mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16536 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			272 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the generic part of a Scheduler description for a
 | 
						|
// target.  This functionality is defined in the llvm/Target/SchedInfo.h file.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Config/alloca.h"
 | 
						|
#include "llvm/Target/TargetSchedInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iostream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
resourceId_t llvm::CPUResource::nextId = 0;
 | 
						|
static std::vector<CPUResource*> *CPUResourceMap = 0;
 | 
						|
  
 | 
						|
CPUResource::CPUResource(const std::string& resourceName, int maxUsers)
 | 
						|
    : rname(resourceName), rid(nextId++), maxNumUsers(maxUsers) {
 | 
						|
  if(!CPUResourceMap)
 | 
						|
    CPUResourceMap = new std::vector<CPUResource*>;
 | 
						|
 | 
						|
  //Put Resource in the map
 | 
						|
  CPUResourceMap->push_back(this);
 | 
						|
}
 | 
						|
 | 
						|
///Get CPUResource if you only have the resource ID
 | 
						|
CPUResource* CPUResource::getCPUResource(resourceId_t id) {
 | 
						|
  return (*CPUResourceMap)[id];
 | 
						|
}
 | 
						|
 | 
						|
// Check if fromRVec and toRVec have *any* common entries.
 | 
						|
// Assume the vectors are sorted in increasing order.
 | 
						|
// Algorithm copied from function set_intersection() for sorted ranges
 | 
						|
// (stl_algo.h).
 | 
						|
//
 | 
						|
inline static bool
 | 
						|
RUConflict(const std::vector<resourceId_t>& fromRVec,
 | 
						|
	   const std::vector<resourceId_t>& toRVec)
 | 
						|
{
 | 
						|
  
 | 
						|
  unsigned fN = fromRVec.size(), tN = toRVec.size(); 
 | 
						|
  unsigned fi = 0, ti = 0;
 | 
						|
 | 
						|
  while (fi < fN && ti < tN) {
 | 
						|
    if (fromRVec[fi] < toRVec[ti])
 | 
						|
      ++fi;
 | 
						|
    else if (toRVec[ti] < fromRVec[fi])
 | 
						|
      ++ti;
 | 
						|
    else
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static cycles_t
 | 
						|
ComputeMinGap(const InstrRUsage &fromRU, 
 | 
						|
	      const InstrRUsage &toRU)
 | 
						|
{
 | 
						|
  cycles_t minGap = 0;
 | 
						|
  
 | 
						|
  if (fromRU.numBubbles > 0)
 | 
						|
    minGap = fromRU.numBubbles;
 | 
						|
  
 | 
						|
  if (minGap < fromRU.numCycles) {
 | 
						|
    // only need to check from cycle `minGap' onwards
 | 
						|
    for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) {
 | 
						|
      // check if instr. #2 can start executing `gap' cycles after #1
 | 
						|
      // by checking for resource conflicts in each overlapping cycle
 | 
						|
      cycles_t numOverlap =std::min(fromRU.numCycles - gap, toRU.numCycles);
 | 
						|
      for (cycles_t c = 0; c <= numOverlap-1; c++)
 | 
						|
        if (RUConflict(fromRU.resourcesByCycle[gap + c],
 | 
						|
                       toRU.resourcesByCycle[c])) {
 | 
						|
          // conflict found so minGap must be more than `gap'
 | 
						|
          minGap = gap+1;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return minGap;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// class TargetSchedInfo
 | 
						|
//	Interface to machine description for instruction scheduling
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
TargetSchedInfo::TargetSchedInfo(const TargetMachine&    tgt,
 | 
						|
                                 int                     NumSchedClasses,
 | 
						|
                                 const InstrClassRUsage* ClassRUsages,
 | 
						|
                                 const InstrRUsageDelta* UsageDeltas,
 | 
						|
                                 const InstrIssueDelta*  IssueDeltas,
 | 
						|
                                 unsigned NumUsageDeltas,
 | 
						|
                                 unsigned NumIssueDeltas)
 | 
						|
  : target(tgt),
 | 
						|
    numSchedClasses(NumSchedClasses), mii(tgt.getInstrInfo()),
 | 
						|
    classRUsages(ClassRUsages), usageDeltas(UsageDeltas),
 | 
						|
    issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas),
 | 
						|
    numIssueDeltas(NumIssueDeltas)
 | 
						|
{}
 | 
						|
 | 
						|
void
 | 
						|
TargetSchedInfo::initializeResources()
 | 
						|
{
 | 
						|
  assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal()
 | 
						|
	 && "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
 | 
						|
  
