mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	This will come in handy soon. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127828 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2907 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2907 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- APInt.cpp - Implement APInt class ---------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a class to represent arbitrary precision integer
 | |
| // constant values and provide a variety of arithmetic operations on them.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "apint"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cmath>
 | |
| #include <limits>
 | |
| #include <cstring>
 | |
| #include <cstdlib>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// A utility function for allocating memory, checking for allocation failures,
 | |
| /// and ensuring the contents are zeroed.
 | |
| inline static uint64_t* getClearedMemory(unsigned numWords) {
 | |
|   uint64_t * result = new uint64_t[numWords];
 | |
|   assert(result && "APInt memory allocation fails!");
 | |
|   memset(result, 0, numWords * sizeof(uint64_t));
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// A utility function for allocating memory and checking for allocation
 | |
| /// failure.  The content is not zeroed.
 | |
| inline static uint64_t* getMemory(unsigned numWords) {
 | |
|   uint64_t * result = new uint64_t[numWords];
 | |
|   assert(result && "APInt memory allocation fails!");
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// A utility function that converts a character to a digit.
 | |
| inline static unsigned getDigit(char cdigit, uint8_t radix) {
 | |
|   unsigned r;
 | |
| 
 | |
|   if (radix == 16) {
 | |
|     r = cdigit - '0';
 | |
|     if (r <= 9)
 | |
|       return r;
 | |
| 
 | |
|     r = cdigit - 'A';
 | |
|     if (r <= 5)
 | |
|       return r + 10;
 | |
| 
 | |
|     r = cdigit - 'a';
 | |
|     if (r <= 5)
 | |
|       return r + 10;
 | |
|   }
 | |
| 
 | |
|   r = cdigit - '0';
 | |
|   if (r < radix)
 | |
|     return r;
 | |
| 
 | |
|   return -1U;
 | |
| }
 | |
| 
 | |
| 
 | |
| void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
 | |
|   pVal = getClearedMemory(getNumWords());
 | |
|   pVal[0] = val;
 | |
|   if (isSigned && int64_t(val) < 0)
 | |
|     for (unsigned i = 1; i < getNumWords(); ++i)
 | |
|       pVal[i] = -1ULL;
 | |
| }
 | |
| 
 | |
| void APInt::initSlowCase(const APInt& that) {
 | |
|   pVal = getMemory(getNumWords());
 | |
|   memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
 | |
| }
 | |
| 
 | |
| 
 | |
| APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
 | |
|   : BitWidth(numBits), VAL(0) {
 | |
|   assert(BitWidth && "Bitwidth too small");
 | |
|   assert(bigVal && "Null pointer detected!");
 | |
|   if (isSingleWord())
 | |
|     VAL = bigVal[0];
 | |
|   else {
 | |
|     // Get memory, cleared to 0
 | |
|     pVal = getClearedMemory(getNumWords());
 | |
|     // Calculate the number of words to copy
 | |
|     unsigned words = std::min<unsigned>(numWords, getNumWords());
 | |
|     // Copy the words from bigVal to pVal
 | |
|     memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
 | |
|   }
 | |
|   // Make sure unused high bits are cleared
 | |
|   clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
 | |
|   : BitWidth(numbits), VAL(0) {
 | |
|   assert(BitWidth && "Bitwidth too small");
 | |
|   fromString(numbits, Str, radix);
 | |
| }
 | |
| 
 | |
| APInt& APInt::AssignSlowCase(const APInt& RHS) {
 | |
|   // Don't do anything for X = X
 | |
|   if (this == &RHS)
 | |
|     return *this;
 | |
| 
 | |
|   if (BitWidth == RHS.getBitWidth()) {
 | |
|     // assume same bit-width single-word case is already handled
 | |
|     assert(!isSingleWord());
 | |
|     memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   if (isSingleWord()) {
 | |
|     // assume case where both are single words is already handled
 | |
|     assert(!RHS.isSingleWord());
 | |
|     VAL = 0;
 | |
|     pVal = getMemory(RHS.getNumWords());
 | |
|     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
 | |
|   } else if (getNumWords() == RHS.getNumWords())
 | |
|     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
 | |
|   else if (RHS.isSingleWord()) {
 | |
|     delete [] pVal;
 | |
|     VAL = RHS.VAL;
 | |
|   } else {
 | |
|     delete [] pVal;
 | |
|     pVal = getMemory(RHS.getNumWords());
 | |
|     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
 | |
|   }
 | |
|   BitWidth = RHS.BitWidth;
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator=(uint64_t RHS) {
 | |
|   if (isSingleWord())
 | |
|     VAL = RHS;
 | |
|   else {
 | |
|     pVal[0] = RHS;
 | |
|     memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
 | |
|   }
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Profile - This method 'profiles' an APInt for use with FoldingSet.
 | |
| void APInt::Profile(FoldingSetNodeID& ID) const {
 | |
|   ID.AddInteger(BitWidth);
 | |
| 
 | |
|   if (isSingleWord()) {
 | |
|     ID.AddInteger(VAL);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned NumWords = getNumWords();
 | |
|   for (unsigned i = 0; i < NumWords; ++i)
 | |
|     ID.AddInteger(pVal[i]);
 | |
| }
 | |
| 
 | |
| /// add_1 - This function adds a single "digit" integer, y, to the multiple
 | |
| /// "digit" integer array,  x[]. x[] is modified to reflect the addition and
 | |
| /// 1 is returned if there is a carry out, otherwise 0 is returned.
 | |
| /// @returns the carry of the addition.
 | |
| static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
 | |
|   for (unsigned i = 0; i < len; ++i) {
 | |
|     dest[i] = y + x[i];
 | |
|     if (dest[i] < y)
 | |
|       y = 1; // Carry one to next digit.
 | |
|     else {
 | |
|       y = 0; // No need to carry so exit early
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return y;
 | |
| }
 | |
| 
 | |
| /// @brief Prefix increment operator. Increments the APInt by one.
 | |
| APInt& APInt::operator++() {
 | |
|   if (isSingleWord())
 | |
|     ++VAL;
 | |
|   else
 | |
|     add_1(pVal, pVal, getNumWords(), 1);
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
 | |
| /// the multi-digit integer array, x[], propagating the borrowed 1 value until
 | |
| /// no further borrowing is neeeded or it runs out of "digits" in x.  The result
 | |
| /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
 | |
| /// In other words, if y > x then this function returns 1, otherwise 0.
 | |
| /// @returns the borrow out of the subtraction
 | |
| static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
 | |
|   for (unsigned i = 0; i < len; ++i) {
 | |
|     uint64_t X = x[i];
 | |
|     x[i] -= y;
 | |
|     if (y > X)
 | |
|       y = 1;  // We have to "borrow 1" from next "digit"
 | |
|     else {
 | |
|       y = 0;  // No need to borrow
 | |
|       break;  // Remaining digits are unchanged so exit early
 | |
|     }
 | |
|   }
 | |
|   return bool(y);
 | |
| }
 | |
| 
 | |
| /// @brief Prefix decrement operator. Decrements the APInt by one.
 | |
| APInt& APInt::operator--() {
 | |
|   if (isSingleWord())
 | |
|     --VAL;
 | |
|   else
 | |
|     sub_1(pVal, getNumWords(), 1);
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// add - This function adds the integer array x to the integer array Y and
 | |
| /// places the result in dest.
 | |
| /// @returns the carry out from the addition
 | |
| /// @brief General addition of 64-bit integer arrays
 | |
| static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
 | |
|                 unsigned len) {
 | |
|   bool carry = false;
 | |
|   for (unsigned i = 0; i< len; ++i) {
 | |
|     uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
 | |
|     dest[i] = x[i] + y[i] + carry;
 | |
|     carry = dest[i] < limit || (carry && dest[i] == limit);
 | |
|   }
 | |
|   return carry;
 | |
| }
 | |
| 
 | |
| /// Adds the RHS APint to this APInt.
 | |
| /// @returns this, after addition of RHS.
 | |
| /// @brief Addition assignment operator.
 | |
| APInt& APInt::operator+=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord())
 | |
|     VAL += RHS.VAL;
 | |
|   else {
 | |
|     add(pVal, pVal, RHS.pVal, getNumWords());
 | |
|   }
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Subtracts the integer array y from the integer array x
 | |
| /// @returns returns the borrow out.
 | |
| /// @brief Generalized subtraction of 64-bit integer arrays.
 | |
| static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
 | |
|                 unsigned len) {
 | |
|   bool borrow = false;
 | |
|   for (unsigned i = 0; i < len; ++i) {
 | |
|     uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
 | |
|     borrow = y[i] > x_tmp || (borrow && x[i] == 0);
 | |
|     dest[i] = x_tmp - y[i];
 | |
|   }
 | |
|   return borrow;
 | |
| }
 | |
| 
 | |
| /// Subtracts the RHS APInt from this APInt
 | |
| /// @returns this, after subtraction
 | |
| /// @brief Subtraction assignment operator.
 | |
| APInt& APInt::operator-=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord())
 | |
|     VAL -= RHS.VAL;
 | |
|   else
 | |
|     sub(pVal, pVal, RHS.pVal, getNumWords());
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Multiplies an integer array, x, by a uint64_t integer and places the result
 | |
| /// into dest.
 | |
| /// @returns the carry out of the multiplication.
 | |
| /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
 | |
| static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
 | |
|   // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
 | |
|   uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
 | |
|   uint64_t carry = 0;
 | |
| 
 | |
|   // For each digit of x.
 | |
|   for (unsigned i = 0; i < len; ++i) {
 | |
|     // Split x into high and low words
 | |
|     uint64_t lx = x[i] & 0xffffffffULL;
 | |
|     uint64_t hx = x[i] >> 32;
 | |
|     // hasCarry - A flag to indicate if there is a carry to the next digit.
 | |
|     // hasCarry == 0, no carry
 | |
|     // hasCarry == 1, has carry
 | |
|     // hasCarry == 2, no carry and the calculation result == 0.
 | |
|     uint8_t hasCarry = 0;
 | |
|     dest[i] = carry + lx * ly;
 | |
|     // Determine if the add above introduces carry.
 | |
|     hasCarry = (dest[i] < carry) ? 1 : 0;
 | |
|     carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
 | |
|     // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
 | |
|     // (2^32 - 1) + 2^32 = 2^64.
 | |
|     hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
 | |
| 
 | |
|     carry += (lx * hy) & 0xffffffffULL;
 | |
|     dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
 | |
|     carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
 | |
|             (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
 | |
|   }
 | |
|   return carry;
 | |
| }
 | |
| 
 | |
| /// Multiplies integer array x by integer array y and stores the result into
 | |
| /// the integer array dest. Note that dest's size must be >= xlen + ylen.
 | |
| /// @brief Generalized multiplicate of integer arrays.
 | |
| static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
 | |
|                 unsigned ylen) {
 | |
|   dest[xlen] = mul_1(dest, x, xlen, y[0]);
 | |
|   for (unsigned i = 1; i < ylen; ++i) {
 | |
|     uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
 | |
|     uint64_t carry = 0, lx = 0, hx = 0;
 | |
|     for (unsigned j = 0; j < xlen; ++j) {
 | |
|       lx = x[j] & 0xffffffffULL;
 | |
|       hx = x[j] >> 32;
 | |
|       // hasCarry - A flag to indicate if has carry.
 | |
|       // hasCarry == 0, no carry
 | |
|       // hasCarry == 1, has carry
 | |
|       // hasCarry == 2, no carry and the calculation result == 0.
 | |
|       uint8_t hasCarry = 0;
 | |
|       uint64_t resul = carry + lx * ly;
 | |
|       hasCarry = (resul < carry) ? 1 : 0;
 | |
|       carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
 | |
|       hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
 | |
| 
 | |
|       carry += (lx * hy) & 0xffffffffULL;
 | |
|       resul = (carry << 32) | (resul & 0xffffffffULL);
 | |
|       dest[i+j] += resul;
 | |
|       carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
 | |
|               (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
 | |
|               ((lx * hy) >> 32) + hx * hy;
 | |
|     }
 | |
|     dest[i+xlen] = carry;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator*=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord()) {
 | |
|     VAL *= RHS.VAL;
 | |
|     clearUnusedBits();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Get some bit facts about LHS and check for zero
 | |
|   unsigned lhsBits = getActiveBits();
 | |
|   unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
 | |
|   if (!lhsWords)
 | |
|     // 0 * X ===> 0
 | |
|     return *this;
 | |
| 
 | |
|   // Get some bit facts about RHS and check for zero
 | |
|   unsigned rhsBits = RHS.getActiveBits();
 | |
|   unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
 | |
|   if (!rhsWords) {
 | |
|     // X * 0 ===> 0
 | |
|     clearAllBits();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Allocate space for the result
 | |
|   unsigned destWords = rhsWords + lhsWords;
 | |
|   uint64_t *dest = getMemory(destWords);
 | |
| 
 | |
|   // Perform the long multiply
 | |
|   mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
 | |
| 
 | |
|   // Copy result back into *this
 | |
|   clearAllBits();
 | |
|   unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
 | |
|   memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
 | |
| 
 | |
|   // delete dest array and return
 | |
|   delete[] dest;
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator&=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord()) {
 | |
|     VAL &= RHS.VAL;
 | |
|     return *this;
 | |
|   }
 | |
|   unsigned numWords = getNumWords();
 | |
|   for (unsigned i = 0; i < numWords; ++i)
 | |
|     pVal[i] &= RHS.pVal[i];
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator|=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord()) {
 | |
|     VAL |= RHS.VAL;
 | |
|     return *this;
 | |
|   }
 | |
|   unsigned numWords = getNumWords();
 | |
|   for (unsigned i = 0; i < numWords; ++i)
 | |
|     pVal[i] |= RHS.pVal[i];
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator^=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord()) {
 | |
|     VAL ^= RHS.VAL;
 | |
|     this->clearUnusedBits();
 | |
|     return *this;
 | |
|   }
 | |
|   unsigned numWords = getNumWords();
 | |
|   for (unsigned i = 0; i < numWords; ++i)
 | |
|     pVal[i] ^= RHS.pVal[i];
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt APInt::AndSlowCase(const APInt& RHS) const {
 | |
|   unsigned numWords = getNumWords();
 | |
|   uint64_t* val = getMemory(numWords);
 | |
|   for (unsigned i = 0; i < numWords; ++i)
 | |
|     val[i] = pVal[i] & RHS.pVal[i];
 | |
|   return APInt(val, getBitWidth());
 | |
| }
 | |
| 
 | |
| APInt APInt::OrSlowCase(const APInt& RHS) const {
 | |
|   unsigned numWords = getNumWords();
 | |
|   uint64_t *val = getMemory(numWords);
 | |
|   for (unsigned i = 0; i < numWords; ++i)
 | |
|     val[i] = pVal[i] | RHS.pVal[i];
 | |
|   return APInt(val, getBitWidth());
 | |
| }
 | |
| 
 | |
| APInt APInt::XorSlowCase(const APInt& RHS) const {
 | |
|   unsigned numWords = getNumWords();
 | |
|   uint64_t *val = getMemory(numWords);
 | |
|   for (unsigned i = 0; i < numWords; ++i)
 | |
|     val[i] = pVal[i] ^ RHS.pVal[i];
 | |
| 
 | |
|   // 0^0==1 so clear the high bits in case they got set.
