llvm-6502/lib/Target/SparcV9/SparcV9AsmPrinter.cpp
Chris Lattner 2fbfdcffd3 Change references to the Method class to be references to the Function
class.  The Method class is obsolete (renamed) and all references to it
are being converted over to Function.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2144 91177308-0d34-0410-b5e6-96231b3b80d8
2002-04-07 20:49:59 +00:00

766 lines
23 KiB
C++

//===-- EmitAssembly.cpp - Emit Sparc Specific .s File ---------------------==//
//
// This file implements all of the stuff neccesary to output a .s file from
// LLVM. The code in this file assumes that the specified module has already
// been compiled into the internal data structures of the Module.
//
// This code largely consists of two LLVM Pass's: a MethodPass and a Pass. The
// MethodPass is pipelined together with all of the rest of the code generation
// stages, and the Pass runs at the end to emit code for global variables and
// such.
//
//===----------------------------------------------------------------------===//
#include "SparcInternals.h"
#include "llvm/Analysis/SlotCalculator.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/GlobalVariable.h"
#include "llvm/ConstantVals.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Annotation.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "Support/StringExtras.h"
#include "Support/HashExtras.h"
#include <iostream>
using std::string;
namespace {
class GlobalIdTable: public Annotation {
static AnnotationID AnnotId;
friend class AsmPrinter; // give access to AnnotId
typedef std::hash_map<const Value*, int> ValIdMap;
typedef ValIdMap::const_iterator ValIdMapConstIterator;
typedef ValIdMap:: iterator ValIdMapIterator;
public:
SlotCalculator *Table; // map anonymous values to unique integer IDs
ValIdMap valToIdMap; // used for values not handled by SlotCalculator
GlobalIdTable(Module* M) : Annotation(AnnotId) {
Table = new SlotCalculator(M, true);
}
~GlobalIdTable() {
delete Table;
Table = NULL;
valToIdMap.clear();
}
};
AnnotationID GlobalIdTable::AnnotId =
AnnotationManager::getID("ASM PRINTER GLOBAL TABLE ANNOT");
//===---------------------------------------------------------------------===//
// Code Shared By the two printer passes, as a mixin
//===---------------------------------------------------------------------===//
class AsmPrinter {
GlobalIdTable* idTable;
public:
std::ostream &toAsm;
const TargetMachine &Target;
enum Sections {
Unknown,
Text,
ReadOnlyData,
InitRWData,
UninitRWData,
} CurSection;
AsmPrinter(std::ostream &os, const TargetMachine &T)
: idTable(0), toAsm(os), Target(T), CurSection(Unknown) {}
// (start|end)(Module|Function) - Callback methods to be invoked by subclasses
void startModule(Module *M) {
// Create the global id table if it does not already exist
idTable = (GlobalIdTable*) M->getAnnotation(GlobalIdTable::AnnotId);
if (idTable == NULL) {
idTable = new GlobalIdTable(M);
M->addAnnotation(idTable);
}
}
void startFunction(Function *F) {
// Make sure the slot table has information about this method...
idTable->Table->incorporateMethod(F);
}
void endFunction(Function *F) {
idTable->Table->purgeMethod(); // Forget all about F
}
void endModule() {
}
// Check if a name is external or accessible from external code.
// Only functions can currently be external. "main" is the only name
// that is visible externally.
bool isExternal(const Value* V) {
const Function *F = dyn_cast<Function>(V);
return F && (F->isExternal() || F->getName() == "main");
}
// enterSection - Use this method to enter a different section of the output
// executable. This is used to only output neccesary section transitions.