 | 
						|
  // First, compute common resource usage info for each class because
 | 
						|
  // most instructions will probably behave the same as their class.
 | 
						|
  // Cannot allocate a vector of InstrRUsage so new each one.
 | 
						|
  // 
 | 
						|
  std::vector<InstrRUsage> instrRUForClasses;
 | 
						|
  instrRUForClasses.resize(numSchedClasses);
 | 
						|
  for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) {
 | 
						|
    // instrRUForClasses.push_back(new InstrRUsage);
 | 
						|
    instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
 | 
						|
    instrRUForClasses[sc].setTo(classRUsages[sc]);
 | 
						|
  }
 | 
						|
  
 | 
						|
  computeInstrResources(instrRUForClasses);
 | 
						|
  computeIssueGaps(instrRUForClasses);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
TargetSchedInfo::computeInstrResources(const std::vector<InstrRUsage>&
 | 
						|
					instrRUForClasses)
 | 
						|
{
 | 
						|
  int numOpCodes =  mii->getNumOpcodes();
 | 
						|
  instrRUsages.resize(numOpCodes);
 | 
						|
  
 | 
						|
  // First get the resource usage information from the class resource usages.
 | 
						|
  for (MachineOpCode op = 0; op < numOpCodes; ++op) {
 | 
						|
    InstrSchedClass sc = getSchedClass(op);
 | 
						|
    assert(sc < numSchedClasses);
 | 
						|
    instrRUsages[op] = instrRUForClasses[sc];
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now, modify the resource usages as specified in the deltas.
 | 
						|
  for (unsigned i = 0; i < numUsageDeltas; ++i) {
 | 
						|
    MachineOpCode op = usageDeltas[i].opCode;
 | 
						|
    assert(op < numOpCodes);
 | 
						|
    instrRUsages[op].addUsageDelta(usageDeltas[i]);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Then modify the issue restrictions as specified in the deltas.
 | 
						|
  for (unsigned i = 0; i < numIssueDeltas; ++i) {
 | 
						|
    MachineOpCode op = issueDeltas[i].opCode;
 | 
						|
    assert(op < numOpCodes);
 | 
						|
    instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
TargetSchedInfo::computeIssueGaps(const std::vector<InstrRUsage>&
 | 
						|
				   instrRUForClasses)
 | 
						|
{
 | 
						|
  int numOpCodes =  mii->getNumOpcodes();
 | 
						|
  issueGaps.resize(numOpCodes);
 | 
						|
  conflictLists.resize(numOpCodes);
 | 
						|
 | 
						|
  assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
 | 
						|
         && "numOpCodes invalid for implementation of class OpCodePair!");
 | 
						|
 | 
						|
  // First, compute issue gaps between pairs of classes based on common
 | 
						|
  // resources usages for each class, because most instruction pairs will
 | 
						|
  // usually behave the same as their class.
 | 
						|
  // 
 | 
						|
  int* classPairGaps =
 | 
						|
    static_cast<int*>(alloca(sizeof(int) * numSchedClasses * numSchedClasses));
 | 
						|
  for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
 | 
						|
    for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) {
 | 
						|
      int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
 | 
						|
                                       instrRUForClasses[toSC]);
 | 
						|
      classPairGaps[fromSC*numSchedClasses + toSC] = classPairGap; 
 | 
						|
    }
 | 
						|
 | 
						|
  // Now, for each pair of instructions, use the class pair gap if both
 | 
						|
  // instructions have identical resource usage as their respective classes.
 | 
						|
  // If not, recompute the gap for the pair from scratch.
 | 
						|
 | 
						|
  longestIssueConflict = 0;
 | 
						|
 | 
						|
  for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
 | 
						|
    for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) {
 | 
						|
      int instrPairGap = 
 | 
						|
        (instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
 | 
						|
        ? classPairGaps[getSchedClass(fromOp)*numSchedClasses + getSchedClass(toOp)]
 | 
						|
        : ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
 | 
						|
 | 
						|
      if (instrPairGap > 0) {
 | 
						|
        this->setGap(instrPairGap, fromOp, toOp);
 | 
						|
        conflictLists[fromOp].push_back(toOp);
 | 
						|
        longestIssueConflict=std::max(longestIssueConflict, instrPairGap);
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void InstrRUsage::setTo(const InstrClassRUsage& classRU) {
 | 
						|
  sameAsClass	= true;
 | 
						|
  isSingleIssue = classRU.isSingleIssue;
 | 
						|
  breaksGroup   = classRU.breaksGroup; 
 | 
						|
  numBubbles    = classRU.numBubbles;
 | 
						|
  