 | |
|   return APInt(val, getBitWidth()).clearUnusedBits();
 | |
| }
 | |
| 
 | |
| bool APInt::operator !() const {
 | |
|   if (isSingleWord())
 | |
|     return !VAL;
 | |
| 
 | |
|   for (unsigned i = 0; i < getNumWords(); ++i)
 | |
|     if (pVal[i])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| APInt APInt::operator*(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord())
 | |
|     return APInt(BitWidth, VAL * RHS.VAL);
 | |
|   APInt Result(*this);
 | |
|   Result *= RHS;
 | |
|   return Result.clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt APInt::operator+(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord())
 | |
|     return APInt(BitWidth, VAL + RHS.VAL);
 | |
|   APInt Result(BitWidth, 0);
 | |
|   add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
 | |
|   return Result.clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt APInt::operator-(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord())
 | |
|     return APInt(BitWidth, VAL - RHS.VAL);
 | |
|   APInt Result(BitWidth, 0);
 | |
|   sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
 | |
|   return Result.clearUnusedBits();
 | |
| }
 | |
| 
 | |
| bool APInt::operator[](unsigned bitPosition) const {
 | |
|   assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
 | |
|   return (maskBit(bitPosition) &
 | |
|           (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
 | |
| }
 | |
| 
 | |
| bool APInt::EqualSlowCase(const APInt& RHS) const {
 | |
|   // Get some facts about the number of bits used in the two operands.
 | |
|   unsigned n1 = getActiveBits();
 | |
|   unsigned n2 = RHS.getActiveBits();
 | |
| 
 | |
|   // If the number of bits isn't the same, they aren't equal
 | |
|   if (n1 != n2)
 | |
|     return false;
 | |
| 
 | |
|   // If the number of bits fits in a word, we only need to compare the low word.
 | |
|   if (n1 <= APINT_BITS_PER_WORD)
 | |
|     return pVal[0] == RHS.pVal[0];
 | |
| 
 | |
|   // Otherwise, compare everything
 | |
|   for (int i = whichWord(n1 - 1); i >= 0; --i)
 | |
|     if (pVal[i] != RHS.pVal[i])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool APInt::EqualSlowCase(uint64_t Val) const {
 | |
|   unsigned n = getActiveBits();
 | |
|   if (n <= APINT_BITS_PER_WORD)
 | |
|     return pVal[0] == Val;
 | |
|   else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool APInt::ult(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
 | |
|   if (isSingleWord())
 | |
|     return VAL < RHS.VAL;
 | |
| 
 | |
|   // Get active bit length of both operands
 | |
|   unsigned n1 = getActiveBits();
 | |
|   unsigned n2 = RHS.getActiveBits();
 | |
| 
 | |
|   // If magnitude of LHS is less than RHS, return true.
 | |
|   if (n1 < n2)
 | |
|     return true;
 | |
| 
 | |
|   // If magnitude of RHS is greather than LHS, return false.
 | |
|   if (n2 < n1)
 | |
|     return false;
 | |
| 
 | |
|   // If they bot fit in a word, just compare the low order word
 | |
|   if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
 | |
|     return pVal[0] < RHS.pVal[0];
 | |
| 
 | |
|   // Otherwise, compare all words
 | |
|   unsigned topWord = whichWord(std::max(n1,n2)-1);
 | |
|   for (int i = topWord; i >= 0; --i) {
 | |
|     if (pVal[i] > RHS.pVal[i])
 | |
|       return false;
 | |
|     if (pVal[i] < RHS.pVal[i])
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool APInt::slt(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
 | |
|   if (isSingleWord()) {
 | |
|     int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
 | |
|     int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
 | |
|     return lhsSext < rhsSext;
 | |
|   }
 | |
| 
 | |
|   APInt lhs(*this);
 | |
|   APInt rhs(RHS);
 | |
|   bool lhsNeg = isNegative();
 | |
|   bool rhsNeg = rhs.isNegative();
 | |
|   if (lhsNeg) {
 | |
|     // Sign bit is set so perform two's complement to make it positive
 | |
|     lhs.flipAllBits();
 | |
|     lhs++;
 | |
|   }
 | |
|   if (rhsNeg) {
 | |
|     // Sign bit is set so perform two's complement to make it positive
 | |
|     rhs.flipAllBits();
 | |
|     rhs++;
 | |
|   }
 | |
| 
 | |
|   // Now we have unsigned values to compare so do the comparison if necessary
 | |
|   // based on the negativeness of the values.
 | |
|   if (lhsNeg)
 | |
|     if (rhsNeg)
 | |
|       return lhs.ugt(rhs);
 | |
|     else
 | |
|       return true;
 | |
|   else if (rhsNeg)
 | |
|     return false;
 | |
|   else
 | |
|     return lhs.ult(rhs);
 | |
| }
 | |
| 
 | |
| void APInt::setBit(unsigned bitPosition) {
 | |
|   if (isSingleWord())
 | |
|     VAL |= maskBit(bitPosition);
 | |
|   else
 | |
|     pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
 | |
| }
 | |
| 
 | |
| /// Set the given bit to 0 whose position is given as "bitPosition".
 | |
| /// @brief Set a given bit to 0.
 | |
| void APInt::clearBit(unsigned bitPosition) {
 | |
|   if (isSingleWord())
 | |
|     VAL &= ~maskBit(bitPosition);
 | |
|   else
 | |
|     pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
 | |
| }
 | |
| 
 | |
| /// @brief Toggle every bit to its opposite value.
 | |
| 
 | |
| /// Toggle a given bit to its opposite value whose position is given
 | |
| /// as "bitPosition".
 | |
| /// @brief Toggles a given bit to its opposite value.
 | |
| void APInt::flipBit(unsigned bitPosition) {
 | |
|   assert(bitPosition < BitWidth && "Out of the bit-width range!");
 | |
|   if ((*this)[bitPosition]) clearBit(bitPosition);
 | |
|   else setBit(bitPosition);
 | |
| }
 | |
| 
 | |
| unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
 | |
|   assert(!str.empty() && "Invalid string length");
 | |
|   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
 | |
|          "Radix should be 2, 8, 10, or 16!");
 | |
| 
 | |
|   size_t slen = str.size();
 | |
| 
 | |
|   // Each computation below needs to know if it's negative.
 | |
|   StringRef::iterator p = str.begin();
 | |
|   unsigned isNegative = *p == '-';
 | |
|   if (*p == '-' || *p == '+') {
 | |
|     p++;
 | |
|     slen--;
 | |
|     assert(slen && "String is only a sign, needs a value.");
 | |
|   }
 | |
| 
 | |
|   // For radixes of power-of-two values, the bits required is accurately and
 | |
|   // easily computed
 | |
|   if (radix == 2)
 | |
|     return slen + isNegative;
 | |
|   if (radix == 8)
 | |
|     return slen * 3 + isNegative;
 | |
|   if (radix == 16)
 | |
|     return slen * 4 + isNegative;
 | |
| 
 | |
|   // This is grossly inefficient but accurate. We could probably do something
 | |
|   // with a computation of roughly slen*64/20 and then adjust by the value of
 | |
|   // the first few digits. But, I'm not sure how accurate that could be.
 | |
| 
 | |
|   // Compute a sufficient number of bits that is always large enough but might
 | |
|   // be too large. This avoids the assertion in the constructor. This
 | |
|   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
 | |
|   // bits in that case.
 | |
|   unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
 | |
| 
 | |
|   // Convert to the actual binary value.
 | |
|   APInt tmp(sufficient, StringRef(p, slen), radix);
 | |
| 
 | |
|   // Compute how many bits are required. If the log is infinite, assume we need
 | |
|   // just bit.
 | |
|   unsigned log = tmp.logBase2();
 | |
|   if (log == (unsigned)-1) {
 | |
|     return isNegative + 1;
 | |
|   } else {
 | |
|     return isNegative + log + 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // From http://www.burtleburtle.net, byBob Jenkins.
 | |
| // When targeting x86, both GCC and LLVM seem to recognize this as a
 | |
| // rotate instruction.
 | |
| #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
 | |
| 
 | |
| // From http://www.burtleburtle.net, by Bob Jenkins.
 | |
| #define mix(a,b,c) \
 | |
|   { \
 | |
|     a -= c;  a ^= rot(c, 4);  c += b; \
 | |
|     b -= a;  b ^= rot(a, 6);  a += c; \
 | |
|     c -= b;  c ^= rot(b, 8);  b += a; \
 | |
|     a -= c;  a ^= rot(c,16);  c += b; \
 | |
|     b -= a;  b ^= rot(a,19);  a += c; \
 | |
|     c -= b;  c ^= rot(b, 4);  b += a; \
 | |
|   }
 | |
| 
 | |
| // From http://www.burtleburtle.net, by Bob Jenkins.
 | |
| #define final(a,b,c) \
 | |
|   { \
 | |
|     c ^= b; c -= rot(b,14); \
 | |
|     a ^= c; a -= rot(c,11); \
 | |
|     b ^= a; b -= rot(a,25); \
 | |
|     c ^= b; c -= rot(b,16); \
 | |
|     a ^= c; a -= rot(c,4);  \
 | |
|     b ^= a; b -= rot(a,14); \
 | |
|     c ^= b; c -= rot(b,24); \
 | |
|   }
 | |
| 
 | |
| // hashword() was adapted from http://www.burtleburtle.net, by Bob
 | |
| // Jenkins.  k is a pointer to an array of uint32_t values; length is
 | |
| // the length of the key, in 32-bit chunks.  This version only handles
 | |
| // keys that are a multiple of 32 bits in size.
 | |
| static inline uint32_t hashword(const uint64_t *k64, size_t length)
 | |
| {
 | |
|   const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
 | |
|   uint32_t a,b,c;
 | |
| 
 | |
|   /* Set up the internal state */
 | |
|   a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
 | |
| 
 | |
|   /*------------------------------------------------- handle most of the key */
 | |
|   while (length > 3) {
 | |
|     a += k[0];
 | |
|     b += k[1];
 | |
|     c += k[2];
 | |
|     mix(a,b,c);
 | |
|     length -= 3;
 | |
|     k += 3;
 | |
|   }
 | |
| 
 | |
|   /*------------------------------------------- handle the last 3 uint32_t's */
 | |
|   switch (length) {                  /* all the case statements fall through */
 | |
|   case 3 : c+=k[2];
 | |
|   case 2 : b+=k[1];
 | |
|   case 1 : a+=k[0];
 | |
|     final(a,b,c);
 | |
|     case 0:     /* case 0: nothing left to add */
 | |
|       break;
 | |
|     }
 | |
|   /*------------------------------------------------------ report the result */
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| // hashword8() was adapted from http://www.burtleburtle.net, by Bob
 | |
| // Jenkins.  This computes a 32-bit hash from one 64-bit word.  When
 | |
| // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
 | |
| // function into about 35 instructions when inlined.
 | |
| static inline uint32_t hashword8(const uint64_t k64)
 | |
| {
 | |
|   uint32_t a,b,c;
 | |
|   a = b = c = 0xdeadbeef + 4;
 | |
|   b += k64 >> 32;
 | |
|   a += k64 & 0xffffffff;
 | |
|   final(a,b,c);
 | |
|   return c;
 | |
| }
 | |
| #undef final
 | |
| #undef mix
 | |
| #undef rot
 | |
| 
 | |
| uint64_t APInt::getHashValue() const {
 | |
|   uint64_t hash;
 | |
|   if (isSingleWord())
 | |
|     hash = hashword8(VAL);
 | |
|   else
 | |
|     hash = hashword(pVal, getNumWords()*2);
 | |
|   return hash;
 | |
| }
 | |
| 
 | |
| /// HiBits - This function returns the high "numBits" bits of this APInt.
