mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	new gcc warning that complains on self-assignments and self-initializations. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122458 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			216 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- StringMap.cpp - String Hash table map implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the StringMap class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <cassert>
 | |
| using namespace llvm;
 | |
| 
 | |
| StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
 | |
|   ItemSize = itemSize;
 | |
|   
 | |
|   // If a size is specified, initialize the table with that many buckets.
 | |
|   if (InitSize) {
 | |
|     init(InitSize);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, initialize it with zero buckets to avoid the allocation.
 | |
|   TheTable = 0;
 | |
|   NumBuckets = 0;
 | |
|   NumItems = 0;
 | |
|   NumTombstones = 0;
 | |
| }
 | |
| 
 | |
| void StringMapImpl::init(unsigned InitSize) {
 | |
|   assert((InitSize & (InitSize-1)) == 0 &&
 | |
|          "Init Size must be a power of 2 or zero!");
 | |
|   NumBuckets = InitSize ? InitSize : 16;
 | |
|   NumItems = 0;
 | |
|   NumTombstones = 0;
 | |
|   
 | |
|   TheTable = (ItemBucket*)calloc(NumBuckets+1, sizeof(ItemBucket));
 | |
|   
 | |
|   // Allocate one extra bucket, set it to look filled so the iterators stop at
 | |
|   // end.
 | |
|   TheTable[NumBuckets].Item = (StringMapEntryBase*)2;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LookupBucketFor - Look up the bucket that the specified string should end
 | |
| /// up in.  If it already exists as a key in the map, the Item pointer for the
 | |
| /// specified bucket will be non-null.  Otherwise, it will be null.  In either
 | |
| /// case, the FullHashValue field of the bucket will be set to the hash value
 | |
| /// of the string.
 | |
| unsigned StringMapImpl::LookupBucketFor(StringRef Name) {
 | |
|   unsigned HTSize = NumBuckets;
 | |
|   if (HTSize == 0) {  // Hash table unallocated so far?
 | |
|     init(16);
 | |
|     HTSize = NumBuckets;
 | |
|   }
 | |
|   unsigned FullHashValue = HashString(Name);
 | |
|   unsigned BucketNo = FullHashValue & (HTSize-1);
 | |
|   
 | |
|   unsigned ProbeAmt = 1;
 | |
|   int FirstTombstone = -1;
 | |
|   while (1) {
 | |
|     ItemBucket &Bucket = TheTable[BucketNo];
 | |
|     StringMapEntryBase *BucketItem = Bucket.Item;
 | |
|     // If we found an empty bucket, this key isn't in the table yet, return it.
 | |
|     if (BucketItem == 0) {
 | |
|       // If we found a tombstone, we want to reuse the tombstone instead of an
 | |
|       // empty bucket.  This reduces probing.
 | |
|       if (FirstTombstone != -1) {
 | |
|         TheTable[FirstTombstone].FullHashValue = FullHashValue;
 | |
|         return FirstTombstone;
 | |
|       }
 | |
|       
 | |
|       Bucket.FullHashValue = FullHashValue;
 | |
|       return BucketNo;
 | |
|     }
 | |
|     
 | |
|     if (BucketItem == getTombstoneVal()) {
 | |
|       // Skip over tombstones.  However, remember the first one we see.
 | |
|       if (FirstTombstone == -1) FirstTombstone = BucketNo;
 | |
|     } else if (Bucket.FullHashValue == FullHashValue) {
 | |
|       // If the full hash value matches, check deeply for a match.  The common
 | |
|       // case here is that we are only looking at the buckets (for item info
 | |
|       // being non-null and for the full hash value) not at the items.  This
 | |
|       // is important for cache locality.
 | |
|       
 | |
|       // Do the comparison like this because Name isn't necessarily
 | |
|       // null-terminated!
 | |
|       char *ItemStr = (char*)BucketItem+ItemSize;
 | |
|       if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) {
 | |
|         // We found a match!
 | |
|         return BucketNo;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Okay, we didn't find the item.  Probe to the next bucket.
 | |
|     BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
 | |
|     
 | |
|     // Use quadratic probing, it has fewer clumping artifacts than linear
 | |
|     // probing and has good cache behavior in the common case.
 | |
|     ++ProbeAmt;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FindKey - Look up the bucket that contains the specified key. If it exists
 | |
| /// in the map, return the bucket number of the key.  Otherwise return -1.
 | |
| /// This does not modify the map.
 | |
| int StringMapImpl::FindKey(StringRef Key) const {
 | |
|   unsigned HTSize = NumBuckets;
 | |
|   if (HTSize == 0) return -1;  // Really empty table?