//
void enterSection(enum Sections S) {
if (S == CurSection) return; // Only switch section if neccesary
CurSection = S;
toAsm << "\n\t.section ";
switch (S)
{
default: assert(0 && "Bad section name!");
case Text: toAsm << "\".text\""; break;
case ReadOnlyData: toAsm << "\".rodata\",#alloc"; break;
case InitRWData: toAsm << "\".data\",#alloc,#write"; break;
case UninitRWData: toAsm << "\".bss\",#alloc,#write\nBbss.bss:"; break;
}
toAsm << "\n";
}
static std::string getValidSymbolName(const string &S) {
string Result;
// Symbol names in Sparc assembly language have these rules:
// (a) Must match { letter | _ | . | $ } { letter | _ | . | $ | digit }*
// (b) A name beginning in "." is treated as a local name.
// (c) Names beginning with "_" are reserved by ANSI C and shd not be used.
//
if (S[0] == '_' || isdigit(S[0]))
Result += "ll";
for (unsigned i = 0; i < S.size(); ++i)
{
char C = S[i];
if (C == '_' || C == '.' || C == '$' || isalpha(C) || isdigit(C))
Result += C;
else
{
Result += '_';
Result += char('0' + ((unsigned char)C >> 4));
Result += char('0' + (C & 0xF));
}
}
return Result;
}
// getID - Return a valid identifier for the specified value. Base it on
// the name of the identifier if possible (qualified by the type), and
// use a numbered value based on prefix otherwise.
// FPrefix is always prepended to the output identifier.
//
string getID(const Value *V, const char *Prefix, const char *FPrefix = 0) {
string Result = FPrefix ? FPrefix : ""; // "Forced prefix"
Result = Result + (V->hasName()? V->getName() : string(Prefix));
// Qualify all internal names with a unique id.
if (!isExternal(V)) {
int valId = idTable->Table->getValSlot(V);
if (valId == -1) {
GlobalIdTable::ValIdMapConstIterator I = idTable->valToIdMap.find(V);
if (I == idTable->valToIdMap.end())
valId = idTable->valToIdMap[V] = idTable->valToIdMap.size();
else
valId = I->second;
}
Result = Result + "_" + itostr(valId);
}
return getValidSymbolName(Result);
}
// getID Wrappers - Ensure consistent usage...
string getID(const Module *M) {
return getID(M, "LLVMModule_");
}
string getID(const Function *F) {
return getID(F, "LLVMFunction_");
}
string getID(const BasicBlock *BB) {
return getID(BB, "LL", (".L_"+getID(BB->getParent())+"_").c_str());
}
string getID(const GlobalVariable *GV) {
return getID(GV, "LLVMGlobal_", ".G_");
}
string getID(const Constant *CV) {
return getID(CV, "LLVMConst_", ".C_");
}
};
//===----------------------------------------------------------------------===//
// SparcFunctionAsmPrinter Code
//===----------------------------------------------------------------------===//
struct SparcFunctionAsmPrinter : public MethodPass, public AsmPrinter {
inline SparcFunctionAsmPrinter(std::ostream &os, const TargetMachine &t)
: AsmPrinter(os, t) {}
virtual bool doInitialization(Module *M) {
startModule(M);
return false;
}
virtual bool runOnMethod(Function *F) {
startFunction(F);
emitFunction(F);
endFunction(F);
return false;
}
virtual bool doFinalization(Module *M) {
endModule();
return false;
}
void emitFunction(const Function *F);
private :
void emitBasicBlock(const BasicBlock *BB);
void emitMachineInst(const MachineInstr *MI);
unsigned int printOperands(const MachineInstr *MI, unsigned int opNum);
void printOneOperand(const MachineOperand &Op);
bool OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum);
bool OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum);
unsigned getOperandMask(unsigned Opcode) {
switch (Opcode) {
case SUBcc: return 1 << 3; // Remove CC argument
case BA: return 1 << 0; // Remove Arg #0, which is always null or xcc
default: return 0; // By default, don't hack operands...