 | |
| APInt APInt::getHiBits(unsigned numBits) const {
 | |
|   return APIntOps::lshr(*this, BitWidth - numBits);
 | |
| }
 | |
| 
 | |
| /// LoBits - This function returns the low "numBits" bits of this APInt.
 | |
| APInt APInt::getLoBits(unsigned numBits) const {
 | |
|   return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
 | |
|                         BitWidth - numBits);
 | |
| }
 | |
| 
 | |
| unsigned APInt::countLeadingZerosSlowCase() const {
 | |
|   // Treat the most significand word differently because it might have
 | |
|   // meaningless bits set beyond the precision.
 | |
|   unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
 | |
|   integerPart MSWMask;
 | |
|   if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
 | |
|   else {
 | |
|     MSWMask = ~integerPart(0);
 | |
|     BitsInMSW = APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   unsigned i = getNumWords();
 | |
|   integerPart MSW = pVal[i-1] & MSWMask;
 | |
|   if (MSW)
 | |
|     return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
 | |
| 
 | |
|   unsigned Count = BitsInMSW;
 | |
|   for (--i; i > 0u; --i) {
 | |
|     if (pVal[i-1] == 0)
 | |
|       Count += APINT_BITS_PER_WORD;
 | |
|     else {
 | |
|       Count += CountLeadingZeros_64(pVal[i-1]);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
 | |
|   unsigned Count = 0;
 | |
|   if (skip)
 | |
|     V <<= skip;
 | |
|   while (V && (V & (1ULL << 63))) {
 | |
|     Count++;
 | |
|     V <<= 1;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned APInt::countLeadingOnes() const {
 | |
|   if (isSingleWord())
 | |
|     return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
 | |
| 
 | |
|   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
 | |
|   unsigned shift;
 | |
|   if (!highWordBits) {
 | |
|     highWordBits = APINT_BITS_PER_WORD;
 | |
|     shift = 0;
 | |
|   } else {
 | |
|     shift = APINT_BITS_PER_WORD - highWordBits;
 | |
|   }
 | |
|   int i = getNumWords() - 1;
 | |
|   unsigned Count = countLeadingOnes_64(pVal[i], shift);
 | |
|   if (Count == highWordBits) {
 | |
|     for (i--; i >= 0; --i) {
 | |
|       if (pVal[i] == -1ULL)
 | |
|         Count += APINT_BITS_PER_WORD;
 | |
|       else {
 | |
|         Count += countLeadingOnes_64(pVal[i], 0);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned APInt::countTrailingZeros() const {
 | |
|   if (isSingleWord())
 | |
|     return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
 | |
|   unsigned Count = 0;
 | |
|   unsigned i = 0;
 | |
|   for (; i < getNumWords() && pVal[i] == 0; ++i)
 | |
|     Count += APINT_BITS_PER_WORD;
 | |
|   if (i < getNumWords())
 | |
|     Count += CountTrailingZeros_64(pVal[i]);
 | |
|   return std::min(Count, BitWidth);
 | |
| }
 | |
| 
 | |
| unsigned APInt::countTrailingOnesSlowCase() const {
 | |
|   unsigned Count = 0;
 | |
|   unsigned i = 0;
 | |
|   for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
 | |
|     Count += APINT_BITS_PER_WORD;
 | |
|   if (i < getNumWords())
 | |
|     Count += CountTrailingOnes_64(pVal[i]);
 | |
|   return std::min(Count, BitWidth);
 | |
| }
 | |
| 
 | |
| unsigned APInt::countPopulationSlowCase() const {
 | |
|   unsigned Count = 0;
 | |
|   for (unsigned i = 0; i < getNumWords(); ++i)
 | |
|     Count += CountPopulation_64(pVal[i]);
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| APInt APInt::byteSwap() const {
 | |
|   assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
 | |
|   if (BitWidth == 16)
 | |
|     return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
 | |
|   else if (BitWidth == 32)
 | |
|     return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
 | |
|   else if (BitWidth == 48) {
 | |
|     unsigned Tmp1 = unsigned(VAL >> 16);
 | |
|     Tmp1 = ByteSwap_32(Tmp1);
 | |
|     uint16_t Tmp2 = uint16_t(VAL);
 | |
|     Tmp2 = ByteSwap_16(Tmp2);
 | |
|     return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
 | |
|   } else if (BitWidth == 64)
 | |
|     return APInt(BitWidth, ByteSwap_64(VAL));
 | |
|   else {
 | |
|     APInt Result(BitWidth, 0);
 | |
|     char *pByte = (char*)Result.pVal;
 | |
|     for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
 | |
|       char Tmp = pByte[i];
 | |
|       pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
 | |
|       pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
 | |
|                                             const APInt& API2) {
 | |
|   APInt A = API1, B = API2;
 | |
|   while (!!B) {
 | |
|     APInt T = B;
 | |
|     B = APIntOps::urem(A, B);
 | |
|     A = T;
 | |
|   }
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
 | |
|   union {
 | |
|     double D;
 | |
|     uint64_t I;
 | |
|   } T;
 | |
|   T.D = Double;
 | |
| 
 | |
|   // Get the sign bit from the highest order bit
 | |
|   bool isNeg = T.I >> 63;
 | |
| 
 | |
|   // Get the 11-bit exponent and adjust for the 1023 bit bias
 | |
|   int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
 | |
| 
 | |
|   // If the exponent is negative, the value is < 0 so just return 0.
 | |
|   if (exp < 0)
 | |
|     return APInt(width, 0u);
 | |
| 
 | |
|   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
 | |
|   uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
 | |
| 
 | |
|   // If the exponent doesn't shift all bits out of the mantissa
 | |
|   if (exp < 52)
 | |
|     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
 | |
|                     APInt(width, mantissa >> (52 - exp));
 | |
| 
 | |
|   // If the client didn't provide enough bits for us to shift the mantissa into
 | |
|   // then the result is undefined, just return 0
 | |
|   if (width <= exp - 52)
 | |
|     return APInt(width, 0);
 | |
| 
 | |
|   // Otherwise, we have to shift the mantissa bits up to the right location
 | |
|   APInt Tmp(width, mantissa);
 | |
|   Tmp = Tmp.shl((unsigned)exp - 52);
 | |
|   return isNeg ? -Tmp : Tmp;
 | |
| }
 | |
| 
 | |
| /// RoundToDouble - This function converts this APInt to a double.
 | |
| /// The layout for double is as following (IEEE Standard 754):
 | |
| ///  --------------------------------------
 | |
| /// |  Sign    Exponent    Fraction    Bias |
 | |
| /// |-------------------------------------- |
 | |
| /// |  1[63]   11[62-52]   52[51-00]   1023 |
 | |
| ///  --------------------------------------
 | |
| double APInt::roundToDouble(bool isSigned) const {
 | |
| 
 | |
|   // Handle the simple case where the value is contained in one uint64_t.
 | |
|   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
 | |
|   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
 | |
|     if (isSigned) {
 | |
|       int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
 | |
|       return double(sext);
 | |
|     } else
 | |
|       return double(getWord(0));
 | |
|   }
 | |
| 
 | |
|   // Determine if the value is negative.
 | |
|   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
 | |
| 
 | |
|   // Construct the absolute value if we're negative.
 | |
|   APInt Tmp(isNeg ? -(*this) : (*this));
 | |
| 
 | |
|   // Figure out how many bits we're using.
 | |
|   unsigned n = Tmp.getActiveBits();
 | |
| 
 | |
|   // The exponent (without bias normalization) is just the number of bits
 | |
|   // we are using. Note that the sign bit is gone since we constructed the
 | |
|   // absolute value.
 | |
|   uint64_t exp = n;
 | |
| 
 | |
|   // Return infinity for exponent overflow
 | |
|   if (exp > 1023) {
 | |
|     if (!isSigned || !isNeg)
 | |
|       return std::numeric_limits<double>::infinity();
 | |
|     else
 | |
|       return -std::numeric_limits<double>::infinity();
 | |
|   }
 | |
|   exp += 1023; // Increment for 1023 bias
 | |
| 
 | |
|   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
 | |
|   // extract the high 52 bits from the correct words in pVal.
 | |
|   uint64_t mantissa;
 | |
|   unsigned hiWord = whichWord(n-1);
 | |
|   if (hiWord == 0) {
 | |
|     mantissa = Tmp.pVal[0];
 | |
|     if (n > 52)
 | |
|       mantissa >>= n - 52; // shift down, we want the top 52 bits.
 | |
|   } else {
 | |
|     assert(hiWord > 0 && "huh?");
 | |
|     uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
 | |
|     uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
 | |
|     mantissa = hibits | lobits;
 | |
|   }
 | |
| 
 | |
|   // The leading bit of mantissa is implicit, so get rid of it.
 | |
|   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
 | |
|   union {
 | |
|     double D;
 | |
|     uint64_t I;
 | |
|   } T;
 | |
|   T.I = sign | (exp << 52) | mantissa;
 | |
|   return T.D;
 | |
| }
 | |
| 
 | |
| // Truncate to new width.
 | |
| APInt APInt::trunc(unsigned width) const {
 | |
|   assert(width < BitWidth && "Invalid APInt Truncate request");
 | |
|   assert(width && "Can't truncate to 0 bits");
 | |
| 
 | |
|   if (width <= APINT_BITS_PER_WORD)
 | |
|     return APInt(width, getRawData()[0]);
 | |
| 
 | |
|   APInt Result(getMemory(getNumWords(width)), width);
 | |
| 
 | |
|   // Copy full words.
 | |
|   unsigned i;
 | |
|   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
 | |
|     Result.pVal[i] = pVal[i];
 | |
| 
 | |
|   // Truncate and copy any partial word.
 | |
|   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
 | |
|   if (bits != 0)
 | |
|     Result.pVal[i] = pVal[i] << bits >> bits;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Sign extend to a new width.
 | |
| APInt APInt::sext(unsigned width) const {
 | |
|   assert(width > BitWidth && "Invalid APInt SignExtend request");
 | |
| 
 | |
|   if (width <= APINT_BITS_PER_WORD) {
 | |
|     uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
 | |
|     val = (int64_t)val >> (width - BitWidth);
 | |
|     return APInt(width, val >> (APINT_BITS_PER_WORD - width));
 | |
|   }
 | |
| 
 | |
|   APInt Result(getMemory(getNumWords(width)), width);
 | |
| 
 | |
|   // Copy full words.
 | |
|   unsigned i;
 | |
|   uint64_t word = 0;
 | |
|   for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
 | |
|     word = getRawData()[i];
 | |
|     Result.pVal[i] = word;
 | |
|   }
 | |
| 
 | |
|   // Read and sign-extend any partial word.
 | |
|   unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
 | |
|   if (bits != 0)
 | |
|     word = (int64_t)getRawData()[i] << bits >> bits;
 | |
|   else
 | |
|     word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
 | |
| 
 | |
|   // Write remaining full words.
 | |
|   for (; i != width / APINT_BITS_PER_WORD; i++) {
 | |
|     Result.pVal[i] = word;
 | |
|     word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
 | |
|   }
 | |
| 
 | |
|   // Write any partial word.
 | |
|   bits = (0 - width) % APINT_BITS_PER_WORD;
 | |
|   if (bits != 0)
 | |
|     Result.pVal[i] = word << bits >> bits;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //  Zero extend to a new width.
 | |
| APInt APInt::zext(unsigned width) const {
 | |
|   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
 | |
| 
 | |
|   if (width <= APINT_BITS_PER_WORD)
 | |
|     return APInt(width, VAL);
 | |
| 
 | |
|   APInt Result(getMemory(getNumWords(width)), width);
 | |
| 
 | |
|   // Copy words.
 | |
|   unsigned i;
 | |
|   for (i = 0; i != getNumWords(); i++)
 | |
|     Result.pVal[i] = getRawData()[i];
 | |
| 
 | |
|   // Zero remaining words.
 | |
|   memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| APInt APInt::zextOrTrunc(unsigned width) const {
 | |
|   if (BitWidth < width)
 | |
|     return zext(width);
 | |
|   if (BitWidth > width)
 | |
|     return trunc(width);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| APInt APInt::sextOrTrunc(unsigned width) const {
 | |
|   if (BitWidth < width)
 | |
|     return sext(width);
 | |
|   if (BitWidth > width)
 | |
|     return trunc(width);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| /// Arithmetic right-shift this APInt by shiftAmt.
 | |
| /// @brief Arithmetic right-shift function.
 | |
| APInt APInt::ashr(const APInt &shiftAmt) const {
 | |
|   return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
 | |
| }
 | |
| 
 | |
| /// Arithmetic right-shift this APInt by shiftAmt.
 | |
| /// @brief Arithmetic right-shift function.
 | |
| APInt APInt::ashr(unsigned shiftAmt) const {
 | |
|   assert(shiftAmt <= BitWidth && "Invalid shift amount");
 | |
|   // Handle a degenerate case
 | |
|   if (shiftAmt == 0)
 | |
|     return *this;
 | |
| 
 | |
|   // Handle single word shifts with built-in ashr
 | |
|   if (isSingleWord()) {
 | |
|     if (shiftAmt == BitWidth)
 | |
|       return APInt(BitWidth, 0); // undefined
 | |
|     else {
 | |
|       unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
 | |
|       return APInt(BitWidth,
 | |
|         (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If all the bits were shifted out, the result is, technically, undefined.
