const std::string &name,
|
|
DataStreamer *streamer,
|
|
LLVMContext &Context,
|
|
std::string *ErrMsg) {
|
|
Module *M = new Module(name, Context);
|
|
BitcodeReader *R = new BitcodeReader(streamer, Context);
|
|
M->setMaterializer(R);
|
|
if (std::error_code EC = R->ParseBitcodeInto(M)) {
|
|
if (ErrMsg)
|
|
*ErrMsg = EC.message();
|
|
delete M; // Also deletes R.
|
|
return nullptr;
|
|
}
|
|
return M;
|
|
}
|
|
|
|
ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer,
|
|
LLVMContext &Context) {
|
|
ErrorOr<Module *> ModuleOrErr =
|
|
getLazyBitcodeModuleImpl(Buffer, Context, true);
|
|
if (!ModuleOrErr)
|
|
return ModuleOrErr;
|
|
Module *M = ModuleOrErr.get();
|
|
// Read in the entire module, and destroy the BitcodeReader.
|
|
if (std::error_code EC = M->materializeAllPermanently(true)) {
|
|
delete M;
|
|
return EC;
|
|
}
|
|
|
|
// TODO: Restore the use-lists to the in-memory state when the bitcode was
|
|
// written. We must defer until the Module has been fully materialized.
|
|
|
|
return M;
|
|
}
|
|
|
|
std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
|
|
LLVMContext &Context) {
|
|
BitcodeReader *R = new BitcodeReader(Buffer, Context);
|
|
ErrorOr<std::string> Triple = R->parseTriple();
|
|
R->releaseBuffer();
|
|
delete R;
|
|
if (Triple.getError())
|
|
return "";
|
|
return Triple.get();
|
|
}
|