}
}
};
inline bool
SparcFunctionAsmPrinter::OpIsBranchTargetLabel(const MachineInstr *MI,
unsigned int opNum) {
switch (MI->getOpCode()) {
case JMPLCALL:
case JMPLRET: return (opNum == 0);
default: return false;
}
}
inline bool
SparcFunctionAsmPrinter::OpIsMemoryAddressBase(const MachineInstr *MI,
unsigned int opNum) {
if (Target.getInstrInfo().isLoad(MI->getOpCode()))
return (opNum == 0);
else if (Target.getInstrInfo().isStore(MI->getOpCode()))
return (opNum == 1);
else
return false;
}
#define PrintOp1PlusOp2(Op1, Op2) \
printOneOperand(Op1); \
toAsm << "+"; \
printOneOperand(Op2);
unsigned int
SparcFunctionAsmPrinter::printOperands(const MachineInstr *MI,
unsigned int opNum)
{
const MachineOperand& Op = MI->getOperand(opNum);
if (OpIsBranchTargetLabel(MI, opNum))
{
PrintOp1PlusOp2(Op, MI->getOperand(opNum+1));
return 2;
}
else if (OpIsMemoryAddressBase(MI, opNum))
{
toAsm << "[";
PrintOp1PlusOp2(Op, MI->getOperand(opNum+1));
toAsm << "]";
return 2;
}
else
{
printOneOperand(Op);
return 1;
}
}
void
SparcFunctionAsmPrinter::printOneOperand(const MachineOperand &op)
{
switch (op.getOperandType())
{
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_CCRegister:
case MachineOperand::MO_MachineRegister:
{
int RegNum = (int)op.getAllocatedRegNum();
// better to print code with NULL registers than to die
if (RegNum == Target.getRegInfo().getInvalidRegNum()) {
toAsm << "<NULL VALUE>";
} else {
toAsm << "%" << Target.getRegInfo().getUnifiedRegName(RegNum);
}
break;
}
case MachineOperand::MO_PCRelativeDisp:
{
const Value *Val = op.getVRegValue();
if (!Val)
toAsm << "\t<*NULL Value*>";
else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(Val))
toAsm << getID(BB);
else if (const Function *M = dyn_cast<const Function>(Val))
toAsm << getID(M);
else if (const GlobalVariable *GV=dyn_cast<const GlobalVariable>(Val))
toAsm << getID(GV);
else if (const Constant *CV = dyn_cast<const Constant>(Val))
toAsm << getID(CV);
else
toAsm << "<unknown value=" << Val << ">";
break;
}
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
toAsm << (long)op.getImmedValue();
break;
default:
toAsm << op; // use dump field
break;
}
}
void
SparcFunctionAsmPrinter::emitMachineInst(const MachineInstr *MI)
{
unsigned Opcode = MI->getOpCode();
if (TargetInstrDescriptors[Opcode].iclass & M_DUMMY_PHI_FLAG)
return; // IGNORE PHI NODES
toAsm << "\t" << TargetInstrDescriptors[Opcode].opCodeString << "\t";
unsigned Mask = getOperandMask(Opcode);
bool NeedComma = false;
unsigned N = 1;
for (unsigned OpNum = 0; OpNum < MI->getNumOperands(); OpNum += N)
if (! ((1 << OpNum) & Mask)) { // Ignore this operand?
if (NeedComma) toAsm << ", "; // Handle comma outputing
NeedComma = true;
N = printOperands(MI, OpNum);
}
else
N = 1;
toAsm << "\n";
}
void
SparcFunctionAsmPrinter::emitBasicBlock(const BasicBlock *BB)
{
// Emit a label for the basic block
toAsm << getID(BB) << ":\n";
// Get the vector of machine instructions corresponding to this bb.
const MachineCodeForBasicBlock &MIs = BB->getMachineInstrVec();
MachineCodeForBasicBlock::const_iterator MII = MIs.begin(), MIE = MIs.end();
// Loop over all of the instructions in the basic block...