 | |
|   // We return -1 if it was negative, 0 otherwise. We check this early to avoid
 | |
|   // issues in the algorithm below.
 | |
|   if (shiftAmt == BitWidth) {
 | |
|     if (isNegative())
 | |
|       return APInt(BitWidth, -1ULL, true);
 | |
|     else
 | |
|       return APInt(BitWidth, 0);
 | |
|   }
 | |
| 
 | |
|   // Create some space for the result.
 | |
|   uint64_t * val = new uint64_t[getNumWords()];
 | |
| 
 | |
|   // Compute some values needed by the following shift algorithms
 | |
|   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
 | |
|   unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
 | |
|   unsigned breakWord = getNumWords() - 1 - offset; // last word affected
 | |
|   unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
 | |
|   if (bitsInWord == 0)
 | |
|     bitsInWord = APINT_BITS_PER_WORD;
 | |
| 
 | |
|   // If we are shifting whole words, just move whole words
 | |
|   if (wordShift == 0) {
 | |
|     // Move the words containing significant bits
 | |
|     for (unsigned i = 0; i <= breakWord; ++i)
 | |
|       val[i] = pVal[i+offset]; // move whole word
 | |
| 
 | |
|     // Adjust the top significant word for sign bit fill, if negative
 | |
|     if (isNegative())
 | |
|       if (bitsInWord < APINT_BITS_PER_WORD)
 | |
|         val[breakWord] |= ~0ULL << bitsInWord; // set high bits
 | |
|   } else {
 | |
|     // Shift the low order words
 | |
|     for (unsigned i = 0; i < breakWord; ++i) {
 | |
|       // This combines the shifted corresponding word with the low bits from
 | |
|       // the next word (shifted into this word's high bits).
 | |
|       val[i] = (pVal[i+offset] >> wordShift) |
 | |
|                (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
 | |
|     }
 | |
| 
 | |
|     // Shift the break word. In this case there are no bits from the next word
 | |
|     // to include in this word.
 | |
|     val[breakWord] = pVal[breakWord+offset] >> wordShift;
 | |
| 
 | |
|     // Deal with sign extenstion in the break word, and possibly the word before
 | |
|     // it.
 | |
|     if (isNegative()) {
 | |
|       if (wordShift > bitsInWord) {
 | |
|         if (breakWord > 0)
 | |
|           val[breakWord-1] |=
 | |
|             ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
 | |
|         val[breakWord] |= ~0ULL;
 | |
|       } else
 | |
|         val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remaining words are 0 or -1, just assign them.
 | |
|   uint64_t fillValue = (isNegative() ? -1ULL : 0);
 | |
|   for (unsigned i = breakWord+1; i < getNumWords(); ++i)
 | |
|     val[i] = fillValue;
 | |
|   return APInt(val, BitWidth).clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Logical right-shift this APInt by shiftAmt.
 | |
| /// @brief Logical right-shift function.
 | |
| APInt APInt::lshr(const APInt &shiftAmt) const {
 | |
|   return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
 | |
| }
 | |
| 
 | |
| /// Logical right-shift this APInt by shiftAmt.
 | |
| /// @brief Logical right-shift function.
 | |
| APInt APInt::lshr(unsigned shiftAmt) const {
 | |
|   if (isSingleWord()) {
 | |
|     if (shiftAmt == BitWidth)
 | |
|       return APInt(BitWidth, 0);
 | |
|     else
 | |
|       return APInt(BitWidth, this->VAL >> shiftAmt);
 | |
|   }
 | |
| 
 | |
|   // If all the bits were shifted out, the result is 0. This avoids issues
 | |
|   // with shifting by the size of the integer type, which produces undefined
 | |
|   // results. We define these "undefined results" to always be 0.
 | |
|   if (shiftAmt == BitWidth)
 | |
|     return APInt(BitWidth, 0);
 | |
| 
 | |
|   // If none of the bits are shifted out, the result is *this. This avoids
 | |
|   // issues with shifting by the size of the integer type, which produces
 | |
|   // undefined results in the code below. This is also an optimization.
 | |
|   if (shiftAmt == 0)
 | |
|     return *this;
 | |
| 
 | |
|   // Create some space for the result.
 | |
|   uint64_t * val = new uint64_t[getNumWords()];
 | |
| 
 | |
|   // If we are shifting less than a word, compute the shift with a simple carry
 | |
|   if (shiftAmt < APINT_BITS_PER_WORD) {
 | |
|     uint64_t carry = 0;
 | |
|     for (int i = getNumWords()-1; i >= 0; --i) {
 | |
|       val[i] = (pVal[i] >> shiftAmt) | carry;
 | |
|       carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
 | |
|     }
 | |
|     return APInt(val, BitWidth).clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   // Compute some values needed by the remaining shift algorithms
 | |
|   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
 | |
|   unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
 | |
| 
 | |
|   // If we are shifting whole words, just move whole words
 | |
|   if (wordShift == 0) {
 | |
|     for (unsigned i = 0; i < getNumWords() - offset; ++i)
 | |
|       val[i] = pVal[i+offset];
 | |
|     for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
 | |
|       val[i] = 0;
 | |
|     return APInt(val,BitWidth).clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   // Shift the low order words
 | |
|   unsigned breakWord = getNumWords() - offset -1;
 | |
|   for (unsigned i = 0; i < breakWord; ++i)
 | |
|     val[i] = (pVal[i+offset] >> wordShift) |
 | |
|              (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
 | |
|   // Shift the break word.
 | |
|   val[breakWord] = pVal[breakWord+offset] >> wordShift;
 | |
| 
 | |
|   // Remaining words are 0
 | |
|   for (unsigned i = breakWord+1; i < getNumWords(); ++i)
 | |
|     val[i] = 0;
 | |
|   return APInt(val, BitWidth).clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Left-shift this APInt by shiftAmt.
 | |
| /// @brief Left-shift function.
 | |
| APInt APInt::shl(const APInt &shiftAmt) const {
 | |
|   // It's undefined behavior in C to shift by BitWidth or greater.
 | |
|   return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
 | |
| }
 | |
| 
 | |
| APInt APInt::shlSlowCase(unsigned shiftAmt) const {
 | |
|   // If all the bits were shifted out, the result is 0. This avoids issues
 | |
|   // with shifting by the size of the integer type, which produces undefined
 | |
|   // results. We define these "undefined results" to always be 0.
 | |
|   if (shiftAmt == BitWidth)
 | |
|     return APInt(BitWidth, 0);
 | |
| 
 | |
|   // If none of the bits are shifted out, the result is *this. This avoids a
 | |
|   // lshr by the words size in the loop below which can produce incorrect
 | |
|   // results. It also avoids the expensive computation below for a common case.
 | |
|   if (shiftAmt == 0)
 | |
|     return *this;
 | |
| 
 | |
|   // Create some space for the result.
 | |
|   uint64_t * val = new uint64_t[getNumWords()];
 | |
| 
 | |
|   // If we are shifting less than a word, do it the easy way
 | |
|   if (shiftAmt < APINT_BITS_PER_WORD) {
 | |
|     uint64_t carry = 0;
 | |
|     for (unsigned i = 0; i < getNumWords(); i++) {
 | |
|       val[i] = pVal[i] << shiftAmt | carry;
 | |
|       carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
 | |
|     }
 | |
|     return APInt(val, BitWidth).clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   // Compute some values needed by the remaining shift algorithms
 | |
|   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
 | |
|   unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
 | |
| 
 | |
|   // If we are shifting whole words, just move whole words
 | |
|   if (wordShift == 0) {
 | |
|     for (unsigned i = 0; i < offset; i++)
 | |
|       val[i] = 0;
 | |
|     for (unsigned i = offset; i < getNumWords(); i++)
 | |
|       val[i] = pVal[i-offset];
 | |
|     return APInt(val,BitWidth).clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   // Copy whole words from this to Result.
 | |
|   unsigned i = getNumWords() - 1;
 | |
|   for (; i > offset; --i)
 | |
|     val[i] = pVal[i-offset] << wordShift |
 | |
|              pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
 | |
|   val[offset] = pVal[0] << wordShift;
 | |
|   for (i = 0; i < offset; ++i)
 | |
|     val[i] = 0;
 | |
|   return APInt(val, BitWidth).clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt APInt::rotl(const APInt &rotateAmt) const {
 | |
|   return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
 | |
| }
 | |
| 
 | |
| APInt APInt::rotl(unsigned rotateAmt) const {
 | |
|   if (rotateAmt == 0)
 | |
|     return *this;
 | |
|   // Don't get too fancy, just use existing shift/or facilities
 | |
|   APInt hi(*this);
 | |
|   APInt lo(*this);
 | |
|   hi.shl(rotateAmt);
 | |
|   lo.lshr(BitWidth - rotateAmt);
 | |
|   return hi | lo;
 | |
| }
 | |
| 
 | |
| APInt APInt::rotr(const APInt &rotateAmt) const {
 | |
|   return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
 | |
| }
 | |
| 
 | |
| APInt APInt::rotr(unsigned rotateAmt) const {
 | |
|   if (rotateAmt == 0)
 | |
|     return *this;
 | |
|   // Don't get too fancy, just use existing shift/or facilities
 | |
|   APInt hi(*this);
 | |
|   APInt lo(*this);
 | |
|   lo.lshr(rotateAmt);
 | |
|   hi.shl(BitWidth - rotateAmt);
 | |
|   return hi | lo;
 | |
| }
 | |
| 
 | |
| // Square Root - this method computes and returns the square root of "this".
 | |
| // Three mechanisms are used for computation. For small values (<= 5 bits),
 | |
| // a table lookup is done. This gets some performance for common cases. For
 | |
| // values using less than 52 bits, the value is converted to double and then
 | |
| // the libc sqrt function is called. The result is rounded and then converted
 | |
| // back to a uint64_t which is then used to construct the result. Finally,
 | |
| // the Babylonian method for computing square roots is used.
 | |
| APInt APInt::sqrt() const {
 | |
| 
 | |
|   // Determine the magnitude of the value.
 | |
|   unsigned magnitude = getActiveBits();
 | |
| 
 | |
|   // Use a fast table for some small values. This also gets rid of some
 | |
|   // rounding errors in libc sqrt for small values.
 | |
|   if (magnitude <= 5) {
 | |
|     static const uint8_t results[32] = {
 | |
|       /*     0 */ 0,
 | |
|       /*  1- 2 */ 1, 1,
 | |
|       /*  3- 6 */ 2, 2, 2, 2,
 | |
|       /*  7-12 */ 3, 3, 3, 3, 3, 3,
 | |
|       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
 | |
|       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|       /*    31 */ 6
 | |
|     };
 | |
|     return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
 | |
|   }
 | |
| 
 | |
|   // If the magnitude of the value fits in less than 52 bits (the precision of
 | |
|   // an IEEE double precision floating point value), then we can use the
 | |
|   // libc sqrt function which will probably use a hardware sqrt computation.
 | |
|   // This should be faster than the algorithm below.
 | |
|   if (magnitude < 52) {
 | |
| #if HAVE_ROUND
 | |
|     return APInt(BitWidth,
 | |
|                  uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
 | |
| #else
 | |
|     return APInt(BitWidth,
 | |
|                  uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Okay, all the short cuts are exhausted. We must compute it. The following
 | |
|   // is a classical Babylonian method for computing the square root. This code
 | |
|   // was adapted to APINt from a wikipedia article on such computations.
 | |
|   // See http://www.wikipedia.org/ and go to the page named
 | |
|   // Calculate_an_integer_square_root.
 | |
|   unsigned nbits = BitWidth, i = 4;
 | |
|   APInt testy(BitWidth, 16);
 | |
|   APInt x_old(BitWidth, 1);
 | |
|   APInt x_new(BitWidth, 0);
 | |
|   APInt two(BitWidth, 2);
 | |
| 
 | |
|   // Select a good starting value using binary logarithms.
 | |
|   for (;; i += 2, testy = testy.shl(2))
 | |
|     if (i >= nbits || this->ule(testy)) {
 | |
|       x_old = x_old.shl(i / 2);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Use the Babylonian method to arrive at the integer square root:
 | |
|   for (;;) {
 | |
|     x_new = (this->udiv(x_old) + x_old).udiv(two);
 | |
|     if (x_old.ule(x_new))
 | |
|       break;
 | |
|     x_old = x_new;
 | |
|   }
 | |
| 
 | |
|   // Make sure we return the closest approximation
 | |
|   // NOTE: The rounding calculation below is correct. It will produce an
 | |
|   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
 | |
|   // determined to be a rounding issue with pari/gp as it begins to use a
 | |
|   // floating point representation after 192 bits. There are no discrepancies
 | |
|   // between this algorithm and pari/gp for bit widths < 192 bits.
 | |
|   APInt square(x_old * x_old);
 | |
|   APInt nextSquare((x_old + 1) * (x_old +1));
 | |
|   if (this->ult(square))
 | |
|     return x_old;
 | |
|   else if (this->ule(nextSquare)) {
 | |
|     APInt midpoint((nextSquare - square).udiv(two));
 | |
|     APInt offset(*this - square);
 | |
|     if (offset.ult(midpoint))
 | |
|       return x_old;
 | |
|     else
 | |
|       return x_old + 1;
 | |
|   } else
 | |
|     llvm_unreachable("Error in APInt::sqrt computation");
 | |
|   return x_old + 1;
 | |
| }
 | |
| 
 | |
| /// Computes the multiplicative inverse of this APInt for a given modulo. The
 | |
| /// iterative extended Euclidean algorithm is used to solve for this value,
 | |
| /// however we simplify it to speed up calculating only the inverse, and take
 | |
| /// advantage of div+rem calculations. We also use some tricks to avoid copying
 | |
| /// (potentially large) APInts around.