 | 
						|
  for (unsigned i=0; i < classRU.numSlots; i++) {
 | 
						|
    unsigned slot = classRU.feasibleSlots[i];
 | 
						|
    assert(slot < feasibleSlots.size() && "Invalid slot specified!");
 | 
						|
    this->feasibleSlots[slot] = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  numCycles   = classRU.totCycles;
 | 
						|
  resourcesByCycle.resize(this->numCycles);
 | 
						|
  
 | 
						|
  for (unsigned i=0; i < classRU.numRUEntries; i++)
 | 
						|
    for (unsigned c=classRU.V[i].startCycle, NC = c + classRU.V[i].numCycles;
 | 
						|
	 c < NC; c++)
 | 
						|
      this->resourcesByCycle[c].push_back(classRU.V[i].resourceId);
 | 
						|
  
 | 
						|
  // Sort each resource usage vector by resourceId_t to speed up conflict
 | 
						|
  // checking
 | 
						|
  for (unsigned i=0; i < this->resourcesByCycle.size(); i++)
 | 
						|
    std::sort(resourcesByCycle[i].begin(), resourcesByCycle[i].end());
 | 
						|
}
 | 
						|
 | 
						|
// Add the extra resource usage requirements specified in the delta.
 | 
						|
// Note that a negative value of `numCycles' means one entry for that
 | 
						|
// resource should be deleted for each cycle.
 | 
						|
// 
 | 
						|
void InstrRUsage::addUsageDelta(const InstrRUsageDelta &delta) {
 | 
						|
  int NC = delta.numCycles;
 | 
						|
  sameAsClass = false;
 | 
						|
  
 | 
						|
  // resize the resources vector if more cycles are specified
 | 
						|
  unsigned maxCycles = this->numCycles;
 | 
						|
  maxCycles = std::max(maxCycles, delta.startCycle + abs(NC) - 1);
 | 
						|
  if (maxCycles > this->numCycles) {
 | 
						|
    this->resourcesByCycle.resize(maxCycles);
 | 
						|
    this->numCycles = maxCycles;
 | 
						|
  }
 | 
						|
    
 | 
						|
  if (NC >= 0)
 | 
						|
    for (unsigned c=delta.startCycle, last=c+NC-1; c <= last; c++)
 | 
						|
      this->resourcesByCycle[c].push_back(delta.resourceId);
 | 
						|
  else
 | 
						|
    // Remove the resource from all NC cycles.
 | 
						|
    for (unsigned c=delta.startCycle, last=(c-NC)-1; c <= last; c++) {
 | 
						|
      // Look for the resource backwards so we remove the last entry
 | 
						|
      // for that resource in each cycle.
 | 
						|
      std::vector<resourceId_t>& rvec = this->resourcesByCycle[c];
 | 
						|
      int r;
 | 
						|
      for (r = rvec.size() - 1; r >= 0; r--)
 | 
						|
        if (rvec[r] == delta.resourceId) {
 | 
						|
          // found last entry for the resource
 | 
						|
          rvec.erase(rvec.begin() + r);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      assert(r >= 0 && "Resource to remove was unused in cycle c!");
 | 
						|
    }
 | 
						|
}
 |