for (; MII != MIE; ++MII)
emitMachineInst(*MII);
toAsm << "\n"; // Seperate BB's with newlines
}
void
SparcFunctionAsmPrinter::emitFunction(const Function *M)
{
string methName = getID(M);
toAsm << "!****** Outputing Function: " << methName << " ******\n";
enterSection(AsmPrinter::Text);
toAsm << "\t.align\t4\n\t.global\t" << methName << "\n";
//toAsm << "\t.type\t" << methName << ",#function\n";
toAsm << "\t.type\t" << methName << ", 2\n";
toAsm << methName << ":\n";
// Output code for all of the basic blocks in the function...
for (Function::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
emitBasicBlock(*I);
// Output a .size directive so the debugger knows the extents of the function
toAsm << ".EndOf_" << methName << ":\n\t.size "
<< methName << ", .EndOf_"
<< methName << "-" << methName << "\n";
// Put some spaces between the functions
toAsm << "\n\n";
}
} // End anonymous namespace
Pass *UltraSparc::getMethodAsmPrinterPass(PassManager &PM, std::ostream &Out) {
return new SparcFunctionAsmPrinter(Out, *this);
}
//===----------------------------------------------------------------------===//
// SparcFunctionAsmPrinter Code
//===----------------------------------------------------------------------===//
namespace {
class SparcModuleAsmPrinter : public Pass, public AsmPrinter {
public:
SparcModuleAsmPrinter(std::ostream &os, TargetMachine &t)
: AsmPrinter(os, t) {}
virtual bool run(Module *M) {
startModule(M);
emitGlobalsAndConstants(M);
endModule();
return false;
}
void emitGlobalsAndConstants(const Module *M);
void printGlobalVariable(const GlobalVariable *GV);
void printSingleConstant( const Constant* CV);
void printConstantValueOnly(const Constant* CV);
void printConstant( const Constant* CV, std::string valID = "");
static void FoldConstants(const Module *M,
std::hash_set<const Constant*> &moduleConstants);
};
// Can we treat the specified array as a string? Only if it is an array of
// ubytes or non-negative sbytes.
//
static bool isStringCompatible(ConstantArray *CPA) {
const Type *ETy = cast<ArrayType>(CPA->getType())->getElementType();
if (ETy == Type::UByteTy) return true;
if (ETy != Type::SByteTy) return false;
for (unsigned i = 0; i < CPA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CPA->getOperand(i))->getValue() < 0)
return false;
return true;
}
// toOctal - Convert the low order bits of X into an octal letter
static inline char toOctal(int X) {
return (X&7)+'0';
}
// getAsCString - Return the specified array as a C compatible string, only if
// the predicate isStringCompatible is true.
//
static string getAsCString(ConstantArray *CPA) {
if (isStringCompatible(CPA)) {
string Result;
const Type *ETy = cast<ArrayType>(CPA->getType())->getElementType();
Result = "\"";
for (unsigned i = 0; i < CPA->getNumOperands(); ++i) {
unsigned char C = (ETy == Type::SByteTy) ?
(unsigned char)cast<ConstantSInt>(CPA->getOperand(i))->getValue() :
(unsigned char)cast<ConstantUInt>(CPA->getOperand(i))->getValue();
if (isprint(C)) {
Result += C;
} else {
switch(C) {
case '\a': Result += "\\a"; break;
case '\b': Result += "\\b"; break;
case '\f': Result += "\\f"; break;
case '\n': Result += "\\n"; break;
case '\r': Result += "\\r"; break;
case '\t': Result += "\\t"; break;
case '\v': Result += "\\v"; break;
default:
Result += '\\';
Result += toOctal(C >> 6);
Result += toOctal(C >> 3);
Result += toOctal(C >> 0);
break;
}
}
}
Result += "\"";
return Result;
} else {
return CPA->getStrValue();
}
}
inline bool
ArrayTypeIsString(ArrayType* arrayType)
{
return (arrayType->getElementType() == Type::UByteTy ||
arrayType->getElementType() == Type::SByteTy);
}
inline const string
TypeToDataDirective(const Type* type)
{
switch(type->getPrimitiveID())
{
case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
return ".byte";
case Type::UShortTyID: case Type::ShortTyID:
return ".half";
case Type::UIntTyID: case Type::IntTyID:
return ".word";
case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID:
return ".xword";
case Type::FloatTyID:
return ".single";
case Type::DoubleTyID:
return ".double";
case Type::ArrayTyID:
if (ArrayTypeIsString((ArrayType*) type))
return ".ascii";
else
return "<InvaliDataTypeForPrinting>";
default:
return "<InvaliDataTypeForPrinting>";
}
}
// Get the size of the constant for the given target.