 | |
| APInt APInt::multiplicativeInverse(const APInt& modulo) const {
 | |
|   assert(ult(modulo) && "This APInt must be smaller than the modulo");
 | |
| 
 | |
|   // Using the properties listed at the following web page (accessed 06/21/08):
 | |
|   //   http://www.numbertheory.org/php/euclid.html
 | |
|   // (especially the properties numbered 3, 4 and 9) it can be proved that
 | |
|   // BitWidth bits suffice for all the computations in the algorithm implemented
 | |
|   // below. More precisely, this number of bits suffice if the multiplicative
 | |
|   // inverse exists, but may not suffice for the general extended Euclidean
 | |
|   // algorithm.
 | |
| 
 | |
|   APInt r[2] = { modulo, *this };
 | |
|   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
 | |
|   APInt q(BitWidth, 0);
 | |
| 
 | |
|   unsigned i;
 | |
|   for (i = 0; r[i^1] != 0; i ^= 1) {
 | |
|     // An overview of the math without the confusing bit-flipping:
 | |
|     // q = r[i-2] / r[i-1]
 | |
|     // r[i] = r[i-2] % r[i-1]
 | |
|     // t[i] = t[i-2] - t[i-1] * q
 | |
|     udivrem(r[i], r[i^1], q, r[i]);
 | |
|     t[i] -= t[i^1] * q;
 | |
|   }
 | |
| 
 | |
|   // If this APInt and the modulo are not coprime, there is no multiplicative
 | |
|   // inverse, so return 0. We check this by looking at the next-to-last
 | |
|   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
 | |
|   // algorithm.
 | |
|   if (r[i] != 1)
 | |
|     return APInt(BitWidth, 0);
 | |
| 
 | |
|   // The next-to-last t is the multiplicative inverse.  However, we are
 | |
|   // interested in a positive inverse. Calcuate a positive one from a negative
 | |
|   // one if necessary. A simple addition of the modulo suffices because
 | |
|   // abs(t[i]) is known to be less than *this/2 (see the link above).
 | |
|   return t[i].isNegative() ? t[i] + modulo : t[i];
 | |
| }
 | |
| 
 | |
| /// Calculate the magic numbers required to implement a signed integer division
 | |
| /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
 | |
| /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
 | |
| /// Warren, Jr., chapter 10.
 | |
| APInt::ms APInt::magic() const {
 | |
|   const APInt& d = *this;
 | |
|   unsigned p;
 | |
|   APInt ad, anc, delta, q1, r1, q2, r2, t;
 | |
|   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
 | |
|   struct ms mag;
 | |
| 
 | |
|   ad = d.abs();
 | |
|   t = signedMin + (d.lshr(d.getBitWidth() - 1));
 | |
|   anc = t - 1 - t.urem(ad);   // absolute value of nc
 | |
|   p = d.getBitWidth() - 1;    // initialize p
 | |
|   q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
 | |
|   r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
 | |
|   q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
 | |
|   r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     q1 = q1<<1;          // update q1 = 2p/abs(nc)
 | |
|     r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
 | |
|     if (r1.uge(anc)) {  // must be unsigned comparison
 | |
|       q1 = q1 + 1;
 | |
|       r1 = r1 - anc;
 | |
|     }
 | |
|     q2 = q2<<1;          // update q2 = 2p/abs(d)
 | |
|     r2 = r2<<1;          // update r2 = rem(2p/abs(d))
 | |
|     if (r2.uge(ad)) {   // must be unsigned comparison
 | |
|       q2 = q2 + 1;
 | |
|       r2 = r2 - ad;
 | |
|     }
 | |
|     delta = ad - r2;
 | |
|   } while (q1.ult(delta) || (q1 == delta && r1 == 0));
 | |
| 
 | |
|   mag.m = q2 + 1;
 | |
|   if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
 | |
|   mag.s = p - d.getBitWidth();          // resulting shift
 | |
|   return mag;
 | |
| }
 | |
| 
 | |
| /// Calculate the magic numbers required to implement an unsigned integer
 | |
| /// division by a constant as a sequence of multiplies, adds and shifts.
 | |
| /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
 | |
| /// S. Warren, Jr., chapter 10.
 | |
| /// LeadingZeros can be used to simplify the calculation if the upper bits
 | |
| /// of the devided value are known zero.
 | |
| APInt::mu APInt::magicu(unsigned LeadingZeros) const {
 | |
|   const APInt& d = *this;
 | |
|   unsigned p;
 | |
|   APInt nc, delta, q1, r1, q2, r2;
 | |
|   struct mu magu;
 | |
|   magu.a = 0;               // initialize "add" indicator
 | |
|   APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
 | |
|   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
 | |
|   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
 | |
| 
 | |
|   nc = allOnes - (-d).urem(d);
 | |
|   p = d.getBitWidth() - 1;  // initialize p
 | |
|   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
 | |
|   r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
 | |
|   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
 | |
|   r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     if (r1.uge(nc - r1)) {
 | |
|       q1 = q1 + q1 + 1;  // update q1
 | |
|       r1 = r1 + r1 - nc; // update r1
 | |
|     }
 | |
|     else {
 | |
|       q1 = q1+q1; // update q1
 | |
|       r1 = r1+r1; // update r1
 | |
|     }
 | |
|     if ((r2 + 1).uge(d - r2)) {
 | |
|       if (q2.uge(signedMax)) magu.a = 1;
 | |
|       q2 = q2+q2 + 1;     // update q2
 | |
|       r2 = r2+r2 + 1 - d; // update r2
 | |
|     }
 | |
|     else {
 | |
|       if (q2.uge(signedMin)) magu.a = 1;
 | |
|       q2 = q2+q2;     // update q2
 | |
|       r2 = r2+r2 + 1; // update r2
 | |
|     }
 | |
|     delta = d - 1 - r2;
 | |
|   } while (p < d.getBitWidth()*2 &&
 | |
|            (q1.ult(delta) || (q1 == delta && r1 == 0)));
 | |
|   magu.m = q2 + 1; // resulting magic number
 | |
|   magu.s = p - d.getBitWidth();  // resulting shift
 | |
|   return magu;
 | |
| }
 | |
| 
 | |
| /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
 | |
| /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
 | |
| /// variables here have the same names as in the algorithm. Comments explain
 | |
| /// the algorithm and any deviation from it.
 | |
| static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
 | |
|                      unsigned m, unsigned n) {
 | |
|   assert(u && "Must provide dividend");
 | |
|   assert(v && "Must provide divisor");
 | |
|   assert(q && "Must provide quotient");
 | |
|   assert(u != v && u != q && v != q && "Must us different memory");
 | |
|   assert(n>1 && "n must be > 1");
 | |
| 
 | |
|   // Knuth uses the value b as the base of the number system. In our case b
 | |
|   // is 2^31 so we just set it to -1u.
 | |
|   uint64_t b = uint64_t(1) << 32;
 | |
| 
 | |
| #if 0
 | |
|   DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
 | |
|   DEBUG(dbgs() << "KnuthDiv: original:");
 | |
|   DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
 | |
|   DEBUG(dbgs() << " by");
 | |
|   DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| #endif
 | |
|   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
 | |
|   // u and v by d. Note that we have taken Knuth's advice here to use a power
 | |
|   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
 | |
|   // 2 allows us to shift instead of multiply and it is easy to determine the
 | |
|   // shift amount from the leading zeros.  We are basically normalizing the u
 | |
|   // and v so that its high bits are shifted to the top of v's range without
 | |
|   // overflow. Note that this can require an extra word in u so that u must
 | |
|   // be of length m+n+1.
 | |
|   unsigned shift = CountLeadingZeros_32(v[n-1]);
 | |
|   unsigned v_carry = 0;
 | |
|   unsigned u_carry = 0;
 | |
|   if (shift) {
 | |
|     for (unsigned i = 0; i < m+n; ++i) {
 | |
|       unsigned u_tmp = u[i] >> (32 - shift);
 | |
|       u[i] = (u[i] << shift) | u_carry;
 | |
|       u_carry = u_tmp;
 | |
|     }
 | |
|     for (unsigned i = 0; i < n; ++i) {
 | |
|       unsigned v_tmp = v[i] >> (32 - shift);
 | |
|       v[i] = (v[i] << shift) | v_carry;
 | |
|       v_carry = v_tmp;
 | |
|     }
 | |
|   }
 | |
|   u[m+n] = u_carry;
 | |
| #if 0
 | |
|   DEBUG(dbgs() << "KnuthDiv:   normal:");
 | |
|   DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
 | |
|   DEBUG(dbgs() << " by");
 | |
|   DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| #endif
 | |
| 
 | |
|   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
 | |
|   int j = m;
 | |
|   do {
 | |
|     DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
 | |
|     // D3. [Calculate q'.].
 | |
|     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
 | |
|     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
 | |
|     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
 | |
|     // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
 | |
|     // on v[n-2] determines at high speed most of the cases in which the trial
 | |
|     // value qp is one too large, and it eliminates all cases where qp is two
 | |
|     // too large.
 | |
|     uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
 | |
|     DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
 | |
|     uint64_t qp = dividend / v[n-1];
 | |
|     uint64_t rp = dividend % v[n-1];
 | |
|     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
 | |
|       qp--;
 | |
|       rp += v[n-1];
 | |
|       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
 | |
|         qp--;
 | |
|     }
 | |
|     DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
 | |
| 
 | |
|     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
 | |
|     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
 | |
|     // consists of a simple multiplication by a one-place number, combined with
 | |
|     // a subtraction.
 | |
|     bool isNeg = false;
 | |
|     for (unsigned i = 0; i < n; ++i) {
 | |
|       uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
 | |
|       uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
 | |
|       bool borrow = subtrahend > u_tmp;
 | |
|       DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
 | |
|                    << ", subtrahend == " << subtrahend
 | |
|                    << ", borrow = " << borrow << '\n');
 | |
| 
 | |
|       uint64_t result = u_tmp - subtrahend;
 | |
|       unsigned k = j + i;
 | |
|       u[k++] = (unsigned)(result & (b-1)); // subtract low word
 | |
|       u[k++] = (unsigned)(result >> 32);   // subtract high word
 | |
|       while (borrow && k <= m+n) { // deal with borrow to the left
 | |
|         borrow = u[k] == 0;
 | |
|         u[k]--;
 | |
|         k++;
 | |
|       }
 | |
|       isNeg |= borrow;
 | |
|       DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
 | |
|                     u[j+i+1] << '\n');
 | |
|     }
 | |
|     DEBUG(dbgs() << "KnuthDiv: after subtraction:");
 | |
|     DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
 | |
|     DEBUG(dbgs() << '\n');
 | |
|     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
 | |
|     // this step is actually negative, (u[j+n]...u[j]) should be left as the
 | |
|     // true value plus b**(n+1), namely as the b's complement of
 | |
|     // the true value, and a "borrow" to the left should be remembered.
 | |
|     //
 | |
|     if (isNeg) {
 | |
|       bool carry = true;  // true because b's complement is "complement + 1"
 | |
|       for (unsigned i = 0; i <= m+n; ++i) {
 | |
|         u[i] = ~u[i] + carry; // b's complement
 | |
|         carry = carry && u[i] == 0;
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "KnuthDiv: after complement:");
 | |
|     DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
 | |
|     DEBUG(dbgs() << '\n');
 | |
| 
 | |
|     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
 | |
|     // negative, go to step D6; otherwise go on to step D7.
 | |
|     q[j] = (unsigned)qp;
 | |
|     if (isNeg) {
 | |
|       // D6. [Add back]. The probability that this step is necessary is very
 | |
|       // small, on the order of only 2/b. Make sure that test data accounts for
 | |
|       // this possibility. Decrease q[j] by 1
 | |
|       q[j]--;
 | |
|       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
 | |
|       // A carry will occur to the left of u[j+n], and it should be ignored
 | |
|       // since it cancels with the borrow that occurred in D4.
 | |
|       bool carry = false;
 | |
|       for (unsigned i = 0; i < n; i++) {
 | |
|         unsigned limit = std::min(u[j+i],v[i]);
 | |
|         u[j+i] += v[i] + carry;
 | |
|         carry = u[j+i] < limit || (carry && u[j+i] == limit);
 | |
|       }
 | |
|       u[j+n] += carry;
 | |
|     }
 | |
|     DEBUG(dbgs() << "KnuthDiv: after correction:");
 | |
|     DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
 | |
|     DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
 | |
| 
 | |
|   // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
 | |
|   } while (--j >= 0);
 | |
| 
 | |
|   DEBUG(dbgs() << "KnuthDiv: quotient:");
 | |
|   DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| 
 | |
|   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
 | |
|   // remainder may be obtained by dividing u[...] by d. If r is non-null we
 | |
|   // compute the remainder (urem uses this).