 | |
|   unsigned FullHashValue = HashString(Key);
 | |
|   unsigned BucketNo = FullHashValue & (HTSize-1);
 | |
|   
 | |
|   unsigned ProbeAmt = 1;
 | |
|   while (1) {
 | |
|     ItemBucket &Bucket = TheTable[BucketNo];
 | |
|     StringMapEntryBase *BucketItem = Bucket.Item;
 | |
|     // If we found an empty bucket, this key isn't in the table yet, return.
 | |
|     if (BucketItem == 0)
 | |
|       return -1;
 | |
|     
 | |
|     if (BucketItem == getTombstoneVal()) {
 | |
|       // Ignore tombstones.
 | |
|     } else if (Bucket.FullHashValue == FullHashValue) {
 | |
|       // If the full hash value matches, check deeply for a match.  The common
 | |
|       // case here is that we are only looking at the buckets (for item info
 | |
|       // being non-null and for the full hash value) not at the items.  This
 | |
|       // is important for cache locality.
 | |
|       
 | |
|       // Do the comparison like this because NameStart isn't necessarily
 | |
|       // null-terminated!
 | |
|       char *ItemStr = (char*)BucketItem+ItemSize;
 | |
|       if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) {
 | |
|         // We found a match!
 | |
|         return BucketNo;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Okay, we didn't find the item.  Probe to the next bucket.
 | |
|     BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
 | |
|     
 | |
|     // Use quadratic probing, it has fewer clumping artifacts than linear
 | |
|     // probing and has good cache behavior in the common case.
 | |
|     ++ProbeAmt;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RemoveKey - Remove the specified StringMapEntry from the table, but do not
 | |
| /// delete it.  This aborts if the value isn't in the table.
 | |
| void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
 | |
|   const char *VStr = (char*)V + ItemSize;
 | |
|   StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
 | |
|   (void)V2;
 | |
|   assert(V == V2 && "Didn't find key?");
 | |
| }
 | |
| 
 | |
| /// RemoveKey - Remove the StringMapEntry for the specified key from the
 | |
| /// table, returning it.  If the key is not in the table, this returns null.
 | |
| StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) {
 | |
|   int Bucket = FindKey(Key);
 | |
|   if (Bucket == -1) return 0;
 | |
|   
 | |
|   StringMapEntryBase *Result = TheTable[Bucket].Item;
 | |
|   TheTable[Bucket].Item = getTombstoneVal();
 | |
|   --NumItems;
 | |
|   ++NumTombstones;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// RehashTable - Grow the table, redistributing values into the buckets with
 | |
| /// the appropriate mod-of-hashtable-size.
 | |
| void StringMapImpl::RehashTable() {
 | |
|   unsigned NewSize = NumBuckets*2;
 | |
|   // Allocate one extra bucket which will always be non-empty.  This allows the
 | |
|   // iterators to stop at end.
 | |
|   ItemBucket *NewTableArray =(ItemBucket*)calloc(NewSize+1, sizeof(ItemBucket));
 | |
|   NewTableArray[NewSize].Item = (StringMapEntryBase*)2;
 | |
|   
 | |
|   // Rehash all the items into their new buckets.  Luckily :) we already have
 | |
|   // the hash values available, so we don't have to rehash any strings.
 | |
|   for (ItemBucket *IB = TheTable, *E = TheTable+NumBuckets; IB != E; ++IB) {
 | |
|     if (IB->Item && IB->Item != getTombstoneVal()) {
 | |
|       // Fast case, bucket available.
 | |
|       unsigned FullHash = IB->FullHashValue;
 | |
|       unsigned NewBucket = FullHash & (NewSize-1);
 | |
|       if (NewTableArray[NewBucket].Item == 0) {
 | |
|         NewTableArray[FullHash & (NewSize-1)].Item = IB->Item;
 | |
|         NewTableArray[FullHash & (NewSize-1)].FullHashValue = FullHash;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Otherwise probe for a spot.
 | |
|       unsigned ProbeSize = 1;
 | |
|       do {
 | |
|         NewBucket = (NewBucket + ProbeSize++) & (NewSize-1);
 | |
|       } while (NewTableArray[NewBucket].Item);
 | |
|       
 | |
|       // Finally found a slot.  Fill it in.
 | |
|       NewTableArray[NewBucket].Item = IB->Item;
 | |
|       NewTableArray[NewBucket].FullHashValue = FullHash;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   free(TheTable);
 | |
|   
 | |
|   TheTable = NewTableArray;
 | |
|   NumBuckets = NewSize;
 | |
| }
 |