// If this is an unsized array, return 0.
//
inline unsigned int
ConstantToSize(const Constant* CV, const TargetMachine& target)
{
if (ConstantArray* CPA = dyn_cast<ConstantArray>(CV))
{
ArrayType *aty = cast<ArrayType>(CPA->getType());
if (ArrayTypeIsString(aty))
return 1 + CPA->getNumOperands();
}
return target.findOptimalStorageSize(CV->getType());
}
// Align data larger than one L1 cache line on L1 cache line boundaries.
// Align all smaller data on the next higher 2^x boundary (4, 8, ...).
//
inline unsigned int
SizeToAlignment(unsigned int size, const TargetMachine& target)
{
unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1);
if (size > (unsigned) cacheLineSize / 2)
return cacheLineSize;
else
for (unsigned sz=1; /*no condition*/; sz *= 2)
if (sz >= size)
return sz;
}
// Get the size of the type and then use SizeToAlignment.
//
inline unsigned int
TypeToAlignment(const Type* type, const TargetMachine& target)
{
return SizeToAlignment(target.findOptimalStorageSize(type), target);
}
// Get the size of the constant and then use SizeToAlignment.
// Handles strings as a special case;
inline unsigned int
ConstantToAlignment(const Constant* CV, const TargetMachine& target)
{
if (ConstantArray* CPA = dyn_cast<ConstantArray>(CV))
if (ArrayTypeIsString(cast<ArrayType>(CPA->getType())))
return SizeToAlignment(1 + CPA->getNumOperands(), target);
return TypeToAlignment(CV->getType(), target);
}
// Print a single constant value.
void
SparcModuleAsmPrinter::printSingleConstant(const Constant* CV)
{
assert(CV->getType() != Type::VoidTy &&
CV->getType() != Type::TypeTy &&
CV->getType() != Type::LabelTy &&
"Unexpected type for Constant");
assert((! isa<ConstantArray>( CV) && ! isa<ConstantStruct>(CV))
&& "Collective types should be handled outside this function");
toAsm << "\t" << TypeToDataDirective(CV->getType()) << "\t";
if (CV->getType()->isPrimitiveType())
{
if (CV->getType() == Type::FloatTy || CV->getType() == Type::DoubleTy)
toAsm << "0r"; // FP constants must have this prefix
toAsm << CV->getStrValue() << "\n";
}
else if (ConstantPointer* CPP = dyn_cast<ConstantPointer>(CV))
{
assert(CPP->isNullValue() &&
"Cannot yet print non-null pointer constants to assembly");
toAsm << "0\n";
}
else if (isa<ConstantPointerRef>(CV))
{
assert(0 && "Cannot yet initialize pointer refs in assembly");
}
else
{
assert(0 && "Unknown elementary type for constant");
}
}
// Print a constant value or values (it may be an aggregate).