 | |
|   if (r) {
 | |
|     // The value d is expressed by the "shift" value above since we avoided
 | |
|     // multiplication by d by using a shift left. So, all we have to do is
 | |
|     // shift right here. In order to mak
 | |
|     if (shift) {
 | |
|       unsigned carry = 0;
 | |
|       DEBUG(dbgs() << "KnuthDiv: remainder:");
 | |
|       for (int i = n-1; i >= 0; i--) {
 | |
|         r[i] = (u[i] >> shift) | carry;
 | |
|         carry = u[i] << (32 - shift);
 | |
|         DEBUG(dbgs() << " " << r[i]);
 | |
|       }
 | |
|     } else {
 | |
|       for (int i = n-1; i >= 0; i--) {
 | |
|         r[i] = u[i];
 | |
|         DEBUG(dbgs() << " " << r[i]);
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
| #if 0
 | |
|   DEBUG(dbgs() << '\n');
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void APInt::divide(const APInt LHS, unsigned lhsWords,
 | |
|                    const APInt &RHS, unsigned rhsWords,
 | |
|                    APInt *Quotient, APInt *Remainder)
 | |
| {
 | |
|   assert(lhsWords >= rhsWords && "Fractional result");
 | |
| 
 | |
|   // First, compose the values into an array of 32-bit words instead of
 | |
|   // 64-bit words. This is a necessity of both the "short division" algorithm
 | |
|   // and the Knuth "classical algorithm" which requires there to be native
 | |
|   // operations for +, -, and * on an m bit value with an m*2 bit result. We
 | |
|   // can't use 64-bit operands here because we don't have native results of
 | |
|   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
 | |
|   // work on large-endian machines.
 | |
|   uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
 | |
|   unsigned n = rhsWords * 2;
 | |
|   unsigned m = (lhsWords * 2) - n;
 | |
| 
 | |
|   // Allocate space for the temporary values we need either on the stack, if
 | |
|   // it will fit, or on the heap if it won't.
 | |
|   unsigned SPACE[128];
 | |
|   unsigned *U = 0;
 | |
|   unsigned *V = 0;
 | |
|   unsigned *Q = 0;
 | |
|   unsigned *R = 0;
 | |
|   if ((Remainder?4:3)*n+2*m+1 <= 128) {
 | |
|     U = &SPACE[0];
 | |
|     V = &SPACE[m+n+1];
 | |
|     Q = &SPACE[(m+n+1) + n];
 | |
|     if (Remainder)
 | |
|       R = &SPACE[(m+n+1) + n + (m+n)];
 | |
|   } else {
 | |
|     U = new unsigned[m + n + 1];
 | |
|     V = new unsigned[n];
 | |
|     Q = new unsigned[m+n];
 | |
|     if (Remainder)
 | |
|       R = new unsigned[n];
 | |
|   }
 | |
| 
 | |
|   // Initialize the dividend
 | |
|   memset(U, 0, (m+n+1)*sizeof(unsigned));
 | |
|   for (unsigned i = 0; i < lhsWords; ++i) {
 | |
|     uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
 | |
|     U[i * 2] = (unsigned)(tmp & mask);
 | |
|     U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
 | |
|   }
 | |
|   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
 | |
| 
 | |
|   // Initialize the divisor
 | |
|   memset(V, 0, (n)*sizeof(unsigned));
 | |
|   for (unsigned i = 0; i < rhsWords; ++i) {
 | |
|     uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
 | |
|     V[i * 2] = (unsigned)(tmp & mask);
 | |
|     V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
 | |
|   }
 | |
| 
 | |
|   // initialize the quotient and remainder
 | |
|   memset(Q, 0, (m+n) * sizeof(unsigned));
 | |
|   if (Remainder)
 | |
|     memset(R, 0, n * sizeof(unsigned));
 | |
| 
 | |
|   // Now, adjust m and n for the Knuth division. n is the number of words in
 | |
|   // the divisor. m is the number of words by which the dividend exceeds the
 | |
|   // divisor (i.e. m+n is the length of the dividend). These sizes must not
 | |
|   // contain any zero words or the Knuth algorithm fails.
 | |
|   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
 | |
|     n--;
 | |
|     m++;
 | |
|   }
 | |
|   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
 | |
|     m--;
 | |
| 
 | |
|   // If we're left with only a single word for the divisor, Knuth doesn't work
 | |
|   // so we implement the short division algorithm here. This is much simpler
 | |
|   // and faster because we are certain that we can divide a 64-bit quantity
 | |
|   // by a 32-bit quantity at hardware speed and short division is simply a
 | |
|   // series of such operations. This is just like doing short division but we
 | |
|   // are using base 2^32 instead of base 10.
 | |
|   assert(n != 0 && "Divide by zero?");
 | |
|   if (n == 1) {
 | |
|     unsigned divisor = V[0];
 | |
|     unsigned remainder = 0;
 | |
|     for (int i = m+n-1; i >= 0; i--) {
 | |
|       uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
 | |
|       if (partial_dividend == 0) {
 | |
|         Q[i] = 0;
 | |
|         remainder = 0;
 | |
|       } else if (partial_dividend < divisor) {
 | |
|         Q[i] = 0;
 | |
|         remainder = (unsigned)partial_dividend;
 | |
|       } else if (partial_dividend == divisor) {
 | |
|         Q[i] = 1;
 | |
|         remainder = 0;
 | |
|       } else {
 | |
|         Q[i] = (unsigned)(partial_dividend / divisor);
 | |
|         remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
 | |
|       }
 | |
|     }
 | |
|     if (R)
 | |
|       R[0] = remainder;
 | |
|   } else {
 | |
|     // Now we're ready to invoke the Knuth classical divide algorithm. In this
 | |
|     // case n > 1.
 | |
|     KnuthDiv(U, V, Q, R, m, n);
 | |
|   }
 | |
| 
 | |
|   // If the caller wants the quotient
 | |
|   if (Quotient) {
 | |
|     // Set up the Quotient value's memory.
 | |
|     if (Quotient->BitWidth != LHS.BitWidth) {
 | |
|       if (Quotient->isSingleWord())
 | |
|         Quotient->VAL = 0;
 | |
|       else
 | |
|         delete [] Quotient->pVal;
 | |
|       Quotient->BitWidth = LHS.BitWidth;
 | |
|       if (!Quotient->isSingleWord())
 | |
|         Quotient->pVal = getClearedMemory(Quotient->getNumWords());
 | |
|     } else
 | |
|       Quotient->clearAllBits();
 | |
| 
 | |
|     // The quotient is in Q. Reconstitute the quotient into Quotient's low
 | |
|     // order words.
 | |
|     if (lhsWords == 1) {
 | |
|       uint64_t tmp =
 | |
|         uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
 | |
|       if (Quotient->isSingleWord())
 | |
|         Quotient->VAL = tmp;
 | |
|       else
 | |
|         Quotient->pVal[0] = tmp;
 | |
|     } else {
 | |
|       assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
 | |
|       for (unsigned i = 0; i < lhsWords; ++i)
 | |
|         Quotient->pVal[i] =
 | |
|           uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the caller wants the remainder
 | |
|   if (Remainder) {
 | |
|     // Set up the Remainder value's memory.
 | |
|     if (Remainder->BitWidth != RHS.BitWidth) {
 | |
|       if (Remainder->isSingleWord())
 | |
|         Remainder->VAL = 0;
 | |
|       else
 | |
|         delete [] Remainder->pVal;
 | |
|       Remainder->BitWidth = RHS.BitWidth;
 | |
|       if (!Remainder->isSingleWord())
 | |
|         Remainder->pVal = getClearedMemory(Remainder->getNumWords());
 | |
|     } else
 | |
|       Remainder->clearAllBits();
 | |
| 
 | |
|     // The remainder is in R. Reconstitute the remainder into Remainder's low
 | |
|     // order words.
 | |
|     if (rhsWords == 1) {
 | |
|       uint64_t tmp =
 | |
|         uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
 | |
|       if (Remainder->isSingleWord())
 | |
|         Remainder->VAL = tmp;
 | |
|       else
 | |
|         Remainder->pVal[0] = tmp;
 | |
|     } else {
 | |
|       assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
 | |
|       for (unsigned i = 0; i < rhsWords; ++i)
 | |
|         Remainder->pVal[i] =
 | |
|           uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Clean up the memory we allocated.
 | |
|   if (U != &SPACE[0]) {
 | |
|     delete [] U;
 | |
|     delete [] V;
 | |
|     delete [] Q;
 | |
|     delete [] R;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APInt APInt::udiv(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
| 
 | |
|   // First, deal with the easy case
 | |
|   if (isSingleWord()) {
 | |
|     assert(RHS.VAL != 0 && "Divide by zero?");
 | |
|     return APInt(BitWidth, VAL / RHS.VAL);
 | |
|   }
 | |
| 
 | |
|   // Get some facts about the LHS and RHS number of bits and words
 | |
|   unsigned rhsBits = RHS.getActiveBits();
 | |
|   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
 | |
|   assert(rhsWords && "Divided by zero???");
 | |
|   unsigned lhsBits = this->getActiveBits();
 | |
|   unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
 | |
| 
 | |
|   // Deal with some degenerate cases
 | |
|   if (!lhsWords)
 | |
|     // 0 / X ===> 0
 | |
|     return APInt(BitWidth, 0);
 | |
|   else if (lhsWords < rhsWords || this->ult(RHS)) {
 | |
|     // X / Y ===> 0, iff X < Y
 | |
|     return APInt(BitWidth, 0);
 | |
|   } else if (*this == RHS) {
 | |
|     // X / X ===> 1
 | |
|     return APInt(BitWidth, 1);
 | |
|   } else if (lhsWords == 1 && rhsWords == 1) {
 | |
|     // All high words are zero, just use native divide
 | |
|     return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
 | |
|   }
 | |
| 
 | |
|   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
 | |
|   APInt Quotient(1,0); // to hold result.
 | |
|   divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
 | |
|   return Quotient;
 | |
| }
 | |
| 
 | |
| APInt APInt::urem(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord()) {
 | |
|     assert(RHS.VAL != 0 && "Remainder by zero?");
 | |
|     return APInt(BitWidth, VAL % RHS.VAL);
 | |
|   }
 | |
| 
 | |
|   // Get some facts about the LHS
 | |
|   unsigned lhsBits = getActiveBits();
 | |
|   unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
 | |
| 
 | |
|   // Get some facts about the RHS
 | |
|   unsigned rhsBits = RHS.getActiveBits();
 | |
|   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
 | |
|   assert(rhsWords && "Performing remainder operation by zero ???");
 | |
| 
 | |
|   // Check the degenerate cases
 | |
|   if (lhsWords == 0) {
 | |
|     // 0 % Y ===> 0
 | |
|     return APInt(BitWidth, 0);
 | |
|   } else if (lhsWords < rhsWords || this->ult(RHS)) {
 | |
|     // X % Y ===> X, iff X < Y
 | |
|     return *this;
 | |
|   } else if (*this == RHS) {
 | |
|     // X % X == 0;
 | |
|     return APInt(BitWidth, 0);
 | |
|   } else if (lhsWords == 1) {
 | |
|     // All high words are zero, just use native remainder
 | |
|     return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
 | |
|   }
 | |
| 
 | |
|   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
 | |
|   APInt Remainder(1,0);
 | |
|   divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
 | |
|   return Remainder;
 | |
| }
 | |
| 
 | |
| void APInt::udivrem(const APInt &LHS, const APInt &RHS,
 | |
|                     APInt &Quotient, APInt &Remainder) {
 | |
|   // Get some size facts about the dividend and divisor
 | |
|   unsigned lhsBits  = LHS.getActiveBits();
 | |
|   unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
 | |
|   unsigned rhsBits  = RHS.getActiveBits();
 | |
|   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
 | |
| 
 | |
|   // Check the degenerate cases
 | |
|   if (lhsWords == 0) {
 | |
|     Quotient = 0;                // 0 / Y ===> 0
 | |
|     Remainder = 0;               // 0 % Y ===> 0
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (lhsWords < rhsWords || LHS.ult(RHS)) {
 | |
|     Remainder = LHS;            // X % Y ===> X, iff X < Y
 | |
|     Quotient = 0;               // X / Y ===> 0, iff X < Y
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LHS == RHS) {
 | |
|     Quotient  = 1;              // X / X ===> 1
 | |
|     Remainder = 0;              // X % X ===> 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (lhsWords == 1 && rhsWords == 1) {
 | |
|     // There is only one word to consider so use the native versions.
 | |
|     uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
 | |
|     uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
 | |
|     Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
 | |
|     Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, lets do it the long way
 | |
|   divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
 | |
| }
 | |
| 
 | |
| APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this+RHS;
 | |
|   Overflow = isNonNegative() == RHS.isNonNegative() &&
 | |
|              Res.isNonNegative() != isNonNegative();
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this+RHS;
 | |
|   Overflow = Res.ult(RHS);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this - RHS;
 | |
|   Overflow = isNonNegative() != RHS.isNonNegative() &&
 | |
|              Res.isNonNegative() != isNonNegative();
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this-RHS;
 | |
|   Overflow = Res.ugt(*this);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   // MININT/-1  -->  overflow.
 | |
|   Overflow = isMinSignedValue() && RHS.isAllOnesValue();
 | |
|   return sdiv(RHS);
 | |
| }
 | |
| 
 | |
| APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this * RHS;
 | |
|   
 | |
|   if (*this != 0 && RHS != 0)
 | |
|     Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
 | |
|   else
 | |
|     Overflow = false;
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
 | |
|   Overflow = ShAmt >= getBitWidth();
 | |
|   if (Overflow)
 | |
|     ShAmt = getBitWidth()-1;
 | |
| 
 | |
|   if (isNonNegative()) // Don't allow sign change.
 | |
|     Overflow = ShAmt >= countLeadingZeros();
 | |
|   else
 | |
|     Overflow = ShAmt >= countLeadingOnes();
 | |
|   
 | |
|   return *this << ShAmt;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
 | |
|   // Check our assumptions here
 | |
|   assert(!str.empty() && "Invalid string length");
 | |
|   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
 | |
|          "Radix should be 2, 8, 10, or 16!");
 | |
| 
 | |
|   StringRef::iterator p = str.begin();
 | |
|   size_t slen = str.size();
 | |
|   bool isNeg = *p == '-';
 | |
|   if (*p == '-' || *p == '+') {
 | |
|     p++;
 | |
|     slen--;
 | |
|     assert(slen && "String is only a sign, needs a value.");
 | |
|   }
 | |
|   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
 | |
|   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
 | |
|   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
 | |
|   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
 | |
|          "Insufficient bit width");
 | |
| 
 | |
|   // Allocate memory
 | |
|   if (!isSingleWord())
 | |
|     pVal = getClearedMemory(getNumWords());
 | |
| 
 | |
|   // Figure out if we can shift instead of multiply
 | |
|   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
 | |
| 
 | |
|   // Set up an APInt for the digit to add outside the loop so we don't
 | |
|   // constantly construct/destruct it.
 | |
|   APInt apdigit(getBitWidth(), 0);
 | |
|   APInt apradix(getBitWidth(), radix);
 | |
| 
 | |
|   // Enter digit traversal loop
 | |
|   for (StringRef::iterator e = str.end(); p != e; ++p) {
 | |
|     unsigned digit = getDigit(*p, radix);
 | |
|     assert(digit < radix && "Invalid character in digit string");
 | |
| 
 | |
|     // Shift or multiply the value by the radix
 | |
|     if (slen > 1) {
 | |
|       if (shift)
 | |
|         *this <<= shift;
 | |
|       else
 | |
|         *this *= apradix;
 | |
|     }
 | |
| 
 | |
|     // Add in the digit we just interpreted
 | |
|     if (apdigit.isSingleWord())
 | |
|       apdigit.VAL = digit;
 | |
|     else
 | |
|       apdigit.pVal[0] = digit;
 | |
|     *this += apdigit;
 | |
|   }
 | |
|   // If its negative, put it in two's complement form
 | |
|   if (isNeg) {
 | |
|     (*this)--;
 | |
|     this->flipAllBits();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
 | |
|                      bool Signed) const {
 | |
|   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
 | |
|          "Radix should be 2, 8, 10, or 16!");
 | |
| 
 | |
|   // First, check for a zero value and just short circuit the logic below.
 | |
|   if (*this == 0) {
 | |
|     Str.push_back('0');
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   static const char Digits[] = "0123456789ABCDEF";
 | |
| 
 | |
|   if (isSingleWord()) {
 | |
|     char Buffer[65];
 | |
|     char *BufPtr = Buffer+65;
 | |
| 
 | |
|     uint64_t N;
 | |
|     if (!Signed) {
 | |
|       N = getZExtValue();
 | |
|     } else {
 | |
|       int64_t I = getSExtValue();
 | |
|       if (I >= 0) {
 | |
|         N = I;
 | |
|       } else {
 | |
|         Str.push_back('-');
 | |
|         N = -(uint64_t)I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while (N) {
 | |
|       *--BufPtr = Digits[N % Radix];
 | |
|       N /= Radix;
 | |
|     }
 | |
|     Str.append(BufPtr, Buffer+65);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   APInt Tmp(*this);
 | |
| 
 | |
|   if (Signed && isNegative()) {
 | |
|     // They want to print the signed version and it is a negative value
 | |
|     // Flip the bits and add one to turn it into the equivalent positive
 | |
|     // value and put a '-' in the result.
 | |
|     Tmp.flipAllBits();
 | |
|     Tmp++;
 | |
|     Str.push_back('-');
 | |
|   }
 | |
| 
 | |
|   // We insert the digits backward, then reverse them to get the right order.
 | |
|   unsigned StartDig = Str.size();
 | |
| 
 | |
|   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
 | |
|   // because the number of bits per digit (1, 3 and 4 respectively) divides
 | |
|   // equaly.  We just shift until the value is zero.
 | |
|   if (Radix != 10) {
 | |
|     // Just shift tmp right for each digit width until it becomes zero
 | |
|     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
 | |
|     unsigned MaskAmt = Radix - 1;
 | |
| 
 | |
|     while (Tmp != 0) {
 | |
|       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
 | |
|       Str.push_back(Digits[Digit]);
 | |
|       Tmp = Tmp.lshr(ShiftAmt);
 | |
|     }
 | |
|   } else {
 | |
|     APInt divisor(4, 10);
 | |
|     while (Tmp != 0) {
 | |
|       APInt APdigit(1, 0);
 | |
|       APInt tmp2(Tmp.getBitWidth(), 0);
 | |
|       divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
 | |
|              &APdigit);
 | |
|       unsigned Digit = (unsigned)APdigit.getZExtValue();
 | |
|       assert(Digit < Radix && "divide failed");
 | |
|       Str.push_back(Digits[Digit]);
 | |
|       Tmp = tmp2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reverse the digits before returning.
 | |
|   std::reverse(Str.begin()+StartDig, Str.end());
 | |
| }
 | |
| 
 | |
| /// toString - This returns the APInt as a std::string.  Note that this is an
 | |
| /// inefficient method.  It is better to pass in a SmallVector/SmallString
 | |
| /// to the methods above.
 | |
| std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
 | |
|   SmallString<40> S;
 | |
|   toString(S, Radix, Signed);
 | |
|   return S.str();
 | |
| }
 | |
| 
 | |
| 
 | |
| void APInt::dump() const {
 | |
|   SmallString<40> S, U;
 | |
|   this->toStringUnsigned(U);
 | |
|   this->toStringSigned(S);
 | |
|   dbgs() << "APInt(" << BitWidth << "b, "
 | |
|          << U.str() << "u " << S.str() << "s)";
 | |
| }
 | |
| 
 | |
| void APInt::print(raw_ostream &OS, bool isSigned) const {
 | |
|   SmallString<40> S;
 | |
|   this->toString(S, 10, isSigned);
 | |
|   OS << S.str();
 | |
| }
 | |
| 
 | |
| // This implements a variety of operations on a representation of
 | |
| // arbitrary precision, two's-complement, bignum integer values.
 | |
| 
 | |
| // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
 | |
| // and unrestricting assumption.
 | |
| #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
 | |
| COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
 | |
| 
 | |
| /* Some handy functions local to this file.  */
 | |
| namespace {
 | |
| 
 | |
|   /* Returns the integer part with the least significant BITS set.
 | |
|      BITS cannot be zero.  */
 | |
|   static inline integerPart
 | |
|   lowBitMask(unsigned int bits)
 | |
|   {
 | |
|     assert(bits != 0 && bits <= integerPartWidth);
 | |
| 
 | |
|     return ~(integerPart) 0 >> (integerPartWidth - bits);
 | |
|   }
 | |
| 
 | |
|   /* Returns the value of the lower half of PART.  */
 | |
|   static inline integerPart
 | |
|   lowHalf(integerPart part)
 | |
|   {
 | |
|     return part & lowBitMask(integerPartWidth / 2);
 | |
|   }
 | |
| 
 | |
|   /* Returns the value of the upper half of PART.  */
 | |
|   static inline integerPart
 | |
|   highHalf(integerPart part)
 | |
|   {
 | |
|     return part >> (integerPartWidth / 2);
 | |
|   }
 | |
| 
 | |
|   /* Returns the bit number of the most significant set bit of a part.
 | |
|      If the input number has no bits set -1U is returned.  */
 | |
|   static unsigned int
 | |
|   partMSB(integerPart value)
 | |
|   {
 | |
|     unsigned int n, msb;
 | |
| 
 | |
|     if (value == 0)
 | |
|       return -1U;
 | |
| 
 | |
|     n = integerPartWidth / 2;
 | |
| 
 | |
|     msb = 0;
 | |
|     do {
 | |
|       if (value >> n) {
 | |
|         value >>= n;
 | |
|         msb += n;
 | |
|       }
 | |
| 
 | |
|       n >>= 1;
 | |
|     } while (n);
 | |
| 
 | |
|     return msb;
 | |
|   }
 | |
| 
 | |
|   /* Returns the bit number of the least significant set bit of a
 | |
|      part.  If the input number has no bits set -1U is returned.  */
 | |
|   static unsigned int
 | |
|   partLSB(integerPart value)
 | |
|   {
 | |
|     unsigned int n, lsb;
 | |
| 
 | |
|     if (value == 0)
 | |
|       return -1U;
 | |
| 
 | |
|     lsb = integerPartWidth - 1;
 | |
|     n = integerPartWidth / 2;
 | |
| 
 | |
|     do {
 | |
|       if (value << n) {
 | |
|         value <<= n;
 | |
|         lsb -= n;
 | |
|       }
 | |
| 
 | |
|       n >>= 1;
 | |
|     } while (n);
 | |
| 
 | |
|     return lsb;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Sets the least significant part of a bignum to the input value, and
 | |
|    zeroes out higher parts.  */
 | |
| void
 | |
| APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   assert(parts > 0);
 | |
| 
 | |
|   dst[0] = part;
 | |
|   for (i = 1; i < parts; i++)
 | |
|     dst[i] = 0;
 | |
| }
 | |
| 
 | |
| /* Assign one bignum to another.  */
 | |
| void
 | |
| APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   for (i = 0; i < parts; i++)
 | |
|     dst[i] = src[i];
 | |
| }
 | |
| 
 | |
| /* Returns true if a bignum is zero, false otherwise.  */
 | |
| bool
 | |
| APInt::tcIsZero(const integerPart *src, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   for (i = 0; i < parts; i++)
 | |
|     if (src[i])
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /* Extract the given bit of a bignum; returns 0 or 1.  */
 | |
| int
 | |
| APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
 | |
| {
 | |
|   return (parts[bit / integerPartWidth] &
 | |
|           ((integerPart) 1 << bit % integerPartWidth)) != 0;
 | |
| }
 | |
| 
 | |
| /* Set the given bit of a bignum. */
 | |
| void
 | |
| APInt::tcSetBit(integerPart *parts, unsigned int bit)
 | |
| {
 | |
|   parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
 | |
| }
 | |
| 
 | |
| /* Clears the given bit of a bignum. */
 | |
| void
 | |
| APInt::tcClearBit(integerPart *parts, unsigned int bit)
 | |
| {
 | |
|   parts[bit / integerPartWidth] &=
 | |
|     ~((integerPart) 1 << (bit % integerPartWidth));
 | |
| }
 | |
| 
 | |
| /* Returns the bit number of the least significant set bit of a
 | |
|    number.  If the input number has no bits set -1U is returned.  */
 | |
| unsigned int
 | |
| APInt::tcLSB(const integerPart *parts, unsigned int n)
 | |
| {
 | |
|   unsigned int i, lsb;
 | |
| 
 | |
|   for (i = 0; i < n; i++) {
 | |
|       if (parts[i] != 0) {
 | |
|           lsb = partLSB(parts[i]);
 | |
| 
 | |
|           return lsb + i * integerPartWidth;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return -1U;
 | |
| }
 | |
| 
 | |
| /* Returns the bit number of the most significant set bit of a number.
 | |
|    If the input number has no bits set -1U is returned.  */
 | |
| unsigned int
 | |
| APInt::tcMSB(const integerPart *parts, unsigned int n)
 | |
| {
 | |
|   unsigned int msb;
 | |
| 
 | |
|   do {
 | |
|     --n;
 | |
| 
 | |
|     if (parts[n] != 0) {
 | |
|       msb = partMSB(parts[n]);
 | |
| 
 | |
|       return msb + n * integerPartWidth;
 | |
|     }
 | |
|   } while (n);
 | |
| 
 | |
|   return -1U;
 | |
| }
 | |
| 
 | |
| /* Copy the bit vector of width srcBITS from SRC, starting at bit
 | |
|    srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
 | |
|    the least significant bit of DST.  All high bits above srcBITS in
 | |
|    DST are zero-filled.  */
 | |
| void
 | |
| APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
 | |
|                  unsigned int srcBits, unsigned int srcLSB)
 | |
| {
 | |
|   unsigned int firstSrcPart, dstParts, shift, n;
 | |
| 
 | |
|   dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
 | |
|   assert(dstParts <= dstCount);
 | |
| 
 | |
|   firstSrcPart = srcLSB / integerPartWidth;
 | |
|   tcAssign (dst, src + firstSrcPart, dstParts);
 | |
| 
 | |
|   shift = srcLSB % integerPartWidth;
 | |
|   tcShiftRight (dst, dstParts, shift);
 | |
| 
 | |
|   /* We now have (dstParts * integerPartWidth - shift) bits from SRC
 | |
|      in DST.  If this is less that srcBits, append the rest, else
 | |
|      clear the high bits.  */
 | |
|   n = dstParts * integerPartWidth - shift;
 | |
|   if (n < srcBits) {
 | |
|     integerPart mask = lowBitMask (srcBits - n);
 | |
|     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
 | |
|                           << n % integerPartWidth);
 | |
|   } else if (n > srcBits) {
 | |
|     if (srcBits % integerPartWidth)
 | |
|       dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
 | |
|   }
 | |
| 
 | |
|   /* Clear high parts.  */
 | |
|   while (dstParts < dstCount)
 | |
|     dst[dstParts++] = 0;
 | |
| }
 | |
| 
 | |
| /* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
 | |
| integerPart
 | |
| APInt::tcAdd(integerPart *dst, const integerPart *rhs,
 | |
|              integerPart c, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   assert(c <= 1);
 | |
| 
 | |
|   for (i = 0; i < parts; i++) {
 | |
|     integerPart l;
 | |
| 
 | |
|     l = dst[i];
 | |
|     if (c) {
 | |
|       dst[i] += rhs[i] + 1;
 | |
|       c = (dst[i] <= l);
 | |
|     } else {
 | |
|       dst[i] += rhs[i];
 | |
|       c = (dst[i] < l);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
 | |
| integerPart
 | |
| APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
 | |
|                   integerPart c, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   assert(c <= 1);
 | |
| 
 | |
|   for (i = 0; i < parts; i++) {
 | |
|     integerPart l;
 | |
| 
 | |
|     l = dst[i];
 | |
|     if (c) {
 | |
|       dst[i] -= rhs[i] + 1;
 | |
|       c = (dst[i] >= l);
 | |
|     } else {
 | |
|       dst[i] -= rhs[i];
 | |
|       c = (dst[i] > l);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /* Negate a bignum in-place.  */
 | |
| void
 | |
| APInt::tcNegate(integerPart *dst, unsigned int parts)
 | |
| {
 | |
|   tcComplement(dst, parts);
 | |
|   tcIncrement(dst, parts);
 | |
| }
 | |
| 
 | |
| /*  DST += SRC * MULTIPLIER + CARRY   if add is true
 | |
|     DST  = SRC * MULTIPLIER + CARRY   if add is false
 | |
| 
 | |
|     Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
 | |
|     they must start at the same point, i.e. DST == SRC.