// Uses printSingleConstant() to print each individual value.
void
SparcModuleAsmPrinter::printConstantValueOnly(const Constant* CV)
{
ConstantArray *CPA = dyn_cast<ConstantArray>(CV);
if (CPA && isStringCompatible(CPA))
{ // print the string alone and return
toAsm << "\t" << ".ascii" << "\t" << getAsCString(CPA) << "\n";
}
else if (CPA)
{ // Not a string. Print the values in successive locations
const std::vector<Use> &constValues = CPA->getValues();
for (unsigned i=1; i < constValues.size(); i++)
this->printConstantValueOnly(cast<Constant>(constValues[i].get()));
}
else if (ConstantStruct *CPS = dyn_cast<ConstantStruct>(CV))
{ // Print the fields in successive locations
const std::vector<Use>& constValues = CPS->getValues();
for (unsigned i=1; i < constValues.size(); i++)
this->printConstantValueOnly(cast<Constant>(constValues[i].get()));
}
else
this->printSingleConstant(CV);
}
// Print a constant (which may be an aggregate) prefixed by all the
// appropriate directives. Uses printConstantValueOnly() to print the
// value or values.
void
SparcModuleAsmPrinter::printConstant(const Constant* CV, string valID)
{
if (valID.length() == 0)
valID = getID(CV);
toAsm << "\t.align\t" << ConstantToAlignment(CV, Target) << "\n";
// Print .size and .type only if it is not a string.
ConstantArray *CPA = dyn_cast<ConstantArray>(CV);
if (CPA && isStringCompatible(CPA))
{ // print it as a string and return
toAsm << valID << ":\n";
toAsm << "\t" << ".ascii" << "\t" << getAsCString(CPA) << "\n";
return;
}
toAsm << "\t.type" << "\t" << valID << ",#object\n";
unsigned int constSize = ConstantToSize(CV, Target);
if (constSize)
toAsm << "\t.size" << "\t" << valID << "," << constSize << "\n";
toAsm << valID << ":\n";
printConstantValueOnly(CV);
}
void SparcModuleAsmPrinter::FoldConstants(const Module *M,
std::hash_set<const Constant*> &MC) {
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!(*I)->isExternal()) {
const std::hash_set<const Constant*> &pool =
MachineCodeForMethod::get(*I).getConstantPoolValues();
MC.insert(pool.begin(), pool.end());
}
}
void SparcModuleAsmPrinter::printGlobalVariable(const GlobalVariable* GV)
{
toAsm << "\t.global\t" << getID(GV) << "\n";
if (GV->hasInitializer())
printConstant(GV->getInitializer(), getID(GV));
else {
toAsm << "\t.align\t" << TypeToAlignment(GV->getType()->getElementType(),
Target) << "\n";
toAsm << "\t.type\t" << getID(GV) << ",#object\n";
toAsm << "\t.reserve\t" << getID(GV) << ","
<< Target.findOptimalStorageSize(GV->getType()->getElementType())
<< "\n";
}
}
void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module *M) {
// First, get the constants there were marked by the code generator for
// inclusion in the assembly code data area and fold them all into a
// single constant pool since there may be lots of duplicates. Also,
// lets force these constants into the slot table so that we can get
// unique names for unnamed constants also.
//
std::hash_set<const Constant*> moduleConstants;
FoldConstants(M, moduleConstants);
// Now, emit the three data sections separately; the cost of I/O should
// make up for the cost of extra passes over the globals list!
// Section 1 : Read-only data section (implies initialized)
enterSection(AsmPrinter::ReadOnlyData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if ((*GI)->hasInitializer() && (*GI)->isConstant())
printGlobalVariable(*GI);
for (std::hash_set<const Constant*>::const_iterator
I = moduleConstants.begin(),
E = moduleConstants.end(); I != E; ++I)
printConstant(*I);
// Section 2 : Initialized read-write data section
enterSection(AsmPrinter::InitRWData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if ((*GI)->hasInitializer() && ! (*GI)->isConstant())
printGlobalVariable(*GI);
// Section 3 : Uninitialized read-write data section
enterSection(AsmPrinter::UninitRWData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if (! (*GI)->hasInitializer())
printGlobalVariable(*GI);
toAsm << "\n";
}
} // End anonymous namespace
Pass *UltraSparc::getModuleAsmPrinterPass(PassManager &PM, std::ostream &Out) {
return new SparcModuleAsmPrinter(Out, *this);
}