 | |
| 
 | |
|     If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
 | |
|     returned.  Otherwise DST is filled with the least significant
 | |
|     DSTPARTS parts of the result, and if all of the omitted higher
 | |
|     parts were zero return zero, otherwise overflow occurred and
 | |
|     return one.  */
 | |
| int
 | |
| APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
 | |
|                       integerPart multiplier, integerPart carry,
 | |
|                       unsigned int srcParts, unsigned int dstParts,
 | |
|                       bool add)
 | |
| {
 | |
|   unsigned int i, n;
 | |
| 
 | |
|   /* Otherwise our writes of DST kill our later reads of SRC.  */
 | |
|   assert(dst <= src || dst >= src + srcParts);
 | |
|   assert(dstParts <= srcParts + 1);
 | |
| 
 | |
|   /* N loops; minimum of dstParts and srcParts.  */
 | |
|   n = dstParts < srcParts ? dstParts: srcParts;
 | |
| 
 | |
|   for (i = 0; i < n; i++) {
 | |
|     integerPart low, mid, high, srcPart;
 | |
| 
 | |
|       /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
 | |
| 
 | |
|          This cannot overflow, because
 | |
| 
 | |
|          (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
 | |
| 
 | |
|          which is less than n^2.  */
 | |
| 
 | |
|     srcPart = src[i];
 | |
| 
 | |
|     if (multiplier == 0 || srcPart == 0)        {
 | |
|       low = carry;
 | |
|       high = 0;
 | |
|     } else {
 | |
|       low = lowHalf(srcPart) * lowHalf(multiplier);
 | |
|       high = highHalf(srcPart) * highHalf(multiplier);
 | |
| 
 | |
|       mid = lowHalf(srcPart) * highHalf(multiplier);
 | |
|       high += highHalf(mid);
 | |
|       mid <<= integerPartWidth / 2;
 | |
|       if (low + mid < low)
 | |
|         high++;
 | |
|       low += mid;
 | |
| 
 | |
|       mid = highHalf(srcPart) * lowHalf(multiplier);
 | |
|       high += highHalf(mid);
 | |
|       mid <<= integerPartWidth / 2;
 | |
|       if (low + mid < low)
 | |
|         high++;
 | |
|       low += mid;
 | |
| 
 | |
|       /* Now add carry.  */
 | |
|       if (low + carry < low)
 | |
|         high++;
 | |
|       low += carry;
 | |
|     }
 | |
| 
 | |
|     if (add) {
 | |
|       /* And now DST[i], and store the new low part there.  */
 | |
|       if (low + dst[i] < low)
 | |
|         high++;
 | |
|       dst[i] += low;
 | |
|     } else
 | |
|       dst[i] = low;
 | |
| 
 | |
|     carry = high;
 | |
|   }
 | |
| 
 | |
|   if (i < dstParts) {
 | |
|     /* Full multiplication, there is no overflow.  */
 | |
|     assert(i + 1 == dstParts);
 | |
|     dst[i] = carry;
 | |
|     return 0;
 | |
|   } else {
 | |
|     /* We overflowed if there is carry.  */
 | |
|     if (carry)
 | |
|       return 1;
 | |
| 
 | |
|     /* We would overflow if any significant unwritten parts would be
 | |
|        non-zero.  This is true if any remaining src parts are non-zero
 | |
|        and the multiplier is non-zero.  */
 | |
|     if (multiplier)
 | |
|       for (; i < srcParts; i++)
 | |
|         if (src[i])
 | |
|           return 1;
 | |
| 
 | |
|     /* We fitted in the narrow destination.  */
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* DST = LHS * RHS, where DST has the same width as the operands and
 | |
|    is filled with the least significant parts of the result.  Returns
 | |
|    one if overflow occurred, otherwise zero.  DST must be disjoint
 | |
|    from both operands.  */
 | |
| int
 | |
| APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
 | |
|                   const integerPart *rhs, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
|   int overflow;
 | |
| 
 | |
|   assert(dst != lhs && dst != rhs);
 | |
| 
 | |
|   overflow = 0;
 | |
|   tcSet(dst, 0, parts);
 | |
| 
 | |
|   for (i = 0; i < parts; i++)
 | |
|     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
 | |
|                                parts - i, true);
 | |
| 
 | |
|   return overflow;
 | |
| }
 | |
| 
 | |
| /* DST = LHS * RHS, where DST has width the sum of the widths of the
 | |
|    operands.  No overflow occurs.  DST must be disjoint from both
 | |
|    operands.  Returns the number of parts required to hold the
 | |
|    result.  */
 | |
| unsigned int
 | |
| APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
 | |
|                       const integerPart *rhs, unsigned int lhsParts,
 | |
|                       unsigned int rhsParts)
 | |
| {
 | |
|   /* Put the narrower number on the LHS for less loops below.  */
 | |
|   if (lhsParts > rhsParts) {
 | |
|     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
 | |
|   } else {
 | |
|     unsigned int n;
 | |
| 
 | |
|     assert(dst != lhs && dst != rhs);
 | |
| 
 | |
|     tcSet(dst, 0, rhsParts);
 | |
| 
 | |
|     for (n = 0; n < lhsParts; n++)
 | |
|       tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
 | |
| 
 | |
|     n = lhsParts + rhsParts;
 | |
| 
 | |
|     return n - (dst[n - 1] == 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
 | |
|    Otherwise set LHS to LHS / RHS with the fractional part discarded,
 | |
|    set REMAINDER to the remainder, return zero.  i.e.
 | |
| 
 | |
|    OLD_LHS = RHS * LHS + REMAINDER
 | |
| 
 | |
|    SCRATCH is a bignum of the same size as the operands and result for
 | |
|    use by the routine; its contents need not be initialized and are
 | |
|    destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
 | |
| */
 | |
| int
 | |
| APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
 | |
|                 integerPart *remainder, integerPart *srhs,
 | |
|                 unsigned int parts)
 | |
| {
 | |
|   unsigned int n, shiftCount;
 | |
|   integerPart mask;
 | |
| 
 | |
|   assert(lhs != remainder && lhs != srhs && remainder != srhs);
 | |
| 
 | |
|   shiftCount = tcMSB(rhs, parts) + 1;
 | |
|   if (shiftCount == 0)
 | |
|     return true;
 | |
| 
 | |
|   shiftCount = parts * integerPartWidth - shiftCount;
 | |
|   n = shiftCount / integerPartWidth;
 | |
|   mask = (integerPart) 1 << (shiftCount % integerPartWidth);
 | |
| 
 | |
|   tcAssign(srhs, rhs, parts);
 | |
|   tcShiftLeft(srhs, parts, shiftCount);
 | |
|   tcAssign(remainder, lhs, parts);
 | |
|   tcSet(lhs, 0, parts);
 | |
| 
 | |
|   /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
 | |
|      the total.  */
 | |
|   for (;;) {
 | |
|       int compare;
 | |
| 
 | |
|       compare = tcCompare(remainder, srhs, parts);
 | |
|       if (compare >= 0) {
 | |
|         tcSubtract(remainder, srhs, 0, parts);
 | |
|         lhs[n] |= mask;
 | |
|       }
 | |
| 
 | |
|       if (shiftCount == 0)
 | |
|         break;
 | |
|       shiftCount--;
 | |
|       tcShiftRight(srhs, parts, 1);
 | |
|       if ((mask >>= 1) == 0)
 | |
|         mask = (integerPart) 1 << (integerPartWidth - 1), n--;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero.
 | |
|    There are no restrictions on COUNT.  */
 | |
| void
 | |
| APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
 | |
| {
 | |
|   if (count) {
 | |
|     unsigned int jump, shift;
 | |
| 
 | |
|     /* Jump is the inter-part jump; shift is is intra-part shift.  */
 | |
|     jump = count / integerPartWidth;
 | |
|     shift = count % integerPartWidth;
 | |
| 
 | |
|     while (parts > jump) {
 | |
|       integerPart part;
 | |
| 
 | |
|       parts--;
 | |
| 
 | |
|       /* dst[i] comes from the two parts src[i - jump] and, if we have
 | |
|          an intra-part shift, src[i - jump - 1].  */
 | |
|       part = dst[parts - jump];
 | |
|       if (shift) {
 | |
|         part <<= shift;
 | |
|         if (parts >= jump + 1)
 | |
|           part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
 | |
|       }
 | |
| 
 | |
|       dst[parts] = part;
 | |
|     }
 | |
| 
 | |
|     while (parts > 0)
 | |
|       dst[--parts] = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Shift a bignum right COUNT bits in-place.  Shifted in bits are
 | |
|    zero.  There are no restrictions on COUNT.  */
 | |
| void
 | |
| APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
 | |
| {
 | |
|   if (count) {
 | |
|     unsigned int i, jump, shift;
 | |
| 
 | |
|     /* Jump is the inter-part jump; shift is is intra-part shift.  */
 | |
|     jump = count / integerPartWidth;
 | |
|     shift = count % integerPartWidth;
 | |
| 
 | |
|     /* Perform the shift.  This leaves the most significant COUNT bits
 | |
|        of the result at zero.  */
 | |
|     for (i = 0; i < parts; i++) {
 | |
|       integerPart part;
 | |
| 
 | |
|       if (i + jump >= parts) {
 | |
|         part = 0;
 | |
|       } else {
 | |
|         part = dst[i + jump];
 | |
|         if (shift) {
 | |
|           part >>= shift;
 | |
|           if (i + jump + 1 < parts)
 | |
|             part |= dst[i + jump + 1] << (integerPartWidth - shift);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       dst[i] = part;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Bitwise and of two bignums.  */
 | |
| void
 | |
| APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   for (i = 0; i < parts; i++)
 | |
|     dst[i] &= rhs[i];
 | |
| }
 | |
| 
 | |
| /* Bitwise inclusive or of two bignums.  */
 | |
| void
 | |
| APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   for (i = 0; i < parts; i++)
 | |
|     dst[i] |= rhs[i];
 | |
| }
 | |
| 
 | |
| /* Bitwise exclusive or of two bignums.  */
 | |
| void
 | |
| APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   for (i = 0; i < parts; i++)
 | |
|     dst[i] ^= rhs[i];
 | |
| }
 | |
| 
 | |
| /* Complement a bignum in-place.  */
 | |
| void
 | |
| APInt::tcComplement(integerPart *dst, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   for (i = 0; i < parts; i++)
 | |
|     dst[i] = ~dst[i];
 | |
| }
 | |
| 
 | |
| /* Comparison (unsigned) of two bignums.  */
 | |
| int
 | |
| APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
 | |
|                  unsigned int parts)
 | |
| {
 | |
|   while (parts) {
 | |
|       parts--;
 | |
|       if (lhs[parts] == rhs[parts])
 | |
|         continue;
 | |
| 
 | |
|       if (lhs[parts] > rhs[parts])
 | |
|         return 1;
 | |
|       else
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Increment a bignum in-place, return the carry flag.  */
 | |
| integerPart
 | |
| APInt::tcIncrement(integerPart *dst, unsigned int parts)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   for (i = 0; i < parts; i++)
 | |
|     if (++dst[i] != 0)
 | |
|       break;
 | |
| 
 | |
|   return i == parts;
 | |
| }
 | |
| 
 | |
| /* Set the least significant BITS bits of a bignum, clear the
 | |
|    rest.  */
 | |
| void
 | |
| APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
 | |
|                                  unsigned int bits)
 | |
| {
 | |
|   unsigned int i;
 | |
| 
 | |
|   i = 0;
 | |
|   while (bits > integerPartWidth) {
 | |
|     dst[i++] = ~(integerPart) 0;
 | |
|     bits -= integerPartWidth;
 | |
|   }
 | |
| 
 | |
|   if (bits)
 | |
|     dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
 | |
| 
 | |
|   while (i < parts)
 | |
|     dst[i++] = 0;
 | |
| }
 |